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A generalized happy function, Se,b maps a positive integer to the sum of its base b
digits raised to the e-th power. We say that x is a base-b, e-power, height-h,
u-attracted number if h is the smallest positive integer such that Sh

e,b(x) = u.
Happy numbers are then base-10, 2-power, 1-attracted numbers of any height. Let
σh,e,b(u) denote the smallest height-h, u-attracted number for a fixed base b and
exponent e and let g(e) denote the smallest number such that every integer can
be written as xe

1+ xe
2+· · ·+ xe

g(e) for some nonnegative integers x1, x2, . . . , xg(e).
We prove that if pe,b is the smallest nonnegative integer such that bpe,b > g(e),

d =

⌈
g(e)+ 1

1−
( b−2

b−1

)e + e+ pe,b

⌉
,

and σh,e,b(u)≥ bd, then Se,b(σh+1,e,b(u))= σh,e,b(u).

1. Introduction

Let Se,b be the function that maps a positive base-b integer to the sum of its digits
raised to the e-th power, where e is a positive integer. That is, for x =

∑n−1
i=0 ai bi,

with 0≤ ai ≤ b− 1 for all i ,

Se,b

( n−1∑
i=0

ai bi
)
=

n−1∑
i=0

ae
i .

If Sh
e,b(x)= 1 for some integer h, then x is said to be an e-power, b-happy number.

Guy [2004] gave the smallest 2-power, 10-happy numbers of heights 0 through 6
and asked if 78999 is the smallest height-7 happy number. Grundman and Teeple
[2003] answered Guy, giving the smallest 2-power, 10-happy numbers of heights 0
through 10, and 3-power, 10-happy numbers of heights 0 through 8. From Grundman
and Teeple’s work, one can extract an algorithm for finding the smallest happy
number of height h+ 1 if the smallest happy number of height h is known. The
main results of this paper are Theorems 3.1 and 3.3, which jointly imply that once
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the smallest height-(h+1), u-attracted, base-b number is sufficiently large, applying
Se,b to that number will yield the smallest height-h, u-attracted, base-b number.
The results of this paper hold not only for happy numbers (i.e., 1-attracted), but
more generally for u-attracted numbers. Moreover, our results hold for all bases
and exponents.

Definition 1.1. For a fixed base b, exponent e, and positive integer u, we say that
a positive integer x is u-attracted if Sn

e,b(x) = u for some nonnegative integer n.
If h is the smallest nonnegative integer so that Sh

e,b(x) = u then x is a height-h,
u-attracted number. (As a convention, S0

e,b(x)= x .)

Definition 1.2. For a fixed base b, exponent e, positive integer u, and nonnegative
integer h, let σh,e,b(u) denote the smallest height-h, u-attracted number, that is, the
smallest positive integer k with the property that Sh

e,b(k)= u and Sn
e,b(k) 6= u for

n < h. Similarly, for positive h, let τh,e,b(u) denote the second smallest height-h,
u-attracted number, that is, Sh

e,b(l)= u, Sn
e,b(l) 6= u for n < h, and σh,e,b(u) < l.

Some of the following proofs rely upon knowing the smallest integer x such that
for a given e, every integer is expressible as the sum of at most x many integers
raised to the e-th power. We define g(e) for this purpose.

Definition 1.3. For a fixed positive integer e, let g(e) denote the smallest integer
such that every nonnegative integer is expressible as xe

1 + xe
2 + · · ·+ xe

g(e), where
x1, x2, . . . , xg(e) are all nonnegative integers.

This is the well-known Waring’s problem. Many surveys about the history of
this problem exist; see for instance [Vaughan and Wooley 2002].

For the entirety of this paper, we assume that the base b ≥ 2 is an integer, the
exponent e ≥ 1 is an integer, the height h is a nonnegative integer, the attractor u is
a positive integer, and that x denotes a positive integer. Additionally, when we say
dxe = y we mean that y is the smallest integer such that y ≥ x , and similarly, if
bxc = y, then y is the largest integer such that y ≤ x .

2. Mapping attracted numbers

In this section, we establish in Theorem 2.2 a criterion, depending on g(e) that
ensures that Se,b(σh+1,e,b(u))= σh,e,b(u) for a fixed base b, exponent e, height h,
and integer u.

Lemma 2.1. Fix a base b, exponent e, and attractor u. The smallest positive
integer x such that Se,b(x)= u has n digits, where

u
(b− 1)e

≤ n ≤
u

(b− 1)e
+ g(e).
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Proof. Since the maximum value of the image of each digit under Se,b is (b− 1)e,
u/(b− 1)e is a lower bound for the number of digits of x . Let q and r be the quotient
and remainder of u divided by (b− 1)e, respectively; that is, q is a nonnegative
integer, 0≤ r < (b− 1)e, and u = q(b− 1)e+ r . Let x1, . . . , xg(e) be integers such
that xe

1 + · · ·+ xe
g(e) = r . Since r < (b− 1)e, we have x1, . . . , xg(e) < b− 1 and so

they are valid digits in base b. Without loss of generality, x1 ≤ x2 ≤ · · · ≤ xg(e). Let
y be the positive integer formed by the digits x1, x2, . . . , xg(e) followed by q digits,
each of which is b− 1. Since x is minimal, it follows that x ≤ y. So n, the number
of digits of x , must be less than or equal to the number of digits of y, which is
bu/(b− 1)ec+ g(e). �

Theorem 2.2. Fix a base b, exponent e, positive height h, and attractor u. If

σh,e,b(u)
(b− 1)e

+ g(e)≤
τh,e,b(u)
(b− 1)e

, (1)

then Se,b(σh+1,e,b(u))= σh,e,b(u).

Proof. Let x be the smallest integer such that Se,b(x)=σh,e,b(u). Let z be a height-h,
u-attracted number that is greater than σh,e,b(u) (recall that τh,e,b is the smallest
such number) and y any integer such that Se,b(y)= z. That is, y is a height-(h+1),
u-attracted number whose image is not σh,e,b(u). Let n be the number of digits
of x and m be the number of digits of y. We will show that x < y. By Lemma 2.1,

n ≤
σh,e,b(u)
(b− 1)e

+ g(e) and
τh,e,b(u)
(b− 1)e

≤
z

(b− 1)e
≤ m.

By the hypothesis (1), this gives n ≤ m. If n < m, then x < y, so let us suppose
that n = m. It must then be the case that

σh,e,b(u)
(b− 1)e

+ g(e)=
z

(b− 1)e
.

Since Se,b(y)= z and y has m= z/(b− 1)e digits, y is the concatenation of m digits,
each of which is b− 1. Since x 6= y (as they have different images under Se,b) and
x and y have the same number of digits, at least one digit of x is not b− 1. Thus,
x < y. Hence x is less than every other height-(h+1), u-attracted number, and so
x=σh+1,e,b(u). Since Se,b(x)=σh,e,b(u), we have Se,b(σh+1,e,b(u))=σh,e,b(u). �

From [Grundman and Teeple 2003], it is known that σ7,2,10 = 78999 and
τ7,2,10(1)= 79899.

Question 2.3. Under what conditions is τh,e,b(u) a permutation of the digits of
σh,e,b(u)?
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3. Large u-attracted numbers

In this section, we prove Theorems 3.1 and 3.3, which imply that once σh,e,b(u) is
sufficiently large, Se,b(σh+1,e,b(u))= σh,e,b(u).

Theorem 3.1. Fix a base b, exponent e, positive height h, and attractor u. Let δ be
a positive integer, and let

d =
g(e)+ 1

1−
( b−2

b−1

)e + δ.

If σh,e,b(u) has at least d digits, then the base-b expansion of σh,e,b is of the form

σh,e,b(u)=
n−1∑
i=0

ai bi

with a0, . . . , aδ = b− 1. More informally, the rightmost δ+ 1 digits of σh,e,b(u)
are all b− 1.

Proof. In this proof, we will show that if σh,e,b has “too many” digits which are not
equal to b− 1, we can construct a smaller number with the same image as σh,e,b.
This contradicts the definition of σh,e,b.

One can verify σ1,e,b(1) = 10 (in base b) for all e, b and that this is the only
number of the form σh,e,b with a 0 digit. However, 10 is a two-digit number and
d > 2 for integers e > 1. Thus, using the base-b expansion from the statement of
the theorem, ai+1 ≤ ai for 0≤ i < n− 1 (its digits must appear in increasing order
from left to right) and none of its digits can be 0 since σh,e,b(u) is the least height-h,
u-attracted number.

In the case ai = b− 1 for all i , this theorem is trivially true. Otherwise, let us
construct z, the sum of the image of the digits which are not equal to b− 1. In
the case that some digits of σh,e,b,(u) are b− 1 and some are not, define an integer
parameter k ≥ 2 to be such that ak−1 < b− 1 and for all i < k − 1, ai = b− 1.
That is, the k-th place is the first (from the right) in which a digit that is not b− 1
appears. Hence,

σh,e,b(u)=
n−1∑

i=k−1

ai bi
+

k−2∑
i=0

(b− 1)bi.

Let y = Se,b(σh,e,b(u)) and let z = y− (k− 1)(b− 1)e, that is,

z =
n−1∑

i=k−1

ae
i .

In the case that no digits of σh,e,b are b − 1, set k = 1 and let z =
∑n−1

i=0 ae
i .

We proceed to show that if k ≤ δ + 1, we can construct a number smaller than
σh,e,b with the same image as σh,e,b, a contradiction. Let n′ = n − (k − 1) and
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let m = bz/(b− 1)ec. Since z is the sum of n′ many terms of the form ae
i , where

ai ≤ b− 2 for all i , we have n′ ≥ z/(b− 2)e. Thus,

(b− 2)e

(b− 1)e
n′ ≥

z
(b− 1)e

≥ m.

So, (
b− 2
b− 1

)e

n′+ g(e)+ 1≥ m+ g(e)+ 1.

By the definition of d ,

d − δ =
g(e)+ 1

1−
( b−2

b−1

)e ,

and since k ≤ δ+ 1,

d − (k− 1)≥
g(e)+ 1

1−
( b−2

b−1

)e .

Thus,

(d − (k− 1))
(

1−
(

b− 2
b− 1

)e)
≥ g(e)+ 1.

And since n′ ≥ d − (k− 1) and 1−
( b−2

b−1

)e
> 0, we have

n′
(

1−
(

b− 2
b− 1

)e)
≥ g(e)+ 1

and hence

n′ ≥ g(e)+ 1+ n′
(

b− 2
b− 1

)e

≥ m+ g(e)+ 1.

Therefore, n′ ≥ m+ g(e)+ 1.
Let r be the remainder of y divided by (b−1)e; that is, y = q(b−1)e+r , where

q ≥ 0 and (b−1)e > r ≥ 0. From the definition of m, we have q =m+ (k−1). Let
x1, x2, . . . , xg(e) be integers less than b− 1 so that xe

1+ xe
2+· · ·+ xe

g(e) = r . There
are such x j since g(e) is defined so that such integers exist, and all integers must be
less than b− 1 since r < (b− 1)e. Without loss of generality, x1 ≤ x2 ≤ · · · ≤ xg(e).
Let x be a base-b number with digits x1, . . . , xg(e) followed by m+ (k− 1) many
b− 1 digits.

Hence, Se,b(x) = y, and x has at most g(e)+m + (k − 1) digits. Since n′ =
n− (k− 1), we know n ≥ g(e)+ 1+m+ (k− 1). However, this means that x has
fewer digits than σh,e,b(u). This contradicts the fact that σh,e,b(u) is the smallest
height-h, u-attracted integer, and hence, k > δ+ 1. �

For ease of notation, we define a constant pe,b.

Definition 3.2. For a fixed exponent e and base b, let pe,b be the smallest integer
such that bpe,b > g(e).
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Theorem 3.3. Fix a base b, exponent e, positive height h, and attractor u. If
σh,e,b(u) =

∑n−1
i=0 ai bi, where a0, . . . , ae+pe,b = b − 1, then Se,b(σh+1,e,b(u)) =

σh,e,b(u).

Proof. Let σh,e,b(u) be such that a0, . . . , ak = b− 1, where k ≥ e+ pe,b. Define
cj =σh,e,b(u)+ j for 1≤ j < g(e)(b−1)e. We will show that c1 through cg(e)(b−1)e−1

are not height-h, u-attracted numbers.
If b > 2, using the definition of pe,b we get

j < g(e)(b− 1)e < bpe,b(b− 1)e < bpe,b be
= be+pe,b.

Since σh,e,b has at least e+ pe,b+1 trailing digits equal to b−1, we know c1 has at
least e+ pe,b+ 1 trailing zeros. Since j < be+pe,b , we know j has at most e+ pe,b

many digits. Hence cj has at least one digit which is zero for 1≤ j < g(e)(b− 1)e.
Let c′j be formed by removing the all zero digits of cj . We claim that c′j < σh,e,b(u).
Recall that n denotes the number of digits of σh,e,b(u). If ai 6= b−1 for some i , then
n≥e+pe,b+2 and cj has n digits for all j . Thus, c′j has at most n−1 digits and hence
c′j < σh,e,b. If ai = b− 1 for all i , then σh,e,b(u)= bn

− 1 and c1 = bn
= be+pe,b+1,

which means that cj <be+pe,b+1
+be+pe,b. Thus c′j has at most n digits, while the lead-

ing digit of σh,e,b is b−1, but the leading digit of c′j is 1, and since b 6= 2, c′j <σh,e,b.
This leaves only the case that b = 2. In this case,

j < g(e)(2− 1)e = g(e) < 2pe,2.

Since the only allowable digits are 0 and 1, and we argued in the proof of Theorem 3.1
that σh,e,b does not have any digits that are equal to zero, σh,e,2= 2n+1

−1 for some
n≥ e+ pe,2, so 2n+1

≤ cj < 2n+1
+2pe,2 for all j . Since n≥ e+ pe,2 and e is at least

1, cj has at least two digits that are equal to 0. Again, let c′j be formed by removing
the all zero digits of cj . Then c′j has fewer than n digits and hence c′j < σh,e,2.

So, if any cj are height-h, u-attracted numbers, then c′j is a smaller height-h,
u-attracted number than σh,e,b(u), contradicting the definition of σh,e,b(u). Hence,
τh,e,b(u)≥ g(e)(b− 1)e+ σh,e,b(u). Therefore, by Theorem 2.2, Se,b(σh+1,e,b)=

σh,e,b. �

Corollary 3.4. Fix a base b and exponent e. Let

d =

⌈
g(e)+ 1

1−
( b−2

b−1

)e + e+ pe,b

⌉
.

If σh,e,b(u)≥ bd, then Se,b(σh+1,e,b(u))= σh,e,b(u).

Proof. Since σh,e,b(u) ≥ bd, we know σh,e,b(u) must have at least d − 1 digits.
Hence, by Theorem 3.1, σh,e,b(u) =

∑n−1
i=0 ai bi , where for i ≤ e+ pe,b, we have

ai = b− 1. Therefore, by Theorem 3.3, Se,b(σh+1,e,b(u))= σh,e,b(u). �
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Corollary 3.4 gives a bound bd for σh,e,b(u) (in terms of e and b) so that if
σh,e,b(u)≥ bd, then Se,b(σh+1,e,b(u))= σh,e,b. This leads to the natural question:

Question 3.5. Is there a bound β for h (in terms of e and b) so that if h ≥ β,
Se,b(σh+1,e,b(u))= σh,e,b?
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