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We give a number of results about families of Ulam sequences and sets, further
exploring recent work on rigidity phenomena. For Ulam sequences, using ele-
mentary methods we give an upper bound on the density and prove regularity
for various families of sequences. For Ulam sets, we consider extensions of
classification work done by Kravitz and Steinerberger.

1. Introduction and main results

Introduction. Let U (a, b) be the integer sequence that starts with two integers
0< a < b and each subsequent term is the smallest integer that can be written as
the sum of two distinct prior terms in exactly one way. Such sequences are known
as Ulam sequences, in honor of Stanisław Ulam [1964], who first introduced the
sequence U (1, 2).

Considering the simplicity of the definition, surprisingly little is known about
Ulam sequences, despite recent resurgence in interest — see [Gibbs 2015; Gibbs and
McCranie 2017; Steinerberger 2017; Kravitz and Steinerberger 2017; Kuca 2018].
However, recent numerical evidence suggests that families of Ulam sequences have
unexpected rigidity phenomena. In particular, in [Hinman et al. 2018], the authors
make the following conjecture.

Conjecture 1.1. There exist integer coefficients mi , pi , ki , ri such that for all
integers n ≥ 4,

U (1, n)=
∞⊔

i=1

[mi n+ pi , ki n+ ri ].
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While this conjecture is at present open, the authors did prove that it holds for
all terms up to 50,000n — that is, for all n ≥ 4,

U (1, n)∩[1, 50000n] = {1}∪[n, 2n]∪{2n+2}∪{4n}∪[4n+2, 5n−1]

∪{5n+1}∪[7n+3, 8n+1]∪{10n+2}∪{11n+2}

∪· · ·∪{49991n+6949}∪{49993n+6950}.

This suggests that while individual Ulam sequences may be difficult to deal with,
we may be able to get substantially better results about families of sequences. In
the present paper, we investigate various results related to the rigidity conjecture
above.

Summary of main results. We begin by revisiting the setting of Conjecture 1.1.
By considering long runs of consecutive terms in an Ulam sequence U (1, n), we
prove the following elementary result.

Theorem 1.2. Let mi , pi , ki , ri be integer coefficients as in Conjecture 1.1. Then
for all i , we have ki −mi = 0 or 1, and ri ≤ pi .

Given a set of integers K, recall that its asymptotic density is defined as the
constant

δ(K )= lim
N→∞

#(K ∩ [1, N ])
N

,

assuming that it exists. Using similar methodology as for Theorem 1.2, we also
establish an upper bound on the asymptotic density for sequences U (1, n).

Theorem 1.3. The density of U (1, n) is bounded above by (n+ 1)/(3n).

It should be noted that this is likely not a tight upper bound — asymptotically,

n+ 1
3n
≈

1
3
,

but numerical data for n ≥ 4 suggests that the actual density is ≈ 1
6 . Furthermore,

while our methods provide an upper bound, they do not provide any lower bound
on the density — unfortunately, this is not surprising, as no positive lower bound on
the density of sequences U (1, n) is known at this time.

In Section 3, we turn to a question first studied by Queneau1 [1972]: when is
the Ulam sequence regular — that is, when is the sequence of differences between
consecutive terms periodic? It was proved by Finch [1991; 1992a; 1992b] that
if an Ulam sequence contains finitely many even terms, then it is regular. It is

1Raymond Queneau is better known for his work as a French poet and novelist, but he was
interested in the role of mathematics in literature, which led him to cofound the Oulipo in 1960 [Motte
1998], together with chemical engineer and mathematician François Le Lionnais.
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conjectured that U (a, b) with a < b coprime contains finitely many even terms if
and only if

(1) a = 2, b ≥ 5,

(2) a = 4,

(3) a = 5, b = 6, or

(4) a ≥ 6 and a or b is even.

Schmerl and Spiegel [1994] proved the a = 2, b ≥ 5 case; Cassaigne and Finch
[1995] proved the case where a = 4, b ≡ 1 mod 4. It is worthwhile to note that
the proofs of these results use a limited form of rigidity similar to Conjecture 1.1;
furthermore, if some generalization of that conjecture holds for sequences U (a, b)
with a 6= 1, this would seem to give a means of proving that certain families of Ulam
sequences are all regular — if you can show that some Ulam sequence U (a, b)
with b sufficiently large has only finitely many even terms, then this will be true of
all subsequent Ulam sequences in that family. We prove a far more modest, but
nevertheless interesting result that gives a semi-algorithm for determining whether
an Ulam sequence is regular — unfortunately, it is only a semi-algorithm, as it is
not ever guaranteed to halt. Using this, we were able to establish the following.

Theorem 1.4. For integer pairs (a, b) given below, the sequence of differences
between consecutive terms of U (a, b) is eventually periodic:

(4, 11), (4, 19), (6, 7), (6, 11), (7, 8), (7, 10), (7, 12),
(7, 16), (7, 18), (7, 20), (8, 9), (8, 11), (9, 10), (9, 14),
(9, 16), (9, 20), (10, 11), (10, 13), (10, 17), (11, 12), (11, 14),
(11, 16), (11, 18), (11, 20), (12, 13), (12, 17), (13, 14).

In another direction, we also consider “Ulam-like” behavior and rigidity in higher
dimensions. Using the terminology of [Kravitz and Steinerberger 2017], we define
Ulam sets as follows.

Definition 1.5. Let |·| be a norm on Zn that increases monotonically in each coordi-
nate. A (k, n)-Ulam set U (v1, v2, . . . , vk) is a recursively defined set that contains
v1, v2, . . . , vn ∈ Zn

≥0 and each subsequent vector is the vector of smallest norm that
can be written as a sum of two distinct vectors in the set in exactly one way. We shall
say U (v1, v2, . . . , vk) is nondegenerate if vi /∈U (v1, v2, . . . , vi−1, vi+1, . . . , vk) for
every 1≤ i ≤ k.

Two remarks are necessary here: first, it may appear that the definition of Ulam
set depends on the choice of monotonically increasing norm | · |. In fact, this is
not so, as proved in [Kravitz and Steinerberger 2017]. Secondly, it may be unclear
which vector is added if there is more than one of equal norm. However, by the
above, this is irrelevant.
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Figure 1. From left to right and top to bottom: sets UA(v1, v2)

of L , column-deleted, column-deleted L , shifted column-deleted,
and exceptional type.

Contingent on some natural restrictions described in Section 4, we classify all
(3, 2)-Ulam sets, showing that they necessarily belong to one of a finite number of
different types, illustrated in Figure 1.

Theorem 1.6. Let U =U ((1, 0), (0, 1), (v1, v2)) be a nondegenerate (3, 2)-Ulam
set such that v1, v2 6= 0. Then exactly one of the following is true of either U or its
reflection about the line y = x :

(1) v1, v2 ∈ 2Z∩ [4,∞) and U is of L type.

(2) v1 ∈ 2Z, v2 ∈ (1+ 2Z)∩ [4,∞), and U is of column-deleted type.

(3) v1 ∈ 2Z∩ [4,∞), v2 = 2, and U is of column-deleted L type.

(4) v1 ∈ 2Z, v2 = 3, and U is of shifted column-deleted type.

(5) v1 = v2 = 2 and U is of exceptional type.

See Section 4 for definitions of the various types of Ulam sets. Note that this is
in a sense a higher-dimensional version of rigidity — we are varying the Ulam sets
in some parameter, and outside of some odd exceptional cases when the norm of the
vector is small, the parity of the coordinates of the added vector wholly determine
the structure of the set. We also show that there are restrictions for more general
(k, 2)-Ulam sets — in particular, in Section 5 we show that there is always a parity
restriction.

Theorem 1.7. Let U=U ((1,0), (0,1),v1,v2, . . . ,vn) be a nondegenerate (n+2, 2)-
Ulam set such that none of the vi lie on the coordinate axes. Then there exists
(w1, w2)∈Z2

≥0 such that for all (m, n)∈U , if m≥w1, n≥w2, then m=w1 mod 2,
n = w2 mod 2.
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Finally, in Section 6, we demonstrate that if the added vectors are not too small,
then the corresponding Ulam set must be periodic in following sense.

Definition 1.8. A (k, 2)-Ulam set U is eventually (m, n)-periodic if there exists
(m0, n0) such that for all (a, b) ∈ Z2

≥0 with a ≥ m0 and b ≥ n0 we have (a, b) ∈ U
if and only if (a+m, b+ n) ∈ U . We call (m, n) a period of U .

Theorem 1.9. All (4, 2)-Ulam sets U = UA(v1, v2) with vi = (xi , yi ) such that
xi , yi ≥ 4 are eventually periodic.

2. Consecutive terms in sequences U(1, n)

Our main goal for this section is to find bounds on the runs of consecutive terms in
the Ulam sequences U (1, n). As an example, we prove the following theorem.

Theorem 2.1. Let n ≥ 2 and let I be a set of 3n consecutive positive integers
greater than 2n+ 2. Then |I ∩U (1, n)| ≤ n+ 1.

As an immediate corollary, this implies a bound on the density of U (1, n).

Corollary 2.2. δ(U (1, n))≤
n+ 1

3n
.

Proof. Partition the first k integers greater than 2n+ 2 into runs of 3n consecutive
integers. Each such partition contains at most n+1 terms of U (1, n). The proportion
of Ulam numbers less than or equal to k is then no bigger than

(n+ 1)(k/(3n)+ 1)+ 2n+ 2
k

=
n+ 1

3n

(
1+

1
k

)
+

2n+ 2
k

.

In the limit, we get the desired upper bound. �

We will give an improvement on this upper bound for the special case U (1, 2) at
the end of this section. Before we prove Theorem 2.1, we give a few useful lemmas,
some of which are very useful in their own right.

Lemma 2.3. Let n ≥ 2. The first three intervals of U (1, n) are {1}, [n, 2n], and
{2n+ 2}.

Proof. Clearly, all elements of the form n+ i for 1≤ i ≤ n have the unique Ulam
representation n+ i = (n+ i − 1)+ 1. However, 2n+ 1 /∈U (1, n), because it has a
second Ulam representation n+(n+1). Finally, 2n+2=n+(n+2), which is its only
Ulam representation, and 2n+3 /∈U (1, n) since 2n+3= (2n+2)+1=n+(n+3). �

Lemma 2.4. If a, a+ k ∈U (1, n) for some 1≤ k ≤ n, then [a+ k+ n, a+ 2n] ⊂
Z \U (1, n).



526 J. HINMAN, B. KUCA, A. SCHLESINGER AND A. SHEYDVASSER

Proof. Every integer in this interval is of the form a+ k+ n+ i for 0≤ i ≤ n− k;
hence it has at least two Ulam representations: (a+k)+ (n+ i) and a+ (n+k+ i),
where we have used the fact that n + i, n + k + i ∈ [n, 2n], and hence are in the
Ulam sequence by Lemma 2.3. �

As an immediate corollary of this lemma, we get a proof of Theorem 1.2.

Proof of Theorem 1.2. Suppose that mi n + pi ,mi n + pi + 1 ∈ U (1, n). Then
(mi + 1)n+ (pi + 1) /∈U (1, n). Therefore, ki −mi = 0 or 1 and ri ≤ pi . �

Lemma 2.5. Let 1≤ k≤n. If [a, a+k]⊂U (1, n), then [a+n+1, a+k+2n−1]⊂
Z \U (1, n).

Proof. We have the partition

[a, a+ k] =
k−1⋃
i=0

[a+ i, a+ i + 1],

and so it suffices to prove the claim with k = 1, which is an immediate corollary of
Lemma 2.4. �

Lemma 2.5 shows that if there are long runs of consecutive elements in the Ulam
sequence, then there must be a longer run of consecutive elements later on that do
not belong to the Ulam sequence. With this observation in hand, we proceed to the
proof of Theorem 2.1.

Proof of Theorem 2.1. If I ∩U (1, n)=∅, we are done. Otherwise, let a > 2n+ 2
be the smallest element in I ∩U (1, n). There are two cases: either [a, a+ n− 1]
contains at least two consecutive elements u, u+ 1 ∈U (1, n), or it does not. We
consider these cases separately.

Case 1: Since we are given that [a, a + n − 1] ∩ U (1, n) contains at least two
consecutive elements, we can partition it into disjoint intervals

[a, a+ n− 1] ∩U (1, n)=
m⊔

i=1

[a+ ki , a+ li ] =

t⊔
j=1

{a+ cj }

such that ki ≤ li +1< ki+1, cj +1< cj+1, and for no i, j is cj ∈ [ki −1, li +1]. By
Lemma 2.5, [a+n+ki +1, a+ li +2n−1] ⊂ Z \U (1, n) for 1≤ i ≤m. Note that
since km ≤ n− 1 and l1 ≥ 1, we have a+ n+ km + 1≤ a+ l1+ 2n− 1, and hence
m⋃

i=1

[a+n+ki+1, a+li+2n−1] = [a+n+k1+1, a+2n+lm−1] ⊂Z \U (1, n).

Therefore,

I ∩U (1, n)⊂ ([a, a+ n+ k1])∪ ([a+ 2n+ lm, a+ 3n− 1]).
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However, we claim that

|[a+ 2n+ lm, a+ 3n− 1] ∩U (1, n)|+|[a+ lm, a+ n− 1] ∩U (1, n)| ≤ n− lm .

It suffices to prove this assuming that [a + lm, a + n − 1] ∩ U (1, n) 6= ∅. Let
u1, u2, . . . , us be the Ulam numbers in [a+ lm, a+ n− 1]. If s = 1, then

a+ 2n+ lm = (a+ lm)+ 2n = u1+ (2n− (u1− a− lm)),

and as this gives two representations, it must be that a+2n+ lm /∈U (1, n). If s > 1,
then for every 1≤ i < j ≤ s, by Lemma 2.4,

[u j + n, ui + 2n] ⊂ Z \U (1, n).
Hence

[a+ 2n+ lm, us−1+ 2n] ⊂ Z \U (1, n).

Note that
|[a+ 2n+ lm, us−1+ 2n]| ≥ s

unless us−1 = a+ lm+ s−1, which is to say that [a+ lm, a+ lm+ s−1] ⊂U (1, n).
But by the definition of lm , it can only be that a + lm ∈ U (1, n) if lm = n − 1,
which is not possible since we assumed that there are at least two Ulam numbers in
[a+ lm, a+ n− 1]. As desired, we conclude that

|[a+ lm, a+ n− 1] ∩U (1, n)| + |[a+ 2n+ lm, a+ 3n− 1] ∩U (1, n)| ≤ n− lm,

and therefore

|I ∩U (1, n)| ≤ |[a+ lm, a+ n− 1] ∩U (1, n)| + |[a+ n, a+ n+ k1] ∩U (1, n)|
+ |[a+ 2n+ lm, a+ 3n− 1] ∩U (1, n)|

≤ n− lm + k1− 1

≤ n− 1.

Case 2: In this case, we are given that

[a, a+ n− 1] ∩U (1, n)=
t⊔

j=1

{a+ cj },

where cj + 1< cj+1. This implies that for k > j ,

k− j < ck − cj < n.

By Lemma 2.4, we have

[a+ ck + n, a+ cj + 2n] ⊂ Z \U (1, n),

and consequently,

[a+ c2+ n, a+ ct−1+ 2n] =
⋃

1≤i< j≤t

[a+ ck + n, a+ cj + 2n] ⊂ Z \U (1, n).
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Ergo,

|I ∩U (1, n)| = |[a, a+ n− 1] ∩U (1, n)|
+ |[a+ n, a+ c2+ n− 1] ∩U (1, n)|
+ |[a+ c2+ n, a+ ct−1+ 2n] ∩U (1, n)|
+ |[a+ ct−1+ 2n+ 1, a+ 3n− 1] ∩U (1, n)|

≤ t + c2+ n− ct−1− 1

≤ n+ 1. �

For n = 2, Corollary 2.2 gives an upper bound of 1
2 on the density. Using

similar techniques to the proof of Theorem 2.1, we can improve this upper bound
to 6

17 ≈ 0.353.

Theorem 2.6. The density of U (1, 2) is at most 6
17 .

Proof. Let a ∈U (1, n) and define I = [a, a+ 8], J = [a, a+ 16]. We claim that
either |I ∩U (1, 2)| ≤ 3 or |J ∩U (1, 2)| ≤ 6. We make use of the fact that

1, 2, 3, 4, 6, 8, 11, 13, 16 ∈U (1, 2).

If |I ∩U (1, 2)| > 3, then I = {a, a + 2, a + 5, a + 7}. Otherwise, I ∩U (1, 2)
contains a pair of elements u, u+ 1 such that u+ 1= a+ 2, a+ 3, a+ 4, a+ 6, or
a+ 8, which gives two representations; this is a contradiction.

In this case, J ∩U (1, 2)⊂ {a, a+ 2, a+ 5, a+ 7, a+ 12, a+ 14}— otherwise,
it contains an element with two representations. Consequently, |J ∩U (1, 2)| ≤ 6.
This means we can now define two sequences u1, u2, u3, . . . , L1, L2, L3, . . .

recursively — let u1 = 1 and L1 = 17, and then define ui+1 to be the smallest
element of the Ulam sequence larger than ui + L i , and

L i+1 =

{
17 if |[ui+1, ui+1,+16] ∩U (1, 2)| ≤ 6,
9 otherwise.

We can then partition the positive integers into sets of the forms [ui+1, ui+1+ L i ]

and [ui+1 + L i + 1, ui+2 − 1]. The density of U (1, 2) in any of these sets is no
more than 6

17 , and that implies that the density of U (1, 2) is bounded by 6
17 . �

3. Regular Ulam sequences

We now consider regular sequences. Let 1U (a,b) be the indicator function of U (a, b).
Given a positive integer l and a positive odd number k, define

S l
a,b(k)= {1U (a,b)(k+ 2i)}l−2

i=0.

With this terminology, we can now easily state the main theorem we want to prove.



RIGIDITY OF ULAM SETS AND SEQUENCES 529

Theorem 3.1. Let 0< a < b be coprime integers. Let l, p, q be positive integers
such that p < q , p, q are odd, q ≥ 2l, a < b < 2l − 2, S l

a,b(p)= S l
a,b(q), and

U (a, b)∩ 2Z∩ [2l, 3q − p] =∅.
Then

U (a, b)∩ 2Z∩ [2l,∞)=∅.

Theorem 3.1 provides a semi-algorithm for determining whether a sequence is
regular — simply do a brute force search for triples (l, p, q) satisfying the conditions
of the theorem. If such a triple is found, then we conclude that U (a, b) is regular.
This gives us the following corollary.

Corollary 3.2. For integer pairs (a, b) given below, U (a, b) is regular:

(4, 11), (4, 19), (6, 7), (6, 11), (7, 8), (7, 10), (7, 12),
(7, 16), (7, 18), (7, 20), (8, 9), (8, 11), (9, 10), (9, 14),
(9, 16), (9, 20), (10, 11), (10, 13), (10, 17), (11, 12), (11, 14),
(11, 16), (11, 18), (11, 20), (12, 13), (12, 17), (13, 14).

Proof. By direct computation, we find triples (l, p, q) satisfying the conditions of
Theorem 3.1:

(a, b) (l, p, q)
(4, 11) (25, 107, 1425)
(4, 19) (41, 14745, 17305)
(6, 7) (57, 8537, 70987)
(6, 11) (89, 1032425, 1033833)
(7, 8) (71, 14331, 57089)

(a, b) (l, p, q)
(7, 10) (85, 95587, 102181)
(7, 12) (99, 79423, 80991)
(7, 16) (127, 46957, 47965)
(7, 18) (141, 196513, 198753)
(7, 20) (155, 50893, 52125)

(a, b) (l, p, q)
(8, 9) (91, 1037093, 1038533)
(8, 11) (111, 2125501, 4308725)
(9, 10) (109, 117117, 747935)
(9, 14) (145, 558073, 560377)
(9, 16) (163, 60093, 65277)
(9, 20) (199, 219761, 222929)
(10, 11) (133, 470303, 485615)
(10, 13) (157, 5804601, 5807097)
(10, 17) (205, 3919981, 3933037)

(a, b) (l, p, q)
(11, 12) (155, 140511, 142975)
(11, 14) (177, 507965, 509373)
(11, 16) (199, 394379, 400715)
(11, 18) (221, 29995, 37035)
(11, 20) (243, 46291, 54035)
(12, 13) (183, 3329465, 3330921)
(12, 17) (239, 3204117, 3211733)
(13, 14) (209, 1421023, 1427679)

�

To prove Theorem 3.1, we start with a useful lemma that establishes that if it
is false, then there is a bijective correspondence between odd Ulam numbers in
different intervals.
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Lemma 3.3. Let l, a, b be positive integers, and p < q be positive odd integers
such that q ≥ 2l, a < b < 2l − 2, S l

a,b(p)= S l
a,b(q),

U (a, b)∩ 2Z∩ [2l, 3q − p] =∅,

U (a, b)∩ 2Z∩ [2l,∞) 6=∅.

Let ũ be the smallest even number in U (a, b) greater than 3q − p. Then there is a
well-defined bijection

U (a, b)∩ (1+ 2Z)∩ [p, ũ+ p− q − 1] →U (a, b)∩ (1+ 2Z)∩ [q, ũ− 1],

u 7→ u+ q − p.

Proof. We will show that there is a well-defined bijection

φm :U (a, b)∩ (1+ 2Z)∩ [p, p+ 2m] →U (a, b)∩ (1+ 2Z)∩ [q, q + 2m],

u 7→ u+ q − p,

for all integers 0 ≤ m ≤ 1
2(ũ − q − 1). We know that S l

a,b(p) = S l
a,b(q); hence

p+ 2m′ ∈U (a, b) if and only if q + 2m′ ∈U (a, b) for all 0 ≤ m′ ≤ l − 2, which
proves the claim for m ≤ l − 2.

For all other m, we apply induction — that is, let l − 2< h ≤ 1
2(ũ− q − 1) such

that φh−1 is a bijection. We need to show that φh is bijection. This is equivalent to
proving that p+ 2h ∈U (a, b) if and only if q + 2h ∈U (a, b). Define sets

P = {(u, v) ∈U (a, b)2 | u ≡ 0 mod 2, v ≡ 1 mod 2, u+ v = p+ 2h},

Q = {(u, v) ∈U (a, b)2 | u ≡ 0 mod 2, v ≡ 1 mod 2, u+ v = q + 2h},

which enumerate the number of representations of p+ 2h and q + 2h, respectively.
If we can show that |P| = |Q|, then this will imply that p+ 2h ∈ U (a, b) if and
only if q+ 2h ∈U (a, b). However, we can construct a bijection between these two
sets by

ψ : P→ Q,

(u, v) 7→ (u, φh−1(v))= (u, v+ q − p).

This is well-defined since u+ v = p+ 2h implies v ≤ p+ 2h− 1. �

Proof of Theorem 3.1. We argue by contradiction. That is, suppose that there exist
even Ulam numbers larger than 3q − p. Let ũ be the smallest such element. We
know ũ = u1+ u2 for some u1 < u2 ∈U (a, b). Every even Ulam number less than
ũ is smaller than 2l; hence one of u1, u2 is odd — otherwise, we have

u1+ u2 < 4l ≤ 3q − p,

which is a contradiction. Since ũ is even, we conclude that u1, u2 are both odd.
Next, we show that ũ− q + p has at least two representations as the sum of two
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distinct elements of U (a, b). Note that

ũ− q + p ≥ (3q − p)− q + p = 2q > 2l,

and since ũ− q + p is even, this implies it is not in U (a, b). Consequently, it will
suffice to prove that it has at least one representation. Note that

u2 >
1
2 ũ > 1

2(3q − p) > q,

u2 ≤ ũ− 1,

so by Lemma 3.3, since u2 ∈U (a, b) it follows u2+ q − p ∈U (a, b). Therefore,
ũ+ q − p = u1+ (u2+ q − p) is a representation.

Write
ũ− q + p = v1+ v2 = v

′

1+ v
′

2,

where v1 < v2, v
′

1 < v
′

2 ∈U (a, b). Note that v2 > q , since

v2 >
1
2(ũ− q + p) > 1

2((3q − p)− q + p) > q.

Similarly, v′2 > q . From this it follows that v2, v
′

2 > 2l, and we conclude that v2, v
′

2
must be odd. Finally, note that

p < q < v2, v
′

2 ≤ ũ+ p− q − 1,

and therefore by Lemma 3.3, v2+q−p, v′2+q−p∈U (a, b), which is a contradiction
since

ũ = v1+ (v2+ q − p)= v′1+ (v
′

2+ q − p). �

4. Classification of (3, 2)-Ulam sets

Up until this point, we have only considered (2, 1)-Ulam sets; we now turn to the
problem of classifying higher-dimensional Ulam sets. The classification problem
for nondegenerate (2, 2)-Ulam sets was solved by Kravitz and Steinerberger [2017].
In particular, they showed that after a linear transformation, the Ulam set becomes
U ((1, 0), (0, 1)), illustrated in Figure 2. We shall denote this set by A.

We shall consider (3, 2)-Ulam sets that are extensions of such Ulam sets — that is,
we shall assume that two of the basis vectors are (1, 0) and (0, 1). For convenience,
we define

UA(v1, v2)=U ((1, 0), (0, 1), (v1, v2)),

W(v1,v2) = {(m, n) ∈ Z2
≥0 | m < v1 or n < v2},

L(v1,v2) = {(m, n) ∈ Z≥v1 ×Z≥v2}.

Note that if (a, b) ∈ L(v1,v2), then any representations it has have to lie in the set
W(v1,v2). We use this fact to our advantage to prove the following lemma.
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Figure 2. The (2, 2)-Ulam set A and the (3, 2)-Ulam set UA(4, 0).

Lemma 4.1. Let U=UA(v1, v2) be a nondegenerate (3, 2)-Ulam set with v1, v2 6=0.
Then the following statements hold:

(1) v1, v2 > 1 and at least one of v1, v2 is even.

(2) A∩W(v1,v2) = U ∩W(v1,v2).

(3) Every point (m, n) ∈ Z2
≥0 has at least one representation.

Proof. It was shown in [Kravitz and Steinerberger 2017] that

A= {(m, 1) | m ∈ Z≥0} ∪ {(1,m) | m ∈ Z≥0} ∪ {(2m+ 1, 2n+ 1) | m, n ∈ Z≥0}.

For U to be nondegenerate, it must be that (v1, v2) /∈A, and since v1, v2 6= 0, this
implies v1, v2 > 1 and at least one of v1, v2 is even.

All representations of points in W(v1,v2) are representations by elements in U . It
follows A∩W(v1,v2) = U ∩W(v1,v2). However, this implies

(m, n)= (m− 1, 1)+ (1, n− 1)

is a representation of (m, n). �

We shall call (m, n) = (m − 1, 1)+ (1, n − 1) the standard representation of
(m, n). By Lemma 4.1, proving that (m, n) /∈UA(v1, v2) for v1, v2 6= 0 is equivalent
to proving that it has a nonstandard representation. This makes working with Ulam
sets of this form much simpler. On the other hand, if one of v1, v2 is 0, then the set
UA(v1, v2) has a copy of a (2, 1)-Ulam set on either the x- or y-axis. An example
of such a set is given in Figure 2. Some partial results about such sets are given
in [Kravitz and Steinerberger 2017], but in general describing their structure is an
open problem.

We now give five examples of possible structures of sets UA(v1, v2)with v1,v2 6=0,
which are derived from numerical observations. An illustration of each of these
five types is provided in Figure 1.
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Definition 4.2. Let U ⊂ Z2
≥0 and let (v1, v2) be a vector in U. We say U is of

L type for (v1, v2) if

U ={(v1,v2)}∪{(m,1) |m ∈Z≥0}∪{(1,m) |m ∈Z≥0}

∪{(a+2mv1,b+2mv2) | a,b,m≥ 0, a,b∈ 1+2Z, m ∈Z, (a,b)∈W(v1,v2)}.

We say U is of column-deleted type for (v1, v2) if

U = {(v1, v2)} ∪ {(m, 1) | m ∈ Z≥0} ∪ {(1,m) | m ∈ Z≥0}

∪ {(2m+ 1, 2n+ 1) | m, n ∈ Z≥0, if 2m+ 1= v1+ 1 then 2n+ 1< v2}.

We say U is of column-deleted L type for (v1, v2) if

U = {(v1,v2)}∪{(m,1) |m ∈ Z≥0}∪{(1,m) |m ∈ Z≥0}

∪{(a+(m+1)v2+2,b+2m+5) | a,b,m ≥ 0, a,b,m ∈ 2Z, a <m or b= 0}.

We say that U is of shifted column-deleted type for (v1, v2) if

U = {(v1, v2)} ∪ {(m, 1) | m ∈ Z≥0} ∪ {(1,m) | m ∈ Z≥0}

∪ {(m, n) | m, n ≥ 0, m < v1, m, n ∈ 1+ 2Z}

∪ {(m, n) | m, n ≥ 0, m > v1, m ∈ 2Z, n ∈ 1+ 2Z}.

We say U is of exceptional type if

U = {(v1, v2)} ∪ {(8, 8)} ∪ {(m, 1) | m ∈ Z≥0} ∪ {(1,m) | m ∈ Z≥0}

∪ {(4, 2m+ 4) | m ∈ Z≥0} ∪ {(2m+ 4, 4) | m ∈ Z≥0}.

This list enumerates all the possibilities for sets UA(v1, v2) if v1, v2 6= 0.

Theorem 4.3. Let U = UA(v1, v2) be a nondegenerate (3, 2)-Ulam set such that
v1, v2 6= 0. Then exactly one of the following is true of either U or its reflection
about the line y = x :

(1) v1, v2 ∈ 2Z∩ [4,∞) and U is of L type.

(2) v1 ∈ 2Z, v2 ∈ (1+ 2Z)∩ [4,∞), and U is of column-deleted type.

(3) v1 ∈ 2Z∩ [4,∞), v2 = 2, and U is of column-deleted L type.

(4) v1 ∈ 2Z, v2 = 3, and U is of shifted column-deleted type.

(5) v1 = v2 = 2 and U is of exceptional type.

Proof. By Lemma 4.1, the given list enumerates all possibilities for v1, v2, after
accounting for a possible reflection around the line y = x . Furthermore, it is easy
to check that U ∩W(v1,v2) is of the specified type in each case — that is, it is equal
to the intersection of a set U of the desired type with W(v1,v2).



534 J. HINMAN, B. KUCA, A. SCHLESINGER AND A. SHEYDVASSER

Consider the case v1, v2 ∈ 2Z ∩ [4,∞). We shall show that U ∩W(a,b) is of
L type for all a, b ≥ 0. Note that by Lemma 4.1,

A∩W(3,3) = {(m, 1) | m ∈ Z≥0} ∪ {(1,m) | m ∈ Z≥0}

∪{(3, 2m+ 1) | m ∈ Z≥0} ∪ {(2m+ 1, 3) | m ∈ Z≥0}

= U ∩W(3,3).

It follows that if (m, n) ∈ U and m, n > 1, then m, n ∈ 1+ 2Z. This is evident if
(m, n) ∈ W(3,3) — otherwise, either (m, n)= (k+ 3, 2l + 2) or (2l + 2, k+ 3) for
some k, l ∈ Z≥0, and we have nonstandard representations

(k+ 3, 2l + 2)= (3, 2l + 1)+ (k, 1),

(2l + 2, k+ 3)= (2l + 1, 3)+ (1, k).

Furthermore, it must be that U ∩W(2v1,2v2) is of L type. To see this, it suffices to
show that

U ∩W(2v1,2v2) ∩ L(v1,v2) = {(v1, v2)},

but as we know any point in this intersection must necessarily be of the form
(2m+ 1, 2n+ 1), we have a nonstandard representation

(2m+ 1, 2n+ 1)= (v1, v2)+ (2m+ 1− v1, 2n+ 1− v2).

We now prove that U ∩W(2kv1,2kv2) is of L type by inducting on k ∈ Z — we have
proved the base case k = 1, so it suffices to assume U ∩W(2mv1,2mv2) is L type for
some m ∈ Z≥0 and prove that U ∩W(2(m+1)v1,2(m+1)v2) is L type. This amounts to
proving that

U ∩W((2m+1)v1,(2m+1)v2) ∩ L(2mv1,2mv2)

=W((2m+1)v1,(2m+1)v2) ∩ L(2mv1,2mv2) ∩ (1+ 2Z≥0)
2U

∩W((2m+2)v1,(2m+2)v2) ∩ L((2m+1)v1,(2m+1)v2)

=∅.

This is easily proven by noting that the former set cannot possibly have any non-
standard representations, whereas the latter set is nothing more than

(v1, v2)+U ∩W((2m+1)v1,(2m+1)v2) ∩ L(2mv1,2mv2).

The other cases are similar. �

5. Parity restrictions on (k, 2)-Ulam sets

Let us now consider the more general case where multiple vectors are added to
a (2, 2)-Ulam set, rather than just one. As in the previous section, we consider
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nondegenerate Ulam sets containing (1, 0), (0, 1), and so we define

UA(v1, v2, . . . , vn)=U ((1, 0), (0, 1), v1, . . . , vn).

We shall show that the parity of any element in UA(v1, v2, . . . , vn) is eventually
fixed, as long as none of the vi lie on the coordinate axes.

Theorem 5.1. Let U =UA(v1, v2, . . . , vn) be a nondegenerate (n+ 2, 2)-Ulam set
such that none of the vi lie on the coordinate axes. Then there exists a v such that
for all u ∈ U ∩ Lv, we have u = v mod 2.

To prove Theorem 5.1, we first note that if U contains a point (u1, u2) such
that (u1, u2+ 2k) ∈ U for all k ∈ Z≥0, then for all (u′1, u′2) ∈ U ∩ L(u1,u2), we have
u2 = u′2 mod 2. This is because if u′2 6= u2 mod 2,

(u′1, u′2)= (u1, u′2− 1)+ (u′1− u1, 1)

gives a nonstandard representation. It shall therefore suffice to prove the existence
of such a point. Toward this end, we give a useful lemma.

Lemma 5.2. Let U =UA(v1, v2, . . . , vn) be a nondegenerate (n+ 2, 2)-Ulam set
such that none of the vi lie on the coordinate axes. If there exists m ∈ Z>1 such
that there are infinitely many points of the form (m, n) ∈ U , then there exists a point
(u1, u2) such that (u1, u2+ 2k) ∈ U for all k ∈ Z≥0.

Proof. Let M ∈ Z>1 be the smallest m such that there are infinitely many points
of the form (m, n) ∈ U . Note that in fact M > 2, since every element (2, n) has at
least two representations. Therefore, we can define N be the largest n such that
(m, n) ∈ U , where 1< m < M .

Consider any point (M, n) ∈Z2
≥0 with n > 2N. For any representation of (M, n),

at least one of the summands must have x-coordinate 1 or M — otherwise, the
y-coordinates are too small to add up to n. If this representation is

(M, n)= (1, n′)+ (M − 1, n− n′),

then it is nonstandard if and only if n− n′ 6= 1. However, if n− n′ 6= 1, then every
point (M, n′′) with n′′ > n has a nonstandard representation, which is impossible.

On the other hand, the only other possible representation is (M, n)= (M, n−1)+
(0, 1), so we conclude that (M, n) ∈ U if and only if (M, n− 1) /∈ U . Thus if we
take

(u1, u2)=

{
(M, n) if (M, n) ∈ U,
(M, n+ 1) otherwise,

it satisfies the desired conditions. �

This is sufficient to prove Theorem 5.1.
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Proof of Theorem 5.1. We claim that there must exist some m ∈ Z>1 such that there
are infinitely many points of the form (m, n) ∈ U . Suppose otherwise — then there
must exist some strictly increasing function φ : Z>1→ Z>1 such that if (m, n) ∈ U
and m, n > 1, then n < φ(m).

Let m > 2 and n > 2φ(m). Then if

(m, n)= (m1, n1)+ (m2, n2)

is a representation of (m, n), it must be the standard representation — otherwise,
n1+ n2 < 2φ(m) < n. But this implies (m, n) ∈ U , which is a contradiction.

Consequently, we can apply Lemma 5.2. By our earlier remarks, we know
there exists a point (u1, u2) ∈ U such that for all (u′1, u′2) ∈ U ∩W(u1,u2), we have
u′2 ≡ u2 mod 2.

On the other hand, the reflection of U about the line y = x is also an Ulam
set, which we shall denote by V . It is easy to check that V also satisfies the
requirements of the theorem, and therefore must contain a point (v1, v2) such that
for all (v′1, v

′

2) ∈ V ∩W(v1,v2), we have v′2 ≡ v2 mod 2. However, this means that if
we take

v = (max{u1, v2},max{u2, v1}),

then for all u ∈ U ∩ Lv, we have u = v mod 2, as desired. �

6. Periodicity of Ulam sets

We close by considering the periodicity of Ulam sets UA(v1, v2, . . . , vn), under
the additional constraint that the added vectors are not too small — that is, all of
their components are at least 4. With this restriction, such sets become far more
manageable.

Lemma 6.1. Let U := UA(v1, v2, . . . , vn) be a (k, 2)-Ulam set such that all vi =

(xi , yi ) have xi , yi ≥ 4. Then U ⊂A∪ {v1, v2, . . . , vn}.

Proof. Since all the initial vectors have components greater than or equal to 4, all
elements of A with at least one coordinate less than 4 are also in U . In particular,
U contains all vectors of the forms (2n− 1, 3) and (3, 2n− 1) for n ≥ 1. Thus for
n ≥ 2, we have (2n,m) = (2n− 1, 3)+ (1,m − 3) is a representation of (2n,m)
as a sum of vectors in the sets — as this representation is not the standard one, we
conclude that (2n,m) /∈ U . By symmetry, we also have that (m, 2n) /∈ U for n ≥ 2.
Thus, all vectors with at least one coordinate less than 4 in U are the vectors in A
with at least one coordinate less than 4, and all other vectors are in U only if their
coordinates are both odd; hence they are in U . This proves the claim. �

In fact, we can be far more precise in our characterization of this set.
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Lemma 6.2. Let U =UA(v1, v2, . . . , vn) be a (k, 2)-Ulam set such that the vectors
vi all have both components greater than or equal to 4. Let a, b≥ 1 be odd integers
such that (a, b) 6= vi for any i . Then (a, b) ∈ U if and only if (a, b)− vi /∈ U for
all i , 1≤ i ≤ n.

Proof. If (a, b)−vi = u ∈ U , then clearly u+vi is a second representation of (a, b)
outside of the standard one, and so (a, b) /∈ U . On the other hand, if (a, b) /∈ U ,
then we know there must be some nonstandard representation of it. We know that
(a, b) ∈ A; hence at least one term in this representation must come from U\A.
Since U ⊂A∪ {v1, v2, . . . , vn}, that means that one of the summands must be vi

for some i , which is to say that (a, b)− vi ∈ U , as desired. �

Note that if n = 1, Lemma 6.2 tells us precisely that U is eventually periodic,
which is consistent with the result of Section 4. On the other hand, based on
numerical evidence, it is almost certainly not true that all (k, 2)-Ulam sets are
eventually periodic. However, we are interested in whether one can build new
eventually periodic sets from existing eventually periodic sets. As an example, we
know from the results of Section 4 that adding an initial vector whose coordinates
are at least 4 to A yields another set that is eventually periodic. This leads us to
conjecture that adding an initial vector whose coordinates are sufficiently large to
an eventually periodic set yields an eventually periodic set. We prove two theorems
in this direction.

Theorem 6.3. Let U =UA(v1, v2, . . . , vn) be a nondegenerate (k, 2)-Ulam set such
that all vectors vi = (xi , yi ) have xi , yi ≥ 4 and even. Furthermore, suppose that
there exist integers m, n such for all i , there exists a j such that m− vi = vj . Then
U is eventually (m, n)-periodic, and for any other vector vn+1 = (xn+1, yn+1) with
xn+1, yn+1≥4 such that at least one of xn+1, yn+1 is odd, U ′ :=UA(v1,v2, . . . ,vn+1)

is eventually (m, n)-periodic.

Proof. Let (a, b) be a vector such that a, b > 0 are both odd. We shall show
that (a, b) ∈ U if and only if (a, b) + (m, n) ∈ U. Indeed, for all i , we have
(a, b)+ (m, n)−vi = (a, b)+vj for some j . If (a, b)∈ U , this gives a nonstandard
representation of (a, b)+ (m, n)− vi ; hence it is not in U , and so by Lemma 6.2,
it follows that (a, b)+ (m, n) ∈ U. On the other hand, if (a, b) /∈ U , then again
by Lemma 6.2, we know that (a, b) − vi ∈ U for some i , and it follows that
(a, b)+ (m, n)−vi ∈ U . But this implies (a, b)+ (m, n) /∈ U . Since by Lemma 6.1
we know that all sufficiently large vectors in U have odd coordinates, we conclude
that U is eventually (m, n)-periodic.

It remains to prove that U ′ is eventually periodic. Let (a, b) be a vector such that
a, b are both odd, and a > xi , b > yi for every 1≤ i ≤ n+ 1. If (a, b) ∈ U ′, then
(a, b)+ (m, n)− vi = (a, b)+ vj /∈ U ′ for every 1 ≤ i ≤ n, so it suffices to prove
that (a, b)+ (m, n)− vn+1 /∈ U ′ to conclude that (a, b)+ (m, n) ∈ U ′. However,
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the coordinates of (a, b)+ (m, n)− vn+1 are both integers greater than 1, and at
least one of them is even. By Lemma 6.1, this implies (a, b)+ (m, n)− vn+1 /∈U ′,
and so (a, b)+ (m, n) ∈ U ′. In the other direction, we know that if (a, b) /∈ U ′,
then (a, b)− vi ∈ U ′ for some i . If i 6= n+ 1, the proof is the same as before. If
(a, b)− vn+1 ∈U ′, then we note that (a, b)+ (m, n) /∈U ′ by parity considerations.
We thus conclude that U ′ is eventually (m, n)-periodic. �

Theorem 6.4. Let U =UA(v1, v2, . . . , vn) be a nondegenerate (k, 2)-Ulam set such
that all vectors vi = (xi , yi ) have xi , yi ≥ 4 and at least one of xi , yi is odd. Then
U is eventually periodic, with period (2, 2).

Proof. Note that if xi , yi are both odd, then (xi , yi ) ∈ A, which would contradict
the fact that U is nondegenerate. Thus all vectors vi have one even component. We
claim that if xn is even, then

U ={vn}∪UA(v1, . . . , vn−1)\({(xn+1, yn+2l) | l ∈Z≥0}∪{vi+vj |1≤ i < j ≤n}),

and if yn is even, then

U ={vn}∪UA(v1, . . . , vn−1)\({(xn+2l, yn+1) | l ∈Z≥0}∪{vi+vj |1≤ i < j ≤n}).

The base case follows from the results of Section 4. Now, note that if vn ∈ U ,
then certainly either vn + (1, 2l) or vn + (2l, 1) is a nonstandard representation, so
correspondingly (xn + 1, yn + 2l) or (xn + 2l, yn + 1) is not in U . Similarly, all
vectors vi + vj have at least two representations. It remains to prove that removing
these vectors doesn’t lead to removing representations of other points. This cannot
be — all removed vectors have both coordinates odd, and U contains all vectors
with positive odd coordinates, all of which have one standard representation that
we know has not been removed. That this is true for all the sets UA(v1, . . . , vk)

follows by induction. This concludes the proof, since it is clear that each of the sets
UA(v1, . . . , vn) is eventually periodic, with period (2, 2), by induction. �

These two results immediately imply Theorem 1.9.

Proof of Theorem 1.9. If both v1 and v2 have at least one odd coordinate, the
result follows from Theorem 6.4. Otherwise, let vi , vj be the vectors that have
both coordinates even — here, i, j need not be distinct. Then by Theorem 6.3, U is
eventually (vi+vj )-periodic. �
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