PURE and APPLIED

 cese (2) ao vo vecoSEMICLASSICAL RESOLVENT ESTIMATES FOR SHORT-RANGE \boldsymbol{L}^{∞} POTENTIALS

Vol. 1, No. 2, 2019
dx.doi.org/10.2140/paa.2019.1.207

SEMICLASSICAL RESOLVENT ESTIMATES FOR SHORT-RANGE L^{∞} POTENTIALS

Georgi Vodev

We prove semiclassical resolvent estimates for real-valued potentials $V \in L^{\infty}\left(\mathbb{R}^{n}\right), n \geq 3$, satisfying $V(x)=\mathcal{O}\left(\langle x\rangle^{-\delta}\right)$ with $\delta>3$.

1. Introduction and statement of results

Our goal in this note is to study the resolvent of the Schrödinger operator

$$
P(h)=-h^{2} \Delta+V(x),
$$

where $0<h \ll 1$ is a semiclassical parameter, Δ is the negative Laplacian in $\mathbb{R}^{n}, n \geq 3$, and $V \in L^{\infty}\left(\mathbb{R}^{n}\right)$ is a real-valued potential satisfying

$$
\begin{equation*}
|V(x)| \leq C\langle x\rangle^{-\delta}, \tag{1-1}
\end{equation*}
$$

with some constants $C>0$ and $\delta>3$. More precisely, we are interested in bounding from above the quantity

$$
g_{s}^{ \pm}(h, \varepsilon):=\log \left\|\langle x\rangle^{-s}(P(h)-E \pm i \varepsilon)^{-1}\langle x\rangle^{-s}\right\|_{L^{2} \rightarrow L^{2}},
$$

where $L^{2}:=L^{2}\left(\mathbb{R}^{n}\right), 0<\varepsilon<1, s>\frac{1}{2}$ and $E>0$ is a fixed energy level independent of h. Such bounds are known in various situations. For example, for long-range real-valued C^{1} potentials it is proved in [Datchev 2014] when $n \geq 3$ and in [Shapiro 2019] when $n=2$ that

$$
\begin{equation*}
g_{s}^{ \pm}(h, \varepsilon) \leq C h^{-1} \tag{1-2}
\end{equation*}
$$

with some constant $C>0$ independent of h and ε. Previously, the bound (1-2) was proved for smooth potentials in [Burq 2002] and an analog of (1-2) for Hölder potentials was proved in [Vodev 2014b]. A high-frequency analog of (1-2) on more complex Riemannian manifolds was also proved in [Burq 1998; Cardoso and Vodev 2002]. In all these papers the regularity of the potential (and of the perturbation in general) plays an essential role. Without any regularity, the problem of bounding $g_{s}^{ \pm}$from above by an explicit function of h gets quite tough. Nevertheless, it was recently shown in [Shapiro 2018] that for real-valued compactly supported L^{∞} potentials one has the bound

$$
\begin{equation*}
g_{s}^{ \pm}(h, \varepsilon) \leq C h^{-4 / 3} \log \left(h^{-1}\right), \tag{1-3}
\end{equation*}
$$

[^0]with some constant $C>0$ independent of h and ε. The bound (1-3) was also proved in [Klopp and Vogel 2019], still for real-valued compactly supported L^{∞} potentials but with the weight $\langle x\rangle^{-s}$ replaced by a cut-off function. When $n=1$ it was shown in [Dyatlov and Zworski 2019] that we have the better bound (1-2) instead of (1-3). When $n \geq 2$, however, the bound (1-3) seems hard to improve without extra conditions on the potential. The problem of showing that the bound (1-3) is optimal is largely open. In contrast, it is well known that the bound (1-2) cannot be improved in general; e.g., see [Datchev et al. 2015].

In this note we show that the bound (1-3) still holds for noncompactly supported L^{∞} potentials when $n \geq 3$. Our main result is the following.

Theorem 1.1. Under the condition (1-1), there exists $h_{0}>0$ such that for all $0<h \leq h_{0}$ the bound (1-3) holds true.

Remark. It is easy to see from the proof, see the inequality (4-2), that the bound (1-3) holds also for a complex-valued potential V satisfying (1-1), provided that its imaginary part satisfies the condition

$$
\mp \operatorname{Im} V(x) \geq 0 \quad \text { for all } x \in \mathbb{R}^{n}
$$

To prove this theorem we adapt the Carleman estimates proved in [Shapiro 2018] simplifying some key arguments as, for example, the construction of the phase function φ. This is made possible by defining the key function F in Section 3 differently, without involving the second derivative $\varphi^{\prime \prime}$. The consequence is that we do not need to seek φ^{\prime} as a solution to a differential equation as done in [Shapiro 2018], but it suffices to define it explicitly. Note also that similar (but simpler) Carleman estimates were used in [Vodev 2014a] to prove high-frequency resolvent estimates for the magnetic Schrödinger operator with large L^{∞} magnetic potentials.

2. Construction of the phase and weight functions

We will first construct the weight function. We begin by introducing the continuous function

$$
\mu(r)= \begin{cases}(r+1)^{2}-1 & \text { for } 0 \leq r \leq a, \\ (a+1)^{2}-1+(a+1)^{-2 s+1}-(r+1)^{-2 s+1} & \text { for } r \geq a,\end{cases}
$$

where

$$
\begin{equation*}
\frac{1}{2}<s<\frac{1}{2}(\delta-2) \tag{2-1}
\end{equation*}
$$

and $a=h^{-m}$ with some parameter $m>0$ to be fixed in the proof of Lemma 2.3 below depending only on δ and s. Clearly, the first derivative (in sense of distributions) of μ satisfies

$$
\mu^{\prime}(r)= \begin{cases}2(r+1) & \text { for } 0 \leq r<a \\ (2 s-1)(r+1)^{-2 s} & \text { for } r>a\end{cases}
$$

The main properties of the functions μ and μ^{\prime} are given in the following.

Lemma 2.1. For all $r>0, r \neq a$, we have the inequalities

$$
\begin{align*}
& 2 r^{-1} \mu(r)-\mu^{\prime}(r) \geq 0 \tag{2-2}\\
& \mu^{\prime}(r) \geq C_{1}(r+1)^{-2 s} \tag{2-3}\\
& \frac{\mu(r)^{2}}{\mu^{\prime}(r)} \leq C_{2} a^{4}(r+1)^{2 s} \tag{2-4}
\end{align*}
$$

with some constants $C_{1}, C_{2}>0$.
Proof. For $r<a$ the left-hand side of (2-2) is equal to 2, while for $r>a$ it is bounded from below by

$$
2 r^{-1}\left(a^{2}+2 a-s\right)>2 a^{2} r^{-1}>0
$$

provided a is taken large enough. Furthermore, we clearly have (2-3) for $r<a$ with $C_{1}=2$, while for $r>a$ it holds with $C_{1}=2 s-1$. Therefore, (2-3) holds with $C_{1}=\min \{2,2 s-1\}$. The bound (2-4) follows with $C_{2}=2 C_{1}^{-1}$ from (2-3) and the observation that $\mu(r)^{2} \leq(a+1)^{4} \leq 2 a^{4}$ for all r.

We now turn to the construction of the phase function $\varphi \in C^{1}([0,+\infty))$ such that $\varphi(0)=0$ and $\varphi(r)>0$ for $r>0$. We define the first derivative of φ by

$$
\varphi^{\prime}(r)= \begin{cases}\tau(r+1)^{-1}-\tau(a+1)^{-1} & \text { for } 0 \leq r \leq a \\ 0 & \text { for } r \geq a\end{cases}
$$

where

$$
\begin{equation*}
\tau=\tau_{0} h^{-1 / 3} \tag{2-5}
\end{equation*}
$$

with some parameter $\tau_{0} \gg 1$ independent of h to be fixed in Lemma 2.3 below. Clearly, the first derivative of φ^{\prime} satisfies

$$
\varphi^{\prime \prime}(r)= \begin{cases}-\tau(r+1)^{-2} & \text { for } 0 \leq r<a \\ 0 & \text { for } r>a\end{cases}
$$

Lemma 2.2. For all $r \geq 0$ we have the bound

$$
\begin{equation*}
h^{-1} \varphi(r) \lesssim h^{-4 / 3} \log \frac{1}{h} . \tag{2-6}
\end{equation*}
$$

Proof. We have

$$
\max \varphi=\int_{0}^{a} \varphi^{\prime}(r) d r \leq \tau \int_{0}^{a}(r+1)^{-1} d r=\tau \log (a+1)
$$

which clearly implies (2-6) in view of the choice of τ and a.
For $r \neq a$, set

$$
\begin{aligned}
& A(r)=\left(\mu \varphi^{\prime 2}\right)^{\prime}(r), \\
& B(r)=\frac{\left(\mu(r)\left(h^{-1}(r+1)^{-\delta}+\left|\varphi^{\prime \prime}(r)\right|\right)\right)^{2}}{h^{-1} \varphi^{\prime}(r) \mu(r)+\mu^{\prime}(r)} .
\end{aligned}
$$

The following lemma will play a crucial role in the proof of the Carleman estimates in the next section.

Lemma 2.3. Given any $C>0$ independent of the variable r and the parameters h, τ and a, there exist $\tau_{0}=\tau_{0}(C)>0$ and $h_{0}=h_{0}(C)>0$ so that for τ satisfying (2-5) and for all $0<h \leq h_{0}$ we have the inequality

$$
\begin{equation*}
A(r)-C B(r) \geq-\frac{1}{2} E \mu^{\prime}(r) \tag{2-7}
\end{equation*}
$$

for all $r>0, r \neq a$.
Proof. For $r<a$ we have

$$
\begin{aligned}
A(r) & =-\left(\varphi^{\prime 2}\right)^{\prime}(r)+\tau^{2} \partial_{r}\left(1-(r+1)(a+1)^{-1}\right)^{2} \\
& =-2 \varphi^{\prime}(r) \varphi^{\prime \prime}(r)-2 \tau^{2}(a+1)^{-1}\left(1-(r+1)(a+1)^{-1}\right) \\
& \geq 2 \tau(r+1)^{-2} \varphi^{\prime}(r)-2 \tau^{2}(a+1)^{-1} \\
& \geq 2 \tau(r+1)^{-2} \varphi^{\prime}(r)-\tau^{2} a^{-1} \mu^{\prime}(r) \\
& \geq 2 \tau(r+1)^{-2} \varphi^{\prime}(r)-\mathcal{O}\left(h^{m-1}\right) \mu^{\prime}(r),
\end{aligned}
$$

where we have used that $\mu^{\prime}(r) \geq 2$. Taking $m>2$ we get

$$
\begin{equation*}
A(r) \geq 2 \tau(r+1)^{-2} \varphi^{\prime}(r)-\mathcal{O}(h) \mu^{\prime}(r) \tag{2-8}
\end{equation*}
$$

for all $r<a$. We will now bound the function B from above. Let first $0<r \leq \frac{1}{2} a$. Since in this case we have

$$
\varphi^{\prime}(r) \geq \frac{1}{3} \tau(r+1)^{-1}
$$

we obtain

$$
\begin{aligned}
B(r) & \lesssim \frac{\mu(r)\left(h^{-2}(r+1)^{-2 \delta}+\varphi^{\prime \prime}(r)^{2}\right)}{h^{-1} \varphi^{\prime}(r)} \\
& \lesssim(\tau h)^{-1} \frac{\mu(r)(r+1)^{2-2 \delta}}{\varphi^{\prime}(r)^{2}} \tau(r+1)^{-2} \varphi^{\prime}(r)+h \frac{\mu(r) \varphi^{\prime \prime}(r)^{2}}{\mu^{\prime}(r) \varphi^{\prime}(r)} \mu^{\prime}(r) \\
& \lesssim \tau^{-3} h^{-1}(r+1)^{6-2 \delta} \tau(r+1)^{-2} \varphi^{\prime}(r)+\tau h \mu^{\prime}(r) \\
& \lesssim \tau_{0}^{-3} \tau(r+1)^{-2} \varphi^{\prime}(r)+\tau_{0} h^{2 / 3} \mu^{\prime}(r),
\end{aligned}
$$

where we have used that $\delta>3$. This bound, together with (2-8), clearly implies (2-7), provided τ_{0}^{-1} and h are taken small enough depending on C.

Let now $\frac{1}{2} a<r<a$. Then we have the bound

$$
\begin{aligned}
B(r) & \leq\left(\frac{\mu(r)}{\mu^{\prime}(r)}\right)^{2}\left(h^{-1}(r+1)^{-\delta}+\left|\varphi^{\prime \prime}(r)\right|\right)^{2} \mu^{\prime}(r) \\
& \lesssim\left(h^{-2}(r+1)^{2-2 \delta}+\tau^{2}(r+1)^{-2}\right) \mu^{\prime}(r) \\
& \lesssim\left(h^{-2} a^{2-2 \delta}+\tau^{2} a^{-2}\right) \mu^{\prime}(r) \\
& \lesssim\left(h^{2 m(\delta-1)-2}+h^{2 m-2 / 3}\right) \mu^{\prime}(r) \lesssim h \mu^{\prime}(r),
\end{aligned}
$$

provided m is taken large enough. Again, this bound, together with (2-8), implies (2-7).

It remains to consider the case $r>a$. Using that $\mu=\mathcal{O}\left(a^{2}\right)$, together with (2-3), and taking into account that s satisfies (2-1), we get

$$
\begin{aligned}
B(r) & =\frac{\left(\mu(r)\left(h^{-1}(r+1)^{-\delta}\right)\right)^{2}}{\mu^{\prime}(r)} \\
& \lesssim h^{-2} a^{4}(r+1)^{4 s-2 \delta} \mu^{\prime}(r) \lesssim h^{-2} a^{4+4 s-2 \delta} \mu^{\prime}(r) \\
& \lesssim h^{2 m(\delta-2-2 s)-2} \mu^{\prime}(r) \lesssim h \mu^{\prime}(r)
\end{aligned}
$$

provided that m is taken large enough. Since in this case $A(r)=0$, the above bound clearly implies (2-7).

3. Carleman estimates

Our goal in this section is to prove the following:
Theorem 3.1. Suppose (1-1) holds and let s satisfy (2-1). Then, for all functions $f \in H^{2}\left(\mathbb{R}^{n}\right)$ such that $\langle x\rangle^{s}(P(h)-E \pm i \varepsilon) f \in L^{2}$ and for all $0<h \ll 1,0<\varepsilon \leq h a^{-2}$, we have the estimate

$$
\begin{equation*}
\left\|\langle x\rangle^{-s} e^{\varphi / h} f\right\|_{L^{2}} \leq C a^{2} h^{-1}\left\|\langle x\rangle^{s} e^{\varphi / h}(P(h)-E \pm i \varepsilon) f\right\|_{L^{2}}+\operatorname{Ca\tau }(\varepsilon / h)^{1 / 2}\left\|e^{\varphi / h} f\right\|_{L^{2}} \tag{3-1}
\end{equation*}
$$

with a constant $C>0$ independent of h, ε and f.
Proof. We pass to the polar coordinates $(r, w) \in \mathbb{R}^{+} \times \mathbb{S}^{n-1}, r=|x|, w=x /|x|$, and recall that $L^{2}\left(\mathbb{R}^{n}\right)=L^{2}\left(\mathbb{R}^{+} \times \mathbb{S}^{n-1}, r^{n-1} d r d w\right)$. In what follows we denote by $\|\cdot\|$ and $\langle\cdot, \cdot\rangle$ the norm and the scalar product in $L^{2}\left(\mathbb{S}^{n-1}\right)$. We will make use of the identity

$$
\begin{equation*}
r^{(n-1) / 2} \Delta r^{-(n-1) / 2}=\partial_{r}^{2}+\frac{\tilde{\Delta}_{w}}{r^{2}} \tag{3-2}
\end{equation*}
$$

where $\tilde{\Delta}_{w}=\Delta_{w}-\frac{1}{4}(n-1)(n-3)$ and Δ_{w} denotes the negative Laplace-Beltrami operator on \mathbb{S}^{n-1}. Set $u=r^{(n-1) / 2} e^{\varphi / h} f$ and

$$
\begin{aligned}
& \mathcal{P}^{ \pm}(h)=r^{(n-1) / 2}(P(h)-E \pm i \varepsilon) r^{-(n-1) / 2} \\
& \mathcal{P}_{\varphi}^{ \pm}(h)=e^{\varphi / h} \mathcal{P}^{ \pm}(h) e^{-\varphi / h}
\end{aligned}
$$

Using (3-2) we can write the operator $\mathcal{P}^{ \pm}(h)$ in the coordinates (r, w) as

$$
\mathcal{P}^{ \pm}(h)=\mathcal{D}_{r}^{2}+\frac{\Lambda_{w}}{r^{2}}-E \pm i \varepsilon+V
$$

where we have put $\mathcal{D}_{r}=-i h \partial_{r}$ and $\Lambda_{w}=-h^{2} \tilde{\Delta}_{w}$. Since the function φ depends only on the variable r, this implies

$$
\mathcal{P}_{\varphi}^{ \pm}(h)=\mathcal{D}_{r}^{2}+\frac{\Lambda_{w}}{r^{2}}-E \pm i \varepsilon-\varphi^{\prime 2}+h \varphi^{\prime \prime}+2 i \varphi^{\prime} \mathcal{D}_{r}+V
$$

For $r>0, r \neq a$, introduce the function

$$
F(r)=-\left\langle\left(r^{-2} \Lambda_{w}-E-\varphi^{\prime}(r)^{2}\right) u(r, \cdot), u(r, \cdot)\right\rangle+\left\|\mathcal{D}_{r} u(r, \cdot)\right\|^{2}
$$

and observe that its first derivative is given by

$$
\begin{aligned}
F^{\prime}(r)= & \frac{2}{r}\left\langle r^{-2} \Lambda_{w} u(r, \cdot), u(r, \cdot)\right\rangle+\left(\left(\varphi^{\prime}\right)^{2}\right)^{\prime}\|u(r, \cdot)\|^{2}-2 h^{-1} \operatorname{Im}\left\langle\mathcal{P}_{\varphi}^{ \pm}(h) u(r, \cdot), \mathcal{D}_{r} u(r, \cdot)\right\rangle \\
& \pm 2 \varepsilon h^{-1} \operatorname{Re}\left\langle u(r, \cdot), \mathcal{D}_{r} u(r, \cdot)\right\rangle+4 h^{-1} \varphi^{\prime}\left\|\mathcal{D}_{r} u(r, \cdot)\right\|^{2}+2 h^{-1} \operatorname{Im}\left\langle\left(V+h \varphi^{\prime \prime}\right) u(r, \cdot), \mathcal{D}_{r} u(r, \cdot)\right\rangle .
\end{aligned}
$$

Thus, if μ is the function defined in the previous section, we obtain the identity

$$
\begin{aligned}
& \mu^{\prime} F+\mu F^{\prime}=\left(2 r^{-1} \mu-\mu^{\prime}\right)\left\langle r^{-2} \Lambda_{w} u(r, \cdot), u(r, \cdot)\right\rangle+\left(E \mu^{\prime}+\left(\mu\left(\varphi^{\prime}\right)^{2}\right)^{\prime}\right)\|u(r, \cdot)\|^{2} \\
&-2 h^{-1} \mu \operatorname{Im}\left\langle\mathcal{P}_{\varphi}^{ \pm}(h) u(r, \cdot), \mathcal{D}_{r} u(r, \cdot)\right\rangle \pm 2 \varepsilon h^{-1} \mu \operatorname{Re}\left\langle u(r, \cdot), \mathcal{D}_{r} u(r, \cdot)\right\rangle \\
&+\left(\mu^{\prime}+4 h^{-1} \varphi^{\prime} \mu\right)\left\|\mathcal{D}_{r} u(r, \cdot)\right\|^{2}+2 h^{-1} \mu \operatorname{Im}\left\langle\left(V+h \varphi^{\prime \prime}\right) u(r, \cdot), \mathcal{D}_{r} u(r, \cdot)\right\rangle .
\end{aligned}
$$

Using that $\Lambda_{w} \geq 0$, together with (2-2), we get the inequality

$$
\begin{aligned}
\mu^{\prime} F+\mu F^{\prime} \geq & \left(E \mu^{\prime}+\left(\mu\left(\varphi^{\prime}\right)^{2}\right)^{\prime}\right)\|u(r, \cdot)\|^{2}+\left(\mu^{\prime}+4 h^{-1} \varphi^{\prime} \mu\right)\left\|\mathcal{D}_{r} u(r, \cdot)\right\|^{2} \\
& -\frac{3 h^{-2} \mu^{2}}{\mu^{\prime}}\left\|\mathcal{P}_{\varphi}^{ \pm}(h) u(r, \cdot)\right\|^{2}-\frac{1}{3} \mu^{\prime}\left\|\mathcal{D}_{r} u(r, \cdot)\right\|^{2}-\varepsilon h^{-1} \mu\left(\|u(r, \cdot)\|^{2}+\left\|\mathcal{D}_{r} u(r, \cdot)\right\|^{2}\right) \\
& \quad-3 h^{-2} \mu^{2}\left(\mu^{\prime}+4 h^{-1} \varphi^{\prime} \mu\right)^{-1}\left\|\left(V+h \varphi^{\prime \prime}\right) u(r, \cdot)\right\|^{2}-\frac{1}{3}\left(\mu^{\prime}+4 h^{-1} \varphi^{\prime} \mu\right)\left\|\mathcal{D}_{r} u(r, \cdot)\right\|^{2} \\
\geq & \left(E \mu^{\prime}+\left(\mu\left(\varphi^{\prime}\right)^{2}\right)^{\prime}-C \mu^{2}\left(\mu^{\prime}+h^{-1} \varphi^{\prime} \mu\right)^{-1}\left(h^{-1}(r+1)^{-\delta}+\left|\varphi^{\prime \prime}\right|\right)^{2}\right)\|u(r, \cdot)\|^{2} \\
& -\frac{3 h^{-2} \mu^{2}}{\mu^{\prime}}\left\|\mathcal{P}_{\varphi}^{ \pm}(h) u(r, \cdot)\right\|^{2}-\varepsilon h^{-1} \mu\left(\|u(r, \cdot)\|^{2}+\left\|\mathcal{D}_{r} u(r, \cdot)\right\|^{2}\right),
\end{aligned}
$$

with some constant $C>0$. Now we use Lemma 2.3 to conclude that

$$
\mu^{\prime} F+\mu F^{\prime} \geq \frac{1}{2} E \mu^{\prime}\|u(r, \cdot)\|^{2}-\frac{3 h^{-2} \mu^{2}}{\mu^{\prime}}\left\|\mathcal{P}_{\varphi}^{ \pm}(h) u(r, \cdot)\right\|^{2}-\varepsilon h^{-1} \mu\left(\|u(r, \cdot)\|^{2}+\left\|\mathcal{D}_{r} u(r, \cdot)\right\|^{2}\right)
$$

We now integrate this inequality with respect to r and use that, since $\mu(0)=0$, we have

$$
\int_{0}^{\infty}\left(\mu^{\prime} F+\mu F^{\prime}\right) d r=0
$$

Thus we obtain the estimate

$$
\begin{align*}
& \frac{1}{2} E \int_{0}^{\infty} \mu^{\prime}\|u(r, \cdot)\|^{2} d r \\
& \quad \leq 3 h^{-2} \int_{0}^{\infty} \frac{\mu^{2}}{\mu^{\prime}}\left\|\mathcal{P}_{\varphi}^{ \pm}(h) u(r, \cdot)\right\|^{2} d r+\varepsilon h^{-1} \int_{0}^{\infty} \mu\left(\|u(r, \cdot)\|^{2}+\left\|\mathcal{D}_{r} u(r, \cdot)\right\|^{2}\right) d r \tag{3-3}
\end{align*}
$$

Using that $\mu=\mathcal{O}\left(a^{2}\right)$ together with (2-3) and (2-4) we get from (3-3)

$$
\begin{align*}
& \int_{0}^{\infty}(r+1)^{-2 s}\|u(r, \cdot)\|^{2} d r \\
& \quad \leq C a^{4} h^{-2} \int_{0}^{\infty}(r+1)^{2 s}\left\|\mathcal{P}_{\varphi}^{ \pm}(h) u(r, \cdot)\right\|^{2} d r+C \varepsilon h^{-1} a^{2} \int_{0}^{\infty}\left(\|u(r, \cdot)\|^{2}+\left\|\mathcal{D}_{r} u(r, \cdot)\right\|^{2}\right) d r, \tag{3-4}
\end{align*}
$$

with some constant $C>0$ independent of h and ε. On the other hand, we have the identity

$$
\operatorname{Re} \int_{0}^{\infty}\left\langle 2 i \varphi^{\prime} \mathcal{D}_{r} u(r, \cdot), u(r, \cdot)\right\rangle d r=\int_{0}^{\infty} h \varphi^{\prime \prime}\|u(r, \cdot)\|^{2} d r
$$

and hence

$$
\begin{aligned}
& \operatorname{Re} \int_{0}^{\infty}\left\langle\mathcal{P}_{\varphi}^{ \pm}(h) u(r, \cdot), u(r, \cdot)\right\rangle d r=\int_{0}^{\infty}\left\|\mathcal{D}_{r} u(r, \cdot)\right\|^{2} d r+\int_{0}^{\infty}\left\langle r^{-2} \Lambda_{w} u(r, \cdot), u(r, \cdot)\right\rangle d r \\
&-\int_{0}^{\infty}\left(E+\varphi^{\prime 2}\right)\|u(r, \cdot)\|^{2} d r+\int_{0}^{\infty}\langle V u(r, \cdot), u(r, \cdot)\rangle d r
\end{aligned}
$$

This implies

$$
\begin{align*}
\int_{0}^{\infty}\left\|\mathcal{D}_{r} u(r, \cdot)\right\|^{2} d r \leq & \mathcal{O}\left(\tau^{2}\right) \int_{0}^{\infty}\|u(r, \cdot)\|^{2} d r \\
& +\gamma \int_{0}^{\infty}(r+1)^{-2 s}\|u(r, \cdot)\|^{2} d r+\gamma^{-1} \int_{0}^{\infty}(r+1)^{2 s}\left\|\mathcal{P}_{\varphi}^{ \pm}(h) u(r, \cdot)\right\|^{2} d r \tag{3-5}
\end{align*}
$$

for every $\gamma>0$. We take now γ small enough, independent of h, and recall that $\varepsilon h^{-1} a^{2} \leq 1$. Thus, combining the estimates (3-4) and (3-5), we get

$$
\begin{align*}
& \int_{0}^{\infty}(r+1)^{-2 s}\|u(r, \cdot)\|^{2} d r \\
& \quad \leq C a^{4} h^{-2} \int_{0}^{\infty}(r+1)^{2 s}\left\|\mathcal{P}_{\varphi}^{ \pm}(h) u(r, \cdot)\right\|^{2} d r+C \varepsilon h^{-1} a^{2} \tau^{2} \int_{0}^{\infty}\|u(r, \cdot)\|^{2} d r \tag{3-6}
\end{align*}
$$

with a new constant $C>0$ independent of h and ε. It is an easy observation now that the estimate (3-6) implies (3-1).

4. Resolvent estimates

In this section we will derive the bound (1-3) from Theorem 3.1. Indeed, it follows from the estimate (3-1) and Lemma 2.2 that for $0<h \ll 1,0<\varepsilon \leq h a^{-2}$ and s satisfying (2-1) we have

$$
\begin{equation*}
\left\|\langle x\rangle^{-s} f\right\|_{L^{2}} \leq M\left\|\langle x\rangle^{s}(P(h)-E \pm i \varepsilon) f\right\|_{L^{2}}+M \varepsilon^{1 / 2}\|f\|_{L^{2}} \tag{4-1}
\end{equation*}
$$

where

$$
M=\exp \left(C h^{-4 / 3} \log \left(h^{-1}\right)\right),
$$

with a constant $C>0$ independent of h and ε. On the other hand, since the operator $P(h)$ is symmetric, we have

$$
\begin{align*}
\varepsilon\|f\|_{L^{2}}^{2} & = \pm \operatorname{Im}\langle(P(h)-E \pm i \varepsilon) f, f\rangle_{L^{2}} \\
& \leq(2 M)^{-2}\left\|\langle x\rangle^{-s} f\right\|_{L^{2}}^{2}+(2 M)^{2}\left\|\langle x\rangle^{s}(P(h)-E \pm i \varepsilon) f\right\|_{L^{2}}^{2} \tag{4-2}
\end{align*}
$$

We rewrite (4-2) in the form

$$
\begin{equation*}
M \varepsilon^{1 / 2}\|f\|_{L^{2}} \leq \frac{1}{2}\left\|\langle x\rangle^{-s} f\right\|_{L^{2}}+2 M^{2}\left\|\langle x\rangle^{s}(P(h)-E \pm i \varepsilon) f\right\|_{L^{2}} \tag{4-3}
\end{equation*}
$$

We now combine (4-1) and (4-3) to get

$$
\begin{equation*}
\left\|\langle x\rangle^{-s} f\right\|_{L^{2}} \leq 4 M^{2}\left\|\langle x\rangle^{s}(P(h)-E \pm i \varepsilon) f\right\|_{L^{2}} \tag{4-4}
\end{equation*}
$$

It follows from (4-4) that the resolvent estimate

$$
\begin{equation*}
\left\|\langle x\rangle^{-s}(P(h)-E \pm i \varepsilon)^{-1}\langle x\rangle^{-s}\right\|_{L^{2} \rightarrow L^{2}} \leq 4 M^{2} \tag{4-5}
\end{equation*}
$$

holds for all $0<h \ll 1,0<\varepsilon \leq h a^{-2}$ and s satisfying (2-1). On the other hand, for $\varepsilon \geq h a^{-2}$ the estimate (4-5) holds in a trivial way. Indeed, in this case, since the operator $P(h)$ is symmetric, the norm of the resolvent is bounded above by $\varepsilon^{-1}=\mathcal{O}\left(h^{-2 m-1}\right)$. Finally, observe that if (4-5) holds for s satisfying (2-1), it holds for all $s>\frac{1}{2}$.

References

[Burq 1998] N. Burq, "Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel", Acta Math. 180:1 (1998), 1-29. MR Zbl
[Burq 2002] N. Burq, "Lower bounds for shape resonances widths of long range Schrödinger operators", Amer. J. Math. 124:4 (2002), 677-735. MR Zbl
[Cardoso and Vodev 2002] F. Cardoso and G. Vodev, "Uniform estimates of the resolvent of the Laplace-Beltrami operator on infinite volume Riemannian manifolds, II", Ann. Henri Poincaré 3:4 (2002), 673-691. MR Zbl
[Datchev 2014] K. Datchev, "Quantitative limiting absorption principle in the semiclassical limit", Geom. Funct. Anal. 24:3 (2014), 740-747. MR Zbl
[Datchev et al. 2015] K. Datchev, S. Dyatlov, and M. Zworski, "Resonances and lower resolvent bounds", J. Spectr. Theory 5:3 (2015), 599-615. MR Zbl
[Dyatlov and Zworski 2019] S. Dyatlov and M. Zworski, "Mathematical theory of scattering resonances", unpublished book, 2019, available at http://math.mit.edu/~dyatlov/res/res_final.pdf.
[Klopp and Vogel 2019] F. Klopp and M. Vogel, "Semiclassical resolvent estimates for bounded potentials", Pure Appl. Anal. 1:1 (2019), 1-25. MR Zbl
[Shapiro 2018] J. Shapiro, "Semiclassical resolvent bound for compactly supported L^{∞} potentials", preprint, 2018. To appear in J. Spectr. Theory. arXiv
[Shapiro 2019] J. Shapiro, "Semiclassical resolvent bounds in dimension two", Proc. Amer. Math. Soc. (online publication February 2019).
[Vodev 2014a] G. Vodev, "Resolvent estimates for the magnetic Schrödinger operator", Anal. PDE 7:7 (2014), 1639-1648. MR Zbl
[Vodev 2014b] G. Vodev, "Semi-classical resolvent estimates and regions free of resonances", Math. Nachr. 287:7 (2014), 825-835. MR Zbl

Received 12 Sep 2018. Revised 23 Oct 2018. Accepted 6 Dec 2018.
GEORGI VODEV: georgi.vodev@univ-nantes.fr
Université de Nantes, Laboratoire de Mathématiques Jean Leray, Nantes, France
msp.org/paa

EDITORS-IN-CHIEF	
Charles L. Epstein	University of Pennsylvania cle@math.upenn.edu
Maciej Zworski	University of California at Berkeley zworski@math.berkeley.edu
EDITORIAL BOARD	
Sir John M. Ball	University of Oxford ball@maths.ox.ac.uk
Michael P. Brenner	Harvard University brenner@seas.harvard.edu
Charles Fefferman	Princeton University cf@ math.princeton.edu
Susan Friedlander	University of Southern California susanfri@usc.edu
Anna Gilbert	University of Michigan annacg@umich.edu
Leslie F. Greengard	Courant Institute, New York University, and Flatiron Institute, Simons Foundation greengard@cims.nyu.edu
Yan Guo	Brown University yan_guo@brown.edu
Claude Le Bris	CERMICS - ENPC lebris@cermics.enpc.fr
Robert J. McCann	University of Toronto mccann@math.toronto.edu
Michael O'Neil	Courant Institute, New York University oneil@cims.nyu.edu
Jill Pipher	Brown University jill_pipher@brown.edu
Johannes Sjöstrand	Université de Dijon johannes.sjostrand@u-bourgogne.fr
Vladimir Šverák	University of Minnesota sverak@math.umn.edu
Daniel Tataru	University of California at Berkeley tataru@berkeley.edu
Michael I. Weinstein	Columbia University miw2103@columbia.edu
Jon Wilkening	University of California at Berkeley wilken@math.berkeley.edu
Enrique Zuazua	DeustoTech-Bilbao, and Universidad Autónoma de Madrid enrique.zuazua@deusto.es
PRODUCTION	
Silvio Levy	(Scientific Editor) production@msp.org

Cover image: The figure shows the outgoing scattered field produced by scattering a plane wave, coming from the northwest, off of the (stylized) letters P A A. The total field satisfies the homogeneous Dirichlet condition on the boundary of the letters. It is based on a numerical computation by Mike O'Neil of the Courant Institute.

See inside back cover or msp.org/paa for submission instructions.
The subscription price for 2019 is US $\$ 495 /$ year for the electronic version, and $\$ 555 /$ year ($+\$ 25$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Pure and Applied Analysis (ISSN 2578-5885 electronic, 2578-5893 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

PAA peer review and production are managed by EditFlow ${ }^{\circledR}$ from MSP.
PUBLISHED BY
mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2019 Mathematical Sciences Publishers

PURE and APPLIED ANALYSIS

vol. 1 no. 22019

About small eigenvalues of the Witten Laplacian
Laurent Michel
Semiclassical resolvent estimates for short-range L^{∞} potentials Georgi Vodev
An evolution equation approach to the Klein-Gordon operator on curved spacetime
Jan Dereziński and Daniel Siemssen
The interior of dynamical extremal black holes in spherical symmetry
Dejan Gajic and Jonathan Luk

[^0]: MSC2010: 35P25.
 Keywords: resolvent estimates.

