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(Communicated by Kenneth S. Berenhaut)

In 1935, Besicovitch proved a remarkable theorem indicating that an integrable
function f on R2 is strongly differentiable if and only if its associated strong
maximal function MS f is finite a.e. We consider analogues of Besicovitch’s
result in the context of ergodic theory, in particular discussing the problem of
whether or not, given a (not necessarily integrable) measurable function f on a
nonatomic probability space and a measure-preserving transformation T on that
space, the ergodic averages of f with respect to T converge a.e. if and only if the
associated ergodic maximal function T ∗ f is finite a.e. Of particular relevance to
this discussion will be recent results in the field of inhomogeneous diophantine
approximation.

Let f be an integrable function on R2. A classical result in analysis, the Lebesgue
differentiation theorem, tells us that, for a.e. x ∈ R2, the averages of f over disks
shrinking to x tend to f (x) itself. More precisely, we have

lim
r→0

1
|B(x, r)|

∫
B(x,r)

f = f (x) a.e.,

where B(x, r) denotes the open disk centered at x of radius r and |B(x, r)| = πr2

denotes the area of the disk. For a proof of this result, the reader is encouraged to
consult [Stein 1970].

What happens if we average over sets other than disks, say, open rectangles? It
turns out that there exist integrable functions f on R2 such that, for a.e. x ∈ R2,
there exists a sequence of rectangles {Rx, j } shrinking toward x for which

lim
j→∞

1
|Rx, j |

∫
Rx, j

f

fails to converge. The news gets even more interesting. In fact, one can construct a
function f = χE (that is, the characteristic function of a set E ⊂ R2) such that, for
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a.e. x ∈R2, there exists a sequence of rectangles {Rx, j } shrinking toward x for which

lim
j→∞

1
|Rx, j |

∫
Rx, j

χE

fails to converge. (See [de Guzmán 1975] for a nice exposition of this result. This
result is closely related to the well-known Kakeya needle problem, and the interested
reader is highly encouraged to consult [Falconer 1985].)

If we restrict the class of rectangles that we allow ourselves to average over, we
obtain better results. Jessen, Marcinkiewicz, and Zygmund [Jessen et al. 1935]
proved that if B2 consists of all the open rectangles in R2 whose sides are parallel
to the coordinate axes, then for any function f ∈ L p(R2) with 1< p ≤∞ one has

lim
j→∞

1
|R j |

∫
R j

f = f (x)

for a.e. x ∈ R2, where here {R j } is any sequence of rectangles in B2 shrinking
toward x . (In this scenario we would say f is strongly differentiable.) Jessen,
Marcinkiewicz, and Zygmund proved this by showing that the strong maximal
operator MS , defined by

MS f (x)= sup
x∈R∈B2

1
|R|

∫
R
| f |,

satisfies for every 1< p <∞ the weak-type (p, p) estimate

|{x ∈ R2
: MS f (x) > α}| ≤ C p

(
‖ f ‖L p

α

)p

.

This illustrates a paradigm that has been highly successful in the theory of
differentiation of integrals. Namely, suppose one is given a collection of open sets
B ⊂ Rn and one wishes to ascertain whether, given a function f on Rn, for a.e. x
one must have

lim
j→∞

1
|S j |

∫
S j

f = f (x) (0-1)

whenever {S j } is a sequence of sets in B shrinking toward x . (Here we assume
that every point x is contained in a set in B of arbitrarily small diameter.) We may
associate to the collection B a maximal operator MB defined by

MB f (x)= sup
x∈S∈B

1
|S|

∫
S
| f |.

It turns out that (0-1) will hold for every f in L p(Rn) a.e. provided MB satisfies a
weak-type (p, p) estimate. A deep theorem of E. M. Stein [1961] tells us that, pro-
vided B is translation invariant in the sense that if S ∈B then every translate of S also
lies in B, the limits above will hold for every f ∈ L p(Rn) only if MB satisfies a weak-
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type (p, p) estimate. It is for this reason that maximal operators are an indispensable
tool for mathematicians working with the topic of differentiation of integrals.

Having said that, it is interesting to consider the paper in Fundamenta Mathe-
maticae immediately preceding the famous paper of Jessen, Marcinkiewicz, and
Zygmund. In it, Besicovitch [1935] proved that, given any integrable function f
on R2, if MS f is finite a.e., then for a.e. x we have

lim
j→∞

1
|R j |

∫
R j

f = f (x)

whenever {R j } is a sequence of sets in B2 shrinking to x . Of course, if f ∈ L p(R2)

for 1< p <∞, the quantitative weak-type (p, p) bound satisfied by MS implies
that MS f will be finite a.e. It is for this reason that this paper of Besicovitch
has received comparatively little attention. However, it is of note that Besicovitch
provides a mechanism for obtaining a.e. differentiability results bypassing the need
for quantitative weak-type bounds on an associated maximal operator.

Let us provide an illustration of the usefulness of this approach. Let f (x, y)=
g(x)χ[0,1]×[0,1](x, y) be a function on R2, where g ∈ L1(R). Note f is in L1(R2)

but not necessarily in L p(R2) for any p > 1. Suppose we wish to show that f is
strongly differentiable. We can use the Fubini theorem combined with the weak-
type (1, 1) bounds of the Hardy–Littlewood maximal operator to show that MS f is
finite a.e., so by the Besicovitch theorem we know that f is strongly differentiable.
However, MS is not of weak-type (1, 1). Note that here we did not show that every
function in L1(R2) is strongly differentiable, only that some of these functions are.

Many results in the study of differentiation of integrals have a “companion” result
in ergodic theory; for instance the Lebesgue differentiation theorem is structurally
very similar to that of the Birkhoff ergodic theorem on integrable functions. This
observation may be found at least as far back as [Wiener 1939]. In that regard, it is
natural to consider what the companion result of Besicovitch’s theorem might be,
when replacing the strong maximal operator MS by an ergodic maximal operator.
We are led immediately to the following conjecture.

Conjecture 1. Let T be a measure-preserving transformation on the nonatomic
probability space (X, 6,µ) and let f be a µ-measurable function on that space. If
T ∗ f (x) is finite µ-a.e., where T ∗ f is the ergodic maximal function defined by

T ∗ f (x)= sup
N≥1

1
N

∣∣∣∣N−1∑
j=0

f (T j x)
∣∣∣∣,

then the limit

lim
N→∞

1
N

N−1∑
j=0

f (T j x)

exists µ-a.e.
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We remark that if f is integrable, then by the Birkhoff ergodic theorem the
limit above automatically exists. If f = f +− f − is the difference of nonnegative
measurable functions f + and f −, then by the proof of the Birkhoff ergodic theorem
the limit above still holds provided that at least one of the functions f + and f −

is integrable. (The reader may consult [Petersen 1983] for a proof of Birkhoff’s
classical result verifying that Fatou’s lemma easily extends the given argument to
the more general situation.) Thus, the interesting case is where f = f +− f − with∫

X
f + dµ=

∫
X

f − dµ=∞. (0-2)

The main purpose of this note, aside from advertising the conjecture above,
is to consider what happens when T corresponds to an ergodic transformation
associated to an irrational rotation on [0, 1) (identified with the unit circle T), and
f (x) = 1/

(
x − 1

2

)
. This scenario is so natural to consider that the reader might

be surprised to find that it has not been treated before. (At least, the authors are
unaware of any explicit treatment of this example.) In considering this situation,
several issues immediately come to mind. First of all, f clearly satisfies (0-2), so
we are not in a situation where we can apply the ergodic theorem. However, f
exhibits a natural cancellation, so one might wonder whether the ergodic averages
of f tend to 0 a.e. And, moreover, even if the ergodic averages of f did not tend to
0 a.e., it is still possible that the ergodic maximal function T ∗ f is finite a.e. In that
regard, this example seems to be a very worthy candidate for a counterexample of
Conjecture 1.

It turns out that neither the ergodic averages of f with respect to T converge
a.e. nor is the ergodic maximal function T ∗ f finite a.e. The proof of the former
follows readily from a theorem of Khintchine on the topic of inhomogeneous
Diophantine approximation. The proof of the latter is much more subtle, following
from relatively recent results of [Kim 2007].

Theorem 1. Let ξ be an irrational number, and define the measure-preserving
transformation T on [0, 1) by

T x = (x + ξ) mod 1.

Define the function f on [0, 1) by

f (x)=
1

x − 1
2

.

If x ∈ [0, 1), the limit

lim
N→∞

1
N

N−1∑
j=0

f (T j x)



ON A THEOREM OF BESICOVITCH AND A PROBLEM IN ERGODIC THEORY 965

fails to converge to a finite number. Moreover for a.e. x ∈ [0, 1) we have

T ∗ f (x)= sup
N≥1

1
N

∣∣∣∣N−1∑
j=0

f (T j x)
∣∣∣∣=∞.

Proof. We first show that at no point x ∈ [0, 1) does

lim
N→∞

1
N

N−1∑
j=0

f (T j x)

converge to a finite value. It will be convenient for us to use the notation

‖x‖ =min
n∈Z
|x − n|.

We proceed by contradiction. Suppose for a given x ∈ [0, 1) that

lim
N→∞

1
N

N−1∑
j=0

f (T j x)= L <∞.

Note that since ξ is an irrational number, by a theorem of Khintchine on inhomoge-
neous Diophantine approximation (see [Hua 1982, p. 267]) we have∥∥qξ + x − 1

2

∥∥< 1
q
,

and thus
| f (T q x)| = | f ((qξ + x) mod 1)|> q

for infinitely many positive integers q . Observe that

1
q + 1

q∑
j=0

f (T j x)−
1
q

q−1∑
j=0

f (T j x)=
q

q + 1
·

1
q

f (T q x)−
1

q + 1
·

1
q

q−1∑
j=0

f (T j x).

Hence

lim sup
q→∞

∣∣∣∣ 1
q + 1

q∑
j=0

f (T j x)−
1
q

q−1∑
j=0

f (T j x)
∣∣∣∣

= lim sup
q→∞

∣∣∣∣ q
q + 1

·
1
q

f (T q x)−
1

q + 1
·

1
q

q−1∑
j=0

f (T j x)
∣∣∣∣

= lim sup
q→∞

1
q
| f (T q x)| ≥ 1.

Accordingly, limN→∞
1
N

∑N−1
j=0 f (T j x) cannot converge to a finite value L , con-

tradicting the supposition that these ergodic averages indeed did converge to L .
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We now show that for a.e. x ∈ [0, 1) we have

T ∗ f (x)= sup
N≥1

1
N

∣∣∣∣N−1∑
j=0

f (T j x)
∣∣∣∣=∞.

To show this we use the relatively recent remarkable result of D. H. Kim [2007]
that

lim inf
q→∞

q ·
∥∥qξ + x − 1

2

∥∥= 0

for a.e. x ∈ [0, 1). Thus

lim sup
q→∞

1
q
| f (T q x)| =∞

for a.e. x ∈ [0, 1). Let x ∈ [0, 1) be such that the limit superior above is infinite.
We show that T ∗ f (x)=∞. Again we proceed by contradiction. Suppose that

sup
N≥1

1
N

∣∣∣∣N−1∑
j=0

f (T j x)
∣∣∣∣= M <∞.

Then, repeating the above calculation, we have the contradiction

2M ≥ lim sup
q→∞

∣∣∣∣ 1
q + 1

q∑
j=0

f (T j x)−
1
q

q−1∑
j=0

f (T j x)
∣∣∣∣

= lim sup
q→∞

1
q
| f (T q x)| =∞. �

In addition to Conjecture 1, we wish to indicate another conjecture the reader
might find of interest. In Theorem 1 we showed that for a.e. x ∈ [0, 1) the limit

lim
N→∞

1
N

N−1∑
j=0

f (T j x)

does not converge to a finite number. What type of divergence is exhibited? By the
apparent symmetries involved we would ordinarily expect that the ergodic averages
of f do not converge to either positive or negative infinity, noting that the set

S =
{

x ∈ [0, 1) : lim
N→∞

1
N

N−1∑
j=0

f (T j x)=∞
}

is invariant under the ergodic transformation T and thus either of measure 0 or 1, and
it would be strange for these averages to converge to+∞ a.e. but not−∞. Nonethe-
less, we do not have a proof of this, and the issue appears hard as the techniques
involved in Kim’s result do not indicate, given x ∈ [0, 1), on which “side” of 1

2 the
points (x + qξ) mod 1 close to 1

2 lie. We formalize these ideas in the following:
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Conjecture 2. Let ξ be an irrational number, and define the measure-preserving
transformation T on [0, 1) by

T x = (x + ξ) mod 1.

Define the function f on [0, 1) by

f (x)=
1

x − 1
2

.

Then, for a.e. x ∈ [0, 1)

lim sup
N→∞

1
N

N−1∑
j=0

f (T j x)=∞

and

lim inf
N→∞

1
N

N−1∑
j=0

f (T j x)=−∞.

Conjectures 1 and 2 are topics of ongoing research.
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