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We find examples of positive integers n such that φ(n3)σ (n3) is a perfect square.

1. Introduction

The Euler function φ(n) counts the number of positive integers m ≤ n which are
coprime to n, the sum of divisors function σ(n) is equal to the sum of the positive
proper divisors of n, and both of these functions have fascinated mathematicians
for centuries. A lot of effort has been spent trying to find positive integers n such
that φ(n) and σ(n) have nice arithmetic properties.

It is easy to make φ(n) a square. Just take n= 22k+1 for some k ≥ 0. Exactly half
of all integers m ≤ 22k+1 are odd, and hence, coprime to n. Thus, φ(22k+1)= 22k

is a perfect square. The situation for the sum of divisors function is harder. A nice
presentation of this problem is in [Beukers et al. 2012]. Following that reference,
we look at the factorizations

σ(2)= 3, σ (11)= 22
× 3,

σ (3)= 22, σ (13)= 2× 7,

σ (5)= 2× 3, σ (17)= 2× 32,

σ (7)= 23, σ (19)= 22
× 5.

There are many ways to multiply together some of the above numbers to get a
perfect square. First let us notice that 13 and 19 are useless because σ(13)= 2× 7
and σ(19)= 22

× 5, and neither 7 nor 5 ever appear again on the right-hand side
of the above equations. Throw out 13 and 19 and group squares on the right-hand
sides in the following way, where � represents a perfect square:

σ(2)= 3, σ (3)= � , σ (5)= 2×3, σ (7)= 2� , σ (11)= 3� , σ (17)= 2� .
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Keywords: sum of divisors, Euler function.
Santos Cruz worked on this paper during a summer project under of the supervision of Luca.

745

http://msp.org
http://msp.org/involve/
http://dx.doi.org/10.2140/involve.2015.8-5


746 LUIS ELESBAN SANTOS CRUZ AND FLORIAN LUCA

Note that all six inputs are prime numbers and all outputs have prime factorizations
consisting of only 2 and 3. Let the primes 2, 3, 5, 7, 11, 17 correspond to the
vectors v1, v2, v3, v4, v5, v6 in the six-dimensional vector space F6

2, where vi has
i-th component equal to 1 and all others equal to 0 for i = 1, . . . , 6. In F2

2 we let w1

and w2 be the vectors (1, 0)> and (0, 1)> and think of them as corresponding to the
primes 2 and 3 respectively. We define a linear map from F6

2 7→ F2
2 whose matrix is

T =
(

0 0 1 1 0 1
1 0 1 0 1 0

)
.

This matrix has rank 2, so it has 24
= 16 vectors in its nullspace, and any of these

vectors gives us a solution. For example, the vector (1, 1, 1, 1, 0, 0)>, which is in
Null(T ), gives us the solution n = 2× 3× 5× 7, having σ(n)= 26

× 32.
In [Beukers et al. 2012], the equation σ(nk)= ml in positive integers n and m

was studied for some exponents k > 1 and l > 1. On page 377, they conjecture that
σ(nk)= ml has only finitely many solutions if k > 3 and l > 1 are given. Here, we
propose the following counterconjecture.

Conjecture 1. For every k > 1 and l > 1, there are infinitely many n such that
σ(nk)= ml for some positive integer m.

To give some evidence, we propose a different conjecture. Let P(n) denote the
largest prime factor of the integer n, with the convention that P(0)= P(±1)= 1.

Conjecture 2. Let f (x)∈Z[x] be a polynomial such that f (0) 6=0. For every ε>0,
there exists c := c(ε) and x0 := x0(ε) such that

#{p ≤ x : P( f (p)) < xε} > cx/ log x for all x > x0. (1)

The substance of the above conjecture is the following. It is well known that the
numbers n such that P(n)< nε form a positive-density subset of N. It is conjectured
that the primes p such that P(p− 1) < pε form a positive-density subset of all
primes. This is not known for small values of ε > 0. So, we venture even further
and replace p− 1 by any fixed polynomial f (p) such that f (0) 6= 0 (in order to
make sure that p does not show up as a natural divisor of f (p)) and conjecture
that, in fact, the set of primes p such that P( f (p)) < pε is of positive density. This
is known if all roots of f (x) are rational, with some ε < 1 (like ε = 1− 1/2d,
where d is the degree of f (x)), but it is not known for any ε < 1 once f (x) has an
irreducible factor of degree at least 2. The quantity x/ log x in the right-hand side
of (1) arises from the prime number theorem, which asserts that, asymptotically,
the function π(x)= #{p ≤ x} equals x/ log x as x→∞.

Let us see how Conjecture 1 would follow from Conjecture 2. Let k ≥ 2,
f (x)= (xk+1

−1)/(x−1) and suppose first that l = 2. Let x be large, put ε = 1/2
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and let p1, . . . , pt be such that P( f (pi ))< x1/2. Let s=π(x1/2). Then we can write

f (pi )= wi � , i = 1, . . . , t,

where thewi are square-free numbers with P(wi )≤ x1/2. As before, we can identify
the wi with vectors in Fs

2 obtained by putting 1 or 0 in the j -th component according
to whether the j -th prime divides wi or not. In this way, we get a linear application
from Ft

2 to Fs
2 whose nullspace has dimension at least t − s, where

t − s > c
x

log x
−π(x1/2) > c

x
log x

− x1/2,

and this last function certainly tends to infinity with x . This is when l = 2. Assume
now that l > 2. Then we write

f (pi )= wi u
l
i for all i = 1, . . . , t,

where the wi are l-th power free and P(wi ) ≤ x1/2. We attach to each wi an
element wi in the group (Z/ lZ)s where in the j -th component we put the exponent
of the j-th prime number in the factorization of wi . Note that Z/ lZ is not a field
unless l is a prime, and even if l is a prime, we only can multiply distinct primes pi

in attempts to create n such that σ(nk)=ml . Thus, we are only allowed to take sums
of distinct wi and get 0. There is a theorem (see [van Emde Boas and Kruyswijk
1967] and [Olson 1969, Theorem 1]) that says that if we have at least s(l − 1) such
distinct elements wi , we can find some of them whose sum is 0. Thus, we can
create at least bt/(s(l − 1))c distinct (in fact, even disjoint) subsets of the wi for
i = 1, . . . , t simply by finding some 0-sum among the first s(l−1) of them, another
0-sum among the next s(l − 1) of them and so on. Since

t
s(l − 1)

>
c

(l − 1)

√
x

log x
,

and the right-hand side is a function that tends to infinity with x , we get Conjecture 1.
We can ask similar questions simultaneously for φ(n) and σ(n), like making them

simultaneously squares, or cubes, etc. This has already been treated in [Freiberg
2012]. There it is shown that the number of n ≤ x such that both φ(n) and σ(n) are
perfect powers of an exponent l is less than c1lx1/ l/(log x)l+2, where c1> 0 is some
positive constant. Square values of the product φ(n)σ (n) have been investigated
in [Broughan et al. 2013]. In the next section, we present some computational
examples of n such that φ(n3)σ (n3)= � .

2. Computational examples

We wanted to find a positive integer n such that φ(n3)σ (n3) = � . For a prime p,
we have φ(p3)σ (p3) = p2(p4

− 1). So, we wrote p4
− 1 = wp � , where wp is

square-free for all p ≤ 1000. Then we searched for a subset S of cardinality t such
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that the set of prime factors appearing in the factorizations of wp for p ∈ S has
cardinality s < t . We found the subset

{2, 3, 5, 7, 13, 17, 23, 31, 41, 43, 47, 73, 83, 191, 239, 307, 443, 499, 829},

with t = 21 and s = 17. Thus, this set gives us 221−17
= 16 solutions. We wrote

down the {0, 1} matrix with 17 rows and 21 columns, which ends up having rank 17
over F2. The largest solution in the nullspace of this matrix is

n = 3× 7× 11× 13××17× 23× 43× 47× 83× 239× 443× 499× 829,

for which φ(n3)σ (n3)= m2, where

m = 230
×37
×510

×72
×11×134

×173
×23×29×37×41×53×61×83×157.

Despite our efforts, we could not find an integer n > 1 such that σ(n5)= � , and we
leave finding such an example as a challenge to the reader.
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