
inv lve
a journal of mathematics

mathematical sciences publishers

Five-point zero-divisor graphs determined by equivalence
classes

Florida Levidiotis and Sandra Spiroff

2011 vol. 4, no. 1



msp
INVOLVE 4:1(2011)

Five-point zero-divisor graphs determined by
equivalence classes

Florida Levidiotis and Sandra Spiroff

(Communicated by Scott Chapman)

We study condensed zero-divisor graphs (those whose vertices are equivalence
classes of zero-divisors of a ring R) having exactly five vertices. In particular,
we determine which graphs with exactly five vertices can be realized as the
condensed zero-divisor graph of a ring. We provide the rings for the graphs
which are possible, and prove that the rest of graphs can not be realized via
any commutative ring. There are 34 graphs in total which contain exactly five
vertices.

1. Introduction

Beck [1988] introduced, for a commutative ring R, a graph whose vertices are the
elements of R and whose edges are given by the rule that two vertices r and s share
an edge if and only if rs = 0. Thus, for the ring R = Z/6Z= {0, 1, 2, 3, 4, 5}, the
associated graph is this:

2 1

3 0

4 5

This is by definition a simple graph (no loops or multiple edges) and it is clearly
connected with diameter at most two,1 since all vertices share an edge with 0.

Anderson and Livingston [1999] later introduced the zero-divisor graph 0(R)
of a commutative R, by taking the subgraph of Beck’s graph consisting of all zero-
divisors2 together with the edges they share — in other words, by discarding from

MSC2000: primary 13A99; secondary 05C99.
Keywords: condensed zero-divisor graphs, equivalence classes of zero-divisors.
This work is based on Levidiotis’ undergraduate honor’s thesis project [2010] under the supervision
of the second author.

1See Definition 2.2 for terms from graph theory.
2See Definition 2.1 for terms from ring theory.
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Beck’s graph the vertex 0 and all vertices that are not zero-divisors. For instance,
the zero-divisors of the ring Z/6Z are {2, 3, 4}, so 0(Z/6Z) is this graph:

2

3 = 0(Z/6Z)

4
It turns out that the zero-divisor graph, too, is always connected, and its diameter
is at most three.

Mulay [2002, (3.5)] demonstrated how a graph 0E(R) could be constructed
from 0(R) by collapsing into equivalence classes zero-divisors that have the same
annihilator ideal. Thus, the equivalence class [r ] of an element r ∈ R is the set of
zero-divisors s such that annR(r) = annR(s); and such equivalence classes form
the vertices of 0E(R). We call 0E(R) the condensed zero-divisor graph of R. (In
[Spiroff and Wickham 2011; Coykendall et al. 2012] the term used was “zero-
divisor graph determined by equivalence classes”.) Once again, these graphs are
simple and connected; the diameter is at most three.

Example 1.1. The equivalence classes of zero-divisors of the ring R = Z/6Z are
{[2], [3]}. Note that annR(2)= annR(4), hence [2] = [4].

[2]

[3]
= 0E(Z/6Z)

Example 1.2 [Spiroff and Wickham 2011, Example 1.11]. To illustrate the rela-
tion between the zero-divisor graph 0(R) and its condensed counterpart 0E(R),
consider R = Z/12Z:

2 4

6 3 9 = 0(Z/12Z)

10 8

[2] [6] [4] [3] = 0E(Z/12Z)

To motivate the study of 0E(R), we provide an additional example. The ring
(Z/6Z)[X ], consisting of polynomials in the variable X with coefficients from
Z/6Z, contains infinitely many elements and zero-divisors. However, there are
still just two equivalence classes of zero-divisors, and the graph takes the same
form as that in Example 1.1.
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The goal of this project is to examine the five-point condensed zero-divisor
graphs and to determine which of them are possible. This work grew out of [Spiroff
and Wickham 2011]; we rely on the results there and provide some answers to
questions that arose during that initial study. A subsequent paper [Coykendall
et al. 2012] generalizes some of the results in this project.

For those graphs that can be constructed from equivalence classes, we provide
an associated ring. For those graphs that can not be constructed from equivalence
classes, we prove that no ring exists such that 0E(R) takes the necessary form.
The list of all thirty-four graphs with exactly five vertices can be found in [Harary
1969, pages 216–217]. The connected ones are all shown in this paper at the
relevant places, and are labeled (1)–(21).

2. Definitions and basic results

Throughout, R will be a commutative ring with identity that satisfies the ascending
chain condition on ideals. A good general reference for the ring theory needed
here is [Dummit and Foote 1991]. For zero-divisor graphs, see [Anderson and
Livingston 1999].

Definition 2.1. Some definitions from ring theory are collected here:

(1) A zero divisor of R is a nonzero element r of R for which there is another
nonzero element s of R such that rs = 0.

(2) The annihilator ideal of r in R, denoted by annR(r), is the set of all elements
a in R such that ar = 0.

(3) A unit in R is a nonzero element u that has a multiplicative inverse; that is,
uu−1

= 1 for some u−1 in R.

(4) An ideal J of R is maximal if, whenever J ⊆ I for any proper ideal I of R,
then J = I .

(5) An equivalence relation on R is a binary relation ∼ that is reflexive, symmet-
ric, and transitive.

Definition 2.2. Some definitions from graph theory are collected here:

(1) A graph consists of a set of vertices, a set of edges, and an incidence relation,
describing which pairs of vertices are joined by an edge. Two vertices joined
by an edge are called adjacent.

(2) A path of length n between two vertices v andw is a finite sequence of vertices
u0, u1, . . . , un such that v = u0, w = un , and ui−1 and ui are adjacent for all
1≤ i ≤ n.
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(3) A graph is said to be connected if there is a path between every pair of vertices
of the graph.

(4) The distance between two vertices v and w in a connected graph is the length
of the shortest path between them.

(5) The diameter of a connected graph G is the greatest distance between any two
vertices.

(6) A graph is said to be complete if every vertex in the graph is adjacent to every
other vertex in the graph.

Definition 2.3. The condensed zero-divisor graph of a ring R, denoted by 0E(R),
is the graph associated to R whose vertices are the classes of zero-divisors, where
a pair of distinct classes [r ], [s] is adjacent if and only if [r ] · [s] = 0, where
[r ] · [s] := [rs].

Remark 2.4 [Mulay 2002, (3.5)]. Multiplication is well-defined: let [r1] = [r2]

and [s1] = [s2]; that is, annR(r1) = annR(r2) and annR(s1) = annR(s2). Then
r1s1= 0 if and only if s1 ∈ annR(r1)= annR(r2), if and only if r2s1= 0, if and only
if r2 ∈ annR(s1)= annR(s2), if and only if r2s2 = 0.

Proposition 2.5 [Mulay 2002, (3.5); Spiroff and Wickham 2011, Propositions 1.4,
1.5, 1.8]. For any ring R, 0E(R):

(a) is connected;

(b) has diameter at most three;

(c) is not a cycle graph; that is, does not take the form of an n-gon, for any n;

(d) is not complete if it has at least three vertices.

Lemma 2.6. If u is a unit in R and r is a zero-divisor in R, then annR(ur) =
annR(r).

Proof. If s ∈ annR(r), then s(ur) = u(sr) = 0, hence s ∈ annR(ur). Conversely,
if s ∈ annR(ur), then 0 = s(ur) = u(sr) implies u−1

· 0 = u−1
· u(sr), and hence

0= sr . Thus, s ∈ annR(r). �

3. Negative results

In this section, we prove that all but four of the five-point graphs can not be realized
as the condensed zero-divisor graph of a ring. (Recall that we are assuming that
all rings are commutative with identity and satisfy the ascending chain condition
on ideals.) By part (a) of Proposition 2.5, only connected graphs need to be con-
sidered. By parts (b)–(d) of the same proposition, graphs of types (1)–(3) are not
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possible:

[t] [t] [t]

[s] [u] [s] [u] [s] [u]

[r ] [v] [r ] [v] [r ] [v]

(1) (2) (3)

The rest of the arguments proceed by contradiction. Namely, we assume that
there exists R such that 0E(R) has exactly the graph in question, which means, in
particular, that R has exactly five distinct equivalence classes as represented by the
graph. Then from the classes and relations, we show that there must be, in fact, a
distinct sixth class, and hence arrive at a contradiction.

Consider this graph:
[t]

[s] [u]
(4)

[r ] [v]

We show that the element t+v determines a sixth class. First, t+v is annihilated
by u, but not by s: indeed, s(t + v) = 0+ sv 6= 0, as there is no edge between s
and v. Likewise, r does not annihilate t + v. However, based on the graph, every
class is annihilated by [r ] or [s]. Thus, [t + v] is not represented by any vertex,
and hence must determine a new class.

The proofs for graphs (5)–(8) below proceed along the same lines: in (5) and
(6), the element t+v determines a new class, and in (7) and (8), the elements u+v
and r t determine a new class, respectively.

[t] [t] [t] [t]

[s] [u] [s] [u] [s] [u] [s] [u]

[r ] [v] [r ] [v] [r ] [v] [r ] [v]

(5) (6) (7) (8)

The remaining proofs rely on two key strategies.

Strategy I. If two points on the condensed zero-divisor graph are adjacent to the
same set of vertices, but are not adjacent to one another, then at least one is self-
annihilating; otherwise, the two points would represent the same class.
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Consider graph (9). One can assume that r2
=0, else [r ]= [u]. Then the element

r+v, which is annihilated by r , but not s or u, determines a new class since, based
on the graph, every class is annihilated by [s] or [u]. Similarly, for (10), we have
s2
= 0, else [s] = [t], hence sv determines a new class. In (11) we have u2

= 0,
else [s] = [u], and v2

= 0, else [r ] = [v], hence s+ v determines a new class.

[t] [t] [t]

[s] [u] [s] [u] [s] [u]

[r ] [v] [r ] [v] [r ] [v]

(9) (10) (11)

Strategy II. If two points on the condensed zero-divisor graph are adjacent to the
same set of vertices and are also adjacent to one another, then at least one of the
points must not annihilate itself ; otherwise, the two points would represent the
same class.

More specifically, in graph (12), one can assume that r2
6= 0, else [r ] = [u].

Then the element r+v, which is annihilated by u, but not r or s, determines a new
class since, based on the graph, every class is annihilated by [r ] or [s]. Similarly,
in (13), r2

6= 0 and v2
6= 0, else [r ] = [u] = [v]; hence r + v determines a new

class; and in (14), r2
6= 0, else [r ] = [v] and s2

6= 0, else [s] = [u]; hence r + s
determines a new class.

[t] [t] [t]

[s] [u] [s] [u] [s] [u]

[r ] [v] [r ] [v] [r ] [v]

(12) (13) (14)

The proofs for graphs (15) and (16), shown on the next page, use both strategies.
In (15), one can assume that v2

= 0, by Strategy I, else [r ] = [v], and that s2
6= 0,

by Strategy II, else [s]= [u]. Then the element s+v, which is annihilated by u and
v, but not r, s or t , determines a new class since, based on the graph, every class is
annihilated by [r ], [s] or [t]. Similarly, in (16), one can assume that u2

= 0, else
[s] = [u], and that v2

6= 0, else [r ] = [v]; hence the element u + v determines a
new class.
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[t] [t]

(15)
[s] [u] [s] [u]

(16)

[r ] [v] [r ] [v]

The last negative case is more complicated.

Proposition 3.1. The graph in (17) can not be realized as 0E(R) for any ring R.

[t]

[s] [u]
(17)

[r ] [v]

Proof. Suppose that R is a ring such that 0E(R) takes the form in (17). Note that
su 6= 0, but rsu = tsu = vsu = 0, hence [su] = [s]. As a result, su2

6= 0, and
hence u2

6= 0. By symmetry, [tv] = [v] and t2
6= 0. Next, consider s + v, which

is annihilated by r , but not t or u. The only candidate for [s + v] is [r ], which
means that r is self-annihilating. Moreover, it implies the same of s and v, since
0= rs = (s+ v)s and 0= rv = (s+ v)v.

Consider tu, which is annihilated by s and v. We will show that [tu] must
represent a new class. The candidates for [tu] are [r ], [s], and [v]. By symmetry,
we need only consider [tu] = [r ] and [tu] = [s].

Case I: [tu] = [r ]. This means that t2u 6= 0, tu2
6= 0, but t2u2

= 0 since r is
self-annihilating. Here we are using the fact from [Mulay 2002, (3.5), page 3552]
that if y ∈ [x] and xn

= 0, then yn
= 0 as well. Now [t2

] 6= [v] since t2 is not
annihilated by u; likewise, [u2

] 6= [s]. Thus, [t2
] 6= [t], else t2u2

= 0 implies that
[u2
] = [s]. Next, if [t2

] = [r ], then t2v = 0, which contradicts [tv] = [v], and for
the same reason, [t2

] 6= [s]. Finally, t2 is annihilated by s, hence [t2
] 6= [u]. Thus,

[tu] determines a new class; contradiction.

Case II: [tu] = [s]. This means that t2u = 0. Thus [t2
] = [v], and hence t2v = 0

since v is self-annihilating. But this contradicts the fact that [tv] = [v]. �

4. Positive results

The graphs in this section, labeled (18)–(21), can be realized as condensed zero-
divisor graphs. In Proposition 4.1 we prove that when R = Z/p6Z, for any prime
number p, we get (18) for 0E(R). In Proposition 4.2 we show that the ring

(Z/3Z)[[X, Y ]]
(X2, Y 2)

(∗)
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has a graph of the form (19), where lowercase letters match the corresponding
uppercase letters in the quotient rings; that is, x = X + (X2, Y 2) in the ring (∗).

[p] [x] [x]

[p3
] [p5

] [y] [xy] [y] [x2
]

[p4
] [p2

] [x+y] [x+2y] [x+y] [x+2y]

(18) (19) (20)

The graph (20) is the condensed zero-divisor graph of the ring

(Z/3Z)[[X, Y ]]
(X3, Y 3, XY, X2+ 2Y 2)

.

This was first reported in [Spiroff and Wickham 2011, Example 3.9], but without
details; we supply the details in Proposition 4.3.

Finally, the graded ring

R =
A[T ]

(T 3, T 2x, T 2 y, T xy)
, where A =

(Z/2Z)[[X, Y ]]
(X2, Y 2)

and x and y represent the cosets of X and Y in A, has the graph shown in (21);
a summary of the proof is given in Proposition 4.4. This is an example of a star
graph or fan graph; such graphs are studied in our context in [Coykendall et al.
2012, Section 2], and we refer the interested reader to that paper for a full proof
that this ring has the graph shown.

[t]

[s] [u] (21)

[r ] [v]

Proposition 4.1. If R = Z/p6Z, then 0E(R) has the graph (18).

Proof. Every nonzero element r̄ = r + p6Z in R is either a unit, in which case
gcd(r, p) = 1, or a zero-divisor, in which case r̄ = upk , where ū is a unit, and
k ∈ {1, 2, 3, 4, 5}. By Lemma 2.6, annR(ū pk) = annR(pk), therefore the ele-
ments p, p2, p3, p4, and p5 represent the classes. They are all distinct since
pi ∈ annR(p6−i ), but pi /∈ annR(p6− j ), for j > i . From this the relations follow.

�

Proposition 4.2. If R =
(Z/3Z)[[X, Y ]]
(X2, Y 2)

, then 0E(R) has the graph shown in (19).



FIVE-POINT ZERO-DIVISOR GRAPHS 61

Proof. The ring has a unique maximal ideal m= (x, y). Note that m2
= (x2, xy, y2)

and hence m2
= (xy) since xy is the only nonzero generator. Moreover, m3

= 0
in R; that is, both x and y, annihilate xy. Therefore, a general element of R looks
like a+ bx + cy+ dxy, where the coefficients a, b, c, d lie in {0, 1, 2}. However,
whenever a 6= 0, this element is a unit since the other terms all lie in m; see, for
instance, [Matsumura 1989, page 3]. We have shown this:

The only possible zero-divisors live in m and have the form bx + cy+ dxy.

We now proceed to describe each class.

First class: [x y] . AnnR(dxy)=m, for any d 6=0. To see this, note by annR(xy)⊆
m, by the statement proved immediately above. On the other hand, since both
generators of m annihilate xy, m⊆ annR(xy). Thus, annR(xy)=m. Also, since 2
is a unit in R, Lemma 2.6 implies that [2xy] = [xy].

Second class: [x] . AnnR(bx + dxy)= (x), for b 6= 0.
Let b′x + c′y+ d ′xy ∈ annR(bx + dxy). Then

0= (bx + dxy)(b′x + c′y+ d ′xy)= bc′xy,

which is zero if and only if bc′ = 0. Since b, c′ are elements of a field and b 6= 0,
we must have c′ = 0. Therefore, the annihilators of bx + dxy have the form

b′x + d ′xy = x(b′+ d ′y)= x(b′+ b′′x + d ′y+ d ′′xy),

for any b′, b′′, d ′, d ′′ ∈ Z/3Z; that is, annR(bx + dxy)= (x).

Third class: [ y] . An analogous argument shows that annR(cy + dxy) = (y), for
c 6= 0.

Fourth class: [x + y] . AnnR(bx + by+ dxy)= (x + 2y), for b 6= 0.
Let b′x + c′y+ d ′xy ∈ annR(bx + by+ dxy). Then

0= (bx + by+ dxy)(b′x + c′y+ d ′xy)= bc′xy+ bb′xy = b(b′+ c′)xy,

which is zero if and only if b(b′+c′)= 0. Since b 6= 0, we must have b′+c′≡ 0 in
Z/3Z. Therefore, the elements that annihilate bx+by+dxy are d ′xy, x+2y+d ′xy
and 2x+ y+d ′xy. However, these last two differ by a unit, for example, 2x+ y =
2(x+2y), and d ′xy = d ′y(x+2y), hence only x+2y is necessary as a generator.
Thus, annR(bx + by+ dxy)= (x + 2y).

Fifth class: [x + 2 y] . A similar analysis shows that annR(bx + 2by + dxy) =
(x + y), where b 6= 0. �
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Proposition 4.3 [Spiroff and Wickham 2011, Example 3.9]. If

R =
(Z/3Z)[[X, Y ]]

(X3, Y 3, XY, (X + Y )(X + 2Y ))
,

then 0E(R) has the graph shown in (20).

Proof. The ring has unique maximal ideal m = (x, y). The nonzero generators of
m2 are (x2, y2) and m3

= 0 in R; that is, both x and y, annihilate every element in
m2. Therefore, a general element of R looks like a+ bx + cy+ dx2

+ ey2, where
the coefficients a, b, c, d, and e, are all either 0, 1 or 2. However, whenever a 6= 0,
this polynomial is a unit since the other terms all lie in m; see [Matsumura 1989,
page 3]. Moreover, the relation (x+y)(x+2y)=0 simplifies to x2

= y2. Therefore,
the only possible zero-divisors live in m and have the form bx + cy+ dx2.

First class: [x2] . AnnR(dx2)=m, d 6= 0.
To see this, we first note that annR(x2) ⊆ m. On the other hand, since both

generators of m annihilate x2, m ⊆ annR(x2). Thus, annR(x2) = m. Moreover,
since 2 is a unit in R, Lemma 2.6 implies that [2x2

] = [x2
].

Second class: [x] . AnnR(bx + dx2)= (y), for b 6= 0.
Let b′x+c′y+d ′x2

∈ annR(bx+dx2). Then 0= (bx+dx2)(b′x+c′y+d ′x2)=

bb′x2, which is zero if and only if bb′ = 0. Since b, b′ are elements of a field and
b 6= 0, we must have b′ = 0. Therefore, the annihilators of bx + dx2 have the
form c′y + d ′x2, or c′y + d ′y2, since x2

= y2, and c′y + d ′y2
= y(c′ + d ′y) =

y(c′+b′′x+d ′y+d ′′x2), for any c′, b′′, d ′, d ′′∈Z/3Z; that is, annR(bx+dx2)= (y).

Third class: [ y] . An analogous argument shows that annR(cy + dx2) = (x), for
c 6= 0.

Fourth class: [x + y] . AnnR(bx + by+ dx2)= (x + 2y), for b 6= 0.
Let b′x + c′y+ d ′x2

∈ annR(bx + by+ dx2). Then

0= (bx + by+ dx2)(b′x + c′y+ d ′x2)= bb′x2
+ bc′y2

= b(b′+ c′)x2,

which is zero if and only if b(b′+c′)= 0. Since b 6= 0, we must have b′+c′≡ 0 in
Z/3Z. Therefore, the elements that annihilate bx+by+dx2 are d ′x2, x+2y+d ′x2

and 2x+ y+d ′x2. However, these last two differ by a unit, for example, 2x+ y =
2(x+2y), and d ′x2

= d ′x(x+2y), hence only x+2y is necessary as a generator.
Thus, annR(bx + by+ dx2)= (x + 2y).

Fifth class: [x + 2 y] . A similar analysis shows that annR(bx + 2by + dxy) =
(x + y), where b 6= 0. �
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Proposition 4.4. If

R =
A[T ]

(T 3, T 2x, T 2 y, T xy)
, where A =

(Z/2Z)[[X, Y ]]
(X2, Y 2)

,

then 0E(R) has the graph shown in (21).

Outline of proof. (See [Coykendall et al. 2012] for details.) The ring A is similar
to the ring in Proposition 4.2, but with a smaller coefficient ring, and an analogous
argument to the one there shows that zero-divisors in A take the form bx+cy+dxy,
where b, c, d ∈ Z/2Z, and there are four distinct classes, given by annA(x)= (x),
annA(y) = (y), annA(xy) = (x, y), and annA(x + y) = (x + y). In fact, these
determine four distinct classes in R. Note that R has the direct sum decomposition

A⊕
A
(xy)
· t ⊕

A
(x, y)

· t2

as an abelian group. We describe the first four classes in R and the last class,
determined by t .

First class: [x y] . AnnR(xy + γ t2) = (x, y)A ⊕ A
(xy)
· t ⊕ A

(x, y)
· t2, for γ in

A/(x, y).

Second class: [x] . AnnR(x + γ t2)= (x)A⊕ (x, y)
(xy)

· t ⊕ A
(x, y)

· t2.

Third class: [ y] . AnnR(y+ γ t2)= (y)A⊕ (x, y)
(xy)

· t ⊕ A
(x, y)

· t2.

Fourth class: [x + y] . AnnR(x + y+ γ t2)= (x + y)A⊕ (x, y)
(xy)

· t ⊕ A
(x, y)

· t2.

Fifth class: t . AnnR(t + γ t2)= (xy)A⊕ (x, y)
(xy)

· t ⊕ A
(x, y)

· t2.

Remark 4.5. The (nonzero) elements α+βt , where α ∈ (x, y)A and β ∈ A/(xy),
fall into the above categories. If α = 0 and β ∈ (x, y)A, then the element is in
the first class; if α 6= 0 and β ∈ (x, y)A, then the element is in [α]; finally, if
β /∈ (x, y)A, then the element is in [t]. �
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