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We study the existence of solutions of the second-order boundary value problem
at resonance u′′ = f (t, u, u′) satisfying the boundary conditions u(0)+u(1)= 0,
u′(0)−u′(1)= 0, or u(0)−u(1)= 0, u′(0)+u′(1)= 0. We employ a shift method,
making a substitution for the nonlinear term in the differential equation so that
these problems are no longer at resonance. Existence of solutions of equivalent
boundary value problems is obtained, and these solutions give the existence of
solutions of the original boundary value problems.

1. Introduction

Consider the second-order boundary value problem

u′′ = f (t, u, u′), t ∈ (0, 1), (1-1)

satisfying a combination of antiperiodic and periodic boundary conditions; either

u(0)+ u(1)= 0, u′(0)− u′(1)= 0. (1-2)

or
u(0)− u(1)= 0, u′(0)+ u′(1)= 0. (1-3)

Here we assume f (t, x, y) : [0, 1]×R×R→R is continuous in each of its variables.
Since the boundary value problem u′′ = 0, (1-2) has the nontrivial solution

u(t)= t − 1
2 , the problem (1-1), (1-2) is said to be at resonance. Similarly, since

u′′ = 0, (1-3) has the nontrivial solution u(t)≡ 1, the problem (1-1), (1-3) is also at
resonance. Hence, standard methods employing Green’s functions cannot be used
to show the existence of solutions of these boundary value problems directly. Thus,
we consider a shifted boundary value problem so that Green’s functions can be
employed.
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Han [2007] employed a shift argument when studying a three-point boundary
value problem

x ′′(t)= f (t, x(t)), t ∈ (0, 1),

x ′(0)= 0, x(η)= x(1).

Here it was assumed g(t, x) = f (t, x)+ β2x and the equivalent boundary value
problem

x ′′(t)+β2x(t)= g(t, x(t)), x ′(0)= 0, x(η)= x(1),

was studied using the Krasnosel’skii–Guo fixed point theorem [Krasnosel’skii 1964].
Infante, Pietramala, and Tojo [Infante et al. 2016] also employed a shift argument

when studying Neumann boundary value problems at resonance

u′′(t)+ h(t, u(t))= 0, t ∈ (0, 1),

u′(0)= u′(1)= 0.

They assumed f (t, u) = h(t, u)+ ω2u and considered the equivalent boundary
value problem

−u′′(t)+ω2u(t)= f (t, u(t)), u′(0)= u′(1)= 0.

The Krasnosel’skii–Guo fixed point theorem was also used in their analysis.
More recently, Almansour and Eloe [2015] and Al Mosa and Eloe [2016] studied

two-point boundary value problems

y′′(t)= f (t, y(t)), t ∈ [0, 1],

y′(0)= 0, y′(1)= 0,

and

y′′(t)= f (t, y(t), y′(t)), t ∈ [0, 1],

y(0)= 0, y′(0)= y′(1),

using shift arguments and the Krasnosel’skii–Guo fixed point theorem, the Schauder
fixed point theorem, the Leray–Schauder nonlinear alternative [Zeidler 1990] in the
former, and monotone methods coupled with upper and lower solutions in the latter.

When considering the first boundary value problem, they assumed g(t, y) =
f (t, y)+β2 y and studied the equivalent boundary value problem

y′′(t)+β2 y(t)= g(t, y(t)), y′(0)= y′(1)= 0,

and when considering second, they assumed g(t, x, y)= f (t, x, y)+βy and studied
the equivalent boundary value problem

y′′(t)+βy′(t)= g(t, y(t), y′(t)), y(0)= 0, y′(0)= y′(1).



SOLUTIONS OF BOUNDARY VALUE PROBLEMS AT RESONANCE 173

Here, we make use of two substitutions, one of which has not been used previously
in the literature. In Section 2, we study solutions of (1-1), (1-2) by employing
the substitution g(t, x, y) := f (t, x, y)+βy. The shifted boundary value problem
is no longer at resonance, and so a Green’s function can be constructed. An
appropriate integral operator is defined and fixed point methods are used to show
the existence of solutions. In Section 3, we study solutions of (1-1), (1-3). The
substitutions mentioned above do not help because in both cases the shifted boundary
value problem is still at resonance. Thus, we use the substitution k(t, x, y) =
f (t, x, y)+ 2αy + (α2

+ β2)x . This substitution has not been used in the prior
literature. A similar approach to that in Section 2 is then used to show existence of
solutions. The construction of the two Green’s functions and the shift employed in
Section 3 can both lead to more research in this area.

2. Solutions of (1-1), (1-2)

Notice that for β > 0, β 6= nπ , n ∈ N, the boundary value problem u′′+β2u = 0,
(1-2) is at resonance, since u(t)= cosβt− ((1+cosβ)/ sinβ) sinβt is a nontrivial
solution. If β=nπ , n∈N, then u(t)= sinβt is a nontrivial solution of the boundary
value problem. Thus the substitution g(t, x, y)= f (t, x, y)+β2x cannot be applied.

Let β > 0 be a constant and assume g(t, x, y) := f (t, x, y)+βy. We study the
shifted differential equation

u′′+βu′ = g(t, u, u′), t ∈ (0, 1), (2-1)

satisfying boundary conditions (1-2). The boundary value problem (2-1), (1-2) is
not at resonance, since the unique solution of u′′+βu′ = 0, (1-2), is u ≡ 0. Notice
if u(t) is a solution of (2-1), (1-2), then

u′′(t)= g(t, u(t), u′(t))−βu′(t)= f (t, u(t), u′(t)),

implying u is a solution of (1-1), (1-2).
We first construct the Green’s function associated with u′′+βu′ = 0, (1-2).

Lemma 2.1. Let h(t) be a continuous function. Then u(t) is the unique solution of
the boundary value problem

u′′+βu′ = h(t), t ∈ (0, 1), (2-2)

satisfying boundary conditions (1-2) if and only if

u(t)=
∫ 1

0
G(t, s) h(s) ds,

where

G(t,s)=
1

2β(1−e−β)

{
2e−β(1−s)

−2e−βe−β(t−s)
+e−β−1, 0≤ t ≤ s ≤ 1,

2e−β(1−s)
−2e−β(t−s)

−e−β+1, 0≤ s ≤ t ≤ 1.
(2-3)
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Proof. Using Laplace transforms, one can show the general solution of (2-2) is
given by

u(t)= c1+ c2e−βt
+

1
β

∫ t

0
(1− e−β(t−s)) h(s) ds.

Since u′(0)− u′(1)= 0, we have

−c2β + c2βe−β −
∫ 1

0
e−β(1−s) h(s) ds = 0.

Solving for c2 gives

c2 =−
1

β(1− e−β)

∫ 1

0
e−β(1−s) h(s) ds.

The boundary condition u(0)+ u(1)= 0 gives

c1+ c2+ c1+ c2e−β +
1
β

∫ 1

0
(1− e−β(t−s)) h(s) ds = 0.

By substituting c2 from above, solving for c1, and simplifying, we have

c1 =
1

2β(1− e−β)

∫ 1

0
(−1+ e−β + 2e−β(1−s)) h(s) ds.

Thus

u(t)=
1

2β(1− e−β)

∫ 1

0
(−1+ e−β + 2e−β(1−s)) h(s) ds

−
e−βt

β(1− e−β)

∫ 1

0
e−β(1−s) h(s) ds+

1
β

∫ t

0
(1− e−β(t−s)) h(s) ds

=

∫ 1

0
G(t, s) h(s) ds,

where

G(t,s)=


−1+e−β+2e−β(1−s)

2β(1−e−β)
−

e−βt e−β(1−s)

β(1−e−β)
, 0≤ t ≤ s ≤ 1,

−(1−e−β)+2e−β(t−s)

2β(1−e−β)
−

e−βt e−β(1−s)

β(1−e−β)
+

1−e−β(t−s)

β
, 0≤ s ≤ t ≤ 1.

Simplifying G(t, s) gives (2-3).
The reverse direction of the proof can be shown by direct computation. �

Notice that

∂

∂t
G(t, s)=

1
1− e−β

{
e−βe−β(t−s), 0≤ t ≤ s ≤ 1,
e−β(t−s), 0≤ s ≤ t ≤ 1.

(2-4)

We point out several properties of the Green’s function.
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Lemma 2.2. G(t, s) satisfies the following properties:

(1) G ∈ C([0, 1]× [0, 1]).

(2) G(0, s)=− 1
2β

< 0 for all s ∈ [0, 1].

(3) G(1, s)= 1
2β

> 0 for all s ∈ [0, 1].

(4) ∂

∂t
G(t, s) > 0 for all (t, s) ∈ [0, 1]× [0, 1].

(5) maxt∈[0,1] |G(t, s)| = 1
2β

for all s ∈ [0, 1].

(6) max
t∈[0,1]

∂

∂t
G(t, s)≤ 1

1−e−β
for all s ∈ [0, 1].

(7) max
t∈[0,1]

∫ 1

0
|G(t, s)| ds ≤

(4+β)eβ +β − 4
2β2(eβ − 1)

.

(8) max
t∈[0,1]

∫ 1

0

∂

∂t
G(t, s) ds = 1

β
.

All of these properties can be shown directly, so a proof is not given. We point out
that property (8) is obtained by making all the terms in G(t, s) positive, integrating,
and finding an upper bound when t ∈ [0, 1].

We employ Schauder’s fixed point theorem in our analysis. Because of the fact
that G(t, s) changes sign, many fixed point theorems using cones cannot be used.

Theorem 2.3 (Schauder fixed point theorem [Hale and Verduyn Lunel 1993]). If
M is a closed, bounded, convex subset of a Banach space B and T :M→M is
completely continuous, then T has a fixed point in M.

Let B = C (1)
[0, 1] be the Banach space of functions whose first derivatives are

continuous endowed with the norm

‖u‖ =max{|u|0, |u′|0},

where |u|0 =maxt∈[0,1] |u(t)|. Let M > 0. Define M= {u ∈ B : ‖u‖ ≤ M}. Notice
that M is a closed, bounded, convex subset of B.

Define the operator T : B→ B by

T u(t)=
∫ 1

0
G(t, s) g(s, u(s), u′(s)) ds.

Thus if u is a fixed point of T , then u is a solution of (2-1), (1-2). A standard
application of the Arzelà–Ascoli theorem gives us that T is completely continuous.

Define

max
t∈[0,1]

∫ 1

0
|G(t, s)| ds := G and max

t∈[0,1]

∫ 1

0

∂

∂t
G(t, s) ds := G ′.
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Theorem 2.4. Assume f (t, x, y) is continuous in [0, 1]×R×R with

| f (t, x, y)+βy| ≤min
{

M

G
,

M

G ′

}
for all (t, x, y) ∈ [0, 1] × [−M,M] × [−M,M]. Then (1-1), (1-2) has a solution
u∗ ∈M.

Proof. Since g(t, x, y)= f (t, x, y)+βy,

|g(t, x, y)| ≤min
{

M

G
,

M

G ′

}
for all (t, x, y) ∈ [0, 1]× [−M,M]× [−M,M].

Now, for u ∈M,

|T u(t)| ≤
∫ 1

0
|G(t, s)||g(s, u(s), u′(s))| ds ≤

M

G

∫ 1

0
|G(t, s)| ds = M,

|(T u)′(t)| ≤
∫ 1

0

∂

∂t
G(t, s)|g(s, u(s), u′(s))| ds ≤ βM

∫ 1

0

∂

∂t
G(t, s) ds = M.

So ‖T u‖ ≤ M , and T :M→M. Thus T has a fixed point u∗ ∈M which is a
solution of (2-1), (1-2). Therefore, u∗ is a solution of (1-1), (1-2). �

Example 2.5. Define

f (t, x, y)=
5x2t2

y2+ 2
− 5y.

Let β = 5. Then from Lemma 2.2

min
{

M

G
,

M

G ′

}
≤min

{
2β2(eβ − 1)

(4+β)eβ +β − 4
M, βM

}
= 5M.

So

| f (t, x, y)+ 5y| =
5x2t2

y2+ 2
≤ 5M2

≤ 5M

if M ≤ 1. So the boundary value problem

u′′ =
5u2t2

(u′)2+ 2
− 5u′, t ∈ (0, 1),

u(0)+ u(1)= 0, u′(0)− u′(1)= 0,

has a solution u∗ with ‖u∗‖ ≤ 1.



SOLUTIONS OF BOUNDARY VALUE PROBLEMS AT RESONANCE 177

3. Solutions of (1-1), (1-3)

For β > 0, the boundary value problem u′′+β2u = 0, (1-3) is at resonance, since

u(t)= cosβt −
(

1− cosβ
sinβ

)
sinβt

gives a nontrivial solution. If β = nπ , n ∈ N, then u(t) = cosβt is a nontriv-
ial solution of the boundary value problem. Thus the substitution k(t, x, y) =
f (t, x, y)+β2x cannot be applied. Also, the boundary value problem u′′+βu′= 0,
(1-3) is at resonance, since u(t) ≡ 1 gives a nontrivial solution. This implies the
substitution k(t, x, y)= f (t, x, y)+β2 y cannot be used. Thus, neither substitution
used in previous literature can be employed.

Let α > 0, β ∈
(
0, π2

)
and define

k(t, x, y)= f (t, x, y)+ 2αy+ (α2
+β2)x .

Here we consider the equivalent boundary value problem

u′′+ 2αu′+ (α2
+β2)u = k(t, u, u′), t ∈ (0, 1), (3-1)

satisfying boundary conditions (1-3), which is not at resonance, since the unique
solution of u′′+ 2αu′+ (α2

+β2)u = 0, (1-3) is u ≡ 0. If u is a solution of (3-1),
(1-3), then u is a solution of (1-1), (1-3).

Again, we construct a corresponding Green’s function.

Lemma 3.1. The unique solution of

u′′+ 2αu′+ (α2
+β2)u = h(t), t ∈ (0, 1), (3-2)

satisfying the boundary conditions (1-3) is given by

u(t)=
∫ 1

0
H(t, s) h(s) ds,

where

H(t, s)=
1

2β(β sinhα−α sinβ)
9(t, s), (3-3)

with

9(t,s)=


e−α(t−s)

[
−βe−α sin(β(s−t))+2α sin(β(1−s))sin(βt)
−β sin(βt)cos(β(1−s))+β cos(βt)sin(β(1−s))

]
, 0≤ t ≤ s ≤ 1,

e−α(t−s)
[
βeα sin(β(t−s))+2α sin(βs)sin(β(1−t))
−β sin(βs)cos(β(1−t))+β cos(βs)sin(β(1−t))

]
, 0≤ s ≤ t ≤ 1.

Proof. If u satisfies (3-2), then, using Laplace transforms,

u(t)= e−αt(c1 cos(βt)+ c2 sin(βt))+
1
β

∫ t

0
(e−α(t−s) sin(β(t − s))) h(s) ds.
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Solving the system u(0)− u(1)= 0, u′(0)+ u′(1)= 0 gives

c1=−
1

2αe−α sin(β)+βe−2α−β

×

[∫ 1

0
[e−α(1−s) sin(β(1−s))−e−α(2−s) sin(βs)]h(s)ds

]
,

c2=−
1

βe−α sin(β)(2αe−α sin(β)+βe−2α−β)

×

[∫ 1

0

[
βe−α(3−s)

[cos(β)sin(βs)+sin(β(1−s))]

−e−α(2−s)[β cos(β)sin(β(1−s))
+β sin(βs)−2α sin(β)sin(β(1−s))

]]
h(s)ds

]
The Green’s function given in (3-3) can then be obtained. �

Notice
∂

∂t
H(t, s)=

1
2β(β sinhα−α sinβ)

8(t, s), (3-4)

where

8(t,s)=



e−α(t−s)
[
e−αβ2 cos(β(s−t))+2αβ sin(β(1−s))cos(βt)
−β2 sin(β(1−s))sin(βt)−β2 cos(β(1−s))cos(βt)

]
−αe−α(t−s)

[
2α sin(β(1−s))sin(βt)−e−αβ sin(β(s−t))
+β sin(β(1−s))cos(βt)−β cos(β(1−s))sin(βt)

]
, 0≤ t ≤ s ≤ 1,

e−α(t−s)
[
eαβ2 cos(β(t−s))−2αβ sin(βs)cos(β(1−t))
−β2 sin(βs)sin(β(1−t))−β2 cos(βs)cos(β(1−t))

]
−αe−α(t−s)

[
2α sin(βs)sin(β(1−t))+eαβ sin(β(t−s))
−β sin(βs)cos(β(1−t))+β cos(βs)sin(β(1−t))

]
, 0≤ s ≤ t ≤ 1.

We point out several properties of the Green’s function.

Lemma 3.2. H(t, s) satisfies the following properties:

(1) H ∈ C([0, 1]× [0, 1]).

(2) H(0, s)= H(1, s)=
eαs(β sin(β(1− s))− e−αβ sin(βs))

2β(β sinhα−α sinβ)
for all s ∈ [0, 1].

(3) max
t∈[0,1]

|H(t, s)| ≤
βeα + 2α+ 2β

2β(β sinhα−α sinβ)
for all s ∈ [0, 1].

(4) max
t∈[0,1]

∣∣∣ ∂
∂t

H(t, s)
∣∣∣≤ αβeα + 2α2

+ 2β2
+ 2αβ +β2eα

2β(β sinhα−α sinβ)
for all s ∈ [0, 1].

(5) max
t∈[0,1]

∫ 1

0
|H(t, s)| ds ≤

β +β sinhα
(α2+β2)(β sinhα−α sinβ)

.
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(6) max
t∈[0,1]

∫ 1

0

∣∣∣ ∂
∂t

H(t, s)
∣∣∣ ds ≤

α2eα +α2
+β2
+β2eα +αeα +αβ + 3β

(α2+β2)(β sinhα−α sinβ)
.

Again, a proof is not given, since all these properties can be verified directly. Prop-
erties (5) and (6) are obtained by making all the terms in H(t, s) and (∂/∂t)H(t, s),
respectfully, positive, integrating, and finding an upper bound when t ∈ [0, 1].

Define the operator T : B→ B by

T u(t)=
∫ 1

0
H(t, s) k(s, u(s), u′(s)) ds.

Thus if u is a fixed point of T , then u is a solution of (3-1), (1-3). A standard
application of the Arzelà–Ascoli theorem gives us that T is completely continuous.

Define

max
t∈[0,1]

∫ 1

0
|H(t, s)| ds := H and max

t∈[0,1]

∫ 1

0

∣∣∣ ∂
∂t

H(t, s)
∣∣∣ ds := H ′.

Theorem 3.3. Assume f (t, x, y) is continuous in [0, 1]×R×R with∣∣ f (t, x, y)+ 2αy+ (α2
+β2)x

∣∣≤min
{

M

H
,

M

H ′

}
for all (t, x, y) ∈ [0, 1] × [−M,M] × [−M,M]. Then (1-1), (1-3) has a solution
u∗ ∈M.

The proof is similar to the proof of Theorem 2.4 and is therefore omitted.
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