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Let a be a positive integer and let k be an arbitrary, fixed positive integer. We
define a generalized Fibonacci-type polynomial sequence by Gk,0(x) = −a,
Gk,1(x) = x − a, and Gk,n(x) = xk Gk,n−1(x)+ Gk,n−2(x) for n ≥ 2. Let gk,n

represent the maximum real zero of Gk,n . We prove that the sequence {gk,2n}

is decreasing and converges to a real number βk . Moreover, we prove that the
sequence {gk,2n+1} is increasing and converges to βk as well. We conclude by
proving that {βk} is decreasing and converges to a.

1. Introduction

Let α, β, and k be integers, with α 6= 0. Consider a Fibonacci-type polynomial
sequence given by the recurrence relation Gk,0 =−α, Gk,1 = x−β, and for n ≥ 2,

Gk,n(x)= xk Gk,n−1(x)+Gk,n−2(x). (1)

We should point out that the classical Fibonacci polynomial sequence Fn is obtained
when α =−1, β = 0, and k = 1. Moreover, the Lucas polynomial sequence Ln is
obtained when α=−2, β = 0, and k = 1. Hoggatt and Bicknell [1973] give explicit
forms for the zeros of Fn and Ln . Even though finding explicit formulas for other
Fibonacci-type polynomial sequences has been a challenge, several results about the
properties of the zeros of some specific cases are known. For example, G. Moore
[1994] and H. Prodinger [1996] studied the asymptotic behavior of the maximal
zeros of G1,n when α=β= k=1, and Yu, Wang and He [Yu et al. 1996] generalized
Moore’s result for α = β = a, where a is any positive integer. F. Mátyás [1998]
studied the same problem for α = a, a 6= 0 and β =±a. More recently, Wang and
He [2004] generalized their previous result for any two integers α and β with α 6= 0.
We also mention the works of P. E. Ricci [1995] and Mátyás [1998] for boundedness
results of the zeros of G1,n . In addition, Molina and Zeleke [2007; 2009] studied the
asymptotic behavior of the zeros of Gk,n when α=β=1 and k is an arbitrary integer.
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Moore [1994] proved that when α = β = k = 1, the maximum zeros of the odd-
indexed polynomials converge to 3

2 from below and the maximum roots of the even-
indexed polynomials converge to 3

2 from above. In that article, a remark was made
about the possibilities of investigating asymptotic behaviors of maximum zeros of
other Fibonacci-type polynomial sequences. In [Miller and Zeleke 2013], the first au-
thor and Zeleke studied the maximum real zeros of the Fibonacci-type polynomial se-
quence where α=β=a, a is a positive integer, and k=2. They provided asymptotic
results for the maximum real zeros numerically as well as analytically. We extend
those results by allowing k to be an arbitrary, fixed positive integer. The proof tech-
niques expand those used in [Miller and Zeleke 2013] and [Molina and Zeleke 2009].

Before delving into the technical results, we provide a numerical example to
motivate our work.

Example. Consider the Fibonacci-type polynomial sequence given by the recur-
rence relation Gk,0 =−2, Gk,1 = x − 2, and for n ≥ 2,

Gk,n(x)= xk Gk,n−1(x)+Gk,n−2(x).

In the context of the generalized Fibonacci-type polynomial sequences we study
in this paper, this example corresponds to the case when a = 2. For a fixed positive
integer k and a natural number n, let gk,n represent the maximum real root of the
polynomial Gk,n . The first six terms in the sequences of the maximum real roots
for k = 2, k = 3, and k = 4 are shown in the following three columns, respectively.

g2,1 = 2 g3,1 = 2 g4,1 = 2
g2,2

.
= 2.359304086 g3,2

.
= 2.190327947 g4,2

.
= 2.102374082

g2,3
.
= 2.350513611 g3,3

.
= 2.188965777 g4,3

.
= 2.102149889

g2,4
.
= 2.350789278 g3,4

.
= 2.188978002 g4,4

.
= 2.102150474

g2,5
.
= 2.350780807 g3,5

.
= 2.188977893 g4,5

.
= 2.102150473

g2,6
.
= 2.350781067 g3,6

.
= 2.188977894 g4,6

.
= 2.102150473

For each sequence, the subsequence created by the odd-indexed (i.e., n is odd)
maximum real roots is increasing. And, the subsequence created by the even-
indexed (i.e., n is even) maximum real roots is decreasing. In fact, each of the
sequences converge to a real number which is dependent on k. We call this real
number βk . We should mention βk is also dependent on our choice of a and for
this example, a = 2. For the sequences above, we have

β2
.
= 2.350781059, β3

.
= 2.188977894, β4

.
= 2.102150473.

It is also the case that {βk} converges to 2 and it is not a coincidence that this is the
value of a.
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2. Formulas

At this time, we introduce a few handy formulas that were established in [Molina
and Zeleke 2009]. The formulas in the following lemma allow us to write Gk,n(x)
in terms of smaller indexed functions.

Lemma 2.1. For n ≥ 1, the following recursive formulas are true:

Gk,2n+2(x)= (x2k
+1)Gk,2n(x)+x2k Gk,2n−2(x)+· · ·+x2k Gk,2(x)+xk Gk,1(x),

Gk,2n+1(x)= (x2k
+1)Gk,2n−1(x)+x2k Gk,2n−3(x)+· · ·+x2k Gk,1(x)+xk Gk,0(x).

The formula that we present in the next lemma provides a type of shift from
one indexed polynomial evaluated at gk,n to another indexed polynomial evaluated
at gk,n . The proof can be found in [Molina and Zeleke 2009, Lemma 4].

Lemma 2.2. For n ≥ m, Gk,n+m(gk,n)= (−1)m+1Gk,n−m(gk,n).

3. Preliminary results

We’re now ready to study the maximum real roots, gk,n , for the generalized
Fibonacci-type polynomial sequence defined by Gk,0(x)=−a, Gk,1(x)= x − a,
and Gk,n(x) = xk Gk,n−1(x)+Gk,n−2(x) for n ≥ 2, where a is a positive integer
and k is an arbitrary, fixed positive integer.

Proposition 3.1. If n ≥ 2, then gk,n ∈ (a, a+ 1).

Proof. For n≥2, we will show Gk,n(a)<0 and Gk,n(x)>0 for x ∈ [a+1,∞); thus,
our conclusion will follow. We’ll begin by showing Gk,n(a)< 0 by induction. Since
Gk,0(a)=−a and Gk,1(a)= a− a = 0, we have Gk,2(a)= ak(0)− a =−a < 0.
Now suppose Gk,m(a) < 0 for all m such that 2≤ m ≤ n. By (1) and the inductive
hypothesis, Gk,n+1(a)= ak Gk,n(a)+Gk,n−1(a) < 0. Hence, Gk,n(a) < 0 for n≥ 2.

For the remainder of the proof, let x ∈ [a+1,∞). We again use induction. Notice

Gk,1(x)= x − a ≥ a+ 1− a > 0, and

Gk,2(x)= xk(x − a)− a ≥ (a+ 1)k(a+ 1− a)− a = (a+ 1)k − a > 0.

Now suppose Gk,m(x) > 0 for all m such that 2 ≤ m ≤ n. By (1) and the induc-
tive hypothesis, it follows that Gk,n+1(x) = xk Gk,n(x)+Gk,n−1(x) > 0. Hence,
Gk,n(x) > 0 for x ∈ [a+ 1,∞) and n ≥ 2.

Therefore, gk,n ∈ (a, a+ 1) for n ≥ 2. �

Proposition 3.2. Let a be a positive integer and let βk be a positive real num-
ber that satisfies the equation Gk,2(x) = −(a − x)2/a; that is, βk is a zero of
Tk(x)= axk

− a2xk−1
+ x − 2a. Then

Gk,n(βk)=
−(a−βk)

n

an−1 for all n ≥ 0.
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Proof. We prove this proposition by induction. The result is true for n = 0 and
n = 1 by simple computation. It is true for n = 2 by construction. Now assume
Gk,n(βk)=−(a−βk)

n/an−1 for all positive integers less than or equal to n. Then

Gk,n+1(βk)= β
k
k Gk,n(βk)+Gk,n−1(βk)

= βk
k

(
−(a−βk)

n

an−1

)
+
−(a−βk)

n−1

an−2

=
−(a−βk)

n−1

an−2

(
βk

k (a−βk)

a
+ 1

)
=
−(a−βk)

n−1

an−2

(
aβk

k (a−βk)+ a2

a2

)
=
−(a−βk)

n−1

an

(
aβk

k (a−βk)+ a2)
=
−(a−βk)

n−1

an

(
−a(βk

k (βk − a)− a)
)

=
−(a−βk)

n−1

an

(
−a

(
−(a−βk)

2

a

))
=
−(a−βk)

n−1

an (a−βk)
2

=
−(a−βk)

n+1

an .

Therefore, our result is true for all nonnegative integers. �

We remind the reader that whenever βk is used in this article, it will be dependent
on the choice of a.

Corollary 3.3. lim
n→∞

Gk,n(βk)= 0.

Proof. Before we begin, we kindly remind the reader that k ≥ 1 and this assumption
is continued throughout our work unless stated otherwise. Now the first fact we
establish for this proof is that βk ∈ (a, a+ 1). To show this, we will again consider
Tk(x) = axk

− a2xk−1
+ x − 2a. It is easily verified that Tk(a) < 0 < Tk(a + 1).

Moreover, Tk is strictly increasing on the interval [a,∞), which will be shown by
examining the first derivative of Tk . Notice

T ′k(x)= kaxk−1
− (k− 1)a2xk−2

+ 1

= axk−2(kx − ka+ a)+ 1

= axk−2(k(x − a)+ a)+ 1

> 0
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for all x ∈ [a,∞). Thus, βk ∈ (a, a+ 1). Therefore,

lim
n→∞

Gk,n(βk)= lim
n→∞

−(a−βk)
n

an−1 = 0. �

4. Analysis of G′

k,3(x)

In order to prove our main result on the convergence of the maximum zeros, we
will need a lower bound on the values G ′k,n(gk,n). This section will provide a lower
bound of G ′k,3(x) on the interval [gk,3,∞). We begin with a couple of lemmas to
help us achieve this lower bound.

Lemma 4.1. For k ≥ 3, G ′′k,3(x) has exactly one zero in the interval (0,∞).

Proof. Let k ≥ 3 and recall Gk,3(x)= x2k+1
− ax2k

− axk
+ x − a. Thus,

G ′′k,3(x)= (2k+ 1)(2k)x2k−1
− 2ka(2k− 1)x2k−2

− k(k− 1)axk−2

= kxk−2(2(2k+ 1)xk+1
− 2a(2k− 1)xk

− a(k− 1)
)

= kxk−2 f (x),

where f (x) = 2(2k + 1)xk+1
− 2a(2k − 1)xk

− a(k − 1). We can see that 0 is a
zero of G ′′k,3. In order to show G ′′k,3 has only one zero in (0,∞), we will show that
f (x) has exactly one zero in (0,∞). To do so, consider

f ′(x)= 2(2k+ 1)(k+ 1)xk
− 2a(2k− 1)kxk−1

= 2xk−1((2k+ 1)(k+ 1)x − a(2k− 1)k
)
.

The critical numbers of f are

c1 = 0 and c2 =
a(2k− 1)k

(2k+ 1)(k+ 1)
.

Using this information, it can be verified that f is decreasing on (0, c2) and increas-
ing on (c2,∞). Pairing this with f (0) = −a(k − 1) < 0 and limx→∞ f (x) =∞,
we conclude f , and hence G ′′k,3, has exactly one zero in (0,∞). Therefore, our
conclusion holds. �

Lemma 4.2. For k ≥ 3, G ′k,3(x) has exactly two zeros in the interval (0,∞).

Proof. Let k ≥ 3 and recall Gk,3(x)= x2k+1
− ax2k

− axk
+ x − a. Thus,

G ′k,3(x)= (2k+ 1)x2k
− 2kax2k−1

− kaxk−1
+ 1.

Using the intermediate value theorem and the inequalities G ′k,3(0)=1>0, G ′k,3(1)=
k(2−3a)+2≤−1< 0, and limx→∞ G ′k,3(x)=∞, we can conclude G ′k,3(x) has at
least two zeros in (0,∞). To show there can be no more than two zeros in (0,∞),
we will explore the possibility of G ′k,3(x) having at least three zeros in (0,∞). If
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G ′k,3(x) has at least three zeros in (0,∞), then G ′′k,3 would have at least two zeros
in (0,∞) by Rolle’s theorem, but, by Lemma 4.1, we know this cannot be the case.
Thus, G ′k,3(x) has exactly two zeros in (0,∞) and since G ′k,3(0) 6= 0, those two
zeros are indeed in (0,∞). �

We are now ready to obtain a lower bound on G ′k,3(x) for x ∈ [gk,3,∞).

Proposition 4.3. If k ≥ 1 and x ∈ [gk,3,∞), then G ′k,3(x) > 1.

Proof. Let x ∈ [gk,3,∞). We break our proof into cases.

Case 1: Consider k = 1. We then have

• G1,3(x)= x3
− ax2

− ax + x − a,

• G ′1,3(x)= 3x2
− 2ax − a+ 1, and

• G ′′1,3(x)= 6x − 2a.

Since G ′′1,3(x) > 0 for x ∈ (a/3,∞), we know G ′1,3 is increasing on (a/3,∞).
Thus, 1≤ G ′1,3(a) < G ′1,3(x) when x ∈ [g1,3,∞) as g1,3 > a by Proposition 3.1.

Case 2: Consider k = 2. We then have

• G2,3(x)= x5
− ax4

− ax2
+ x − a,

• G ′2,3(x)= 5x4
− 4ax3

− 2ax + 1, and

• G ′′2,3(x)= 2(10x3
− 6ax2

− a).

Since G ′′2,3(x) > 0 for x ∈ (a,∞), we know G ′2,3 is increasing on (a,∞). Again
notice g2,3 > a by Proposition 3.1. Applying the mean value theorem, we know
there exists c ∈ (a, g2,3) such that

G ′2,3(c)=
G2,3(g2,3)−G2,3(a)

g2,3− a
.

It follows that when x ∈ [g2,3,∞),

G ′2,3(x) > G ′2,3(c)=
G2,3(g2,3)−G2,3(a)

g2,3− a
=

0−G2,3(a)
g2,3− a

=
a3

g2,3− a
> 1.

Case 3: Consider k ≥ 3. By Lemma 4.1, we know G ′′k,3(x) has one positive root,
call it r , and, by Lemma 4.2, we know G ′k,3(x) has two positive roots, call them s
and t , where s < t . Moreover, by Rolle’s theorem, s < r < t . Notice that

• G ′k,3(0)= 1> 0,

• G ′k,3(1)= k(2− 3a)+ 2≤−1< 0,

• limx→∞ G ′k,3(x)=∞, and

• G ′′k,3 is positive on (r,∞).
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Thus, s < 1 < t . Moreover, G ′k,3 is negative on (s, t) and G ′k,3 is positive and
increasing on (t,∞), and, by the mean value theorem, there exists c ∈ [1, gk,3]

such that

G ′k,3(c)=
Gk,3(gk,3)−Gk,3(1)

gk,3− 1
=

0− (2− 3a)
gk,3− 1

=
3a− 2
gk,3− 1

≥ 1.

Hence, c > t , and thus gk,3 > t . Therefore, if x ∈ [gk,3,∞), then

G ′k,3(x) > G ′k,3(c)≥ 1.

Therefore, our conclusion holds for all cases. �

We’re now ready to prove that all of the first derivatives of the polynomials are
bounded below by 1 as well as explore the characteristics of the maximum zeros.
We break this up into two sections, one with the odd-indexed polynomials and the
other with the even-indexed polynomials.

5. Odd-indexed polynomials

We will use the following two propositions to help establish our results. The proofs
are left to the reader as they are similar to those found in [Molina and Zeleke 2009,
Lemmas 6 and 7].

Proposition 5.1. The maximum zeros of the odd-indexed polynomials Gk,2n+1 form
a strictly increasing sequence.

Proposition 5.2. If n ≥ 0, then the derivative of Gk,2n+1(x) is bounded below by 1
for x ∈ [gk,2n+1,∞).

Proposition 5.3. If n ≥ 0, then gk,2n+1 < βk for each k ≥ 1.

Proof. By Proposition 3.2 and for n ≥ 1,

Gk,2n+1(βk)=
−(a−βk)

2n+1

a2n > 0

as βk ∈ (a, a+ 1). Our goal is to show that

G ′k,2n+1(x) > G ′k,2n−1(x) > · · ·> G ′k,3(x) > G ′k,1(x)= 1

for x ∈ [βk,∞) as it will then follow that gk,2n+1 < βk . Now, since Gk,3(x)≤ 0 on
[a, gk,3], it must be the case that βk > gk,3. Proposition 5.2 gives

G ′k,3(x) > G ′k,1(x)= 1

on [gk,3,∞). Thus,
G ′k,3(x) > G ′k,1(x)= 1
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on [βk,∞) as [βk,∞) ⊆ [gk,3,∞). We note that the rest of the proof follows
a similar format to the induction argument used in Proposition 5.2 with [βk,∞)

replacing [gk,2n+1,∞). �

6. Even-indexed polynomials

Proposition 6.1. If n ≥ 1, then the derivative of Gk,2n(x) is bounded below by 1
for x ∈ [gk,2n−1,∞).

Proof. We will make use of induction to obtain our result. Let x ∈ [gk,2n−1,∞).
For n = 1, we have

G ′k,2(x)= (k+ 1)xk
− akxk−1

= xk−1((k+ 1)x − ak) > 1.

By (1), we have

Gk,2n(x)= xk Gk,2n−1(x)+Gk,2n−2(x), and

G ′k,2n(x)= xk G ′k,2n−1(x)+ kxk−1Gk,2n−1(x)+G ′k,2n−2(x).

From Proposition 5.1, we know kxk−1Gk,2n−1(x)≥ 0 as x ∈ [gk,2n−1,∞). So,

G ′k,2n(x)≥ xk G ′k,2n−1(x)+G ′k,2n−2(x).

Now suppose G ′k,2n−2(x)≥ 1. Then

G ′k,2n(x)≥ xk G ′k,2n−1(x)+G ′k,2n−2(x)

> G ′k,2n−2(x) (as xk G ′k,2n−1(x) > 1 by Proposition 5.2)

≥ 1 (by the induction hypothesis).

Therefore, the derivative of the even-indexed polynomials are bounded below
by 1 for x ∈ [gk,2n−1,∞). �

Referring back to Proposition 5.3, we should note that the result in Proposition 6.1
also holds for x ∈ [βk,∞) as [βk,∞)⊆ [gk,2n−1,∞).

Proposition 6.2. The maximum zeros of the even-indexed polynomials form a
decreasing sequence that is bounded below by βk .

Proof. Let n ≥ 1. By Proposition 3.2,

Gk,2n(βk)=
−(a−βk)

2n

a2n−1 < 0.

Thus, βk < gk,2n . We proceed by induction to show the maximum zeros of the
even-indexed polynomials form a decreasing sequence. Notice that

Gk,4(x)= xk Gk,3(x)+Gk,2(x)
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implies

Gk,4(gk,2)= gk
k,2Gk,3(gk,2)+Gk,2(gk,2)= gk

k,2Gk,3(gk,2) > 0

by utilizing Proposition 5.3. Since Gk,4 is increasing on [βk,∞) as well, we
conclude that gk,2 > gk,4. Now assume gk,2 > gk,4 > · · ·> gk,2n . By Lemma 2.2,
Gk,2n−2(gk,2n) = −Gk,2n+2(gk,2n). Since gk,2n−2 > gk,2n (induction hypothesis),
Gk,2n−2 is increasing on [βk,∞), and Gk,2n−2(gk,2n−2)= 0, it follows that

Gk,2n−2(gk,2n) < 0 and Gk,2n+2(gk,2n) > 0,

and, since Gk,2n+2(x) is increasing on [βk,∞), we have gk,2n > gk,2n+2. Therefore,
gk,2 > gk,4 > · · ·> βk . �

7. Main results

Theorem 7.1. The sequence of odd-indexed zeros is increasing and converges to βk ,
and the sequence of even-indexed zeros is decreasing and converges to βk as well.

Proof. By Proposition 5.1 and Proposition 5.3, we have shown the maximum
zeros of the odd-indexed polynomials form an increasing sequence bounded above
by βk , and, by Proposition 6.2, we know the maximum zeros of the even-indexed
polynomials form a decreasing sequence bounded below by βk . In order to show
both of the sequences converge to βk , we will show that limn→∞ gk,n = βk . The
mean value theorem tells us there exists a real number c between gk,n and βk such
that

|G ′k,n(c)| =
∣∣∣∣Gk,n(βk)−Gk,n(gk,n)

βk − gk,n

∣∣∣∣= ∣∣∣∣ Gk,n(βk)

βk − gk,n

∣∣∣∣.
Since G ′k,n(c)≥ 1, |βk−gk,n| ≤ |Gk,n(βk)|. By utilizing Corollary 3.3, which states
limn→∞ Gk,n(βk)= 0, we can say limn→∞ gk,n = βk . Therefore, the sequence of
odd-indexed zeros and the sequence of even-indexed zeros converge to βk . �

Theorem 7.2. The sequence {βk} is decreasing and converges to a.

Proof. We begin by referring the reader back to Tk(x) as defined in Proposition 3.2.
Recall that Tk is increasing on [a,∞) and βk ∈ (a, a+ 1) is a zero of Tk . Using
the fact that βk is a zero of Tk , we have aβk

k − a2βk−1
k = 2a−βk . Then

Tk+1(βk)= aβk+1
k − a2βk

k +βk − 2a = βk(aβk
k − a2βk−1

k )+βk − 2a

= βk(2a−βk)+βk − 2a = (βk − 1)(2a−βk)

> 0.

Thus, βk+1 < βk , which verifies that {βk} is decreasing. Now let ε > 0. Then



220 REBECCA GRIDER AND KRISTI KARBER

lim
k→∞

Tk(a+ ε)= lim
k→∞
[a(a+ ε)k − a2(a+ ε)k−1

+ (a+ ε)− 2a]

= lim
k→∞
[a(a+ ε)k−1(a+ ε− a)+ a+ ε− 2a]

= lim
k→∞
[εa(a+ ε)k−1

+ ε− a]

=∞.

We then know that there exists j ∈ Z such that T j (a+ε) > 0 and so β j ∈ (a, a+ε).
Therefore, limk→∞ βk = a. �
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