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We prove that the well-covered dimension of the Levi graph of a point-line
configuration with v points, b lines, r lines incident with each point, and every
line containing k points is equal to 0, whenever r > 2.

1. Introduction

The concept of the well-covered space of a graph was first introduced by Caro,
Ellingham, Ramey, and Yuster [Caro et al. 1998; Caro and Yuster 1999] as an
effort to generalize the study of well-covered graphs. Brown and Nowakowski
[2005] continued the study of this object and, among other things, provided several
examples of graphs featuring odd behaviors regarding their well-covered spaces.
One of these special situations occurs when the well-covered space of the graph
is trivial, i.e., when the graph is anti-well-covered. In this work, we prove that
almost all Levi graphs of configurations in the family of the so-called (vr , bk)-
configurations (see Definition 3) are anti-well-covered.

We start our exposition by providing the following definitions and previously
known results. Any introductory concepts we do not present here may be found in
the books by Bondy and Murty [1976] and Grünbaum [2009].

We consider only simple and undirected graphs. A graph will be denoted by
G = (V (G), E(G)), as is customary, where V (G) is the set of vertices of the graph
and E(G) is the set of edges of the graph. We think of E(G) as an irreflexive
symmetric relation on V (G). Two vertices of a graph are said to be adjacent if they
are connected by an edge. An independent set of vertices is one in which no two
vertices in the set are adjacent. If an independent set, M , of a graph G is not a proper
subset of any other independent set of G, then M is a maximal independent set of G.

Definition 1. Let G be a graph and F a field.

(1) A function f : V (G)→ F is said to be a weighting of G. If the sum of all
weights is constant for all maximal independent sets of G, then the weighting
is a well-covered weighting of G.
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(2) The F-vector space consisting of all well-covered weightings of G is called
the well-covered space of G (relative to F).

(3) The dimension of this vector space is called the well-covered dimension of G,
denoted wcdim(G, F).

Remark 1. For some graphs, the characteristic of the field F makes a difference
when calculating the well-covered dimension (see [Birnbaum et al. 2014] and
[Brown and Nowakowski 2005]). If char(F) does not cause a change in the well-
covered dimension, then the well-covered dimension is denoted as wcdim(G).

In order to calculate the well-covered dimension of a graph, G, one would
generally need to find all possible maximal independent sets of G. However,
finding all maximal independent sets is not always an easy task, as this is a known
NP-complete problem.

Despite the NP-complete nature of this problem, let us assume that we have
found all possible maximal independent sets of G. We will denote these maximal
independent sets as Mi for i = 0, 1, . . . , k− 1. The well-covered weightings of G
are determined by solving a system of linear equations that arise from considering
all equations of the form M0=Mi for i = 1, . . . , k−1. We replace this system with
the equivalent homogeneous one via standard operations and create an associated
matrix AG . Observe that the dimension of the nullspace of AG is equal to the
dimension of the well-covered space of G. Thus,

wcdim(G, F)= |V (G)| − rank(AG).

We now move onto another component of our work: configurations.

Definition 2. A (point-line) configuration is a triple (P,L, I ), where P is set of
points, L is a set of lines, and I is an incidence relation between P and L, that has
the following properties:

(1) Any two points are incident with at most one line.

(2) Any two lines are incident with at most one point.

Next, there is some notation for configurations that needs to be set, as well as
specific parameters that need to be established for the main result of this work.

Definition 3. We define a (vr , bk)-configuration as a configuration such that

(1) |P| = v, and v ≥ 4.

(2) |L| = b, and b ≥ 4.

(3) There are exactly k points incident with each line, and k ≥ 2.

(4) There are exactly r lines incident with each point, and r ≥ 2.

When v = b and r = k, the configuration will be denoted by (vr ).
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Figure 1. (134)= PG(2, 3) and Levi(134).

Example 1. Several well-known geometric structures fall into the category of
(vr , bk)-configurations. For instance:

(1) A projective plane of order q is a (q2
+ q + 1(q+1))-configuration, where q is

the power of a prime. See Figure 1 for a representation of PG(2, 3)= (134).

(2) The Pappus configuration is a (93)-configuration, and the Desargues configu-
ration is a (103)-configuration.

(3) PG(n, q) is a(
qn+1
− 1

q − 1 (q+1)
,
(qn+1

− 1)(qn
− 1)

(q2− 1)(q − 1) (q2+q+1)

)
-configuration,

where q is the power of a prime.

(4) A generalized quadrangle G(s, t) is a ((1+s)(st+1)(1+s), (1+t)(st+1)(1+t))-
configuration.

The reader is referred to the book by Batten [1997] for more information about
these important geometric objects.

Finally, we define Levi graphs, which will connect configurations and graphs.

Definition 4. The Levi graph of a (vr , bk)-configuration (P,L, I ) is the bipartite
graph G with V (G)= P ∪L and E(G)= I. That is, p ∈ P is adjacent to ` ∈ L if
and only if pI `. We will denote this graph Levi(vr ,bk).
Note that P and L are independent sets — the partite sets — in G.

Our main result, which will be proven in the following section, combines all of
these objects as follows:

Theorem 1. If r is a positive integer greater than 2, then wcdim(Levi(vr ,bk))= 0.

We would like to remark that Theorem 1 says is that almost all Levi graphs of
(vr , bk)-configurations are anti-well-covered.
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Figure 2. A maximal independent set MP in Levi(134).

2. The well-covered dimension of Levi(vr ,bk)

We will prove Theorem 1 by first proving a technical lemma that introduces a family
of maximal independent sets that will prove to be useful later on.

Lemma 1. A Levi graph of a configuration (vr , bk), where r > 2, has at least
v+ b+ 2 maximal independent sets.

Proof. Let P be a fixed point in (vr , bk). We consider the set, MP , of vertices of
Levi(vr ,bk) given by P and all the lines not incident to P . This is an independent set
of Levi(vr ,bk) because there is no incidence between vertices in the set. Moreover,
note that if we included another point-vertex to MP , then that vertex would be
adjacent to one of the line-vertices in MP (because of condition (2) in Definition 2,
and the fact that r > 2). Also, if another line-vertex were to be added to MP ,
then this line would have to be incident with P . It follows that MP is a maximal
independent set of Levi(vr ,bk). See Figure 2 for an example.

Repeating this construction for all v points in (vr , bk), we get v distinct maximal
independent sets of Levi(vr ,bk).

We will now construct another b distinct maximal independent sets of Levi(vr ,bk).
We start by fixing a line ` in (vr , bk) and then any two distinct points P1, P2 ∈ `

(recall that k ≥ 2). We consider the set, MP1,P2 of vertices of Levi(vr ,bk) given by
P1, P2 and all the lines not incident to either of these points. Note that this forms
an independent set since adjacency in Levi(vr ,bk) only occurs if incidence occurs
in (vr , bk). If we try to add in another vertex-point to MP1,P2 , since r > 2, this
point will be incident to one of the lines not through P1 or P2 and will therefore be
adjacent to the vertex-lines in MP1,P2 . If we try to add another vertex-line to MP1,P2 ,
then this line will be incident to one or both of P1 and P2. Therefore, MP1,P2 is a
maximal independent set of Levi(vr ,bk). See Figure 3 for an example.

Repeating this construction for all b lines in (vr , bk) (it does not matter what
pair of points one picks on any given line), we get b distinct maximal independent
sets of Levi(vr ,bk).
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Figure 3. A maximal independent set MP1,P2 in Levi(134).

Finally, note that the set of all point-vertices in Levi(vr ,bk) is a maximal inde-
pendent set and the set of all line-vertices in Levi(vr ,bk) is as well. Hence, we have
constructed v+ b+ 2 distinct maximal independent sets in Levi(vr ,bk). �

Next, we proceed to prove our main result.

Proof of Theorem 1. We denote by F the field of scalars of the well-covered space
of G = Levi(vr ,bk), where r > 2. Let AG be the associated matrix of G, and note
that AG has v+b columns. In order to prove that AG has v+b linearly independent
rows we will consider the v+ b+ 2 maximal independent sets in Lemma 1.

We create the first v rows of AG by equating the weight of each of the maximal
independent sets MP to the weight of the maximal independent set consisting of all
the lines of G. After subtracting, we obtain v equations of the form

f (P)− f (`1)− f (`2)− · · ·− f (`r )= 0, (1)

where each `i is incident with P . It follows that, after organizing the columns of
AG by putting point-vertices first and then line-vertices, the “first” v rows of AG are[

Iv −C
]
,

where C is the incidence matrix of Levi(vr ,bk).
In order to obtain the next b rows of AG , we will consider maximal independent

sets of the form MP,Q . For any given line ` of (vr , bk), we choose (any) two
points on it. We will denote these two points as P1 and P2. We then consider the
maximal independent set MP1,P2 and equate its weight to the weight of the maximal
independent set MP1 . After subtracting, we obtain an equation of the form

f (P2)− f (`1)− f (`2)− · · ·− f (`r )+ f (`)= 0, (2)

where each `i is incident with P2.
Note that subtracting (1) (with P = P2) from (2) yields f (`)= 0. Since ` was

arbitrary, we get f (`)= 0 for every line in (vr , bk). It follows that since subtracting
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equations is just a different way to describe row operations in AG , we get that the
“first” v+ b rows of AG (after a few row operations) are[

Iv −C
0 Ib

]
.

Note that addition and subtraction were the only two (row) operations needed to
obtain the matrix above. Hence, the first v+b rows of AG do not change depending
on the characteristic of F .

Since the determinant of the matrix above is nonzero, the rank of AG is maximal,
and thus wcdim(Levi(vr ,bk))= 0. �

3. Possible generalizations

In this section, we study possible generalizations of Theorem 1. This will be done
by providing a few results and by introducing objects to which this theorem could be
extended. We begin by proving that Theorem 1 cannot be extended to configurations
having exactly two lines being incident with every point. This will be done by an
example that considers (v2)-configurations.

We first notice that a (v2)-configuration is a disjoint union of polygons/cycles.
This is convenient because disjoint unions of graphs behave well with respect to the
well-covered dimension. In fact, Lemma 5 in [Brown and Nowakowski 2005] says

wcdim(G ∪ H)= wcdim(G)+wcdim(H),

where ∪ stands for disjoint union.
Since we know that LeviCn = C2n , we get the following lemma.

Lemma 2. Let C be a (v2)-configuration. Then,

C =
t⋃

i=1

Cni ,

where ni > 2, for all 1≤ i ≤ t . Moreover,

wcdim(LeviC)=
t∑

i=1

wcdim(C2ni ).

Finally, we notice that Theorem 5 in [Birnbaum et al. 2014] implies

wcdim(C2n)=

{
2 if n = 3,
0 if n ≥ 4.

Next is an immediate corollary of that same theorem, together with our Lemma 2.
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Corollary 1. The well-covered dimension of LeviC is even for all (v2)-configura-
tions C. Moreover, for every n ∈ N, there is a (v2)-configuration, Cn , such that

wcdim(LeviCn )= 2n.

In particular, the sequence {wcdim(LeviCn )}
∞

n=1 is unbounded.

We conclude that Theorem 1 cannot be expanded to the case r = 2. However, it
is still an open problem to find the well-covered dimension of all Levi graphs of
(v2, bk)-configurations.

Of course, the study of the well-covered dimension of Levi graphs of configura-
tions not of the form (vr , bk) is also an interesting open problem.

Block designs are another family of objects that could be studied to attempt a
generalization of Theorem 1. These objects can be much less “geometric” than
(vr , bk)-configurations, given that they are obtained after relaxing items (3) and (4)
in Definition 2. In order to be more precise, we provide the following definition.

Definition 5. Let λ, t ≥ 1. A t-(v, k, λ)-design (or t-design), is an incidence
structure of points and blocks with the following properties:

(1) There are v points.

(2) Each block is incident with k points.

(3) Any t points are incident with λ common blocks.

It is easy to see that a 1-(v, k, λ)-design is a (vλ, bk)-configuration, where
b = vλ/k. Moreover, a 2-(v, k, 1)-design is a configuration in which every pair of
points are “collinear”. For t > 1 and λ > 1, the obvious definition of the Levi graph
of a t-design would yield a multigraph. This apparent setback is not so much of a
problem since having one edge or multiple edges between two vertices would mean
the same thing when looking for maximal independent sets. We claim that the ideas
used to prove Theorem 1 can be generalized to be applicable to block designs.

Finally, in this work, we studied the well-covered space of the Levi graph of
a (vr , bk)-configuration. We propose, as an interesting open problem, the study
of configurations via understanding the well-covered spaces of their collinearity
graphs (in which points in a configuration are defined as vertices, and adjacency
occurs if and only if the points are collinear). The third author is currently working
on a particular case of this problem: generalized quadrangles.
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