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SEMICLASSICAL RESOLVENT ESTIMATES
FOR SHORT-RANGE L∞ POTENTIALS

GEORGI VODEV

We prove semiclassical resolvent estimates for real-valued potentials V ∈ L∞(Rn), n ≥ 3, satisfying
V (x)=O(〈x〉−δ) with δ > 3.

1. Introduction and statement of results

Our goal in this note is to study the resolvent of the Schrödinger operator

P(h)=−h21+ V (x),

where 0< h� 1 is a semiclassical parameter, 1 is the negative Laplacian in Rn, n ≥ 3, and V ∈ L∞(Rn)

is a real-valued potential satisfying
|V (x)| ≤ C〈x〉−δ, (1-1)

with some constants C > 0 and δ > 3. More precisely, we are interested in bounding from above the
quantity

g±s (h, ε) := log ‖〈x〉−s(P(h)− E ± iε)−1
〈x〉−s

‖L2→L2,

where L2
:= L2(Rn), 0< ε < 1, s > 1

2 and E > 0 is a fixed energy level independent of h. Such bounds
are known in various situations. For example, for long-range real-valued C1 potentials it is proved in
[Datchev 2014] when n ≥ 3 and in [Shapiro 2019] when n = 2 that

g±s (h, ε)≤ Ch−1, (1-2)

with some constant C > 0 independent of h and ε. Previously, the bound (1-2) was proved for smooth
potentials in [Burq 2002] and an analog of (1-2) for Hölder potentials was proved in [Vodev 2014b]. A
high-frequency analog of (1-2) on more complex Riemannian manifolds was also proved in [Burq 1998;
Cardoso and Vodev 2002]. In all these papers the regularity of the potential (and of the perturbation in
general) plays an essential role. Without any regularity, the problem of bounding g±s from above by an
explicit function of h gets quite tough. Nevertheless, it was recently shown in [Shapiro 2018] that for
real-valued compactly supported L∞ potentials one has the bound

g±s (h, ε)≤ Ch−4/3 log(h−1), (1-3)
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with some constant C > 0 independent of h and ε. The bound (1-3) was also proved in [Klopp and Vogel
2019], still for real-valued compactly supported L∞ potentials but with the weight 〈x〉−s replaced by
a cut-off function. When n = 1 it was shown in [Dyatlov and Zworski 2019] that we have the better
bound (1-2) instead of (1-3). When n ≥ 2, however, the bound (1-3) seems hard to improve without extra
conditions on the potential. The problem of showing that the bound (1-3) is optimal is largely open. In
contrast, it is well known that the bound (1-2) cannot be improved in general; e.g., see [Datchev et al.
2015].

In this note we show that the bound (1-3) still holds for noncompactly supported L∞ potentials when
n ≥ 3. Our main result is the following.

Theorem 1.1. Under the condition (1-1), there exists h0 > 0 such that for all 0< h ≤ h0 the bound (1-3)
holds true.

Remark. It is easy to see from the proof, see the inequality (4-2), that the bound (1-3) holds also for a
complex-valued potential V satisfying (1-1), provided that its imaginary part satisfies the condition

∓ Im V (x)≥ 0 for all x ∈ Rn.

To prove this theorem we adapt the Carleman estimates proved in [Shapiro 2018] simplifying some key
arguments as, for example, the construction of the phase function ϕ. This is made possible by defining
the key function F in Section 3 differently, without involving the second derivative ϕ′′. The consequence
is that we do not need to seek ϕ′ as a solution to a differential equation as done in [Shapiro 2018], but
it suffices to define it explicitly. Note also that similar (but simpler) Carleman estimates were used in
[Vodev 2014a] to prove high-frequency resolvent estimates for the magnetic Schrödinger operator with
large L∞ magnetic potentials.

2. Construction of the phase and weight functions

We will first construct the weight function. We begin by introducing the continuous function

µ(r)=
{
(r + 1)2− 1 for 0≤ r ≤ a,
(a+ 1)2− 1+ (a+ 1)−2s+1

− (r + 1)−2s+1 for r ≥ a,

where
1
2 < s < 1

2(δ− 2) (2-1)

and a = h−m with some parameter m > 0 to be fixed in the proof of Lemma 2.3 below depending only
on δ and s. Clearly, the first derivative (in sense of distributions) of µ satisfies

µ′(r)=
{

2(r + 1) for 0≤ r < a,
(2s− 1)(r + 1)−2s for r > a.

The main properties of the functions µ and µ′ are given in the following.
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Lemma 2.1. For all r > 0, r 6= a, we have the inequalities

2r−1µ(r)−µ′(r)≥ 0, (2-2)

µ′(r)≥ C1(r + 1)−2s, (2-3)

µ(r)2

µ′(r)
≤ C2a4(r + 1)2s (2-4)

with some constants C1,C2 > 0.

Proof. For r < a the left-hand side of (2-2) is equal to 2, while for r > a it is bounded from below by

2r−1(a2
+ 2a− s) > 2a2r−1 > 0,

provided a is taken large enough. Furthermore, we clearly have (2-3) for r < a with C1 = 2, while for
r > a it holds with C1 = 2s − 1. Therefore, (2-3) holds with C1 = min{2, 2s − 1}. The bound (2-4)
follows with C2 = 2C−1

1 from (2-3) and the observation that µ(r)2 ≤ (a+ 1)4 ≤ 2a4 for all r . �

We now turn to the construction of the phase function ϕ ∈ C1([0,+∞)) such that ϕ(0) = 0 and
ϕ(r) > 0 for r > 0. We define the first derivative of ϕ by

ϕ′(r)=
{
τ(r + 1)−1

− τ(a+ 1)−1 for 0≤ r ≤ a,
0 for r ≥ a,

where

τ = τ0h−1/3, (2-5)

with some parameter τ0� 1 independent of h to be fixed in Lemma 2.3 below. Clearly, the first derivative
of ϕ′ satisfies

ϕ′′(r)=
{
−τ(r + 1)−2 for 0≤ r < a,
0 for r > a.

Lemma 2.2. For all r ≥ 0 we have the bound

h−1ϕ(r). h−4/3 log 1
h
. (2-6)

Proof. We have

maxϕ =
∫ a

0
ϕ′(r) dr ≤ τ

∫ a

0
(r + 1)−1 dr = τ log(a+ 1),

which clearly implies (2-6) in view of the choice of τ and a. �

For r 6= a, set
A(r)= (µϕ′2)′(r),

B(r)=

(
µ(r)(h−1(r + 1)−δ + |ϕ′′(r)|)

)2

h−1ϕ′(r)µ(r)+µ′(r)
.

The following lemma will play a crucial role in the proof of the Carleman estimates in the next section.
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Lemma 2.3. Given any C > 0 independent of the variable r and the parameters h, τ and a, there exist
τ0 = τ0(C) > 0 and h0 = h0(C) > 0 so that for τ satisfying (2-5) and for all 0 < h ≤ h0 we have the
inequality

A(r)−C B(r)≥− 1
2 Eµ′(r) (2-7)

for all r > 0, r 6= a.

Proof. For r < a we have

A(r)=−(ϕ′2)′(r)+ τ 2∂r (1− (r + 1)(a+ 1)−1)2

=−2ϕ′(r)ϕ′′(r)− 2τ 2(a+ 1)−1(1− (r + 1)(a+ 1)−1)

≥ 2τ(r + 1)−2ϕ′(r)− 2τ 2(a+ 1)−1

≥ 2τ(r + 1)−2ϕ′(r)− τ 2a−1µ′(r)

≥ 2τ(r + 1)−2ϕ′(r)−O(hm−1)µ′(r),

where we have used that µ′(r)≥ 2. Taking m > 2 we get

A(r)≥ 2τ(r + 1)−2ϕ′(r)−O(h)µ′(r) (2-8)

for all r < a. We will now bound the function B from above. Let first 0< r ≤ 1
2a. Since in this case we

have

ϕ′(r)≥ 1
3τ(r + 1)−1,

we obtain

B(r).
µ(r)(h−2(r + 1)−2δ

+ϕ′′(r)2)
h−1ϕ′(r)

. (τh)−1µ(r)(r + 1)2−2δ

ϕ′(r)2
τ(r + 1)−2ϕ′(r)+ h

µ(r)ϕ′′(r)2

µ′(r)ϕ′(r)
µ′(r)

. τ−3h−1(r + 1)6−2δτ(r + 1)−2ϕ′(r)+ τhµ′(r)

. τ−3
0 τ(r + 1)−2ϕ′(r)+ τ0h2/3µ′(r),

where we have used that δ > 3. This bound, together with (2-8), clearly implies (2-7), provided τ−1
0 and

h are taken small enough depending on C .
Let now 1

2a < r < a. Then we have the bound

B(r)≤
(
µ(r)
µ′(r)

)2

(h−1(r + 1)−δ + |ϕ′′(r)|)2µ′(r)

. (h−2(r + 1)2−2δ
+ τ 2(r + 1)−2)µ′(r)

. (h−2a2−2δ
+ τ 2a−2)µ′(r)

. (h2m(δ−1)−2
+ h2m−2/3)µ′(r). hµ′(r),

provided m is taken large enough. Again, this bound, together with (2-8), implies (2-7).
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It remains to consider the case r > a. Using that µ = O(a2), together with (2-3), and taking into
account that s satisfies (2-1), we get

B(r)=

(
µ(r)(h−1(r + 1)−δ)

)2

µ′(r)

. h−2a4(r + 1)4s−2δµ′(r). h−2a4+4s−2δµ′(r)

. h2m(δ−2−2s)−2µ′(r). hµ′(r),

provided that m is taken large enough. Since in this case A(r)=0, the above bound clearly implies (2-7). �

3. Carleman estimates

Our goal in this section is to prove the following:

Theorem 3.1. Suppose (1-1) holds and let s satisfy (2-1). Then, for all functions f ∈ H 2(Rn) such that
〈x〉s(P(h)− E ± iε) f ∈ L2 and for all 0< h� 1, 0< ε ≤ ha−2, we have the estimate

‖〈x〉−seϕ/h f ‖L2 ≤ Ca2h−1
‖〈x〉seϕ/h(P(h)− E ± iε) f ‖L2 +Caτ(ε/h)1/2‖eϕ/h f ‖L2, (3-1)

with a constant C > 0 independent of h, ε and f .

Proof. We pass to the polar coordinates (r, w) ∈ R+ × Sn−1, r = |x |, w = x/|x |, and recall that
L2(Rn) = L2(R+×Sn−1, rn−1drdw). In what follows we denote by ‖ · ‖ and 〈 · , · 〉 the norm and the
scalar product in L2(Sn−1). We will make use of the identity

r (n−1)/21r−(n−1)/2
= ∂2

r +
1̃w

r2 , (3-2)

where 1̃w =1w− 1
4(n−1)(n−3) and 1w denotes the negative Laplace–Beltrami operator on Sn−1. Set

u = r (n−1)/2eϕ/h f and
P±(h)= r (n−1)/2(P(h)− E ± iε)r−(n−1)/2,

P±ϕ (h)= eϕ/hP±(h)e−ϕ/h .

Using (3-2) we can write the operator P±(h) in the coordinates (r, w) as

P±(h)= D2
r +

3w

r2 − E ± iε+ V,

where we have put Dr =−ih∂r and 3w =−h21̃w. Since the function ϕ depends only on the variable r ,
this implies

P±ϕ (h)= D2
r +

3w

r2 − E ± iε−ϕ′2+ hϕ′′+ 2iϕ′Dr + V .

For r > 0, r 6= a, introduce the function

F(r)=−〈(r−23w − E −ϕ′(r)2)u(r, · ), u(r, · )〉+ ‖Dr u(r, · )‖2
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and observe that its first derivative is given by

F ′(r)= 2
r
〈r−23wu(r, · ), u(r, · )〉+ ((ϕ′)2)′‖u(r, · )‖2− 2h−1 Im〈P±ϕ (h)u(r, · ),Dr u(r, · )〉

± 2εh−1 Re〈u(r, · ),Dr u(r, · )〉+ 4h−1ϕ′‖Dr u(r, · )‖2+ 2h−1 Im〈(V + hϕ′′)u(r, · ),Dr u(r, · )〉.

Thus, if µ is the function defined in the previous section, we obtain the identity

µ′F +µF ′ = (2r−1µ−µ′)〈r−23wu(r, · ), u(r, · )〉+ (Eµ′+ (µ(ϕ′)2)′)‖u(r, · )‖2

− 2h−1µ Im〈P±ϕ (h)u(r, · ),Dr u(r, · )〉± 2εh−1µRe〈u(r, · ),Dr u(r, · )〉

+ (µ′+ 4h−1ϕ′µ)‖Dr u(r, · )‖2+ 2h−1µ Im〈(V + hϕ′′)u(r, · ),Dr u(r, · )〉.

Using that 3w ≥ 0, together with (2-2), we get the inequality

µ′F +µF ′ ≥ (Eµ′+ (µ(ϕ′)2)′)‖u(r, · )‖2+ (µ′+ 4h−1ϕ′µ)‖Dr u(r, · )‖2

−
3h−2µ2

µ′
‖P±ϕ (h)u(r, · )‖

2
−

1
3µ
′
‖Dr u(r, · )‖2− εh−1µ(‖u(r, · )‖2+‖Dr u(r, · )‖2)

− 3h−2µ2(µ′+ 4h−1ϕ′µ)−1
‖(V + hϕ′′)u(r, · )‖2− 1

3(µ
′
+ 4h−1ϕ′µ)‖Dr u(r, · )‖2

≥
(
Eµ′+ (µ(ϕ′)2)′−Cµ2(µ′+ h−1ϕ′µ)−1(h−1(r + 1)−δ + |ϕ′′|)2

)
‖u(r, · )‖2

−
3h−2µ2

µ′
‖P±ϕ (h)u(r, · )‖

2
− εh−1µ(‖u(r, · )‖2+‖Dr u(r, · )‖2),

with some constant C > 0. Now we use Lemma 2.3 to conclude that

µ′F +µF ′ ≥ 1
2 Eµ′‖u(r, · )‖2−

3h−2µ2

µ′
‖P±ϕ (h)u(r, · )‖

2
− εh−1µ(‖u(r, · )‖2+‖Dr u(r, · )‖2).

We now integrate this inequality with respect to r and use that, since µ(0)= 0, we have∫
∞

0
(µ′F +µF ′) dr = 0.

Thus we obtain the estimate

1
2 E
∫
∞

0
µ′‖u(r, · )‖2 dr

≤ 3h−2
∫
∞

0

µ2

µ′
‖P±ϕ (h)u(r, · )‖

2 dr + εh−1
∫
∞

0
µ(‖u(r, · )‖2+‖Dr u(r, · )‖2) dr. (3-3)

Using that µ=O(a2) together with (2-3) and (2-4) we get from (3-3)∫
∞

0
(r + 1)−2s

‖u(r, · )‖2 dr

≤ Ca4h−2
∫
∞

0
(r + 1)2s

‖P±ϕ (h)u(r, · )‖
2 dr +Cεh−1a2

∫
∞

0
(‖u(r, · )‖2+‖Dr u(r, · )‖2) dr, (3-4)
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with some constant C > 0 independent of h and ε. On the other hand, we have the identity

Re
∫
∞

0
〈2iϕ′Dr u(r, · ), u(r, · )〉 dr =

∫
∞

0
hϕ′′‖u(r, · )‖2 dr

and hence

Re
∫
∞

0
〈P±ϕ (h)u(r, · ), u(r, · )〉 dr =

∫
∞

0
‖Dr u(r, · )‖2 dr +

∫
∞

0
〈r−23wu(r, · ), u(r, · )〉 dr

−

∫
∞

0
(E +ϕ′2)‖u(r, · )‖2 dr +

∫
∞

0
〈V u(r, · ), u(r, · )〉 dr.

This implies∫
∞

0
‖Dr u(r, · )‖2 dr ≤O(τ 2)

∫
∞

0
‖u(r, · )‖2 dr

+ γ

∫
∞

0
(r + 1)−2s

‖u(r, · )‖2 dr + γ−1
∫
∞

0
(r + 1)2s

‖P±ϕ (h)u(r, · )‖
2 dr (3-5)

for every γ > 0. We take now γ small enough, independent of h, and recall that εh−1a2
≤ 1. Thus,

combining the estimates (3-4) and (3-5), we get∫
∞

0
(r + 1)−2s

‖u(r, · )‖2 dr

≤ Ca4h−2
∫
∞

0
(r + 1)2s

‖P±ϕ (h)u(r, · )‖
2 dr +Cεh−1a2τ 2

∫
∞

0
‖u(r, · )‖2 dr, (3-6)

with a new constant C > 0 independent of h and ε. It is an easy observation now that the estimate (3-6)
implies (3-1). �

4. Resolvent estimates

In this section we will derive the bound (1-3) from Theorem 3.1. Indeed, it follows from the estimate
(3-1) and Lemma 2.2 that for 0< h� 1, 0< ε ≤ ha−2 and s satisfying (2-1) we have

‖〈x〉−s f ‖L2 ≤ M‖〈x〉s(P(h)− E ± iε) f ‖L2 +Mε1/2
‖ f ‖L2, (4-1)

where

M = exp(Ch−4/3 log(h−1)),

with a constant C > 0 independent of h and ε. On the other hand, since the operator P(h) is symmetric,
we have

ε‖ f ‖2L2 =± Im〈(P(h)− E ± iε) f, f 〉L2

≤ (2M)−2
‖〈x〉−s f ‖2L2 + (2M)2‖〈x〉s(P(h)− E ± iε) f ‖2L2 . (4-2)

We rewrite (4-2) in the form

Mε1/2
‖ f ‖L2 ≤

1
2‖〈x〉

−s f ‖L2 + 2M2
‖〈x〉s(P(h)− E ± iε) f ‖L2 . (4-3)
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We now combine (4-1) and (4-3) to get

‖〈x〉−s f ‖L2 ≤ 4M2
‖〈x〉s(P(h)− E ± iε) f ‖L2 . (4-4)

It follows from (4-4) that the resolvent estimate

‖〈x〉−s(P(h)− E ± iε)−1
〈x〉−s

‖L2→L2 ≤ 4M2 (4-5)

holds for all 0< h� 1, 0<ε≤ ha−2 and s satisfying (2-1). On the other hand, for ε≥ ha−2 the estimate
(4-5) holds in a trivial way. Indeed, in this case, since the operator P(h) is symmetric, the norm of the
resolvent is bounded above by ε−1

= O(h−2m−1). Finally, observe that if (4-5) holds for s satisfying
(2-1), it holds for all s > 1

2 .
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