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Truncated operads and simplicial spaces

Michael S. Weiss

It was shown by Boavida de Brito and Weiss (J. Topol. 11:1 (2018), 65–143) that
a well-known construction which to a (monochromatic, symmetric) topological
operad associates a topological category and a functor from it to the category of
finite sets is homotopically fully faithful, under mild conditions on the operads.
The main result here is a generalization of that statement to k-truncated topo-
logical operads. A k-truncated operad is a weaker version of operad where all
operations have arity ≤ k.

1. Introduction

There is a well-known construction which to a (monochromatic, symmetric) topo-
logical operad P associates a so-called PROP, a small topological category with
a symmetric monoidal product. The set of objects of the PROP is identified with
the set of natural numbers and the monoidal product corresponds to addition. See
[Voronov 2005] for more details and explanations. Forgetting the monoidal prod-
uct in the PROP and passing to the comma category of objects over 1 produces
a topological category (category object in the category of spaces) called CP in
[Boavida de Brito and Weiss 2018, §7]; this paper is henceforth abbreviated [BW].
This comes with a distinguished functor to Fin, essentially the category of all finite
sets. It is well known that P can be reconstructed from the associated PROP with
the monoidal structure. By contrast, the construction P 7→ CP has a forgetful char-
acter, even if we include the reference functor CP → Fin, and there are elementary
examples to illustrate that it really does forget essential features [BW, Remark 7.3].
Write N for the nerve construction (from small topological categories to simplicial
spaces). The main result of [BW, §7] is that for topological operads P and Q,
the map

Rmap(P, Q)→ RmapNFin(NCP , NCQ)

of derived mapping spaces induced by the construction P 7→ NCP is nevertheless a
weak equivalence under a reasonable condition on P and Q. The condition is that

The work was supported by the Bundesministerium für Bildung und Forschung through the Alexan-
der von Humboldt Foundation (Humboldt professorship 2012–2017).
MSC2010: primary 57R40, 55P48; secondary 55U40.
Keywords: truncated operads, derived mapping spaces, dendroidal spaces.

109

http://msp.org
http://msp.org/tunis
http://dx.doi.org/10.2140/tunis.2019.1-1
http://dx.doi.org/10.2140/tunis.2019.1.109
http://dx.doi.org/10.1112/topo.12048


110 MICHAEL S. WEISS

the spaces of 0-ary and 1-ary operations for both P and Q are weakly contractible.
(Beware that topological operads with an empty space of 0-ary operations do not
qualify, although they are popular.) More details and an example are given in
Section 2.

This paper here relies on [BW, §7], but in doing so develops a slightly different
proof of the same result. The advantage of the new proof is that it carries over
without essential change to the setting of k-truncated topological operads. (A
k-truncated operad is a weaker version of operad which has operations of arity ≤ k
only.) This extension is used in [Weiss 2016, Theorem 2.3.1]. In more detail,
that paper is about nontrivial nonvanishing phenomena for the rational Pontryagin
classes of fiber bundles with fiber Rn. It relies on a description of certain spaces
of smooth embeddings along manifold calculus lines (in order to construct exotic
families of homeomorphisms). In that description of spaces of smooth embeddings,
following [BW, §5], spaces of the form RmapNFin(NCP , NCQ) (where P and Q
are little disk operads) and truncated versions are essential ingredients. But com-
putational tools are more readily available for Rmap(P, Q) and truncated versions.
Specifically, [Weiss 2016] refers to a forthcoming PhD thesis by F. Göppl for some
computational tools. This should be available very soon.

2. Operads, dendroidal spaces and simplicial spaces

This section is a review of the main definitions and results of [BW, §7].

Let P be an operad in the symmetric monoidal category of spaces. For conve-
nience, the category of spaces is understood to be the category of simplicial sets.
The following paragraph in quotation marks is quoted verbatim from [BW, §7].

“We think of this in the following terms: P is a functor from the category of
finite sets and bijections to spaces, and for every map f : T → S of finite sets there
is an operation

λ f : P(S)×
∏
i∈S

P(Ti )→ P(T ),

where Ti = f −1(i)⊂ T. Also P(S) contains a distinguished unit element when S
is a singleton. Sensible naturality, associativity and unital properties are satisfied.
Note in particular that any permutation f : S→ S induces a map P(S)→ P(S)
in two ways: firstly because P is a functor from the category of finite sets and
bijections to spaces, and secondly by

P(S) 3 x 7→ λ f (x, 1, 1, . . . , 1) ∈ P(S).

These two maps agree as per definition.
What we have described is also called a plain operad in the category of spaces . . . ”
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Note that plain is synonymous with monochromatic. It means that the operad
has only one object. (We may think of P(S) as the space of S-ary operations from
that object to itself.) The fact that we allow arbitrary finite sets without a total
ordering means that we are dealing with a symmetric operad. In the following we
just write operad to mean monochromatic symmetric operad.

There is a construction P 7→ CP taking an operad P as above to a topological cat-
egory CP (category object in the category of spaces). The category CP comes with
a forgetful functor to the category of finite sets; more precisely we use a skeleton
Fin of the category of finite sets. The objects of Fin are the sets k = {1, 2, . . . , k},
where k ≥ 0. (Note in particular that 0 is the empty set.) The morphisms in Fin

from k to ` are the maps from k to `.
The space of objects of CP is ∐

k≥0

P(k).

The space of morphisms in CP lifting a morphism f : k→ ` in Fin is

P(`)×
∏
i∈`

P(ki )

where ki is the cardinality of f −1(i). Source and target of an element in that
space are determined by applying to it λ f and the projection to P(`), respectively.
Composition and identity morphisms are obvious. See [BW, Remark 7.3] for the
relationship between the construction P 7→ CP and a better-known construction
[Voronov 2005] which turns an operad into a PROP.

The main result of [BW, §7] states that the construction P 7→ CP is homo-
topically fully faithful as long as it is only used with operads P for which the
spaces P(0) and P(1) are weakly contractible. Making this precise requires a few
decisions. Clearly P 7→ CP is a functor. But we need to reason about derived spaces
of morphisms between two topological operads, or between two small topological
categories. Therefore it is convenient to work with a preferred model category
of topological operads, and with a preferred model category of small topological
categories.

Rezk has introduced a model category setting for the category of small topo-
logical categories. The underlying category is simply the category of simplicial
spaces (and here space still means simplicial set for us). A simplicial space X is
said to be a Segal space if it satisfies the following condition (σ ). Let ui : {0, 1} →
{0, 1, 2, . . . , n} be the order-preserving map defined by ui (0)= i−1 and ui (1)= i .

(σ ) For each n ≥ 2 the map (u∗1, u∗2, . . . , u∗n) from Xn to the homotopy limit of

X1
d0
−→ X0

d1
←− X1

d0
−→· · · · · ·

d0
−→ X0

d1
←− X1

is a weak homotopy equivalence.
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Example. The nerve NC of a small category C, which is a simplicial set and as
such a simplicial space, is a Segal space. (Note in passing that the set of r -simplices
of NC is the set of contravariant functors from Ir to C, where Ir is {0, 1, . . . , r}
viewed as a poset with the usual ordering.) The nerve of a small topological cate-
gory C is a Segal space provided that at least one of the maps source, target from
the space of morphisms of C to the space of objects of C is a (Kan) fibration.

For a Segal space X it is sensible to view X0 as the space of objects of something
slightly more general than a topological category, and to view X1 as the space of
morphisms, and d0, d1 : X1→ X0 as the operators source and target, respectively.
In the same spirit, let

morh
X (a, b) := hofiber(a,b)[(d0, d1) : X1→ X0× X0]

for a, b ∈ X0. There is a composition map morh
X (b, c)×morh

X (a, b)→morh
X (a, c),

well-defined at least up to homotopy.

A simplicial map f : X → Y between simplicial spaces which satisfy (σ ) is a
Dwyer–Kan equivalence if

• for every a, b ∈ X0 the map

morh
X (a, b)→morh

Y ( f (a), f (b))

induced by f is a weak equivalence;

• essential surjectivity: for every c ∈ Y0 there exist b ∈ X0 and an element of
morh

Y ( f (b), c) which is weakly invertible.

A simplicial space X is a complete Segal space if in addition to (σ ) it satisfies an-
other property (κ), completeness, for which the reader can consult [BW, §2]. The
point of this additional condition is the following. Firstly, every Segal space admits
a Dwyer–Kan equivalence to a complete Segal space. Secondly, a Dwyer–Kan
equivalence between two Segal spaces which are both complete is a degreewise
weak equivalence.

Rezk’s model category structure on the category sS of simplicial spaces can
be described roughly as follows. Start with the standard model category structure
on S, the category of spaces (= simplicial sets). Use it to define a model category
structure on sS where either the weak equivalences and the cofibrations are defined
levelwise, or the weak equivalences and the fibrations are defined levelwise (yes,
there are two options). Write sS1 for sS with this model category structure. There
is a unique model category structure on sS which has the same cofibrations as
sS1 and which for the fibrant objects has the complete Segal spaces which are
also fibrant as objects of sS1. See [BW, §B.2]. This is the Rezk model category
structure. Write sS2 for sS with that model category structure. A map f : X→ Y
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of simplicial spaces is a weak equivalence in sS2 if and only if, for every complete
Segal space Z which is fibrant in sS1, the induced map

RmapsS1
(Y, Z)→ RmapsS1

(X, Z)

(of derived mapping spaces formed in sS1) is a weak equivalence. This character-
ization of the weak equivalences means that sS2 can also be constructed from sS1

by a left localization.
We will also need a model category structure on the over category sS/Z where

Z is an object of sS, for us typically a Segal space but not a complete one. There is
a standard way by which a model category structure on some category C determines
a model category structure on each of the over categories C/c, for objects c of C.
See [Goerss and Schemmerhorn 2007, Example 1.7]. We apply this with sS2 and
we denote the result by sS2/Z . By definition the fibrant objects in sS2/Z are
simply the fibrations with target Z in sS2. But they also have a characterization
as the morphisms Y → Z in sS which are fibrations in sS1 and make Y into a
fiberwise complete Segal space over Z ; see [BW, §B] for more details.

Cisinski and Moerdijk [2013] have an analogous framework for topological op-
erads; see also related earlier papers by Cisinski and Moerdijk [2011], and by
Moerdijk and I. Weiss [2007]. The starting point for this is a small category
Tree (in their notation, �) whose objects are certain finite trees. In more detail,
an object T of Tree is a finite nonempty set ε(T ) with a partial order ≤ and a
distinguished subset λ(T ) of the set of maximal elements of ε(T ) such that the
following conditions are satisfied:

• ε(T ) has a minimal element (called the root).

• For each element e of ε(T ), the set {y ∈ ε(T ) | y ≤ e} with the restricted
ordering is linearly ordered.

The elements of ε(T ) are also called edges of the tree T. The elements of λ(T ) are
called the leaves of T. (The elements of ε(T ) \ λ(T ) are sometimes called vertices,
but I have found this confusing and I prefer to call them nonleaf edges.) An object
T of Tree generates a finite (colored!) operad with color set ε(T ); for each nonleaf
edge a in T there is a generating operation with target a and with multisource
equal to the set of edges which are just above a in the ordering. A morphism
S→ T in Tree is by definition a morphism of the associated finite operads. See
[BW, §7.2] for more details and examples. The category Tree contains a copy of
the category 1 (with objects [k] = {0, 1, . . . , k} for k ≥ 0 and with monotone maps
as morphisms). A dendroidal space is a functor from Treeop to spaces. Therefore
a dendroidal space determines a simplicial space by restriction from Treeop to 1op.

There is a concept of Segal dendroidal space analogous to the concept of Se-
gal space, and a corresponding model category structure on the category dS of
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dendroidal spaces. Again, this can be obtained by starting with a standard model
category structure on dS, for which we write dS1, and then applying a localization
process. The result is dS2, which has the same underlying category and the same
cofibrations as dS1, but the fibrant objects in dS2 are the Segal dendroidal spaces
which are also fibrant in dS1.

A topological operad Q has a dendroidal nerve Nd Q, which is a dendroidal
space such that (Nd Q)T is the space of operad maps from the operad associated
with the tree T to Q. If Q is monochromatic, then (Nd Q)T is a point for T = η,
the tree with a single edge. (The notation Nd Q for the dendroidal nerve of an
operad Q is widely used. It clashes with the notation Nd C for the set of d-simplices
in the nerve of a category C. Notation like (NC)d can be used in such cases.) The
dendroidal nerve Nd Q is then a Segal dendroidal space. (It does not make sense
to insist on a completeness property as in [Rezk 2001], or to claim such a property,
if we want to work with monochromatic operads. I am indebted to the referee for
drawing my attention to this point. By analogy, the bar construction alias nerve of a
topological monoid M is a simplicial space which qualifies as a Segal space, but it
is a complete Segal space only if the subspace of weakly invertible elements in M is
weakly contractible. See also [BW, Example 7.7]. Similarly, if the monochromatic
operad Q satisfies Q(1)' ∗, then Nd Q can call itself a complete Segal dendroidal
space, but we are not imposing that condition yet.) A key result of the dendroidal
theory is that the dendroidal nerve functor induces a weak equivalence

Rmap(P, Q) '−→Rmap(Nd P, Nd Q) (2-1)

when P and Q are (monochromatic) operads. In the left-hand side, the derived
mapping space Rmap(P, Q) can be interpreted using a standard model structure
with levelwise weak equivalences and fibrations. In the right-hand side, use either
dS1 or dS2; it does not matter which because Nd Q is a Segal dendroidal space.

For a simplicial set Y let simp(Y ) be the category whose objects are pairs (m, y)
with y ∈ Xm ; a morphism from (m, y) to (n, z) is a morphism f : [m] → [n] in 1
such that f ∗(z)= y. There is a functor

ϕ : simp(NFin)→ Tree

defined as follows. To an object (p, S∗) of simp(NFin), where

S∗ = (S0← S1← S2← · · · ← Sp),

associate the tree T where ε(T ) is the disjoint union of the Si and an additional
element r , with λ(T ) corresponding to Sp. The partial order on ε(T ) is the obvious
one: r is the minimal element and x ∈ Si is ≤ y ∈ Sj if i ≤ j and the composite
map from Sj to Si in the string S∗ takes y to x . The functor ϕ establishes a close
relationship between dendroidal spaces and simplicial spaces over NFin. Indeed,
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a simplicial space over NFin is the same thing as a contravariant functor from
simp(NFin) to spaces. Therefore precomposition with ϕ is a functor ϕ∗ which takes
us from dendroidal spaces to simplicial spaces over NFin. Important example: for
a topological operad there is an isomorphism of ϕ∗(Nd P) with NCP , both viewed
as simplicial spaces over NFin.

The main result of [BW, §7] is that for topological operads P and Q the functor
ϕ∗ induces a weak equivalence

Rmap(Nd P, Nd Q) // RmapNFin(ϕ
∗Nd P, ϕ∗Nd Q)

RmapNFin(NCP , NCQ)

(2-2)

provided P(0), P(1), Q(0) and Q(1) are weakly contractible. In the right-hand
side we can use the model category structure sS1/NFin or sS2/NFin; it does not
matter because NCQ is a fiberwise complete Segal space over NFin. In view of
(2-1) this implies that the nerve functor determines a weak equivalence

Rmap(P, Q) '−→RmapNFin(NCP , NCQ) (2-3)

under the same conditions on P and Q.

Example 2.1. Suppose that P is the operad of little m-disks and Q is the operad of
little n-disks. Then NCP and NCQ are weakly equivalent, over NFin, to certain sim-
plicial spaces con(Rm) and con(Rn) defined as nerves of certain (topological) cate-
gories of configurations in Rm and Rn, respectively. See [BW, §3 and Example 7.2].
With Andrade’s particle models for the configuration categories, M 7→ con(M) is a
continuous functor on the category of topological manifolds and injective continu-
ous maps. It follows that there are compatible actions of the homeomorphism group
of Rm (from the right) and the homeomorphism group of Rn (from the left) on

RmapNFin(con(R
m), con(Rn))' RmapNFin(NCP , NCQ).

Similarly, there is an interesting map from the space of injective continuous maps
Rm
→ Rn to the space RmapNFin(con(R

m), con(Rn)). All these good features are
not easy to see in the operadic description Rmap(P, Q).

3. Truncated operads and truncated dendroidal spaces

For an integer k ≥ 1, a k-truncated operad in the symmetric monoidal category of
spaces is defined like an operad in spaces except for the following changes: all
operations have arity ≤ k and composition of operations is only defined where it
does not contradict this restriction. More specifically, we can describe a k-truncated
(monochromatic, symmetric) operad in spaces in the following terms. It is a func-
tor P from the category of finite sets of cardinality ≤ k and bijections to spaces,



116 MICHAEL S. WEISS

and for every map f : T → S of finite sets of cardinality ≤ k there is an operation

λ f : P(S)×
∏
i∈S

P(Ti )→ P(T )

where Ti = f −1(i)⊂ T. Also P(S) contains a distinguished unit element when S is
a singleton. Sensible naturality, associativity and unital properties are satisfied. In
particular any permutation f : S→ S, where |S| ≤ k, induces a map P(S)→ P(S)
in two ways: firstly because P is a functor, and secondly by

P(S) 3 x 7→ λ f (x, 1, 1, . . . , 1) ∈ P(S).

These two maps agree by definition.

For an integer k ≥ 1 let Treek ⊂ Tree be the full subcategory whose objects are
the trees T such that for every t ∈ ε(T ) \ λ(T ) the set {s ∈ ε(T ) | s > t} has at
most k minimal elements. (These minimal elements are often called the incoming
edges of a fictional vertex associated with the nonleaf edge t .) Similarly let Fin≤k

be the full subcategory spanned by the objects m where m ≤ k. The functor ϕ
above restricts to a functor

ϕk : simp(NFin≤k)→ Treek .

An object T of Treek generates a finite k-truncated (colored) operad with color
set ε(T ); for each nonleaf edge a in T there is a generating operation with target a
and with multisource equal to the set of edges which are just above a in the ordering.
A k-truncated operad P has a nerve Nd P which we regard as a contravariant functor
from Treek to spaces. It is defined in such a way that (Nd P)T is the space of
k-truncated operad morphisms from the k-truncated operad associated with T to P.
The k-truncated operad P also determines a topological category CP (category in
spaces) with a forgetful functor to Fin≤k . The space of objects of CP is

k∐
m=0

P(m).

For a morphism f : `→ m in Fin≤k the space of morphisms in CP lifting f is

P(`)×
∏
j∈m

P(` j )

where `j is the cardinality of f −1( j).
Keeping in mind that a simplicial space over NFin≤k is the same thing as a

contravariant functor from simp(NFin≤k), we can say that composition with ϕk is
a functor ϕ∗k from k-truncated dendroidal spaces to simplicial spaces over NFin≤k .
In that sense there is an isomorphism

ϕ∗k (Nd P)∼= NCP

of simplicial spaces over NFin≤k , assuming that P is a k-truncated operad in
spaces.
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Theorem 3.1. Let P and Q be k-truncated operads (in spaces, k ≥ 1) for which
the spaces P(0), P(1), Q(0) and Q(1) are weakly contractible. Then composition
with the functor ϕ∗k is a weak equivalence:

Rmap(Nd P, Nd Q) ' // RmapNFin≤k
(ϕ∗k Nd P, ϕ∗Nd Q)

RmapNFin≤k
(NCP , NCQ)

This will be proved in the following sections. For clarification, we make sense
of Rmap(Nd P, Nd Q) using a model category structure with levelwise weak equiv-
alences on the category of contravariant functors from Treek to spaces. We make
sense of RmapNFin≤k

(NCP , NCQ) using a model category structure on the category
of simplicial spaces over NFin≤k with levelwise weak equivalences. (See [Dwyer
and Kan 1980], where it is shown that the derived mapping spaces in a model
category depend mainly on the subcategory of weak equivalences, and not much
on the subcategories of cofibrations and fibrations, respectively.) The proof of
Theorem 3.1 given here works equally well in the untruncated setting, k =∞. It
can be seen as another way to show that (2-2) is a weak equivalence which happens
to generalize easily to the truncated situation.

4. Leaves are unnecessary

In [BW, §7] the weak equivalence (2-2) is established in essentially two steps.
In the first step, which is the easier one, the category Tree gets replaced by a
much more accessible subcategory Treerc. It is the subcategory of Tree obtained
by allowing as objects only the trees T with empty leaf set λ(T ) and as morphisms
only the morphisms in Tree between trees with no leaves which take root to root.

An object T of Treerc can therefore be described as a finite set T with an order
relation (written ≤) such that
• T has a (unique) minimal element, called the root;

• for every s ∈ T the set {t ∈ T | t ≤ s} is linearly ordered (with the ordering
induced from T ).

(We need not distinguish anymore between T and the edge set of T.) A morphism
S→ T in Treerc is a map f from S to T which respects the order relations, takes
root to root and has the additional property that it preserves independence. That is,
if for u, v ∈ S we have neither u ≤ v nor v ≤ u, then for f (u), f (v) ∈ T we have
neither f (u)≤ f (v) nor f (v)≤ f (u).

There is a functorψ : simp(NFin)→Treerc very similar to ϕ : simp(NFin)→Tree.
For an object (p, S∗) of simp(NFin), where

S∗ = (S0← S1← S2← · · · ← Sp),
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let ψ(p, S∗) be tree T without leaves which, as a set, is the disjoint union of the
Si and an additional element r . The partial order on T is the obvious one: r is the
minimal element and x ∈ Si is ≤ y ∈ Sj if i ≤ j and the composite map from Sj to
Si in the string S∗ takes y to x .

The formal relationship between ϕ and ψ is a little more complicated than one
might expect. The inclusion ι : Treerc→ Tree has a left adjoint κ : Tree→ Treerc.
Equations such as ϕ = ιψ or ψ = κϕ come to mind, but both are false. Instead
we have ϕβ = ιψ, where β : simp(NFin)→ simp(NFin) is the endofunctor which
takes the string

(S0← S1← S2← · · · ← Sp)

to the string
(S0← S1← S2← · · · ← Sp←∅).

Now let N rc
d P and N rc

d Q be the restrictions of Nd P and Nd Q, respectively, to
Treerc. On the basis of the observations just above, showing that (2-2) is a weak
equivalence reduces easily to showing that the map

Rmap(N rc
d P, N rc

d Q)→ Rmap(ψ∗N rc
d P, ψ∗N rc

d Q) (4-1)

obtained by composition with ψ∗ is a weak equivalence. We are still assuming
that P(0), P(1), Q(0) and Q(1) are weakly contractible. (There is a commutative
diagram

Rmap(ϕ∗Nd P, ϕ∗Nd Q)

β∗

��

Rmap(Nd P, Nd Q)
(2-2)

oo

ι∗

��

Rmap(ψ∗N rc
d P, ψ∗N rc

d Q) Rmap(N rc
d P, N rc

d Q)
(4-1)
oo

where the vertical arrows are weak equivalences; use ϕβ = ιψ and N rc
d = ι

∗Nd .)

The message of this short section is that the same argument applies in the trun-
cated situation. There is a functor

ψk : simp(NFin≤k)→ Treek ∩Tree
rc

obtained by restriction of ψ. Suppose that P and Q are k-truncated operads for
which P(0), P(1), Q(0) and Q(1) are weakly contractible. Let N rc

d P and N rc
d Q

be the contravariant functors from Treek ∩Tree
rc to spaces obtained by restricting

Nd P and Nd Q, respectively. Then for the proof of Theorem 3.1 it suffices to show
that the map

Rmap(N rc
d P, N rc

d Q)→ Rmap(ψ∗k N rc
d P, ψ∗k N rc

d Q) (4-2)

obtained by composing with ψ∗k is a weak equivalence.
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5. Bridging the gap

Let Rψ∗ be the homotopy right Kan extension along ψ. This is applicable to
contravariant functors from simp(NFin) to spaces and yields contravariant functors
from Treerc to spaces. It serves as a homotopy right adjoint to the functor ψ∗ given
by precomposition with ψ. It is shown in [BW, §7] that, under conditions on Q as
in (4-1), the homotopy unit

N rc
d Q→ Rψ∗ψ

∗(N rc
d Q) (5-1)

is a weak equivalence. This implies in a formal manner that the map (4-1) is a
weak equivalence. See [BW, Lemma A.1].

This type of argument is also available in the truncated setting, but showing
that the truncated analogue of (5-1) is a weak equivalence is harder than showing
that (5-1) is a weak equivalence. Therefore we proceed in two steps by writing the
functor ψ and its truncated variant ψk as a composition of two functors. In doing
so we deviate from the line of reasoning developed in [BW, §7]. It amounts to
additional work, but there is the surprising reward that we can avoid the use of a
difficult lemma [BW, Lemma 7.14].

Definition 5.1. There is a category Levtree which is halfway between simp(NFin)

and Treerc. An object of Levtree is an object of simp(NFin). A morphism in Levtree

from S∗ = (S0← S1← · · · ← Sk) to R∗ = (R0← R1← · · · ← R`) consists of
a monotone map u : [k] → [`] and monotone injections vj : Sj → Ru( j), one for
every j ∈ [k], such that the diagram

Sj−1

vj−1
��

Sjoo

vj
��

Ru( j−1) · · ·oo Ru( j)oo

commutes for j ∈ {1, . . . , k}. If the vj are bijective, then they are necessarily
identity maps and the collection (u, (vj )) is a morphism in simp(NFin) from S∗
to R∗. Therefore simp(NFin)⊂ Levtree.

Let us note that in the category simp(NFin) or, for that matter, in any cate-
gory of the form simp(Y ) where Y is a simplicial set, no object admits nontrivial
automorphisms. The same can be said of Levtree: no object admits nontrivial
automorphisms.

Write α : simp(NFin)→ Levtree for the inclusion. The functor ψ has an obvious
extension to a functor ξ : Levtree→ Treerc, so that there is a commutative triangle:

simp(NFin)

α ''

ψ
// Treerc

Levtree
ξ

::
(5-2)



120 MICHAEL S. WEISS

Lemma 5.2. Let Z = ξ∗(N rc
d Q). The homotopy unit Z → Rα∗α

∗Z is a weak
equivalence.

Proof. Let R∗= (R0← R1←· · ·← R`) be an object of Levtree. For (Rα∗α∗Z)(R∗)
we have the standard formula

holim
S∗→R∗

Z(S∗),

where the homotopy limit is taken over a certain comma category alias over-category
U which depends on R∗. The objects of U are pairs consisting of an object S∗
of simp(NFin) and a morphism f : S∗→ R∗ in Levtree. A morphism in U from
(S∗, f ) to (S′

∗
, g) is a morphism S∗→ S′

∗
in simp(NFin) which is over R∗ when

viewed as a morphism in Levtree.
We introduce full subcategories

U−1 ⊃ U0 ⊃ U1 ⊃ U2 ⊃ · · · ⊃ U`−1 ⊃ U`

of U , where U−1 = U and U` is the comma category determined by the identity
functor simp(NFin)→ simp(NFin) and the object R∗. (The integer ` is determined
by R∗.) The details are as follows. An object of U given by S∗→ R∗, or more
precisely, by the commutative diagram

· · · Sj−1oo

vj−1

��

Sjoo

vj

��

· · ·oo

· · ·oo Ru( j−1)oo · · ·oo Ru( j)oo · · ·oo oo

(5-3)

belongs to Ur if and only if vj is bijective (hence an identity map) for all j such that
u( j)≤ r . In particular that object S∗→ R∗ belongs to U` if and only if S∗→ R∗
is a morphism in simp(NFin). We use the abbreviation Z(S∗→ R∗) := Z(S∗) for
an object S∗→ R∗ in U . Then Z is a contravariant functor from U to spaces and

(Rα∗α
∗Z)(R∗)= holim Z = holim Z |U−1.

There is a string of forgetful projections

holim Z |U−1→ holim Z |U0→ · · · → holim Z |U`.

We have our unit map from Z(R∗) to (Rα∗α∗Z)(R∗)= holim Z |U−1 such that the
composition

Z(R∗)→ holim Z |U−1→ holim Z |U0→ · · · → holim Z |U`

is a weak equivalence for rather trivial reasons. Therefore it suffices to show that
each of the projection maps holim Z |Ur → holim Z |Ur+1 admits a homotopy left
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inverse, making holim Z |Ur a homotopy retract of holim Z |Ur+1. To achieve that,
we shall construct two functors

V : Ur → Ur , W : Ur → Ur+1

and natural transformations id⇒ V ⇐W, where the functor V takes Ur+1 to itself.
The crucial property is that, for every object S∗→ R∗ in Ur , the natural morphism
W (S∗ → R∗)→ V (S∗ → R∗) is taken to a weak equivalence by the functor Z .
Then we shall have the maps

holim Z |Ur+1 // holim(Z |Ur+1) ◦W

holim(Z |Ur ) ◦ V

'

OO

// holim Z |Ur

(the first by prolongation, the other two using the natural transformations), which
give us the required homotopy class of maps from holim Z |Ur+1 to holim Z |Ur .

For the description of V, imagine an object S∗ → R∗ of Ur given by a dia-
gram like (5-3), where j runs through {0, 1, . . . , k}. Determine the unique t ∈
{0, 1, . . . , k, k + 1} such that u( j) ≤ r whenever j < t and u( j) > r whenever
j ≥ t . Let V (S∗→ R∗)= (S′∗→ R∗), where

S′
∗
= (S0← S1← · · · ← St−1← Rr+1← St ← St+1← · · · ← Sk),

that is, S′j = Sj for j < t , S′t = Rr+1 and S′j = Sj−1 for t < j ≤ k + 1. The arrow
from S′t+1 = St to S′t = Rr+1 is vt . The morphism (in Levtree) from S′

∗
to R∗ is

defined in such a way that there is a commutative triangle

S∗ //

��

S′
∗

��

R∗

in Levtree, where the horizontal arrow (a morphism in simp(NFin)) is defined by
the monotone injection [k] → [k + 1] which omits t . Of course, S′t should be
mapped to Rr+1 = Ru(t) by the identity. This commutative triangle contributes to a
sketchy description not only of V, but also of our preferred natural transformation
from id to V. Now the functor W is defined, on an object S∗→ R∗ of U as before,
by starting from V (S∗→ R∗)= (S′∗→ R∗) as described and erasing from S′

∗
all

the terms S′j+1 = Sj where j ≥ t and v( j)= r + 1. Call the result S′′
∗
→ R∗. Again

there is a commutative triangle

S′
∗

��

S′′
∗

oo

��

R∗
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where the horizontal arrow (a morphism in simp(NFin)) is defined by a monotone
injection [k+1−a]→ [k+1] which omits an interval of the form {t+1, . . . , t+a}.
This contributes to a sketchy description not only of W, but also of our preferred
natural transformation from W to V. The morphism in Ur defined by this triangle
is taken to a homotopy equivalence by the functor Z . To illustrate that, here is a
picture describing S′

∗
and S′′

∗
and the preferred morphism between them:

• • • • • • • • • •

• • • • • • • • • • S′′t+1

S′t+a • • • •

• • • • • oo

S′t • • • • • • • • • • • • S′′t

• • • •

We are saying that the corresponding operator in N rc
d Q is a weak equivalence. This

is based on the assumption that Q(0) and Q(1) are weakly contractible. �

Lemma 5.3. Let Z = N rc
d Q. The homotopy unit Z → Rξ∗ξ

∗Z is a weak equiva-
lence.

Proof. Let T be an object of Treerc. The standard formula for (Rξ∗ξ∗Z)(T ) is

holim
ξ(S∗)→T

Z(ξ(S∗)).

Here the homotopy inverse limit is taken over a comma category V (T ). An object
of V (T ) is an object S∗ of Levtree together with a morphism f : ξ(S∗)→ T in
Treerc. A morphism in V (T ) from (S∗, f ) to (R∗, g) is a morphism S∗→ R∗ in
Levtree which turns into a morphism over T on applying ξ . Let FT from V (T ) to
spaces be the functor which takes (S∗, f ) to Z(ξ(S∗)). Then we can write

(Rξ∗ξ
∗Z)(T )= holim FT .

We proceed by induction on the number of nodes of T, where node means a vertex
with more than one incoming edge. The induction beginning includes the case
where T has zero nodes. Then T is linearly ordered. It is easy to see that Z(T ) is
weakly contractible, since we are assuming weak contractibility of Q(0) and Q(1).
Also, for each object (S∗, f ) in V (T ), the space Z(ξ(S∗))= FT (S∗, f ) is weakly
contractible since ξ(S∗) is linearly ordered. Therefore, if T has zero nodes, the
unit map from Z(T ) to (Rξ∗ξ∗Z)(T ) is a weak equivalence.
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The induction beginning also includes the case where T has exactly one node.
This case is surprisingly hard. Let V0(T ) be the full subcategory of V (T ) obtained
by deleting all objects (S∗, f ) of V (T ) where ξ(S∗) has zero nodes, or equivalently,
the sets Si all have cardinality ≤ 1. It is easy to see that the restriction map

holim FT → holim(FT |V0(T ))

is a weak equivalence, since the value of FT on any object of V (T ) not in V0(T )
is weakly contractible and since any morphism in V (T ) with source in V0(T ) has
target in V0(T ). Next, let V1(T ) be the full subcategory of V0(T ) consisting of
those objects (S∗, f ) where the set S0 has cardinality > 1. (We write

S∗ = (S0← S1← · · · ← Sk−1← Sk)

as usual.) The inclusion functor V1(T )→ V0(T ) has a right adjoint. (If (S∗, f ) in
V0(T ) has |S0| = |S1| = · · · = |Sj | = 1 and |Sj+1|> 1, then the value of that right
adjoint on (S∗, f ) is obtained by deleting the terms S0, S1, S2, . . . , Sj .) Moreover
the counit morphisms of the adjunction are taken to a weak equivalence by FT . It
follows that the restriction map

holim(FT |V0(T ))→ holim(FT |V1(T ))

is a weak equivalence. Next, let U ⊂ T be the set of incoming edges to the unique
node of T. It has at least two elements by our assumption on T. Choose a total
ordering on U. Let V2(T )⊂ V1(T ) be the subcategory of V1(T ) defined as follows.
An object (S∗, f ) of V1(T ) qualifies as an object of V2(T ) if f takes the ordered
set S0 to U by an order-preserving bijection. A morphism (S∗, f )→ (R∗, g) in
V1(T ) between such objects, given by a monotone map u : [k]→ [`] and monotone
injections vj : Sj → Ru( j) for j ∈ [k], qualifies as a morphism in V2(T ) precisely if
u(0)= 0. (In that case v0 : S0→ R0 must be an order preserving bijection, hence
an identity map.) The inclusion of V2(T ) in V1(T ) has a left adjoint. Therefore the
restriction map

holim(FT |V1(T ))→ holim(FT |V2(T ))

is a weak equivalence. Now FT takes every morphism in V2(T ) to a weak equiv-
alence of spaces. Moreover V2(T ) clearly has an initial object ω. Together these
properties imply that the projection from holim(FT |V2(T )) to FT (ω) is a weak
equivalence. Putting all that together, it follows that the projection from holim FT

itself to FT (ω) is a weak equivalence. Then it follows easily by inspection that the
unit map Z(T )→ (Rξ∗ξ

∗Z)(T )= holim FT ' FT (ω) is a weak equivalence. This
completes our discussion of the case where T has exactly one node.

We come to the induction step, which is rather formal and uses a mildly sheaf-
theoretic argument. Suppose that T is an object of Treerc such that T = T0 ∪ T1
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where T0 and T1 are subtrees (by which, at this point, we simply mean subposets)
of T. More precisely we require that if e ∈ T0 and e′ ∈ T with e′ ≤ e, we have
e′ ∈ T0, and similarly for T1. We also require that if e, e′ ∈ T and both are incoming
edges for the same vertex, then either e, e′ are both in T0 or both not in T0; and
similarly for T1. The following picture is an example:

• •

• • • •

• • • • • •

• •

•

T

•

• • •

• • •

• •

•

T0

•

•

• • • • • •

• •

•

T1

Then it is easy to see that the square of inclusion-induced maps

Z(T ) //

��

Z(T0)

��

Z(T1) // Z(T0 ∩ T1)

is a homotopy pullback square. If we can show that the square of inclusion-induced
maps

(Rξ∗ξ
∗Z)(T ) //

��

(Rξ∗ξ
∗Z)(T0)

��

(Rξ∗ξ
∗Z)(T1) // (Rξ∗ξ

∗Z)(T0 ∩ T1)

is also a homotopy pullback square, then that can pass for the induction step. With
the abbreviations or translations above, we have (Rξ∗ξ∗Z)(T )= holim FT , where
FT is defined on VT . Let V ′T be the full subcategory of VT consisting of all objects

(S∗, f : ξ(S∗)→ T )

such that ξ(S∗) lands in T0 or in T1 or even in T0 ∩ T1. By inspection, the square
of restriction maps

holim(FT |V
′

T )
//

��

holim FT0

��

holim FT1
// holim FT0∩T1
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is a homotopy pullback square. Therefore it is enough to show that the restriction
map from holim FT to holim(FT |V

′

T ) is a weak equivalence. A formula of Dwyer
and Kan [1984, 9.7] or Bousfield and Kan allows us to identify holim(FT |V

′

T ) with
the homotopy inverse limit of Rη∗(FT |V

′

T ), where η : V ′T → VT is the inclusion
and Rη∗ denotes the homotopy right Kan extension along η. In the definition of
Rη∗ we use, for each object (S∗, f ) in VT , the comma category η/(S∗, f ). In that
comma category there is the diagram (of three objects)

(S∗, f )T0

%%

(S∗, f )T0∩T1
oo

��

// (S∗, f )T1

yy

(S∗, f )

where the subscripts indicate evident pullback operations; for example (S∗, f )T0

is made from the portion of S∗ taken to T0 by f . That diagram can be viewed
as a subcategory of η/(S∗, f ). It is a terminal subcategory in the sense that the
inclusion functor has a left adjoint. Hence the value of Rη∗(FT |V

′

T ) at the object
(S∗, f ) of VT can be identified with the homotopy pullback of

FT ((S∗, f )T0)→ FT ((S∗, f )T0∩T )← FT ((S∗, f )T1)

which in turn can be identified with FT (S∗, f )= Z(ξ(S∗)) by the sheaf property
of Z . �

It is very easy to show (again) that the map (4-1) is a weak equivalence using
Lemmas 5.2 and 5.3. Indeed, Lemma 5.2 implies that the standard map

Rmap(ξ∗N rc
d P, ξ∗N rc

d Q)→ Rmap(α∗ξ∗N rc
d P, α∗ξ∗N rc

d Q)

is a weak equivalence and Lemma 5.3 implies that the standard map

Rmap(N rc
d P, N rc

d Q)→ Rmap(ξ∗N rc
d P, ξ∗N rc

d Q)

is a weak equivalence. See [BW, Lemma A.1] and remember diagram (5-2). This
new proof carries over, mutatis mutandis, to show that the map (4-2) is also weak
equivalence. In this way we have completed the proof of Theorem 3.1, since that
had already been reduced to showing that (4-2) is a weak equivalence.
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