GEORGI VODEV

PURE and APPLIE

SEMICLASSICAL RESOLVENT ESTIMATES FOR SHORT-RANGE L^{∞} POTENTIALS

vol. 1 no. 2 2019

SEMICLASSICAL RESOLVENT ESTIMATES FOR SHORT-RANGE L^{∞} POTENTIALS

GEORGI VODEV

We prove semiclassical resolvent estimates for real-valued potentials $V \in L^{\infty}(\mathbb{R}^n)$, $n \ge 3$, satisfying $V(x) = O(\langle x \rangle^{-\delta})$ with $\delta > 3$.

1. Introduction and statement of results

Our goal in this note is to study the resolvent of the Schrödinger operator

$$P(h) = -h^2 \Delta + V(x),$$

where $0 < h \ll 1$ is a semiclassical parameter, Δ is the negative Laplacian in \mathbb{R}^n , $n \ge 3$, and $V \in L^{\infty}(\mathbb{R}^n)$ is a real-valued potential satisfying

$$|V(x)| \le C \langle x \rangle^{-\delta}, \tag{1-1}$$

with some constants C > 0 and $\delta > 3$. More precisely, we are interested in bounding from above the quantity

$$g_s^{\pm}(h,\varepsilon) := \log \|\langle x \rangle^{-s} (P(h) - E \pm i\varepsilon)^{-1} \langle x \rangle^{-s} \|_{L^2 \to L^2},$$

where $L^2 := L^2(\mathbb{R}^n)$, $0 < \varepsilon < 1$, $s > \frac{1}{2}$ and E > 0 is a fixed energy level independent of h. Such bounds are known in various situations. For example, for long-range real-valued C^1 potentials it is proved in [Datchev 2014] when $n \ge 3$ and in [Shapiro 2019] when n = 2 that

$$g_s^{\pm}(h,\varepsilon) \le Ch^{-1},\tag{1-2}$$

with some constant C > 0 independent of h and ε . Previously, the bound (1-2) was proved for smooth potentials in [Burq 2002] and an analog of (1-2) for Hölder potentials was proved in [Vodev 2014b]. A high-frequency analog of (1-2) on more complex Riemannian manifolds was also proved in [Burq 1998; Cardoso and Vodev 2002]. In all these papers the regularity of the potential (and of the perturbation in general) plays an essential role. Without any regularity, the problem of bounding g_s^{\pm} from above by an explicit function of h gets quite tough. Nevertheless, it was recently shown in [Shapiro 2018] that for real-valued compactly supported L^{∞} potentials one has the bound

$$g_s^{\pm}(h,\varepsilon) \le Ch^{-4/3}\log(h^{-1}),\tag{1-3}$$

MSC2010: 35P25.

Keywords: resolvent estimates.

with some constant C > 0 independent of h and ε . The bound (1-3) was also proved in [Klopp and Vogel 2019], still for real-valued compactly supported L^{∞} potentials but with the weight $\langle x \rangle^{-s}$ replaced by a cut-off function. When n = 1 it was shown in [Dyatlov and Zworski 2019] that we have the better bound (1-2) instead of (1-3). When $n \ge 2$, however, the bound (1-3) seems hard to improve without extra conditions on the potential. The problem of showing that the bound (1-3) is optimal is largely open. In contrast, it is well known that the bound (1-2) cannot be improved in general; e.g., see [Datchev et al. 2015].

In this note we show that the bound (1-3) still holds for noncompactly supported L^{∞} potentials when $n \ge 3$. Our main result is the following.

Theorem 1.1. Under the condition (1-1), there exists $h_0 > 0$ such that for all $0 < h \le h_0$ the bound (1-3) holds true.

Remark. It is easy to see from the proof, see the inequality (4-2), that the bound (1-3) holds also for a complex-valued potential V satisfying (1-1), provided that its imaginary part satisfies the condition

$$\mp \operatorname{Im} V(x) \ge 0 \quad \text{for all } x \in \mathbb{R}^n.$$

To prove this theorem we adapt the Carleman estimates proved in [Shapiro 2018] simplifying some key arguments as, for example, the construction of the phase function φ . This is made possible by defining the key function F in Section 3 differently, without involving the second derivative φ'' . The consequence is that we do not need to seek φ' as a solution to a differential equation as done in [Shapiro 2018], but it suffices to define it explicitly. Note also that similar (but simpler) Carleman estimates were used in [Vodev 2014a] to prove high-frequency resolvent estimates for the magnetic Schrödinger operator with large L^{∞} magnetic potentials.

2. Construction of the phase and weight functions

We will first construct the weight function. We begin by introducing the continuous function

$$\mu(r) = \begin{cases} (r+1)^2 - 1 & \text{for } 0 \le r \le a, \\ (a+1)^2 - 1 + (a+1)^{-2s+1} - (r+1)^{-2s+1} & \text{for } r \ge a, \end{cases}$$

where

$$\frac{1}{2} < s < \frac{1}{2}(\delta - 2) \tag{2-1}$$

and $a = h^{-m}$ with some parameter m > 0 to be fixed in the proof of Lemma 2.3 below depending only on δ and s. Clearly, the first derivative (in sense of distributions) of μ satisfies

$$\mu'(r) = \begin{cases} 2(r+1) & \text{for } 0 \le r < a, \\ (2s-1)(r+1)^{-2s} & \text{for } r > a. \end{cases}$$

The main properties of the functions μ and μ' are given in the following.

Lemma 2.1. For all r > 0, $r \neq a$, we have the inequalities

$$2r^{-1}\mu(r) - \mu'(r) \ge 0, \tag{2-2}$$

$$\mu'(r) \ge C_1(r+1)^{-2s},$$
(2-3)

$$\frac{\mu(r)^2}{\mu'(r)} \le C_2 a^4 (r+1)^{2s} \tag{2-4}$$

with some constants $C_1, C_2 > 0$.

Proof. For r < a the left-hand side of (2-2) is equal to 2, while for r > a it is bounded from below by

$$2r^{-1}(a^2 + 2a - s) > 2a^2r^{-1} > 0,$$

provided *a* is taken large enough. Furthermore, we clearly have (2-3) for r < a with $C_1 = 2$, while for r > a it holds with $C_1 = 2s - 1$. Therefore, (2-3) holds with $C_1 = \min\{2, 2s - 1\}$. The bound (2-4) follows with $C_2 = 2C_1^{-1}$ from (2-3) and the observation that $\mu(r)^2 \le (a+1)^4 \le 2a^4$ for all *r*.

We now turn to the construction of the phase function $\varphi \in C^1([0, +\infty))$ such that $\varphi(0) = 0$ and $\varphi(r) > 0$ for r > 0. We define the first derivative of φ by

$$\varphi'(r) = \begin{cases} \tau(r+1)^{-1} - \tau(a+1)^{-1} & \text{for } 0 \le r \le a, \\ 0 & \text{for } r \ge a, \end{cases}$$

where

$$\tau = \tau_0 h^{-1/3}, \tag{2-5}$$

with some parameter $\tau_0 \gg 1$ independent of *h* to be fixed in Lemma 2.3 below. Clearly, the first derivative of φ' satisfies

$$\varphi''(r) = \begin{cases} -\tau (r+1)^{-2} & \text{for } 0 \le r < a, \\ 0 & \text{for } r > a. \end{cases}$$

Lemma 2.2. For all $r \ge 0$ we have the bound

$$h^{-1}\varphi(r) \lesssim h^{-4/3}\log\frac{1}{h}.$$
(2-6)

Proof. We have

$$\max \varphi = \int_0^a \varphi'(r) \, dr \le \tau \int_0^a (r+1)^{-1} \, dr = \tau \log(a+1),$$

which clearly implies (2-6) in view of the choice of τ and a.

For $r \neq a$, set

$$A(r) = (\mu \varphi'^2)'(r),$$

$$B(r) = \frac{\left(\mu(r)(h^{-1}(r+1)^{-\delta} + |\varphi''(r)|)\right)^2}{h^{-1}\varphi'(r)\mu(r) + \mu'(r)}.$$

The following lemma will play a crucial role in the proof of the Carleman estimates in the next section.

GEORGI VODEV

Lemma 2.3. Given any C > 0 independent of the variable r and the parameters h, τ and a, there exist $\tau_0 = \tau_0(C) > 0$ and $h_0 = h_0(C) > 0$ so that for τ satisfying (2-5) and for all $0 < h \le h_0$ we have the inequality

$$A(r) - CB(r) \ge -\frac{1}{2}E\mu'(r)$$
(2-7)

for all r > 0, $r \neq a$.

Proof. For r < a we have

$$\begin{split} A(r) &= -(\varphi'^2)'(r) + \tau^2 \partial_r (1 - (r+1)(a+1)^{-1})^2 \\ &= -2\varphi'(r)\varphi''(r) - 2\tau^2(a+1)^{-1}(1 - (r+1)(a+1)^{-1}) \\ &\geq 2\tau (r+1)^{-2}\varphi'(r) - 2\tau^2(a+1)^{-1} \\ &\geq 2\tau (r+1)^{-2}\varphi'(r) - \tau^2 a^{-1}\mu'(r) \\ &\geq 2\tau (r+1)^{-2}\varphi'(r) - \mathcal{O}(h^{m-1})\mu'(r), \end{split}$$

where we have used that $\mu'(r) \ge 2$. Taking m > 2 we get

$$A(r) \ge 2\tau (r+1)^{-2} \varphi'(r) - \mathcal{O}(h)\mu'(r)$$
(2-8)

for all r < a. We will now bound the function *B* from above. Let first $0 < r \le \frac{1}{2}a$. Since in this case we have

$$\varphi'(r) \ge \frac{1}{3}\tau(r+1)^{-1},$$

we obtain

$$\begin{split} B(r) &\lesssim \frac{\mu(r)(h^{-2}(r+1)^{-2\delta} + \varphi''(r)^2)}{h^{-1}\varphi'(r)} \\ &\lesssim (\tau h)^{-1} \frac{\mu(r)(r+1)^{2-2\delta}}{\varphi'(r)^2} \tau(r+1)^{-2}\varphi'(r) + h \frac{\mu(r)\varphi''(r)^2}{\mu'(r)\varphi'(r)} \mu'(r) \\ &\lesssim \tau^{-3} h^{-1}(r+1)^{6-2\delta} \tau(r+1)^{-2}\varphi'(r) + \tau h \mu'(r) \\ &\lesssim \tau_0^{-3} \tau(r+1)^{-2}\varphi'(r) + \tau_0 h^{2/3} \mu'(r), \end{split}$$

where we have used that $\delta > 3$. This bound, together with (2-8), clearly implies (2-7), provided τ_0^{-1} and *h* are taken small enough depending on *C*.

Let now $\frac{1}{2}a < r < a$. Then we have the bound

$$\begin{split} B(r) &\leq \left(\frac{\mu(r)}{\mu'(r)}\right)^2 (h^{-1}(r+1)^{-\delta} + |\varphi''(r)|)^2 \mu'(r) \\ &\lesssim (h^{-2}(r+1)^{2-2\delta} + \tau^2(r+1)^{-2})\mu'(r) \\ &\lesssim (h^{-2}a^{2-2\delta} + \tau^2a^{-2})\mu'(r) \\ &\lesssim (h^{2m(\delta-1)-2} + h^{2m-2/3})\mu'(r) \lesssim h\mu'(r), \end{split}$$

provided m is taken large enough. Again, this bound, together with (2-8), implies (2-7).

It remains to consider the case r > a. Using that $\mu = O(a^2)$, together with (2-3), and taking into account that *s* satisfies (2-1), we get

$$B(r) = \frac{\left(\mu(r)(h^{-1}(r+1)^{-\delta})\right)^2}{\mu'(r)}$$

$$\lesssim h^{-2}a^4(r+1)^{4s-2\delta}\mu'(r) \lesssim h^{-2}a^{4+4s-2\delta}\mu'(r)$$

$$\lesssim h^{2m(\delta-2-2s)-2}\mu'(r) \lesssim h\mu'(r),$$

provided that *m* is taken large enough. Since in this case A(r) = 0, the above bound clearly implies (2-7).

3. Carleman estimates

Our goal in this section is to prove the following:

Theorem 3.1. Suppose (1-1) holds and let s satisfy (2-1). Then, for all functions $f \in H^2(\mathbb{R}^n)$ such that $\langle x \rangle^s (P(h) - E \pm i\varepsilon) f \in L^2$ and for all $0 < h \ll 1$, $0 < \varepsilon \leq ha^{-2}$, we have the estimate

$$\|\langle x \rangle^{-s} e^{\varphi/h} f\|_{L^2} \le C a^2 h^{-1} \|\langle x \rangle^s e^{\varphi/h} (P(h) - E \pm i\varepsilon) f\|_{L^2} + C a \tau (\varepsilon/h)^{1/2} \|e^{\varphi/h} f\|_{L^2},$$
(3-1)

with a constant C > 0 independent of h, ε and f.

Proof. We pass to the polar coordinates $(r, w) \in \mathbb{R}^+ \times \mathbb{S}^{n-1}$, r = |x|, w = x/|x|, and recall that $L^2(\mathbb{R}^n) = L^2(\mathbb{R}^+ \times \mathbb{S}^{n-1}, r^{n-1}drdw)$. In what follows we denote by $\|\cdot\|$ and $\langle \cdot, \cdot \rangle$ the norm and the scalar product in $L^2(\mathbb{S}^{n-1})$. We will make use of the identity

$$r^{(n-1)/2}\Delta r^{-(n-1)/2} = \partial_r^2 + \frac{\tilde{\Delta}_w}{r^2},$$
(3-2)

where $\tilde{\Delta}_w = \Delta_w - \frac{1}{4}(n-1)(n-3)$ and Δ_w denotes the negative Laplace–Beltrami operator on \mathbb{S}^{n-1} . Set $u = r^{(n-1)/2} e^{\varphi/h} f$ and

$$\mathcal{P}^{\pm}(h) = r^{(n-1)/2} (P(h) - E \pm i\varepsilon) r^{-(n-1)/2},$$

$$\mathcal{P}^{\pm}_{o}(h) = e^{\varphi/h} \mathcal{P}^{\pm}(h) e^{-\varphi/h}.$$

Using (3-2) we can write the operator $\mathcal{P}^{\pm}(h)$ in the coordinates (r, w) as

$$\mathcal{P}^{\pm}(h) = \mathcal{D}_r^2 + \frac{\Lambda_w}{r^2} - E \pm i\varepsilon + V,$$

where we have put $D_r = -ih\partial_r$ and $\Lambda_w = -h^2 \tilde{\Delta}_w$. Since the function φ depends only on the variable *r*, this implies

$$\mathcal{P}_{\varphi}^{\pm}(h) = \mathcal{D}_{r}^{2} + \frac{\Lambda_{w}}{r^{2}} - E \pm i\varepsilon - {\varphi'}^{2} + h\varphi'' + 2i\varphi'\mathcal{D}_{r} + V.$$

For r > 0, $r \neq a$, introduce the function

$$F(r) = -\langle (r^{-2}\Lambda_w - E - \varphi'(r)^2)u(r, \cdot), u(r, \cdot) \rangle + \|\mathcal{D}_r u(r, \cdot)\|^2$$

and observe that its first derivative is given by

$$F'(r) = \frac{2}{r} \langle r^{-2} \Lambda_w u(r, \cdot), u(r, \cdot) \rangle + ((\varphi')^2)' \| u(r, \cdot) \|^2 - 2h^{-1} \operatorname{Im} \langle \mathcal{P}_{\varphi}^{\pm}(h) u(r, \cdot), \mathcal{D}_r u(r, \cdot) \rangle \\ \pm 2\varepsilon h^{-1} \operatorname{Re} \langle u(r, \cdot), \mathcal{D}_r u(r, \cdot) \rangle + 4h^{-1} \varphi' \| \mathcal{D}_r u(r, \cdot) \|^2 + 2h^{-1} \operatorname{Im} \langle (V + h\varphi'') u(r, \cdot), \mathcal{D}_r u(r, \cdot) \rangle.$$

Thus, if μ is the function defined in the previous section, we obtain the identity

$$\begin{split} \mu'F + \mu F' &= (2r^{-1}\mu - \mu')\langle r^{-2}\Lambda_w u(r, \cdot), u(r, \cdot)\rangle + (E\mu' + (\mu(\varphi')^2)') \|u(r, \cdot)\|^2 \\ &- 2h^{-1}\mu \operatorname{Im}\langle \mathcal{P}_{\varphi}^{\pm}(h)u(r, \cdot), \mathcal{D}_r u(r, \cdot)\rangle \pm 2\varepsilon h^{-1}\mu \operatorname{Re}\langle u(r, \cdot), \mathcal{D}_r u(r, \cdot)\rangle \\ &+ (\mu' + 4h^{-1}\varphi'\mu) \|\mathcal{D}_r u(r, \cdot)\|^2 + 2h^{-1}\mu \operatorname{Im}\langle (V + h\varphi'')u(r, \cdot), \mathcal{D}_r u(r, \cdot)\rangle. \end{split}$$

Using that $\Lambda_w \ge 0$, together with (2-2), we get the inequality

$$\begin{split} \mu'F + \mu F' &\geq (E\mu' + (\mu(\varphi')^2)') \|u(r, \cdot)\|^2 + (\mu' + 4h^{-1}\varphi'\mu) \|\mathcal{D}_r u(r, \cdot)\|^2 \\ &- \frac{3h^{-2}\mu^2}{\mu'} \|\mathcal{P}_{\varphi}^{\pm}(h)u(r, \cdot)\|^2 - \frac{1}{3}\mu' \|\mathcal{D}_r u(r, \cdot)\|^2 - \varepsilon h^{-1}\mu(\|u(r, \cdot)\|^2 + \|\mathcal{D}_r u(r, \cdot)\|^2) \\ &- 3h^{-2}\mu^2(\mu' + 4h^{-1}\varphi'\mu)^{-1} \|(V + h\varphi'')u(r, \cdot)\|^2 - \frac{1}{3}(\mu' + 4h^{-1}\varphi'\mu) \|\mathcal{D}_r u(r, \cdot)\|^2 \\ &\geq \left(E\mu' + (\mu(\varphi')^2)' - C\mu^2(\mu' + h^{-1}\varphi'\mu)^{-1}(h^{-1}(r+1)^{-\delta} + |\varphi''|)^2\right) \|u(r, \cdot)\|^2 \\ &- \frac{3h^{-2}\mu^2}{\mu'} \|\mathcal{P}_{\varphi}^{\pm}(h)u(r, \cdot)\|^2 - \varepsilon h^{-1}\mu(\|u(r, \cdot)\|^2 + \|\mathcal{D}_r u(r, \cdot)\|^2), \end{split}$$

with some constant C > 0. Now we use Lemma 2.3 to conclude that

$$\mu'F + \mu F' \ge \frac{1}{2}E\mu' \|u(r,\cdot)\|^2 - \frac{3h^{-2}\mu^2}{\mu'} \|\mathcal{P}_{\varphi}^{\pm}(h)u(r,\cdot)\|^2 - \varepsilon h^{-1}\mu(\|u(r,\cdot)\|^2 + \|\mathcal{D}_{r}u(r,\cdot)\|^2).$$

We now integrate this inequality with respect to r and use that, since $\mu(0) = 0$, we have

$$\int_0^\infty (\mu' F + \mu F') \, dr = 0.$$

Thus we obtain the estimate

$$\frac{1}{2}E\int_{0}^{\infty}\mu'\|u(r,\cdot)\|^{2}dr \leq 3h^{-2}\int_{0}^{\infty}\frac{\mu^{2}}{\mu'}\|\mathcal{P}_{\varphi}^{\pm}(h)u(r,\cdot)\|^{2}dr + \varepsilon h^{-1}\int_{0}^{\infty}\mu(\|u(r,\cdot)\|^{2} + \|\mathcal{D}_{r}u(r,\cdot)\|^{2})dr.$$
(3-3)

Using that $\mu = O(a^2)$ together with (2-3) and (2-4) we get from (3-3)

$$\int_{0}^{\infty} (r+1)^{-2s} \|u(r,\cdot)\|^{2} dr$$

$$\leq Ca^{4}h^{-2} \int_{0}^{\infty} (r+1)^{2s} \|\mathcal{P}_{\varphi}^{\pm}(h)u(r,\cdot)\|^{2} dr + C\varepsilon h^{-1}a^{2} \int_{0}^{\infty} (\|u(r,\cdot)\|^{2} + \|\mathcal{D}_{r}u(r,\cdot)\|^{2}) dr, \quad (3-4)$$

with some constant C > 0 independent of h and ε . On the other hand, we have the identity

$$\operatorname{Re}\int_0^\infty \langle 2i\varphi' \mathcal{D}_r u(r,\cdot), u(r,\cdot) \rangle \, dr = \int_0^\infty h\varphi'' \|u(r,\cdot)\|^2 \, dr$$

and hence

$$\operatorname{Re} \int_{0}^{\infty} \langle \mathcal{P}_{\varphi}^{\pm}(h)u(r,\cdot), u(r,\cdot) \rangle \, dr = \int_{0}^{\infty} \|\mathcal{D}_{r}u(r,\cdot)\|^{2} \, dr + \int_{0}^{\infty} \langle r^{-2}\Lambda_{w}u(r,\cdot), u(r,\cdot) \rangle \, dr$$
$$-\int_{0}^{\infty} (E + \varphi'^{2}) \|u(r,\cdot)\|^{2} \, dr + \int_{0}^{\infty} \langle Vu(r,\cdot), u(r,\cdot) \rangle \, dr.$$

This implies

$$\int_{0}^{\infty} \|\mathcal{D}_{r}u(r,\cdot)\|^{2} dr \leq \mathcal{O}(\tau^{2}) \int_{0}^{\infty} \|u(r,\cdot)\|^{2} dr + \gamma \int_{0}^{\infty} (r+1)^{-2s} \|u(r,\cdot)\|^{2} dr + \gamma^{-1} \int_{0}^{\infty} (r+1)^{2s} \|\mathcal{P}_{\varphi}^{\pm}(h)u(r,\cdot)\|^{2} dr \quad (3-5)$$

for every $\gamma > 0$. We take now γ small enough, independent of *h*, and recall that $\varepsilon h^{-1}a^2 \leq 1$. Thus, combining the estimates (3-4) and (3-5), we get

$$\int_{0}^{\infty} (r+1)^{-2s} \|u(r,\cdot)\|^{2} dr$$

$$\leq Ca^{4}h^{-2} \int_{0}^{\infty} (r+1)^{2s} \|\mathcal{P}_{\varphi}^{\pm}(h)u(r,\cdot)\|^{2} dr + C\varepsilon h^{-1}a^{2}\tau^{2} \int_{0}^{\infty} \|u(r,\cdot)\|^{2} dr, \quad (3-6)$$

with a new constant C > 0 independent of *h* and ε . It is an easy observation now that the estimate (3-6) implies (3-1).

4. Resolvent estimates

In this section we will derive the bound (1-3) from Theorem 3.1. Indeed, it follows from the estimate (3-1) and Lemma 2.2 that for $0 < h \ll 1$, $0 < \varepsilon \le ha^{-2}$ and *s* satisfying (2-1) we have

$$\|\langle x \rangle^{-s} f\|_{L^{2}} \le M \|\langle x \rangle^{s} (P(h) - E \pm i\varepsilon) f\|_{L^{2}} + M\varepsilon^{1/2} \|f\|_{L^{2}},$$
(4-1)

where

$$M = \exp(Ch^{-4/3}\log(h^{-1})),$$

with a constant C > 0 independent of h and ε . On the other hand, since the operator P(h) is symmetric, we have

$$\varepsilon \| f \|_{L^{2}}^{2} = \pm \operatorname{Im} \langle (P(h) - E \pm i\varepsilon) f, f \rangle_{L^{2}}$$

$$\leq (2M)^{-2} \| \langle x \rangle^{-s} f \|_{L^{2}}^{2} + (2M)^{2} \| \langle x \rangle^{s} (P(h) - E \pm i\varepsilon) f \|_{L^{2}}^{2}.$$
(4-2)

We rewrite (4-2) in the form

$$M\varepsilon^{1/2} \|f\|_{L^2} \le \frac{1}{2} \|\langle x \rangle^{-s} f\|_{L^2} + 2M^2 \|\langle x \rangle^s (P(h) - E \pm i\varepsilon) f\|_{L^2}.$$
(4-3)

We now combine (4-1) and (4-3) to get

$$\|\langle x \rangle^{-s} f\|_{L^2} \le 4M^2 \|\langle x \rangle^s (P(h) - E \pm i\varepsilon) f\|_{L^2}.$$

$$(4-4)$$

It follows from (4-4) that the resolvent estimate

$$\|\langle x \rangle^{-s} (P(h) - E \pm i\varepsilon)^{-1} \langle x \rangle^{-s} \|_{L^2 \to L^2} \le 4M^2$$
(4-5)

holds for all $0 < h \ll 1$, $0 < \varepsilon \le ha^{-2}$ and *s* satisfying (2-1). On the other hand, for $\varepsilon \ge ha^{-2}$ the estimate (4-5) holds in a trivial way. Indeed, in this case, since the operator P(h) is symmetric, the norm of the resolvent is bounded above by $\varepsilon^{-1} = \mathcal{O}(h^{-2m-1})$. Finally, observe that if (4-5) holds for *s* satisfying (2-1), it holds for all $s > \frac{1}{2}$.

References

- [Burq 1998] N. Burq, "Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel", *Acta Math.* **180**:1 (1998), 1–29. MR Zbl
- [Burq 2002] N. Burq, "Lower bounds for shape resonances widths of long range Schrödinger operators", *Amer. J. Math.* **124**:4 (2002), 677–735. MR Zbl
- [Cardoso and Vodev 2002] F. Cardoso and G. Vodev, "Uniform estimates of the resolvent of the Laplace–Beltrami operator on infinite volume Riemannian manifolds, II", *Ann. Henri Poincaré* **3**:4 (2002), 673–691. MR Zbl
- [Datchev 2014] K. Datchev, "Quantitative limiting absorption principle in the semiclassical limit", *Geom. Funct. Anal.* 24:3 (2014), 740–747. MR Zbl
- [Datchev et al. 2015] K. Datchev, S. Dyatlov, and M. Zworski, "Resonances and lower resolvent bounds", *J. Spectr. Theory* **5**:3 (2015), 599–615. MR Zbl
- [Dyatlov and Zworski 2019] S. Dyatlov and M. Zworski, "Mathematical theory of scattering resonances", unpublished book, 2019, available at http://math.mit.edu/~dyatlov/res/res_final.pdf.
- [Klopp and Vogel 2019] F. Klopp and M. Vogel, "Semiclassical resolvent estimates for bounded potentials", *Pure Appl. Anal.* **1**:1 (2019), 1–25. MR Zbl
- [Shapiro 2018] J. Shapiro, "Semiclassical resolvent bound for compactly supported L^{∞} potentials", preprint, 2018. To appear in *J. Spectr. Theory.* arXiv
- [Shapiro 2019] J. Shapiro, "Semiclassical resolvent bounds in dimension two", *Proc. Amer. Math. Soc.* (online publication February 2019).
- [Vodev 2014a] G. Vodev, "Resolvent estimates for the magnetic Schrödinger operator", *Anal. PDE* **7**:7 (2014), 1639–1648. MR Zbl
- [Vodev 2014b] G. Vodev, "Semi-classical resolvent estimates and regions free of resonances", *Math. Nachr.* 287:7 (2014), 825–835. MR Zbl

Received 12 Sep 2018. Revised 23 Oct 2018. Accepted 6 Dec 2018.

GEORGI VODEV: georgi.vodev@univ-nantes.fr

Université de Nantes, Laboratoire de Mathématiques Jean Leray, Nantes, France

msp.org/paa

EDITORS-IN-CHIEF Charles L. Epstein University of Pennsylvania cle@math.upenn.edu Maciej Zworski University of California at Berkeley zworski@math.berkeley.edu EDITORIAL BOARD Sir John M. Ball University of Oxford ball@maths.ox.ac.uk Michael P Brenner Harvard University brenner@seas.harvard.edu Charles Fefferman Princeton University cf@math.princeton.edu Susan Friedlander University of Southern California susanfri@usc.edu Anna Gilbert University of Michigan annacg@umich.edu Leslie F. Greengard Courant Institute, New York University, and Flatiron Institute, Simons Foundation greengard@cims.nyu.edu Yan Guo Brown University yan_guo@brown.edu Claude Le Bris CERMICS - ENPC lebris@cermics.enpc.fr University of Toronto Robert J. McCann mccann@math.toronto.edu Michael O'Neil Courant Institute, New York University oneil@cims.nyu.edu Jill Pipher Brown University jill_pipher@brown.edu Johannes Sjöstrand Université de Dijon johannes.sjostrand@u-bourgogne.fr Vladimir Šverák University of Minnesota sverak@math.umn.edu Daniel Tataru University of California at Berkeley tataru@berkeley.edu Michael I. Weinstein Columbia University miw2103@columbia.edu Jon Wilkening University of California at Berkeley wilken@math.berkeley.edu Enrique Zuazua DeustoTech-Bilbao, and Universidad Autónoma de Madrid enrique.zuazua@deusto.es PRODUCTION Silvio Levy (Scientific Editor) production@msp.org

Cover image: The figure shows the outgoing scattered field produced by scattering a plane wave, coming from the northwest, off of the (stylized) letters P A A. The total field satisfies the homogeneous Dirichlet condition on the boundary of the letters. It is based on a numerical computation by Mike O'Neil of the Courant Institute.

See inside back cover or msp.org/paa for submission instructions.

The subscription price for 2019 is US \$495/year for the electronic version, and \$555/year (+\$25, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Pure and Applied Analysis (ISSN 2578-5885 electronic, 2578-5893 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

PAA peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY

mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/

© 2019 Mathematical Sciences Publishers

PURE and APPLIED ANALYSIS

vol. 1 no. 2 2019

About small eigenvalues of the Witten Laplacian	149
LAURENT MICHEL	
Semiclassical resolvent estimates for short-range L^{∞} potentials	207
Georgi Vodev	
An evolution equation approach to the Klein–Gordon operator on	215
curved spacetime	
JAN DEREZIŃSKI and DANIEL SIEMSSEN	
The interior of dynamical extremal black holes in spherical symmetry	263
DEJAN GAJIC and JONATHAN LUK	18

- (B) -

/

0 6 0 0