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Pierre-Yves Bienvenu, François Hennecart and Ilya Shkredov

Let p be a large enough prime number. When A is a subset of Fp r {0} of cardinality |A|> (p+ 1)/3,
then an application of the Cauchy–Davenport theorem gives Fp r {0} ⊂ A(A + A). In this note, we
improve on this and we show that |A| ≥ 0.3051p implies A(A+ A)⊇ Fp r {0}. In the opposite direction
we show that there exists a set A such that |A|>

( 1
8 + o(1)

)
p and Fp r {0} 6⊆ A(A+ A).

1. Introduction

The aim of this note is to study the size of the set A(A + A) = {a(b + c) : a, b, c ∈ A} for a subset
A ⊆ Fp r {0}. This sort of problem belongs to the realm of expanding polynomials and sum-product
problems. In the literature, they are usually discussed in the sparse set regime; for instance, Roche-
Newton et al. [2016] and Aksoy Yazici et al. [2017] proved that in the regime where |A| � p2/3, one has
min(|A+ AA|, |A(A+ A)|)� |A|3/2 (see also [Stevens and de Zeeuw 2017]). This implies in particular
that as soon as |A| � p2/3, both sets A(A+ A) and A+ AA occupy a positive proportion of Fp.

Now we focus on the case where A ⊆ Fp occupies already a positive proportion of Fp. Let α = |A|/p,
so we suppose that α > 0 is bounded below by a positive constant, while p tends to infinity. We will see
that in this case the set A(A+ A) contains all but a finite number of elements. Additionally, we prove
that this finite number of elements may be strictly larger than 1, unless α is large enough.

Here are our main results.

Theorem 1.1. Let A ⊆ Fp so that |A| = αp with α ≥ 0.3051. Then for any large enough prime p, we
have A(A+ A)⊇ Fp r {0}.

For smaller densities, we have the following result.

Theorem 1.2. Let A ⊆ Fp r {0} and 0< α < 1 satisfy |A| ≥ αp. Then one has

|A(A+ A)|> p− 1−α−3(1−α)2+ o(1).

We note that similar results were obtained [Hegyvári and Hennecart 2018] for the set AA+A. However,
the constant 0.3051 is replaced by the larger 1

3 in Theorem 1.1, and the term α−3(1−α)2 is replaced by
the larger α−3. Further, the slightly weaker bound |A(A+ A)| ≥ p−α−3 may be extracted from [Sárközy
2005].

In the opposite direction, we have the following result.
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the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).
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Theorem 1.3. There exists A ⊆ Fp r {0} such that |A|>
( 1

8 + o(1)
)

p and A(A+ A)( Fp r {0} for any
large prime p. Additionally, for any ε > 0 there exists a set of size O(p3/4+ε) such that A(A+ A) misses
�(p1/4−ε) elements.

2. Proof of Theorem 1.1

In this section, we shall need the Cauchy–Davenport theorem, which we now state. See for instance
[Nathanson 1996, Theorem 2.2] for a proof.

Lemma 2.1. Let A and B be subsets of Fp. Then |A+ B| ≥min(|A| + |B| − 1, p).

In particular, if |A| + |B|> p, then A+ B = Fp, which is also obvious because A and x − B cannot
be disjoint for any x .

First, we note that if α > 1
2 , then |A+ A| ≥ |A|> p/2 so that A(A+ A)= Fp. But as soon α < 1

2 , we
can easily have A(A+ A)( F∗p, for instance by taking A = {1, . . . , b(p− 1)/2c}.

Here is another almost equally immediate corollary.

Corollary 2.2. Let A ⊆ Fp r {0} satisfy |A|> (p+ 1)/3. Then either A(A+ A)= Fp or Fp r {0}.

Proof. Let B = (A+ A)r {0}. Using Lemma 2.1, we have |A+ A|> (2p− 1)/3 so |B|> (2p− 4)/3,
whence |A| + |B|> p− 1. We infer that for any x ∈ Fp r {0} we have

x B−1
∩ A 6=∅,

which yields AB = Fp r {0}. �

We now prove Theorem 1.1, which reveals that we can lower the density requirement from 1
3 to 0.3051

while maintaining A(A+ A)⊃ Fp r {0}.
To start with, we recall the famous Freiman’s 3k − 4 theorem for the integers, which gives precise

structural information on a set which has quite small, but not necessarily minimal, doubling [Nathanson
1996, Theorem 1.16].

Proposition 2.3. If A ⊂ Z satisfies |A+ A| ≤ 3|A| − 4 then A is contained in an arithmetic progression
of length at most |A+ A| − |A| + 1.

An analogue of this proposition has been developed in Fp, and it is known as the Freiman 2.4-theorem.
A useful lemma in [Freiman 1962] (see also [Nathanson 1996, Theorem 2.9]) was derived in the proof
thereof, and we will need it here. We also include an improvement due to Lev.

We first define the Fourier transform of a function f : Fp→ C by

f̂ (t)=
∑
x∈Fp

f (x)ep(t x)

for any t ∈ Fp, where ep(x)= exp(2iπx/p). The Parseval identity is∑
x∈Fp

f (x)g(x)= 1
p

∑
h∈Fp

f̂ (h)ĝ(h). (1)

The characteristic function of a subset A of Fp is denoted by 1A and for r ∈ Fp we let r A= {ra : a ∈ A}.
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Lemma 2.4. Let A ⊆ Fp with |A| = αp and 0 < γ < 1 satisfy |1̂A(r)| ≥ γ |A| for some r ∈ Fp r {0}.
Then there exists an interval modulo p of length at most p/2 that contains at least α1 p elements of r A
where α1 can be freely chosen as

(i) α1 = (1+ γ )α/2 (see [Freiman 1962]), or

(ii) α1 = α/2+ 1/(2π) arcsin(πγ α) (see [Lev 2005]).

There a few other basic results about Fourier transforms that we will need in the sequel.

Lemma 2.5. Let P be an arithmetic progression in Fp. Then∑
r∈Fp

|1̂P(r)| � p log p.

We now recall Weil’s bound [1948] for Kloosterman sums.

Lemma 2.6. For any (a, b) 6= (0, 0), we have∣∣∣∣ ∑
k∈Fpr{0}

ep(ak+ bk−1)

∣∣∣∣≤ 2
√

p.

We will also need a bound for so-called incomplete Kloosterman sums, whose proof follows easily
from the last two lemmas.

Lemma 2.7. Let P ⊆ Fp r {0} be an arithmetic progression. Then for any r 6= 0 we have

|1̂P−1(r)| �
√

p log p.

Now we start the proof of Theorem 1.1 itself. Let α ≥ 0.3051, let A ⊆ Fp r {0} of size |A| = αp and
set B = (A+ A)r {0}. We assume that there exists x ∈ Fp r {0} such that x 6∈ A(A+ A). Then

x B−1
∩ A =∅, (x A−1

− A)∩ A =∅. (2)

It follows that |A| + |B| ≤ p− 1, since otherwise AB = Fp r {0}. Hence |A+ A| ≤ |B| + 1≤ p− |A|.

We define
r1(y)= |{(a, b) ∈ A× A : y = xa−1

− b}|,

r2(y)= |{(c, d) ∈ A× A : c+ d 6= 0 and y = x(c+ d)−1
}|,

and Ei =
∑

y∈Fp
ri (y)2, i = 1, 2, the corresponding energies. Observe from (2) that∑

y∈Fp
r1(y)+r2(y)>0

1≤ p− |A|.

By Cauchy–Schwarz we get

4|A|4 =
(∑

y∈Fp

(r1(y)+ r2(y))
)2

≤ (p− |A|)×
∑
y∈Fp

(r1(y)+ r2(y))2. (3)

Expanding the later inner sum gives∑
y∈Fp

(r1(y)+ r2(y))2 = E1+ E2+ 2
∑
y∈Fp

r1(y)r2(y).
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Let

γ =max
h 6=0

|1̂A(h)|
|A|

.

We have by Parseval

pE2 =
∑

h

|1̂A(h)|4 = |A|4+
∑
h 6=0

|1̂A(h)|4 ≤ |A|4+ γ 2
|A|2(p|A| − |A|2)

and
pE1 =

∑
h

|1̂x A−1(h)|2 |1̂A(h)|2 = |A|4+
∑
h 6=0

|1̂x A−1(h)|2 |1̂A(h)|2

≤ |A|4+ γ 2
|A|2(p|A| − |A|2).

Moreover
p
∑
y∈Fp

r1(y)r2(y)=
∑

h

1̂x A−1(h)1̂A(−h)r̂2(h)

≤ |A|4+max
h 6=0
|r̂2(h)|

∑
h 6=0

|1̂x A−1(h)||1̂A(h)|

≤ |A|4+max
h 6=0
|r̂2(h)|(p|A| − |A|2),

by Parseval and Cauchy–Schwarz. For h 6= 0,

r̂2(h)=
∑

c,d∈A
c+d 6=0

ep(hx(c+ d)−1)=
1
p

∑
r

∑
z 6=0

∑
c,d∈A

ep(r(c+ d − z))ep(hxz−1);

hence by the Parseval identity (1) and Lemma 2.6

|r̂2(h)| ≤
1
p

∑
r

|1̂A(r)|2
∣∣∣∣∑

z 6=0

ep(hxz−1)

∣∣∣∣�√p|A|;

similar arguments were used in [Moshchevitin 2007, Theorem 4]. We thus obtain from (3) and the above
bounds

2α ≤ (1−α)(2α+ γ 2(1−α)+ o(1)).

This finally gives the lower bound

γ ≥

√
2α

1−α
+ o(1).

We are in position to apply Lemma 2.4(i). Let A1 ⊂ A be such that |A1| ≥ (1+ γ )|A|/2 and r A1 is
included in an interval of length p/2 for some r 6= 0. This shows that A1 is 2-Freiman isomorphic1 to a
subset A′1 of Z. So we seek to apply Proposition 2.3 to A′1. We get

α1 =
|A1|

p
≥ f (α)+ o(1) :=

(1+ (
√

2− 1)α)α
2(1−α)

+ o(1), (4)

c1 =
|A1+ A1|

|A1|
≤
|A+ A|
|A1|

≤
(1−α)p
α1 p

≤
1−α
f (α)

+ o(1). (5)

1That is, there exists a bijection f : A1→ A′1 such that a+b= c+d⇐⇒ f (a)+ f (b)= f (c)+ f (d) for all a, b, c, d ∈ A1.
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In order to have c1 < 3, it is sufficient to have

α >
7−

√
9+ 24

√
2

10− 6
√

2
= 0.29513 . . . ,

which is satisfied since we have assumed α ≥ 0.3051. We thus obtain that A1 (resp. A1+ A1) is contained
inside an arithmetic progression P1 (resp. Q1 = P1+ P1) of length |P1| = |A1+ A1| − |A1| + 1 (resp.
2|P1| − 1).

We define B1 = (A1+ A1)r {0} and Q∗1 = Q1 r {0}. We need to estimate

T = 1
p

∑
r mod p

∑
a∈P1
b∈Q∗1

ep(r(a− b−1x))≥
|P1||Q∗1|

p
−

1
p

∑
0<|r |<p/2

|1̂P1(r)||1̂Q∗1
−1(r x)|,

which counts the solutions (a, b) ∈ P1× Q∗1 to the equation a = b−1x .
Now |1̂P1(r)| � p/|r | by Lemma 2.5 and |1̂Q∗1

−1(r x0)| �
√

p log p by Lemma 2.7 because Q∗1 is the
union of at most two arithmetic progressions.

As a result, we have

T ≥
|P1||Q∗1|

p
+ O(
√

p(log p)2).

The number of solutions to a= b−1x with a ∈ P1r A1 or b ∈ Q∗1rB1 is at most |P1|−|A1|+|Q∗1|−|B1|.
Since by assumption there is no solution to a = b−1x with (a, b) ∈ A1× B1 we get

T ≤ |P1| − |A1| + |Q∗1| − |B1|

yielding
|P1||Q∗1|

p
≤ |P1| − |A1| + |Q∗1| − |B1| + O(

√
p(log p)2).

This implies
(|B1| − |A1|)

2

p
≤ |B1| − 2|A1| + O(

√
p(log p)2),

whence
α1(c1− 1)2 ≤ c1− 2+ o(1).

Because of (4), this gives
f (α)× (c1− 1)2− c1+ 2≤ o(1). (6)

The left-hand side of this inequality defines a function of c1 which is decreasing in the range 2≤ c1 ≤

1+ 1/(2 f (α)), a contradiction. We check easily that α+ f (α)≥ 1
2 whenever α ≥ 0.3. Hence for such α

1−α
f (α)

≤ 1+
1

2 f (α)
.

We thus obtain from (5) and (6)

f (α)
(

1−α
f (α)

− 1
)2

−
1−α
f (α)

+ 2≤ o(1),
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which reduces to

(1−α− f (α))2− (1−α− 2 f (α))≤ o(1).

In view of the definition of f (α) in (4), we get by expanding the above formula

(11− 6
√

2)α3
− (22− 6

√
2)α2
+ 17α− 4≤ o(1),

giving α < 0.305091 + o(1), a contradiction for all p large enough. This concludes the proof of
Theorem 1.1. �

Remark 2.8. Using instead the sharpest result (ii) of Lemma 2.4 leads to a slight improvement: if
|A| ≥ 0.30065p then Fp r {0} ⊆ A(A+ A) for any large p. The improvement is very small and uses
nonalgebraic expressions, which is why we decided not to exploit it.

3. Proof of Theorem 1.2

We will now use multiplicative characters of Fp. We denote by X the set of all multiplicative characters
modulo p and by χ0 the trivial character. In this context Parseval’s identity is the statement that

1
p−1

∑
χ∈X

∣∣∣∣ ∑
x∈Fpr{0}

f (x)χ(x)
∣∣∣∣2 = ∑

x∈Fpr{0}

| f (x)|2. (7)

We state and prove a lemma which is a multiplicative analogue of a lemma of Vinogradov [1955], see
also [Sárközy 2005, Lemma 7], according to which∣∣∣∣ ∑

(x,y)∈A×B

ep(xy)
∣∣∣∣≤√p|A||B|. (8)

Lemma 3.1. For any subsets A, B of Fp r {0} and any nontrivial character χ ∈ X, we have∣∣∣∣ ∑
(y,z)∈A×B

χ(y+ z)
∣∣∣∣≤ (|A||B|p)1/2(1−

|B|
p

)1/2

.

We now prove Theorem 1.2. Let A be a subset of Fp r {0} and α = |A|/p. We estimate the number
of nonzero elements in A(A+ A) by estimating the number N of solutions to

x(y+ z)= x ′(y′+ z′) 6= 0, x, y, z, x ′, y′, z′ ∈ A,

which we can rewrite as x ′x−1(y+ z)−1(y′+ z′)= 1. This number is

N = 1
p−1

∑
χ∈X

∣∣∣∣ ∑
y,z∈A

χ(z+ y)
∑
x∈A

χ(x)
∣∣∣∣2

≤
|A|6

p− 1
+max
χ 6=χ0

∣∣∣∣ ∑
y,z∈A

χ(y+ z)
∣∣∣∣2× 1

p−1

∑
χ 6=χ0

∣∣∣∣∑
x∈A

χ(x)
∣∣∣∣2;
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hence by Lemma 3.1 and Parseval’s identity (7)

N ≤
|A|6

p− 1
+ p|A|2(1−α)

(
|A| −

|A|2

p− 1

)
≤
|A|6

p− 1
+ p|A|3(1−α)2

≤
|A|6

p− 1
(1+ p2

|A|−3(1−α)2)

≤
|A|6

p− 1
(1+ p−1α−3(1−α)2).

We let ρ(w)= |{(x, y, z) ∈ A× A× A : w = x(y+ z)}| for w ∈ Fp. Then

N =
∑

w∈A(A+A)r{0}

ρ(w)2 and
∑

w∈A(A+A)r{0}

ρ(w)≥ |A|6− |A|4.

Finally N is related to |A(A+ A)| by the Cauchy–Schwarz inequality as follows:

|A(A+ A)| ≥ |A(A+ A)r {0}| ≥ (|A|6− |A|4)N−1

≥ (p− 1)(1−α−2 p−2)(1+ p−1α−3(1−α)2)−1

> p− 1−α−3(1−α)2+ o(1).

This concludes the proof of Theorem 1.2. �

4. Proof of Theorem 1.3

First we need a lemma.

Lemma 4.1. Let c < 1
2 and p be large enough. Let P = {1, . . . , dcpe}. Then the set (P + P)−1 of the

inverses (modulo p) of nonzero elements of P + P has at most 2c2 p+ O(
√

p(log p)2) common elements
with P; that is,

|(P + P)−1
∩ P| ≤ 2c2 p+ O(

√
p(log p)2).

Proof. We note that P + P = {2, . . . , 2dcpe} ⊂ Fp r {0}.
Now we observe that

|P ∩ (P + P)−1
| =

∑
x∈P

y∈P+P
x=y−1

1= 1
p

∑
t∈Fp

∑
x∈P

y∈P+P

ep(t (x − y−1))=
1
p

∑
t∈Fp

∑
x∈P

ep(t x)
∑

y∈P+P

ep(−t y−1).

Using Lemmas 2.5 and 2.7, we find that

|P ∩ (P + P)−1
| =
|P||P + P|

p
+

1
p

∑
t∈Fpr{0}

1̂P(t)1̂(P+P)−1(−t)

= 2c2 p+ O(
√

p(log p)2). �

Now we prove Theorem 1.3.
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Let c< 1
2 (to be determined later) and p be large enough. Let P={1, . . . , dcpe}. Let A= Pr(P+P)−1.

It satisfies A∩(A+A)−1
=∅, i.e., 1 6= A(A+A), and has cardinality at least cp−2c2 p−O(

√
p(log p)2).

To optimise, we take c= 1
4 , in which case |A| ≥ p/8−O(

√
p(log p)2). For any ε > 0, for p large enough,

this is at least
( 1

8 − ε
)

p, whence the first part of the theorem.

For the second part, we note that Lemma 4.1 provides a bound for the cardinality |P ∩ x(P + P)−1
|

for any x , so for any k ≤ p−1 we can get a set a of size cp−2kc2 p−O(k
√

p(log p)2) so that A(A+ A)
misses 0 and k nonzero elements. The main term is optimised for c = 1/(4k), where it is worth p/(8k).
Taking k of size p1/4(log p)−3/2, the error term is significantly smaller than the main term (for large
p), so we obtain a set A of size �(p3/4(log p)3/2) for which A(A+ A) misses at least p1/4(log p)−3/2

elements. This is even a slightly stronger statement than claimed. �

5. Final remarks

5A. Let p be an odd prime, a, b ∈ Fp r {0} and assume that ba−1
= c2 is a square. Let A ⊂ Fp r {0}.

Then a 6∈ A(A+ A) if and only if b 6∈ cA(cA+ cA)= c2 A(A+ A). Moreover |cA| = |A|.
We define

m p =max{|A| : A ⊆ Fp r {0} and A(A+ A) 6⊇ Fp r {0}}.

From the above remark we have

m p =max{|A| : A ⊆ Fp r {0} and 1 6∈ A(A+ A) or r 6∈ A(A+ A)},

where r is any fixed nonsquare residue modulo p. By Theorems 1.1 and 1.3 we have

3.277 . . .≤ lim inf
p→∞

p
m p
≤ lim sup

p→∞

p
m p
≤ 8.

5B. Let p> 3 be a prime number. The set I of residues modulo p in the interval {r ∈Fp : p/3< r < 2p/3}
is sum-free (i.e., a+ b 6= c for any a, b, c ∈ I ) and achieves the largest cardinality for those sets, namely
|I | = b(p+ 1)/3c, as it can be deduced from the Cauchy–Davenport theorem combined with the fact
that |I ∩ (I + I )| = 0.

Let
A = {x ∈ I : x−1

∈ I }.

Then A= A−1 and A is sum-free. It readily follows that 1 6∈ A(A+ A). Moreover, since I is an arithmetic
progression, the events x ∈ I and x−1

∈ I are independent, so we may observe that A has cardinality
∼ p/9 as p tends to infinity (it can be formally proved using Fourier analysis). This raises the next
question:

What is the largest size of a sum-free set A ⊂ Fp r {0} such that A = A−1?

From Theorem 1.1, we deduce the following statement.

Corollary 5.1. Let A ⊂ Fp r {0} be a sum-free set such that A = A−1. Then |A| < 0.3051p for any
sufficiently large prime number p.

This is related to the question of how large a sum-free multiplicative subgroup of F∗p can be. Alon and
Bourgain [2014] showed that it can be at least �(p1/3).
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5C. Let A⊂ Fp r {0} with α = |A|/p� 1, and let us set As = A∩ (A+ s). Let 0< ε < 1 be defined by

E+(A)=
∑

s∈A−A

|As |
2
= (1− ε)|A|3,

and S be the subset of A− A given by

S = {s ∈ A− A : |As |> (1− ε− p−1/3)|A|}.
Then

E+(A)≤ (1− ε− p−1/3)|A|
∑
s 6∈S

|As | + |A|2 |S| = (1− ε− p−1/3)|A|3+ |A|2 |S|,

from which we deduce
|S| ≥ |A|p−1/3. (9)

Assume that A = A−1 and let N be the number of solutions to the equation

(a− s)(b− t)= 1, (s, a, t, b) ∈ S× As × S× At .

For fixed s, t ∈ S, we have

|(A− s)∩ (At − t)−1
| = |As | + |At | − |(A− s)∩ (At − t)−1

|

≥ 2(1− ε− o(1))|A| − |A| = (1− 2ε− o(1))|A|

since As − s ⊂ A and (At − t)−1
⊂ A−1

= A. This yields

N ≥ (1− 2ε− o(1))|A||S|2. (10)

On the other hand, defining r(x)= |{(a, s) ∈ A× S : x(a− s)= 1}|, we have

N ≤ 1
p

∑
h

1̂A(h)1̂S(−h)r̂(−h)≤
|A|2 |S|2

p
+max

h 6=0
|r̂(h)| × 1

p

∑
h

|1̂A(h)1̂S(h)|.

By adapting (8) we get maxh 6=0 |r̂(h)| ≤
√

p|A||S| and by Cauchy–Schwarz and Parseval we derive
N ≤ |A|2 |S|2/p+ O(

√
p|A||S|). Combined with (10), this gives

α+ O(
√

p|S|−1)≥ 1− 2ε− o(1),

yielding by (9) that ε ≥ (1−α)/2+ o(1). Hence when A = A−1,

E+(A)≤
1+α+ o(1)

2
|A|3.

Together with Theorem 1.1, this implies the following result.

Proposition 5.2. Let A⊂ F∗p be as in Corollary 5.1. Then for large enough p the additive energy satisfies

E+(A)≤ 0.6526|A|3.

By considering similarly the multiplicative energy of A, it is possible to get the following sum-product
upper bound for an arbitrary A ⊂ Fp:

2E+(A)+ E×(A)≤ (2+α+ o(1))|A|3.
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