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We study the inertia space of R2m with the standard action of the special orthog-
onal group SO(2m). In particular, we indicate a decomposition of the inertia
space that induces the orbit Cartan type stratification of the inertia space recently
defined by C. Farsi, M. Pflaum, and the first author for an arbitrary smooth
G-manifold where G is a compact Lie group.

1. Introduction

Let G be a compact Lie group, let M be a smooth, left G-manifold, and let X=G\M
denote the orbit space of M . The inertia space3X is a topological space given by a
subquotient of G×M under the diagonal G-action, where G acts by conjugation on
the first factor. In [Farsi et al. 2012], an explicit Whitney stratification of the inertia
space is presented, called the orbit Cartan type stratification, giving the inertia
space the structure of a differentiable stratified space. This structure coincides
with the notion of a stratified space with smooth structure — see [Pflaum 2001] —
and simultaneously a differentiable space in the sense of [Navarro González and
Sancho de Salas 2003]. In the case that G acts locally freely, so that G\M is an
orbifold, the inertia space has played a major role in the study of the geometry of
orbifolds; see [Adem et al. 2007], for instance. In general, the inertia space has
appeared in connection with equivariant homology theories in noncommutative
geometry [Brylinski 1987].

Recall that a decomposition of a topological space X is a locally finite partition
of X into locally closed, smooth manifolds, called pieces, such that the frontier
condition is satisfied: if R∩ S 6=∅ for pieces R and S, then R ⊆ S. A stratification
of X is an equivalence class of essentially identical decompositions, defined by
assigning to each point x ∈ X the germ at x of the piece containing x in a decom-
position of a neighborhood of x . A decomposition of X induces a stratification
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if the germ assigned to x by the stratification coincides with the germ at x of the
piece of the decomposition containing x . See [Pflaum 2001] for background on
decomposed and stratified spaces.

In this note, we determine a decomposition of the inertia space for the standard
action of the even special orthogonal group SO(2m) on R2m that induces the
orbit Cartan type stratification. Our goal is to illustrate the computability of the
stratification and to develop a large class of examples through which to better
understand its properties.

The outline of this paper is as follows. In Section 2, we recall the definition of
the inertia space and the orbit Cartan type stratification, and discuss facts about
SO(2m) that we will need. In Section 3, we define the decomposition and prove that
it has the required properties, recalling necessary information about the centralizers
of elements of the standard maximal torus in SO(2m). We prove Theorem 3.2 by
verifying the decomposition of the inertia space as well as its relationship to the
stratification.

2. Background

In this section, we recall the orbit Cartan type stratification of the inertia space and
collect the results we will need in the sequel. We use Rθ to indicate the 2×2 matrix

Rθ =
[

cos θ − sin θ
sin θ cos θ

]
that acts (on the left) on R2 as a rotation through the angle θ . We say a value of
θ is generic if θ is not congruent to 0 mod 2π or π mod 2π . Additionally, we
use diag(A1, . . . , A`) to indicate the matrix in block form with diagonal blocks
A1, . . . , A` and 0 elsewhere. We let In denote the n×n identity matrix, or simply I
when the dimensions are clear from the context, and we let 〈x〉 denote the span of
an element x ∈ R2m .

The inertia space of a G-manifold and its stratification. We recall the following
from [Farsi et al. 2012]. Note that SO(2m) is connected, and with respect to the
standard action of SO(2m) on R2m , the isotropy group of each point x ∈ SO(2m)
is connected. As this is our intended application, we specialize to this case for
simplicity.

Let G be a compact, connected Lie group, let M be a smooth, left G-manifold, and
let X =G\M denote the quotient space. The loop space 3M of the G-manifold M
is the set

3M := {(h, x) ∈ G×M | hx = x}.
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The loop space 3M is clearly invariant under the action of G on G×M given by

g(h, x)= (ghg−1, gx),

and the inertia space 3X is defined to be the quotient of the loop space under this
action.

Now, assume the isotropy group of each x ∈M is connected, and let (h, x)∈3M .
Let H = G(h,x) denote the isotropy group of (h, x) in G, which is given by the
centralizer ZGx (h) of h in the isotropy group Gx of x , and choose a linear slice
V(h,x) at (h, x) for the G-action on G × M . By a slice, we mean a submanifold
V(h,x) of G×M transversal to the orbit of (h, x) and satisfying these properties:
• V(h,x) is closed in its orbit GV(h,x), which is an open neighborhood of (h, x)

in G×M .

• H V(h,x) = V(h,x).

• gV(h,x) ∩ V(h,x) 6=∅ implies g ∈ H .

A linear slice is H -equivariantly diffeomorphic to an H -invariant neighborhood of
the origin in the normal space T(h,x)(G×M)/T(h,x)G(h, x) to the orbit at (h, x),
on which H acts linearly. See [Bredon 1972, II, Theorem 4.4] and [Koszul 1953].

As Gx is connected by hypothesis, we have, by [Duistermaat and Kolk 2000,
Theorem 3.3.1(i)], that h is contained in the connected component of the identity H◦

of H . Therefore, we may choose a maximal torus T(h,x) of H◦ containing h. We
define an equivalence relation ∼ on T(h,x) by declaring that t1∼ t2 for t1, t2 ∈T(h,x)
if there is an open G-invariant neighborhood U of (h, x) such that U t1 =U t2 . This
is the case if and only if (GV(h,x))t1 = (GV(h,x))t2 . We let T∗(h,x) denote the ∼ class
of h in T(h,x).

With this, the stratification of 3M is given by assigning to (h, x) the germ of
the set

G
(
V H
(h,x) ∩ (T

∗

(h,x)×M)
)
, (2-1)

and the stratification of 3X is given by assigning to the orbit G(h, x) the germ of
this G-invariant set. It is demonstrated in [Farsi et al. 2012] that 3M equipped
with this stratification has the structure of a differentiable Whitney stratified space,
and moreover that 3X inherits from this G-invariant stratification the structure of
a differentiable Whitney stratified space. In particular, the germ at (h, x) of the set
defined in (2-1) does not depend on the choice of slice nor on the choice of maximal
torus T(h,x), and the germ at G(h, x) of the corresponding stratification of 3X does
not depend on the choice of representative (h, x) from the orbit G(h, x).

Example 2.1. Consider the case G = SO(2) with its standard action on M = R2.
It is easy to see that

3R2
= {(I, x) : x ∈ R2 r {0}} ∪ {(h, 0) : h ∈ SO(2)} ⊆ SO(2)×R2,
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where I ∈ SO(2) denotes the identity matrix. That is, 3R2 is homeomorphic to
R2 with a circle attached at the origin. The SO(2)-isotropy group of points of the
form (h, 0) is SO(2), while all other points have trivial isotropy. In particular, note
that the partition of 3R2 into isotropy types is not a decomposition, as the frontier
condition fails at the point (I, 0).

Any invariant neighborhood of a point (h, 0) contains points with nonzero
R2-coordinate. Hence, the maximal torus T(h,0)= SO(2) consists of two ∼ classes:
the identity fixing each point in any SO(2)-invariant neighborhood, and SO(2)r{I },
whose elements fix points of the form (h, 0). Clearly, T(I,x) is trivial for x 6= 0. It
follows that a decomposition of 3R2 inducing the orbit Cartan type stratification
consists of three pieces:

P1 = {(I, x) : x ∈ R2 r {0}},
P2 = {(h, 0) : h ∈ SO(2)r {I }},
P3 = {(I, 0)}.

The SO(2)-action on P1 is identified with the standard action on R2 r {0}, while
the action is trivial on P2 and P3. Hence, the quotient space 3X is homeomorphic
to a ray with a circle attached to its endpoint.

The special orthogonal group SO(n). The material in this section is well-known,
and can be found in [Tapp 2005, Chapter 9]. See also [Bröcker and tom Dieck
1995, IV Section 3; Humphreys 1978, pages 64–5] for a description of the Weil
group of SO(n).

The special orthogonal group SO(n) is the group of n×n orthogonal matrices
with determinant 1. It is a compact, connected Lie group of dimension n(n− 1)/2.
For an element k ∈ SO(n), we let (k) denote the SO(n)-conjugacy class of k.

If n = 2m is even, then the standard maximal torus Tst
2m in SO(n) is an m-

dimensional torus given by the set of matrices of the form

Tst
2m := {diag(Rθ1, . . . , Rθm ) | θi ∈ [0, 2π)}.

The center of SO(2m) is {I,−I }. The Weil group NSO(2m)(T
st
2m)/T

st
2m is gener-

ated by all permutations of the angles θ1, . . . , θm as well as all transformations
multiplying two angles by −1 mod 2π .

If n = 2m+ 1 is odd, then the standard maximal torus Tst
2m+1 of SO(2m+ 1) is

m-dimensional of the form

Tst
2m+1 := {diag(1, Rθ1, . . . , Rθm ) | θi ∈ [0, 2π)},

and the center of SO(2m+1) is trivial. The Weil group of SO(2m+1) is generated
by all permutations of θ1, . . . , θm and all transformations multiplying any angle
by −1 mod 2π .
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3. The decomposition of 3R2m

Statement of the decomposition. Let k ∈ SO(2m). As every element of SO(2m) is
conjugate to an element of Tst

2m , we may choose an element h= diag(Rθ1, . . . , Rθm )

of the SO(2m)-conjugacy class of k contained in the standard maximal torus. Using
the action of the Weil group, we may choose h with the θi listed in the following
order. We first list all θi = 0, followed by all θi = π . Then, we list the remaining
θi 6= 0 in such a way that any angles that agree up to a sign mod 2π are listed
consecutively.

Given such a choice of h, define (a0(h), aπ (h), ρ(h), s(h)) as follows. Let
a0(h), with 0≤ a0(h)≤ m, denote the multiplicity of the angle 0; let aπ (h), with
0 ≤ aπ (h) ≤ m − a0(h), denote the multiplicity of π ; let ρ denote the (possibly
empty) partition of m−a0(h)−aπ (h) indicating the number of generic angles that
coincide up to a sign for each angle that occurs. Finally, if it is possible by the action
of the Weil group to list all angles that coincide up to a sign with the same sign,
we let s(h) = +; otherwise, we let s(h) = −. As elements of Tst

2m are conjugate
in SO(2m) if and only they are conjugate via an element of NSO(2m)(T

st
2m), it is

easy to see that (a0(h), aπ (h), ρ(h), s(h)) does not depend on the choice of h, and
hence is constant on the conjugacy class of k. Hence, we define

(a0(k), aπ (k), ρ(k), s(k))= (a0(h), aπ (h), ρ(h), s(h)).

We refer to T (k) = (a0(k), aπ (k), ρ(k), s(k)) as the type of k, denoted simply
T = (a0, aπ , ρ, s) when k is clear from the context.

Example 3.1. We now illustrate the types of elements of Tst
2m .

(1) The identity element I has type (m, 0,∅,+), while −I has type (0,m,∅,+).
(2) The element h = diag(Rθ , Rθ , R−θ ) ∈ SO(6) with θ generic has type

(0, 0, {3},−). Note that any permutation of angles or multiplication of an even
number of angles by −1 mod 2π will result in angles with different signs.

(3) The element h = diag(Rθ , R−θ , Rφ, Rφ, R−φ) ∈ SO(10) with θ, φ generic has
type (0, 0, {2, 3},+) because it is conjugate to diag(Rθ , Rθ , Rφ, Rφ, Rφ). On
the other hand, diag(Rθ , R−θ , Rφ, Rφ, Rφ) has type (0, 0, {2, 3},−).

(4) An element h = diag(R0, Rθ , R−θ ) ∈ SO(6) with θ generic has type
(1, 0, {2},+), because it is conjugate to diag(R0, Rθ , Rθ ) via multiplication
of the first and third angles by −1 mod 2π .

For any k of type (a0, aπ , ρ, s), we have 0 ≤ a0 ≤ m and 0 ≤ aπ ≤ m − a0. If
a0 > 0 or aπ > 0, then s = +; this follows from the fact that multiplication by
−1 mod 2π fixes angles 0 and π , as in Example 3.1(4) above. We specify a specific
partition ρ(k) by a set with multiplicity, such as {1, 1, 2}, and adapt ordinary set
operations in the obvious way: {1} ∪ {1, 2} = {1, 1, 2}.
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Given k ∈ SO(2m) of type (a0, aπ , ρ, s) with ρ = {ρ1, . . . , ρ`} listed in non-
decreasing order, by the above observations, there is an element h ∈ (k) ∩ Tst

2m
such that

h = diag(I2a0,−I2aπ , Rθ1, . . . , Rθ1︸ ︷︷ ︸
ρ1

, . . . , Rθ`, . . . , R±θ`︸ ︷︷ ︸
ρ`

),

with each θi generic and θi 6= ±θ j for i 6= j . In other words, the order and signs
of the angles are chosen as above according to the ordering of ρ with at most one
sign change, which is required to occur in the last position. We then say that h is in
standard form. Note that h is unique if and only if ρi 6= ρi+1 for each i . We say
that h′ ∈ Tst

2m of the same type as h is in the same standard form as h if

h′ = diag(I2a0,−I2aπ , Rφ1, . . . , Rφ1︸ ︷︷ ︸
ρ1

, . . . , Rφ`, . . . , R±φ`︸ ︷︷ ︸
ρ`

),

with each φi generic and φi 6= ±φ j for i 6= j , so that the repeated angles and the
single sign discrepancy, if it occurs, occur in the same positions. Given h and h′ in
the same standard form, for any g ∈ NSO(2m)(T

st
2m), we say that ghg−1 and gh′g−1

are in the same form. That is, elements of Tst
2m are in the same form if they are of

the same type and can be put into the same standard form by the same element of
the Weil group.

With this, we are ready to state our main result, which describes a decomposition
of 3R2m that induces the orbit Cartan type stratification given by (2-1). We state
the decomposition for the loop space 3R2m , though a direct consequence is that
the quotients of the pieces of the decomposition, which are SO(2m)-invariant and
consist of points of the same isotropy type, define a decomposition of the inertia
space 3(SO(2m)\R2m) that induces the orbit Cartan type stratification.

Theorem 3.2. For each type T = (a0, aπ , ρ, s), let

PT,0 = {(h, 0) ∈ SO(2m)×R2m
: h has type T },

and let

PT,1 = {(h, x) ∈ SO(2m)× (R2m r {0}) : hx = x, h has type T }.

Then a decomposition of 3R2m inducing the orbit Cartan type stratification de-
scribed by (2-1) is given by the following pieces:

I. PT,0 for each type T = (a0, aπ , ρ, s) such that a0 > 0, aπ > 1, s = −, or
aπ = 0 and 1 6∈ ρ,

II. P(0,1,ρ,+),0 ∪ P(0,0,{1}∪ρ,+),0 for each partition ρ of m− 1,

III. PT,1 for each type T = (a0, aπ , ρ,+) such that a0 > 0.
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Note that an element h fixes a nonzero element of R2m if and only if a0(h) > 0,
and recall that s(h)=+ whenever a0(h) > 0 or aπ (h) > 0.

Centralizers in SO(2m). Let h ∈ Tst
2m ≤ SO(2m) be in standard form. Then the

centralizer of h in SO(2m) is determined by the form of h. Specifically, let

h = diag(I2a0,−I2aπ , Rθ1, . . . , Rθ1︸ ︷︷ ︸
ρ1

, . . . , Rθ`, . . . , R±θ`︸ ︷︷ ︸
ρ`

),

with each θi generic and θi 6= ±θ j for i 6= j , where we may have a0 = 0 or aπ = 0.
The centralizer of h in SO(2m) is a set of matrices in blocks given by

diag(A, B,C1, . . . ,C`),

where A ∈ O(2a0), B ∈ O(2aπ ), and each Ci ∈ O(2ρi ). Note that in general,
ZSO(2m)(h) contains Tst

2m . We first discuss the matrices Ci .
By direct computation, it is easy to see that the only 2×2 matrices that commute

with Rθ for θ generic are given by [
c1 −c2

c2 c1

]
,

i.e., a scalar multiple of a rotation matrix. The only 2ρi×2ρi matrices Ci that
commute with diag(Rθ , . . . , Rθ ), where θ is generic and Rθ occurs ρi times, are
matrices whose 2×2 blocks are scalar multiples of rotation matrices as above.
Similarly, the only 2ρi×2ρi matrices that commute with diag(Rθ , . . . , Rθ , R−θ ),
where θ is generic and Rθ occurs ρi − 1 times, are matrices whose 2×2 block are
as above except for the blocks in the last two rows and columns, excluding the
lower-right 2×2 block, which are given by[

c1 c2

c2 −c1

]
.

In particular, as these computations require only that θ is generic, all elements of
the same form have the same centralizer.

If aπ = 0, then the set of elements of the same form as h is an open, dense subset
of a torus of SO(2m) of dimension `, and ZSO(2m)(h) coincides with the centralizer
of this torus. In particular, ZSO(2m)(h) is connected by [Duistermaat and Kolk 2000,
Theorem 3.3.1]. Then as the determinant of each block is a continuous function
from ZSO(2m)(h) to {±1}, it must be that each Ci has determinant 1. It follows that
A must have determinant 1, and hence A can be any element of SO(2a0). Note that
we may also conclude for arbitrary h that each Ci ∈ SO(2ρi ).

If aπ 6= 0 and a0 6= 0, then A ∈O(2a0) and B ∈O(2aπ ) can be any elements with
the same determinant ±1, and the centralizer of h has two connected components.
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If aπ 6= 0 and a0 = 0, then as the determinant of each Ci is 1, B must also have
determinant 1 and can be any element of SO(2aπ ).

The reader is cautioned that it is possible for elements of different types to have
identical centralizers. For instance, for θ1 and θ2 generic, θ1 6= ±θ2, the centralizers
of the elements diag(R0, Rθ2), diag(Rπ , Rθ2), and diag(Rθ1, Rθ2) coincide and are
equal to the standard maximal torus SO(2)×SO(2)≤SO(4), though these elements
are in standard from of type (1, 0, {1},+), (0, 1, {1},+), and (0, 0, {1, 1},+), re-
spectively. More generally, if ρ is any partition of m − 1, then elements of type
(1, 0, ρ,+), (0, 1, ρ,+), and (0, 0, {1} ∪ ρ,+) in standard form have the same
centralizer, as in either case, the first 2×2-block is forced to be an element of SO(2).
If h is in standard form and of either of these types, then any element with the same
centralizer as h is also in standard form.

However, if a0(h)= a0(h′)> 0 for elements h, h′ ∈Tst
2m such that h is in standard

form and both h and h′ have centralizer H , then h and h′ are in the same standard
form. In particular, if H is connected, then aπ (h) = aπ (h′) = 0, and if H is not
connected, then the size of the second block in elements of H determines that
aπ (h) = aπ (h′) > 0. The size and structure of the later blocks in elements of H
determine the values of ρ and s = + for both h and h′ as well as their form.
Similarly, if a0(h) = a0(h′) = 0 and aπ (h) > 1 with h in standard form, then the
size and structure of the blocks in the centralizer again determine the form of h and
hence h′.

Finally, suppose a0(h)= aπ (h)= 0 with h in standard form. If 1 6∈ ρ(h), then
the size and structure of the blocks of H determine the form of h and hence h′ so
that h′ is in the same standard form as h. Otherwise, h has type (0, 0, {1} ∪ ρ, s)
for a partition ρ of m− 1 and is in standard form

h = diag(Rθ1, Rθ2, . . . , Rθ2︸ ︷︷ ︸
ρ1

, . . . , Rθ`, . . . , R±θ`︸ ︷︷ ︸
ρ`−1

)

so that θ1, . . . , θ` are generic. If a0(h′)= 0, then either h′ is in the same standard
form as h or

h′ = diag(Rπ , Rφ1, . . . , Rφ1︸ ︷︷ ︸
ρ1

, . . . , Rφ`, . . . , R±φ`︸ ︷︷ ︸
ρ`−1

),

which has type (0, 1, ρ,+) and is not in standard form if s(h)=−.
We now summarize these observations.

Proposition 3.3. Elements of Tst
2m in the same standard form have the same cen-

tralizer, and elements of SO(2m) of the same type have conjugate centralizers. Con-
versely, if h, h′ ∈ Tst

2m with h in standard form and ZSO(2m)(h)= ZSO(2m)(h′), then:

• If a0(h)= a0(h′) > 0, then h and h′ are in the same standard form.
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• If a0(h)= a0(h′)= 0 and aπ (h) > 1, then h and h′ are in the same standard
form.

• If a0(h) = aπ (h) = 0 and 1 /∈ ρ(h), then h and h′ are in the same standard
form.

• If a0(h)= a0(h′)= 0 and h has type (0, 1, ρ,+) or (0, 0, {1} ∪ ρ,+), then h′

is in standard form and has type (0, 1, ρ,+) or (0, 0, {1} ∪ ρ,+).

• If a0(h) = a0(h′) = 0 and h has type (0, 0, {1} ∪ ρ,−), then either h′ is in
standard form of type (0, 0, {1} ∪ ρ,−) or h′ is of type (0, 1, ρ,+) and is not
in standard form.

Note that Proposition 3.3 does not exhaust all cases but considers those that we
will need below.

Proof of Theorem 3.2. In this section, we demonstrate that the partition defined in
Theorem 3.2 is indeed a decomposition that induces the orbit Cartan type stratifica-
tion. First, we establish the following.

Lemma 3.4. Let h ∈ Tst
2m be in standard form. Then there is a neighborhood U

of h in Tst
2m small enough so that every h′ ∈U of the same type as h is in the same

standard form as h. If h has type (0, 0, {1} ∪ ρ,−), then we may choose U so that
it contains no elements h′ such that aπ (h′) > 0.

Proof. Let h = diag(Rθ1, . . . , Rθm ), where angles need not be distinct or generic.
Choose ε >0 such that (θi−ε, θi+ε) contains 0 (respectively π ) if and only if θi =0
(respectively π ), and, for i 6= j , the intersection (θi−ε, θi+ε)∩(±θ j−ε,±θ j+ε)

is nonempty if and only if θi =±θ j . Then for any h′ = diag(φi , . . . , φm) such that
|φi − θi |< ε for each i , h′ is of the same type as h if and only if it is in the same
standard form. Moreover, if h has type (0, 0, {1}∪ρ,−), then as θi 6= π for each i ,
U contains no elements of type (0, aπ , σ,+) for aπ > 0 and any partition σ . �

Lemma 3.5. Let h ∈ Tst
2m be an element of the maximal torus of SO(2m).

(i) A linear slice V(h,0) for the diagonal SO(2m)-action on SO(2m)×R2m at (h, 0)
can be chosen such that V(h,0) contains Uh ×U0, where Uh is a neighborhood
of h in Tst

2m and U0 is a neighborhood of 0 in R2m .

(ii) If 0 6= x ∈ R2m such that hx = x , then a linear slice V(h,x) for the diagonal
SO(2m)-action on SO(2m)× R2m at (h, x) can be chosen such that V(h,x)
contains Uh×Ux where Uh is a neighborhood of h in Tst

2m and Ux is a connected
neighborhood of x in the span 〈x〉 of x in R2m .

Proof. Fix the standard (SO(2m)-invariant) Riemannian metric on R2m , choose a
bi-invariant metric on SO(2m), and let SO(2m)×R2m carry the product metric.
Recall that (h) denotes the SO(2m)-conjugacy class of h. By [Duistermaat and Kolk
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2000, Proposition 3.1.1], the only slice at h for the SO(2m)-action on SO(2m)
by conjugation is given by a neighborhood Sh of h in the centralizer ZSO(2m)(h),
where the linear structure is inherited from the Lie algebra zh of ZSO(2m)(h) via
a logarithmic chart. Because the orthogonal complement of Th(h) in ThSO(2m)
with respect to the metric is mapped to a slice by the exponential map (see [Duis-
termaat and Kolk 2000, Theorem 2.3.3]), it follows that Th Sh = Th ZSO(2m)(h) is
the orthogonal complement of Th(h) in ThSO(2m).

As SO(2m)(h, 0)= (h)×{0} ⊂ SO(2m)×R2m , using the isometry

T(h,0)(SO(2m)×R2m)→ ThSO(2m)⊕ T0R2m,

we have that

T(h,0)(ZSO(2m)(h)×R2m)∼= Th ZSO(2m)(h)⊕ T0R2m

∼=
(
T(h,0)SO(2m)(h, 0)

)⊥
.

Hence, a slice for the SO(2m)-action on SO(2m)×R2m may be chosen to be a suit-
ably small neighborhood of (h, 0) in ZSO(2m)(h)×R2m . Clearly Tst

2m ≤ ZSO(2m)(h),
proving (i).

To prove (ii), note that the orbit SO(2m)x of x is given by the sphere of radius ‖x‖,
so that in Tx R2m , (Tx SO(2m)x)⊥ = Tx 〈x〉. Then as

T(h,x)SO(2m)(h, x)⊆ Th(h)⊕ Tx SO(2m)x,

we have

Th ZSO(2m)(h)⊕ Tx 〈x〉 = (Th(h))⊥⊕ (Tx SO(2m)x)⊥

⊆ (Th(h)× Tx SO(2m)x)⊥

⊆ (T(h,x)SO(2m)(h, x))⊥.

It follows that we may choose a slice V(h,x) at (h, x) such that

T(h,x)V(h,x) = (T(h,x)SO(2m)(h, x))⊥,

and hence an open neighborhood of (h, x) in ZSO(2m)(h)× 〈x〉 is contained in
V(h,x). �

Proof of Theorem 3.2. Given an arbitrary element (k, x) ∈3R2m , as k is conjugate
to an element of Tst

2m , the type of k is defined. Moreover, as the type is conjugation
invariant, it is well defined, so that the pieces defined in I, II, and III clearly form a
partition of 3R2m . Moreover, as the number of types is finite, the partition is finite
and hence trivially locally finite.

For each element (k, y) of a piece P , we now demonstrate that for some
(h, x) in the orbit of (k, y) and appropriate choices of slice and maximal torus,
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there is an open, SO(2m)-invariant neighborhood of (h, x) within which the set
P ∩ SO(2m)V(h,x) coincides with the set defined in (2-1). This implies that the
decomposition induces the orbit Cartan type stratification. Moreover, as the germs
defining the stratification are germs of locally closed, smooth manifolds, it follows
that each piece P is a locally closed, smooth submanifold of SO(2m)×R2m . With
this, we will need only show that the pieces satisfy the frontier condition.

I. Suppose (k, 0) is of type T = (a0, aπ , ρ, s) with a0 > 0, aπ > 1, s = −, or
aπ = 0 and 1 6∈ ρ. Choose an element h ∈ (k) ∩ Tst

2m in standard form and a
slice V(h,0) at (h, 0) for the SO(2m)-action on SO(2m)×R2m with Uh×U0⊆ V(h,0)
as in Lemma 3.5. Applying Lemma 3.4 and shrinking V(h,0) if necessary, we
assume that if (h′, x) ∈ V(h,0) with h′ ∈ Tst

2m of the same type as h, then h′ is
in the same standard form as h. Moreover, if h has type (0, 0, {1} ∪ ρ,−), we
assume that V(h,0) contains no elements of the form (h′, x) such that aπ (h′) > 0.
Let H = SO(2m)(h,0) = ZSO(2m)(h), and define the set

Q(h,0) := V H
(h,0) ∩

(
(Tst

2m)
∗

(h,0)×R2m).
That is, the SO(2m)-saturation SO(2m)Q(h,0) is the set that defines the germ of
the stratum containing (h, 0) in (2-1). Note that as H contains Tst

2m , which only
fixes the origin in R2m , any element of V H

(h,0) is of the form (h′, 0) for h′ ∈ SO(2m).
Moreover, as h ∈ H , it must be that for any (h′, 0)∈ V H

(h,0), the element h′ commutes
with h.

Let (h′, 0) ∈ Q(h,0) be arbitrary. Then h′ ∈ (Tst
2m)
∗

(h,0), implying that the h and h′

fix the same subset of SO(2m)V(h,0). In particular, as {h} × U0 ⊆ V(h,0), with
U0 a neighborhood of the origin in R2m , and as h′ commutes with h, it follows
that (R2m)h = (R2m)h

′

, so a0(h)= a0(h′). Additionally, by the definition of slice,
every point in V(h,0) has isotropy group contained in H , so V H

(h,0) consists only of
points with isotropy group equal to H . Hence ZSO(2m)(h) = ZSO(2m)(h′), so by
Proposition 3.3 and the choice of slice, h and h′ are in the same standard form.
It follows that the orbit of any element of Q(h,0) is contained in PT,0 and hence
SO(2m)Q(h,0) ⊆ PT,0.

Conversely, if (k ′, 0)∈ PT,0∩SO(2m)V(h,0) so that k ′ is of the same type as h, then
by the choice of V(h,0), there is an (h′, 0)∈V(h,0)∩SO(2m)(k ′, 0) such that h′ is in the
same standard form as h. Then h and h′ have the same centralizer by Proposition 3.3
so that (h′, 0) ∈ V H

(h,0). Moreover, because ZSO(2m)(h) = ZSO(2m)(h′) and the
angle 0 occurs in the same positions in both, h and h′ fix the same elements
of SO(2m) × R2m so that clearly (SO(2m)V(h,0))h = (SO(2m)V(h,0))h

′

. Hence
(h′, 0) ∈ Q(h,0). Therefore, we have that SO(2m)Q(h,0) = PT,0 ∩SO(2m)V(h,0), so
that SO(2m)Q(h,0) and PT,0 define the same germ at (h, 0).
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II. The argument in this case is similar to I above. Choosing a representative
(h, 0) of the orbit of an arbitrary point with h ∈ Tst

2m in standard form, for any
h′ ∈ (Tst

2m)
∗

(h,0), as h and h′ have the same fixed point set in R2m , a0(h)= 0 implies
a0(h′)= 0. In this case, however, while elements h, h′ ∈ Tst

2m of the same type have
the same centralizer, the centralizers do not distinguish between group elements
in standard form of type (0, 1, ρ,+) and (0, 0, {1} ∪ ρ,+) by Proposition 3.3.
Moreover, any neighborhood of an element in standard form of type (0, 1, ρ,+)
clearly contains elements in standard form of type (0, 0, {1} ∪ ρ,+). As the fixed-
point sets of such elements in SO(2m)×R2m coincide, the argument is identical to
that of I combining these two types.

III. Let (k, x) ∈3R2m and let T be the type of k. As the SO(2m)-action on R2m

is transitive on spheres about the origin, we may assume that x has coordinates
(‖x‖, 0, . . . , 0), and hence SO(2m)x ={diag(1, A) : A∈SO(2m−1)}∼=SO(2m−1).
As any element of SO(2m)x is conjugate to an element of the standard maximal
torus Tst

2m−1 via an element of SO(2m)x , we may choose an element (h, x) in the
orbit SO(2m)x(k, x) such that h ∈Tst

2m−1 is in standard form. Note that as h fixes x ,
we have a0(h) > 0.

Choose a slice V(h,x) at (h, x) that contains Uh×Ux as in Lemma 3.5, and shrink
V(h,x) if necessary so that V(h,x) ∩ (SO(2m)×−Ux) = ∅. We again assume by
Lemma 3.4 and shrinking V(h,x) that for any (h′, y) ∈ V(h,x) such that h′ ∈ Tst

2m has
the same type as h, h′ must also have the same form.

It will be convenient to restrict to a smaller open neighborhood of (h, x) in
SO(2m)×R2m . To do so, recall that the Weil group NSO(2m)(T

st
2m)/T

st
2m is finite.

Hence, by [tom Dieck 1987, Proposition 3.23], we may shrink Uh to assume that
for g ∈ NSO(2m)(T

st
2m), we have gUh = Uh if g ∈ ZSO(2m)(h) and Uh ∩ gUh = ∅

otherwise. Moreover, letting SO(2m)∗ denote the set of conjugacy classes in
SO(2m) equipped with its natural quotient topology, we may assume that the
quotient of Uh by NSO(2m)(T

st
2m)/ZSO(2m)(h) is homeomorphic to an open subset of

SO(2m)∗ containing (h). In particular, as the quotient map SO(2m)→ SO(2m)∗ is
continuous, SO(2m)Uh is open in SO(2m). Let W = (SO(2m)Uh)× (SO(2m)Ux),
and then as SO(2m)Ux ={z ∈R2m

: ε1<‖z‖<ε2} for some 0<ε1<ε2, SO(2m)Ux

is open in R2m . Hence W is an open, SO(2m)-invariant neighborhood of (h, x) in
SO(2m)×R2m . Finally, we further shrink V(h,x) if necessary to assume that it does
not intersect gUh ×R2m for any of the finite translates of Uh by g ∈ NSO(2m)(T

st
2m)

such that g /∈ ZSO(2m)(h). We will show that the piece PT,1 coincides with the set
given in (2-1) when intersected with W .

Let H = SO(2m)(h,x) = ZSO(2m−1)(h) so that H consists of those elements of
ZSO(2m)(h) whose first row and column are that of the identity. Define the set

Q(h,x) := V H
(h,x) ∩

(
(Tst

2m−1)
∗

(h,x)×R2m)
∩W.
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Fix (h′, y) ∈ Q(h,x) so that h′ ∈ (Tst
2m−1)

∗

(h,x). Therefore, as any neighborhood
of (h, x) contains points (h, y′) where any coordinate of y′ except the first may
be chosen to be zero or nonzero, and as h ∈ H so that h and h′ commute, we
have that h and h′ must have 0 occur as an angle with the same multiplicity in
the same positions. Therefore, a0(h′) = a0(h) > 0. Note that (h′, y) ∈ V H

(h,x) so
that SO(2m)(h′,y) = ZSO(2m)y (h

′) = H . In particular, as (h′, y) ∈ W ∩ V(h,x) and
h′ ∈ Tst

2m−1 ≤ Tst
2m , we may conclude h′ is in Uh . We consider two cases:

If a0(h) > 1 or aπ (h) > 0, then H contains Tst
2m−1 as well as the element

g = diag(1,−1,−1, 1, I2m−4). The fixed point set in R2m of the group generated
by g and Tst

2m−1 is 〈x〉, so that y ∈ 〈x〉. Then as a0(h′) = a0(h), connectedness
of H determines whether aπ (h), and hence aπ (h′), vanish. If not, the second block
of elements of H indicates that aπ (h′)= aπ (h), and the following blocks further
indicate that h and h′ have the same type. Therefore, (h′, y) ∈ PT,1.

If a0(h)= 1 and aπ (h)= 0, then every element of H , and in particular h′, is given
by diag(I2, D) for a (2m−2)×(2m−2)matrix D. As H contains Tst

2m−1 which then
must fix y, it follows that y = (a, b, 0, . . . , 0) for some a, b ∈ R. Then there is a
ḡ= diag(Rθ , I2m−2) such that ḡy= (‖y‖, 0, . . . , 0). Moreover, as h′= diag(I2, D)
for some D, we have ḡh′ḡ−1

= h′, and ḡ(h′, y)= (h′, (‖y‖, 0, . . . , 0)). However,
as y ∈SO(2m)Ux , and ḡy ∈ 〈x〉 has positive first coordinate, it follows that ḡy ∈Ux .
Moreover, as h′ ∈Uh , we have ḡ(h′, y)∈Uh×Ux ⊆V(h,x), so that as (h′, y)∈V(h,x),
it follows from the definition of slice that ḡ ∈ H . Then as elements of H fix y, we
have that y = (‖y‖, 0, . . . , 0) to begin with.

With this, the element g = diag(1,−1,−1, 1, I2m−4) fixes y and hence, as it
is not an element of H , cannot commute with h′. It follows that aπ (h′)= 0, and
then the structure of blocks of elements of H imply that h and h′ have the same
type. We again have (h′, y) ∈ PT,1, and hence SO(2m)Q(h,x) ⊆ PT,1, since PT,1 is
SO(2m)-invariant.

Conversely, if (k, y) ∈ P(T,1) ∩ SO(2m)V(h,x) ∩ W , then (k, y) is in the or-
bit of an element (h′, y′) ∈ V(h,x). Then as h′ has the same type as h, it must
have the same standard form as h. This implies that h′ and h have the same
centralizer, and moreover that a0(h′) = a0(h) > 0. Noting that h′ fixes y′, and
hence that y′ has nonzero coordinates only in the first 2a0(h) positions, there is an
element ḡ = diag(D, I2(m−a0(h))) ≤ SO(2m) for some D ∈ SO(2a0(h)) such that
ḡy′ = (‖y′‖, 0, . . . , 0). As (h′, y′) ∈ W ∩ V(h,x) and h′ ∈ Tst

2m , h′ ∈Uh . Hence, as
ḡ commutes with h′, ḡ(h′, y′) = (h′, (‖y′‖, 0, . . . , 0)) ∈ Uh ×Ux ⊆ V(h,x). That
h and h′ have the same centralizer and ḡy′ ∈ 〈x〉 implies ḡ(h′, y′) ∈ V H

(h,x). In
addition, that h and h′ have the same type implies h′ ∈ (Tst

2m−1)
∗

(h,x). It follows that
ḡ(h′, y′) ∈ Q(h,x) ∩W so that (k, y) ∈ SO(2m)Q(h,x) ∩W , completing the proof
that SO(2m)Q(h,x) ∩W = P(T,1) ∩SO(2m)V(h,x) ∩W .
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The frontier condition. To show that the pieces defined in Theorem 3.2 satisfy the
frontier condition, we first claim that k ∈ SO(2m) is in the closure in SO(2m) of
the set of elements of type T if and only if some conjugate gkg−1 of k is in the
closure in Tst

2m of the set of elements of type T in standard form. Note that gkg−1

itself need not be in standard form.
Let {ki }i∈N be a convergent sequence of elements of SO(2m) that are all of the

same type T = (a0, aπ , ρ, s), and let k = limi→∞ ki ∈ SO(2m). Then for each i ,
there is a gi such that gi ki g−1

i ∈ Tst
2m is of standard form. By compactness of

SO(2m), we may assume by passing to a subsequence that the gi converge to some
g ∈ SO(2m). Then by continuity of the action by conjugation and as Tst

2m is closed,
we have

gkg−1
= lim

i→∞
gi ki g−1

i ∈ Tst
2m .

Conversely, if k is conjugate to some gkg−1
∈ Tst

2m , where gkg−1 is the limit of
a sequence {hi }i∈N of elements in Tst

2m of the same type T in standard form, then
g−1hi g is a sequence of elements of type T that converges to k.

Now, for a type T = {a0, aπ , ρ, s} with ρ = {ρ1, . . . , ρ`}, let Tst
2m(T ) denote

the set of elements in Tst
2m in standard form of type T . Suppose h ∈ Tst

2m(T ) so
that there is a sequence {hi }i∈N ⊆ Tst

2m(T ) such that hi → h. Recall that if s =−,
then the sign discrepancy in the angles of the hi is taken to be in the final position,
corresponding to ρ`. As each hi has I and −I in the first a0 and aπ positions,
respectively, it follows that h must as well. Similarly, letting θ j,i denote the angle
in the ρ j position of hi for j = 1, . . . , `, we have that limi→∞ θ j,i exists and is
given by θ j , the angle in the corresponding position of h, which can have any value.
Let J = { j ∈ {1, . . . , `} : θ j = 0}, and let J ′ = { j ∈ {1, . . . , `} : θ j = π}. As it
may be the case that the θ j are not distinct, let σ denote the partition formed from
ρr {ρ j : j ∈ I ∪ J } by summing elements ρ j and ρ j ′ when θ j = θ j ′ . Then if s =+
or θ` is generic, h has type(

a0+
∑
j∈J

ρ j , aπ +
∑
j∈J ′

ρ j , σ, s
)
,

while if s =− and θ` ∈ {0, π}, h has type(
a0+

∑
j∈I

ρ j , aπ +
∑
j∈J

ρ j , σ, +

)
.

Given an arbitrary element h′ of Tst
2m of the same form as h, it is easy to see that

one can define a sequence {h′i }i∈N of elements of type T such that h′i → h′ simply
by redefining the angles in the hi corresponding to j /∈ J ∪ J ′ to converge to those
of h′, choosing distinct sequences when θ j = θ j ′ for j 6= j ′ as above. It follows that
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if h ∈ Tst
2m(T ), then every element of Tst

2m of the same form of h is contained in
Tst

2m(T ). However, by applying the Weil group to this sequence, it then follows that
every element of Tst

2m of the same type as h is contained in the closure of elements
of type T in Tst

2m . This claim extends by conjugation to all of SO(2m) as above, so
we conclude that the partition of SO(2m) into types satisfies the frontier condition.

Finally, note that this partition still satisfies frontier if we combine types of the
form (0, 1, ρ, s) and (0, 0, {1} ∪ ρ, s). If the set of elements of type T contains
points of type (0, 1, σ, s) in its closure, then T must itself be of the form either
(0, 1, ρ, s) or (0, 0, {1} ∪ ρ, s), where σ is formed from ρ or {1} ∪ ρ by summing
elements as above. As these types are also combined, the resulting set must contain
all elements of type (0, 1, σ, s) and (0, 0, {1} ∪ σ, s) in its closure.

With this, we need only note that as the closure of R2m r {0} is clearly R2m , by
inspection, the pieces of type I, II, and III satisfy the frontier condition. Hence, by
SO(2m)-invariance of these pieces, frontier is satisfied in the quotient as well. �

It is of interest to note that the sets of type III form a decomposition of the loop
space of the SO(2m)-space R2m r {0}. Because each point in 3(R2m r {0}) is
contained in an SO(2m)-invariant neighborhood in 3R2m that does not intersect
SO(2m)× {0}, it follows that this decomposition induces the orbit Cartan type
stratification of the inertia space 3(SO(2m)\(R2m r {0})).

The loop space3(R2mr{0}) is the loop space of a SO(2m)-manifold with a single
isotropy type and hence is a smooth manifold by [Farsi et al. 2012, Proposition 4.4].
Given an element (h, x) ∈3(R2m r {0}), where we may assume up to conjugation
that x = (‖x‖, 0, . . . , 0) and h ∈Tst

2m−1 is in standard form as above, it must be that
a0(h) > 0. Hence, as the types of such elements are determined by their centralizers
by Proposition 3.3, the decomposition of 3(R2m r {0}), and hence the associated
inertia space, corresponds to the decomposition into isotropy types, demonstrating
that the orbit Cartan type stratification of this SO(2m)-manifold coincides with
its stratification by isotropy types. This is not generally true for the odd case, as
it fails in the case of SO(3) acting on R3 r {0} described in [Farsi et al. 2012,
Section 4.2.6].
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