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This paper examines binary codes from a frame-theoretic viewpoint. Binary
Parseval frames have convenient encoding and decoding maps. We characterize
binary Parseval frames that are robust to one or two erasures. These characteriza-
tions are given in terms of the associated Gram matrix and with graph-theoretic
conditions. We illustrate these results with frames in lowest dimensions that are
robust to one or two erasures. In addition, we present necessary conditions for
correcting a larger number of erasures. As in a previous paper, we emphasize
in which ways the binary theory differs from the theory of frames for real and
complex Hilbert spaces.

1. Introduction

In the last decades, frame theory has matured into a field with relevance in pure
and applied mathematics as well as in engineering [Christensen 2003; Kovačević
and Chebira 2007a; 2007b]. The simplest examples of frames are finite frames,
finite spanning sequences in finite-dimensional real or complex Hilbert spaces. The
possibility of having linear dependencies among the frame vectors can be used for
error correction when a vector is encoded in terms of its frame coefficients, the
inner products with the frame vectors [Goyal et al. 1998]. A common type of error
considered in this context is an erasure, when part of the frame coefficients becomes
corrupted or inaccessible and one has to recover the encoded vector from partial
data [Marshall 1984; 1989]. The performance of frames for decoding erasures was
studied, and in certain cases optimal frames could be characterized in a geometric
fashion [Casazza and Kovačević 2003; Strohmer and Heath 2003; Holmes and
Paulsen 2004; Püschel and Kovačević 2005], which was further extended with
graph-theoretic or algebraic methods [Bodmann and Paulsen 2005; Xia et al. 2005;
Kalra 2006; Bodmann et al. 2009b; Bodmann and Elwood 2010].
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Apart from the presence of the inner product, one could say that these applications
in frame theory are similar to earlier work on error correcting linear codes over
finite fields [MacWilliams and Sloane 1977; Betten et al. 2006]. Motivated by the
literature in frame theory, a previous paper studied an analogue of Parseval frames
in the setting of binary vector spaces [Bodmann et al. 2009a]; see also [Hotovy et al.
2012]. In this paper, we continue this direction of research and ask whether concepts
from frame theory yield new insights for binary linear codes. We study how the
Gram matrix of a binary frame relates to its robustness, its resilience to erasures.
The space spanned by the columns of the Gram matrix is the set of all codewords,
so the main question is in which way the robustness of a frame manifests itself.
Interpreting the Gram matrix as the adjacency matrix of a graph gives a natural
reformulation of conditions for robustness in terms of the connectivity properties
of the graph. Note that this graph is different from the so-called Tanner graph of
a binary code, which is a bipartite graph associated with the parity check matrix
[Betten et al. 2006]. The space of code words is annihilated by the parity check
matrix, so one can expect complementary insights from properties of the Gram
and Tanner matrices with their associated graphs. While the structure of Tanner
graphs has been studied with sophisticated methods in coding theory [Forney 2001;
2003; 2011], the Gram matrix and its role for erasures seems to appear mostly in
the literature on frames; see, for example, [Holmes and Paulsen 2004; Bodmann
and Paulsen 2005].

The remainder of this paper is structured as follows. In Section 2, we fix notation
and define frames and Parseval frames for finite-dimensional binary vector spaces.
Section 3 gives a motivation for the use of such frames as binary codes. In Section 4,
we study robustness to erasures. Section 5 presents the results on robustness in
graph-theoretic terms and gives the smallest frames with robustness to one or two
erasures.

2. Preliminaries

We define binary frames and Parseval frames without appealing to the concept of
an inner product, as in [Bodmann et al. 2009a]. The vector space that these families
of vectors span is of the form Zn

2 = Z2⊕ · · ·⊕Z2 for some n ∈ N, with the binary
numbers Z2 as the ground field.

Definition 2.1. A frame for Zn
2 is a family of vectors F= { f1, . . . , fk} such that

span F= Zn
2.

To define a Parseval frame over Zn
2 , we use a bilinear form that resembles the

usual dot product on Rn . For other choices of bilinear forms and a more general
theory of binary frames, see [Hotovy et al. 2012].
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Definition 2.2. The dot product on Zn
2 is the bilinear map ( · , · ) : Zn

2 ×Zn
2→ Z2

given by 
a1
...

an

 ,
b1
...

bn


 := n∑

i=1

ai bi .

The dot product provides a natural map between vectors and linear functionals
on Zn

2 . With the help of this dot product, we define a Parseval frame for Zn
2 .

Definition 2.3. A Parseval frame for Zn
2 is a family of vectors F= { f1, . . . , fk} in

Zn
2 such that

x =
k∑

j=1

(x, f j ) f j for all x ∈ Zn
2.

According to this definition, a Parseval frame provides a simple, redundant
expansion for any vector x in Zn

2 . Unless otherwise noted, when we speak of a
frame or of a Parseval frame in this paper, we always mean families of vectors
in Zn

2 with the properties specified in Definitions 2.1 and 2.3, respectively. In the
next section, we present a motivating example that explains the design problem of
such frames as codes for erasures.

3. Binary frames as codes for erasures

Suppose Alice wants to send Bob a message that consists of a sequence of 0’s
and 1’s. We can represent this message as the column vector

x =


x1

x2
...

xn

 ∈ Zn
2,

where the entries x1, x2, . . . , xn are the 1st, 2nd, . . . , n-th digits of the message.
Alice is aware that the message is sent through a somewhat unreliable medium, so
she decides to encode it, that is, convert it into a new message which is generated
from a codebook known to both Alice and Bob. The encoded message should have
a reasonable chance of withstanding erasures, that is, removals of entries in the
message that might occur. If the codebook is properly chosen, Bob will be able to
recover the original message x from the fragments of the encoded message that
remain.
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The encoding is a linear map associated with a binary frame. Let the family of
vectors F= { f1, f2, . . . , fk} be a frame for the vector space Zn

2 , and let

2F =


← f1 →

← f2 →
...

← fk →

=


f1,1 f1,2 · · · f1,n

f2,1 f2,2 · · · f2,n
...

...
...

fk,1 fk,2 · · · fk,n

 ,
where the entry fi, j is the j-th entry of the i-th vector fi ∈ F. Alice encodes her
message x by left-multiplying it with the matrix2F. Consequently, Alice’s encoded
message will be a k× 1 matrix, where the i-th entry is the dot product (x, fi ):

2Fx =


f1,1 f1,2 · · · f1,n

f2,1 f2,2 · · · f2,n
...

...
...

fk,1 fk,2 · · · fk,n




x1

x2
...

xn

=

(x, f1)

(x, f2)
...

(x, fk)

 .
For convenience, let us abbreviate Alice’s encoded message 2Fx as

2Fx = y =


y1

y2
...

yk

 .
A first requirement for the choice of F is that, if the encoded message arrives
unaltered, then Bob can easily extract x from it. If F is a Parseval frame, then this
is indeed the case. In terms of 2F, the reconstruction identity in Definition 2.3 is

2∗F2F = In,

where 2∗F denotes the transpose of 2F.
Imagine at least one entry in the message y gets “erased”; that is, suppose Bob

only receives the r × 1 matrix

ỹ =


y j1
y j2
...

y jr

 ,
where { j1, j2, . . . , jr } ⊂ {1, 2, . . . , k}. For example, if there had been two erasures,
then Bob would have received a (k− 2)× 1 matrix with two of the original entries
in y missing.
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The goal is to reconstruct the original message x from the received matrix ỹ.
This can be achieved by finding an n× r matrix L̃ such that

x = L̃


y j1
y j2
...

y jr

 .
A notationally more convenient way to formulate this problem is to use the full
message without erasures but require reconstruction with a matrix L that has
columns of zeros for the erased entries. To see this, let the columns of L̃ be denoted
by

L̃ =

↑ ↑ ↑

l j1 l j2 · · · l jr
↓ ↓ ↓

 ,
and let the entries y1, y2, and y4 in y be erased. Then the matrix L is

L =

↑ ↑ ↑ ↑ ↑ ↑

0 0 l j1 0 l j2 · · · l jr
↓ ↓ ↓ ↓ ↓ ↓

 ,
and there exists L of the above form such that x = Ly if and only if there exists L̃
with x = L̃ ỹ. To characterize the requirement on L having columns of zeros, we
write L = L E , where E is a diagonal 0-1-matrix with a 1 on the diagonal for any
digit which gets transmitted and a 0 for every erased digit. With this terminology,
we can reformulate the problem of correcting erasures as that of finding any L such
that x = L E2Fx for each x ∈ Zn

2 , that is, whether E2F has a left inverse.

Definition 3.1. Let F={ f1, f2, . . . , fk} be a frame for Zn
2 , and let EJ be a diagonal

k×k matrix associated with an erasure of digits indexed by J ⊂{1, 2, . . . , k}, where
(EJ ) j, j = 0 if j ∈ J and (EJ ) j, j = 1 otherwise. We say that the frame F can correct
the erasure if EJ2F has a left inverse. We also say that the erasure of digits indexed
by J is correctable.

The existence of a left inverse is equivalent to a rank condition and to the spanning
property of the family of vectors corresponding to unaffected digits.

Proposition 3.2. Let F={ f1, f2, . . . , fk} be a frame for Zn
2 and let J ⊂{1,2, . . . ,k}.

The following are equivalent:

(1) The erasure of digits indexed by J is correctable.

(2) The map EJ2F is one-to-one.

(3) The subfamily F̃= { f j : j 6∈ J } spans Zn
2; that is, it is a frame.
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(4) The matrix EJ2F has rank n.

Proof. The equivalence of (1) and (2) is a standard exercise in linear algebra. We
next prove the equivalence of (1) and (4). Let EJ2F have rank n. Since F is a
frame, k≥ n. By elementary row operations, EJ2F can be transformed into reduced
row echelon form. However, this sequence of row operations can be obtained by
multiplying with a suitable invertible matrix on the left. Thus, there is a k × k
matrix R such that

REJ2F =

(
In

0k−n,n

)
.

Henceforth, we adopt block matrix notation and let In denote the n × n identity
matrix and 0m,n the m× n zero matrix with m, n ∈ N. Next, left multiplying this
matrix by (In 0n,k−n) gives

(In 0n,k−n)REJ2F = In.

Thus, the required left inverse is L = (In 0n,k−n)R. On the other hand, if there is a
left inverse for EJ2F then this matrix must have the maximal possible rank, n.

To see the equivalence of (3) and (4), we observe that F̃ is spanning if and only
if2F̃ has rank n, and the same is true for the matrix EJ2F, where the frame vectors
belonging to erased digits have been replaced by zero vectors. �

4. Robustness to erasures

Next, we consider sets of erasures. A natural ordering is to consider erasures of at
most one coefficient, then erasures of up to two, etc. A measure for robustness of a
frame is how many erasures it can correct.

Definition 4.1. A frame F = { f1, f2, . . . , fk} for Zn
2 is robust to m erasures if

EJ2F has a left inverse for any J ⊂ {1, 2, . . . , k} of size |J | ≤ m.

Dimension counting gives a simple necessary condition for the size of a frame
robust to m erasures.

Proposition 4.2. If F = { f1, f2, . . . , fk} is a frame for Zn
2 which is robust to m

erasures, then k ≥ n+m.

Proof. If J ⊂ {1, 2, . . . , k} has size |J | = m then by assumption EJ2F has a left
inverse, and the subfamily F̃= { f j : j 6∈ J } spans Zn

2 . Thus, the cardinality of F̃ is
bounded by |F̃| = k−m ≥ n. �

Next, we wish to establish sufficient conditions which ensure robustness. If an
erasure indexed by J is not correctable, then EJ2F is not one-to-one and there
exists a nonzero x ∈ Zn

2 such that EJ2Fx = 0. For Parseval frames, there appears
to be a simple condition in terms of an eigenvalue problem for submatrices of the
Grammian. We prepare this with a lemma.
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Lemma 4.3. Let A be an n× k matrix. The matrix AA∗ has eigenvalue 1 if and
only if A∗A has eigenvalue 1.

Proof. Suppose that A∗A does have an eigenvalue equal to 1. That is, suppose that
A∗Ax = x . Then y = Ax is nonzero and AA∗y = AA∗Ax = Ax = y. Hence, AA∗

has an eigenvalue equal to 1. Switching the roles of A and A∗ gives the converse. �

Proposition 4.4. Let F = { f1, f2, . . . , fk} be a Parseval frame for Zn
2 and let

J ⊂ {1, 2, . . . , k}. If E J c2F2
∗

F E J c does not have eigenvalue one, where J c is the
complement of J in {1, 2, . . . , k}, then the erasure is correctable.

Proof. We use the fact that AA∗ has eigenvalue one if and only if A∗A does. Here,
A = E J c2F = (I − EJ )2F. Assuming there is no eigenvector of eigenvalue one
for A∗A means there exists no nonzero x such that

2∗F(I − EJ )(I − EJ )2Fx =2∗F(I − EJ )2Fx = x .

By assumption, 2∗F2F = I , so this implies that there is no x 6= 0 with

2∗F EJ2Fx = 0.

Consequently, (2∗F EJ2F)
−12∗F EJ2F = I and the required left inverse of EJ2F

is
L = (2∗F EJ2F)

−12∗F. �

At first glance, robustness against one erasure would motivate the search for
frames whose vectors contain only an even number of ones, because then the
diagonal of the Gram matrix 2F2

∗

F would be zero, avoiding the eigenvalue one
condition. However, such frames do not exist because any linear combination of
vectors with an even number of ones still has an even number of ones. Thus, a
family of such vectors cannot be spanning for all of Zn

2 .
In addition, the above eigenvalue condition is sufficient for recovery, but not

necessary. We present an example for this:

Example 4.5. Let n = 1, F = {1, 1, 1}, and J = {2, 3}. The encoded “vector”
x ∈ {0, 1} is 2Fx = (x x x)∗, and thus EJ2F has the left inverse (1 0 0). However,
E J c2F2

∗

F E J c = E J c has eigenvalue one.

This motivates the search for a more general condition which ensures robustness.
To this end, we introduce a function counting the number of 1’s in a vector, the
(Hamming) weight.

Definition 4.6. A vector x ∈ Zn
2 has weight w(x)= |{ j : x j = 1}|. We also speak

of the parity of a vector, which is even or odd, depending on whether the weight is
an even or an odd number.
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Theorem 4.7. Let F be a Parseval frame with Gram matrix G = 2F2
∗

F. The
frame F is robust to m erasures if and only if all the eigenvectors of G corresponding
to eigenvalue one have a weight of at least m+ 1.

Proof. If F is a Parseval frame, then any eigenvector of eigenvalue one of the Gram
matrix is a possible message and vice versa. This is true because if y =2Fx then
2F2

∗

F y = y and conversely if y is an eigenvector of eigenvalue one then y =2Fx
for x =2∗F y.

Assume that each such eigenvector has weight at least m+ 1. If |J | ≤ m, then
applying EJ to y can only change at most m ones to zero, so EJ y 6= 0 and thus
EJ2Fx 6= 0 unless x = 0. This proves that EJ2F is one-to-one.

Conversely, given a nonzero message y, if for each J ⊂{1, 2, . . . , k}with |J |≤m
we have E J y 6= 0, then y must have weight at least m+ 1. �

It is implicit in this characterization that the robustness of a frame against erasures
is determined by the Gram matrix. If two frames have the same Gram matrix, then
the two frames have identical robustness. Since the weight of a vector is invariant
under permutations of its entries, the same holds if the Gram matrices differ only by
a permutation of rows and columns. This means that the search for robust frames
can be restricted to representatives of equivalence classes introduced in [Bodmann
et al. 2009a].

Definition 4.8. Two frames F= { f1, f2, . . . , fk} and G= {g1, g2, . . . , gk} for Zn
2

are called switching equivalent if there is a binary n × n matrix U such that
U∗U =UU∗= I and a permutation σ on the set {1, 2, . . . , k} such that f j =Ugσ( j)

for all j ∈ {1, 2, . . . , k}.

Theorem 4.9. If two frames F and G for Zn
2 are switching equivalent, then F is

robust to m erasures if and only if G is.

Proof. If F and G are switching equivalent, then the Gram matrices of F and G

differ by a permutation of rows and columns. The same is true for the eigenvectors
corresponding to eigenvalue one. However, the weight of the eigenvectors is
invariant under permutation of coordinates. This means, according to the preceding
theorem, if F is robust to m erasures, so is G, and vice versa. �

In the context of real or complex Hilbert spaces, equal-norm frames characterize
optimality for one erasure among Parseval frames [Casazza and Kovačević 2003]. In
the binary setting, the equal-norm condition would correspond to a frame in which
the vectors all have the same parity. Linear combinations of even vectors remain
even, so there cannot be a frame consisting only of vectors having even parity, which
leaves only the possibility of Parseval frames having only odd vectors. However,
we show below that such frames have severe limitations for their robustness. We
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prepare this with a lemma which is essentially a result in [Haemers et al. 1999,
Lemma 2.2].

Lemma 4.10. Let F= { f1, f2, . . . , fk} be a Parseval frame and G the associated
Gram matrix; then the vector y with entries y j = G j, j for j ∈ {1, 2, . . . , k} is an
eigenvector of G corresponding to eigenvalue one.

Proof. Since G is idempotent, is enough to show that yi = Gi,i defines a vector in
the range of G. To see this, let (ran G)⊥ = {x ∈ Zk

2, (x, z) = 0 for all z ∈ ran G}
and recall ((ran G)⊥)⊥ = ran G because ran G ⊂ ((ran G)⊥)⊥ by definition and
dim(ran G)⊥+dim ran G = k. If x ∈ (ran G)⊥, then, by setting z = Gx and binary
arithmetic, 0= (z, x)=

∑k
i, j=1 Gi, j xi x j =

∑k
j=1 G j, j x j . Thus, (x, y)= 0 for each

such x , and y is necessarily in ran G. �

Next, we examine how many erasures a binary Parseval frame can possibly
correct. It turns out that, in some cases, the inequality necessary for correcting all
m-erasures, k ≥ n+m, can be strengthened considerably.

Theorem 4.11. If F= { f1, f2, . . . , fk} is a Parseval frame of which p vectors are
odd, then the frame cannot be robust to more than min{p−1, k− p/2−1} erasures.

Proof. We recall that the vector y defined by y j = G j, j , the diagonal of the Gram
matrix G, is an eigenvector of G corresponding to eigenvalue one, and that it has
weight p. It is clear that the frame cannot correct more than p− 1 erasures. On the
other hand, assume that the minimal weight q among the vectors in the range of G
is assumed by x , so p ≥ q. The vector z = x + y is then also in the range of G.
Define 1 = q + p− k; then the two vectors have at least 1 indices in common
for which the entries of both vectors are one. Thus, the weight of z is bounded by
q ≤ w(z)≤ q −1+ p−1= 2k− q − p. This inequality gives q ≤ k− p/2. �

This result shows that binary Parseval frames containing only odd vectors, the
binary analogue of real or complex equal-norm Parseval frames, have a severe
limitation for robustness.

Corollary 4.12. If F= { f1, f2, . . . , fk} is a Parseval frame which consists only of
odd vectors, then it cannot correct more than k/2− 1 erasures.

Moreover, maximizing the upper bound for robustness yields that a binary
Parseval frame achieves the best possible robustness when p− 1= k− p/2− 1, so
p = 2k/3.

Corollary 4.13. If F= { f1, f2, . . . , fk} is a Parseval frame for Zn
2 , then it cannot

correct more than 2k/3− 1 erasures.
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5. Binary Parseval frames, graphs and erasures

With a binary symmetric k× k matrix A, we associate a graph γ on k vertices. An
entry Ai, j = 1 means there is an edge connecting vertices i and j ; otherwise there
is no edge between them. If Ai,i = 1, then vertex i has a loop, and we say that i is
adjacent to itself; otherwise, i has no loop. The graph γ determines the matrix A,
often called its adjacency matrix. We characterize binary Parseval frames in terms
of the adjacency structure of the graph associated with the Gram matrix.

Theorem 5.1. If F is a binary frame and G =2F2
∗

F is its Gram matrix, then F is
a Parseval frame if and only if all of the following conditions hold for the graph γ
associated with G:

(1) Every vertex i has an even number of neighbors in the set {1, 2, . . . , k}\{i}.

(2) If two vertices of γ are not adjacent, then the two vertices have an even number
of common neighbors.

(3) If two vertices of γ are adjacent, then the two vertices have an odd number of
common neighbors.

Proof. First, suppose F is Parseval. Then G2
=2F2

∗

F2F2
∗

F=2F2
∗

F=G. From
this, we conclude that the three properties are true.

(1) Let Gi,i =1. Then
∑

j Gi, j G j,i =
∑

j Gi, j =1. Hence,
∑

j, j 6=i Gi, j =0. On the
other hand, let Gi,i = 0. Then

∑
j Gi, j G j,i = 0, and consequently

∑
j, j 6=i Gi, j = 0.

Thus, any vertex i has an even number of neighbors in the set of vertices not
including i .

(2) If two vertices j and k, j 6= k, are nonadjacent then 0 = G j,k =
∑

l G j,l Gl,k .
The nodes j and k then necessarily have an even number of common neighbors.

(3) If vertices j and k are adjacent nodes then 1 = G j,k =
∑

l G j,l Gl,k and they
have an odd number of common neighbors.

On the other hand, if these three properties hold then G2
= G can be verified

by a similar discussion of entries on the diagonal and on the off-diagonal: The
property (1) implies that Gi,i = (G2)i,i , while (2) and (3) imply G j,k = (G2) j,k .
If F is a frame, then the matrix 2F has rank n. Thus by appropriate elementary
row operations it can be transformed into the row-reduced echelon form. These row
operations amount to left multiplication with an invertible matrix R, R2F=

( In
0n−k,n

)
,

and consequently 2∗F R∗ = (In 0n,n−k). If G2
= G, then

RG2 R∗ =
(

In

0n−k,n

)
2∗F2F(In 0n,n−k)=

(
In 0n,n−k

0n−k,n 0k,k

)
= RG R∗,

and the middle equality shows that 2∗F2F = In , so F is Parseval. �
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A graph that satisfies conditions (2) and (3) of Theorem 5.1 is not a strongly regu-
lar graph since the exact number of common neighbors may fluctuate between pairs
of adjacent vertices and between pairs of nonadjacent vertices. However, since the
number of common neighbors remains even or odd between pairs of adjacent or non-
adjacent vertices, respectively, we propose the term strongly parity regular graph
to refer to graphs that satisfy (2) and (3) of Theorem 5.1.

Next, we discuss graph-theoretic criteria for robustness to erasures. With
Theorem 4.7, we have a characterization of robustness to m erasures in terms of the
weights of the eigenvectors of the Gram matrix G corresponding to eigenvalue one.
Because of the relation G2

= G, these are precisely the vectors in the range of G.
We can deduce a simple necessary and sufficient condition for the graph associated
with a Parseval frame that is robust to one or two erasures.

Theorem 5.2. Let F be a Parseval frame for Zn
2 , G its Gram matrix and γ the

associated graph. The frame F is robust to one erasure if and only if every vertex
of γ has at least two neighbors other than itself and is part of a cycle of length at
most 4.

Proof. First, we prove that robustness against one erasure implies the graph-theoretic
properties. From the Parseval property, we know that each vertex has an even number
of neighbors other than itself. If we pick a vertex i then the neighbors of it are
encoded in the i-th column of the Gram matrix G. On the other hand, this column
vector is in the range of G. If the frame corrects one erasure, then this vector
must have at least weight two. Consequently, each vertex has to have at least two
neighbors other than itself in order to correct one erasure.

Given a vertex i and two of its neighbors j and l, i 6= j 6= l 6= i , then either the
vertices j and l are adjacent and i is part of a 3-cycle, or they are not adjacent. In
this case, j and l have an even number of common neighbors, so there is another
vertex i ′ adjacent to j and l. Thus i , j , i ′ and l form a 4-cycle.

Next, we prove that the graph-theoretic properties ensure robustness against one
erasure. For this, we only need to make the weaker assumption that each vertex
has a neighbor other than itself. We note that a one-erasure not being correctable
requires that there is a vector el from the standard basis, with some l ∈ {1, 2, . . . , k},
such that Gel = el . This implies that G j,l = δ j,l for all j , so the l-th vertex is only
a neighbor to itself. This is excluded by the assumption. �

Additional conditions characterize robustness against two erasures.

Definition 5.3. We say that a vertex i discriminates between two other vertices j
and l if it is a neighbor to only one of them. We also say that the pair { j, l} has a
discriminating vertex i .
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Theorem 5.4. Let F be a Parseval frame for Zn
2 , G its Gram matrix and γ the

associated graph. The frame F is robust to two erasures if and only if the conditions
for correcting one erasure hold and if every nonadjacent pair of vertices that
are both adjacent to themselves and every adjacent pair of vertices that are both
nonadjacent to themselves have a discriminating vertex.

Proof. We first note that the graph-theoretic conditions in the preceding theorem
are implied by robustness against two erasures which is a stronger requirement than
correcting all one-erasures.

Next, we recall that Theorem 4.7 characterizes robustness in terms of the existence
of certain eigenvectors. Assuming robustness against 1 erasure, an erasure of m = 2
digits is not correctable if and only if there is a pair {l, l ′} and h = el+el ′ satisfying
Gh = h. Then, Gl,l =Gl ′,l ′ = 1 and Gl,l ′ = 0 or Gl,l =Gl ′,l ′ = 0 and Gl,l ′ = 1. The
first case corresponds to two nonadjacent vertices that are neighbors to themselves
and the second one is a pair of adjacent vertices that are not neighbors to themselves.
In both cases, the eigenvalue equation requires that G j,l = G j,l ′ for all j 6∈ {l, l ′}.
This means if a vertex j is adjacent to l then it is adjacent to l ′ and vice versa. We
conclude that the eigenvalue equation is satisfied by h if and only if there is no
vertex which discriminates between l and l ′. Hence, all erasures of m = 2 indices
are correctable if and only if all one-erasures are and if there is a discriminating
vertex for any nonadjacent pair of vertices that are both adjacent to themselves and
any adjacent pair of vertices that are both nonadjacent to themselves. �

To illustrate these results, we use them to identify binary Parseval frames in
3 and 4 dimensions that achieve robustness to one or two erasures. We briefly
mention that the canonical basis vectors form a Parseval frame that cannot correct
any erasure, because they are minimal spanning sets. This means our search starts
with 4 vectors in Z3

2 and 5 vectors in Z4
2. Removing zero vectors from a frame

does not affect the robustness as well as the Parseval property, so we can restrict
ourselves to binary Parseval frames which do not contain zero vectors. Apart
from zero vectors, identical pairs of vectors do not contribute to the reconstruction
identity in Definition 2.3, which can be interpreted as a trivial form of incorporating
redundancy in the encoding.

Definition 5.5 [Bodmann et al. 2009a]. A binary Parseval frame { f1, f2, . . . , fk}

for Zn
2 is called trivially redundant if there is j ∈ {1, 2, . . . k} with f j = 0, or if

there are two indices i 6= j with fi = f j .

We restrict our study of robustness to binary Parseval frames that are not trivially
redundant. This implies an upper bound on the number of frame vectors:

Theorem 5.6 [Bodmann et al. 2009a]. Let n ≥ 3. Let F = { fi }
k
i=1 be a family

without repeated vectors in Zn
2 and G = Zn

2 \F. If F is a Parseval Frame for Zn
2 ,

then G is also a Parseval frame.
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Corollary 5.7. If n ≥ 3 and F = { fi }
k
i=1 is not trivially redundant, then k ≤

2n
− n− 1.

Proof. If F is Parseval, then so is G. Removing the zero vector from G gives a
spanning set G \ {0}, so it has at least n vectors. The union of F and G \ {0} has a
total of 2n

− 1 vectors, so comparing sizes gives k+ n ≤ 2n
− 1. �

Switching equivalence allows a further simplification of the search. Since the
robustness is the same for all representatives of a switching equivalence class, we
can extract frames which are robust to one or two erasures from the classification
of binary Parseval frames for Z3

2 and Z4
2 that are not trivially redundant [Bodmann

et al. 2009a].
In n = 3 dimensions, the above corollary limits the number of vectors in a binary

Parseval frame that is not trivially redundant by k ≤ 23
−3−1= 4. Up to switching

equivalence, there are only two such binary Parseval frames for Z3
2: the canonical

basis with 3 vectors and a binary Parseval frame with 4 vectors [ibid.]. Robustness
to one erasure rules out the canonical basis, which leaves the case of 4 vectors.
We examine the graph belonging to this Parseval frame, for readability purposes
labeling vertices by the corresponding rows in 2F.

Example 5.8. The Parseval frame F for Z3
2 with encoding matrix

2F =


1 1 0
1 0 1
0 1 1
1 1 1


cannot correct one erasure because the graph associated with 2F2

∗

F has an isolated
vertex, as shown in Figure 1.

By the limit on the number of vectors, a Parseval frame for Z3
2 which is robust to

one erasure contains at least one repeated vector. We do not pursue this any further
because it is a case of trivial redundancy.

We proceed to n= 4. Here, the corollary limits the size of the frames we consider
to k ≤ 24

−4−1= 11 vectors. As above, any graph with an isolated vertex prevents
robustness to one erasure. This happens for the switching equivalence class of
binary Parseval frames of 5 vectors for Z4

2.

Example 5.9 [Bodmann et al. 2009a]. A Parseval frame F for Z4
2 with 5 vectors is,

up to switching equivalence, given by

2F =


1 0 0 0
0 1 1 0
0 1 0 1
0 0 1 1
0 1 1 1

 .
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111101

011

110

Figure 1. The graph associated with the Parseval frame of 4 vectors
in Z3 given in Example 5.8. Vertices are labeled by the correspond-
ing rows of the encoding matrix. The presence of the isolated
vertex (1 1 1) implies that this frame cannot correct one erasure.

1000 0110

0101

0011

0111

Figure 2. The graph belonging to the Parseval frame of 5 vectors
in Z4 given in Example 5.9 has the isolated vertices (1 0 0 0) and
(0 1 1 1), so an erasure of the first frame coefficient or of the last
one cannot be corrected.

The graph associated with the Gram matrix has two isolated vertices as shown in
Figure 2, so the frame cannot correct one erasure.

Next, we identify a smallest binary Parseval frame for Z4
2 which is not trivially

redundant and can correct one erasure. There is only one switching equivalence
class of Parseval frames for Z4

2 containing 6 vectors [Bodmann et al. 2009a], so it
is enough to investigate one representative.

Example 5.10. Let F be the Parseval frame for Z4
2 with

2F =



1 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 1
1 1 1 1


.



BINARY FRAMES, GRAPHS AND ERASURES 165

1000 1100

1010

1001

0111

1111

Figure 3. The graph belonging to the Parseval frame of 6 vectors
in Z4 given in Example 5.10. Its adjacency structure satisfies the
conditions in Theorem 5.2; thus it can correct one erasure. How-
ever, F is not robust to two erasures since no vertices discriminate
between the nonadjacent vertices (0 1 1 1) and (1 0 0 0) which are
both adjacent to themselves.

The graph of 2F2
∗

F satisfies the conditions for correcting one erasure stated in
Theorem 5.2, which can be confirmed by inspecting Figure 3. However, it cannot
correct more than one because it fails the requirement of discriminating vertices
stated in Theorem 5.4.

The next larger Parseval frames form again a unique switching equivalence class
[Bodmann et al. 2009a]. They fail to be robust to two erasures as well.

Example 5.11. Let F be the binary Parseval frame for Z4
2 containing seven vectors

with

2F =



1 0 0 0
0 1 0 0
1 1 0 0
1 1 1 0
1 1 0 1
0 0 1 1
1 1 1 1


.

The associated graph shown in Figure 4 satisfies the conditions of Theorem 5.2,
but fails the conditions for correcting more than one, as described in Theorem 5.4.

Up to switching equivalence, the next example is the smallest binary Parseval
frame for Z4

2 which is not trivially redundant and can correct 2 erasures.

Example 5.12. Consider the binary Parseval frame F for Z4
2 with 8 vectors given
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1000

0100

1100

1110

1101
0011

1111

Figure 4. The graph associated with the Parseval frame of 7 vectors
in Z4

2 given in Example 5.11. It satisfies the connectivity conditions
for correcting one erasure, but fails to be robust to two erasures
because the nonadjacent vertices (1 1 0 1) and (1 1 1 0) are both
adjacent to themselves and do not have any discriminating vertex.

by the matrix

2F =



0 0 1 0
1 0 1 0
0 1 1 0
0 0 0 1
1 0 0 1
0 1 0 1
1 0 1 1
0 1 1 1


.

The associated graph shown in Figure 5 satisfies the conditions of Theorem 5.4, so
it can correct up to two erasures.

Finally, we provide necessary conditions for correcting m-erasures, which require
increased connectivity.

Theorem 5.13. Let F be a Parseval frame for Zn
2 , G its Gram matrix and γ the

associated graph. If F is robust to m ≥ 1 erasures, then every vertex has at least
m + 1 neighbors, possibly including itself , and it is part of at least m(m − 1)/2
cycles of length at most 4.

Proof. This condition follows again from the weights of the columns of G. If a
vertex i is adjacent to itself then it needs at least m edges to other vertices. If it is
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0010

1010

0110

0001 1001

01011011

0111

Figure 5. The graph associated with the Parseval frame of 8 vectors
in Z4

2 given in Example 5.12. It can correct up to two erasures
because it satisfies the conditions of Theorem 5.4. For example,
the vertex (0 1 1 0) discriminates between the nonadjacent vertices
(1 0 1 1) and (0 1 1 1), and the vertex (0 0 1 0) discriminates
between the adjacent vertices (1 0 1 0) and (1 0 0 1).

not adjacent to itself, it requires m+ 1 edges. Thus, there are at least m(m− 1)/2
pairs of edges to other vertices. Any pair of such edges leads to either an adjacent
pair or to a nonadjacent pair of vertices. If the pair is adjacent, then it forms a
3-cycle with the vertex i . Otherwise, the nonadjacent pair has a common neighbor
other than the vertex i , forming a 4-cycle as in Theorem 5.2. �

Such necessary conditions are useful when searching for binary Parseval frames
that are maximally robust. This could, in principle, be done by enumerating all
Parseval frames and by testing their robustness against erasures exhaustively. The
properties of the examples we have examined in Z3

2 and Z4
2 would, for example,

be accessible by studying linear dependencies among the frame vectors. However,
because of the combinatorial nature of robustness, it is advantageous for the search
in higher dimensions if testing can be restricted to the subset of Parseval frames
satisfying the necessary conditions.
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