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Generalized quadrangles, Laguerre planes and
shift planes of odd order

Günter F. Steinke and Markus Stroppel

We characterize the Miquelian Laguerre planes, and thus the classical orthogonal
generalized quadrangles Q(4, q), of odd order q by the existence of shift groups
in affine derivations.

Introduction

A finite Laguerre plane L = (P, C,G) of order n consists of a set P of n(n+ 1)
points, a set C of n3 circles and a set G of n+ 1 generators, where both circles and
generators are subsets of P, such that the following three axioms are satisfied:

(G) G partitions P and each generator contains n points.

(C) Each circle intersects each generator in precisely one point.

(J) Three points of which no two are on the same generator are joined by a unique
circle.

Circles through x are called touching in x if they are equal or have no other
point in common. The set of all circles through a given point x is denoted by Cx .
The derived affine plane Ax = (P r [x], Cx ∪ G r {[x]}) at a point x ∈ P has the
collection of all points not on the generator [x] through x as its point set and, as
lines, all circles passing through x (without the point x) and all generators apart
from [x]. The axioms above easily yield that Ax is an affine plane. We refer to the
generators as vertical lines in Ax . Circles that touch each other in x give parallel
lines in Ax . A line W is introduced to obtain the projective completion Px of Ax ;
the common point of the verticals will be denoted by v ∈W.
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The group Aut(L) of all automorphisms of a Laguerre plane L acts on the set G
of generators. We call L an elation Laguerre plane if the kernel 1 of that action
acts transitively on the set C of circles. It is known (see [Steinke 1991, 1.3]) that
in every finite elation Laguerre plane the group 1 has a (unique) regular normal
subgroup E called the elation group. For more details on elation Laguerre planes,
we refer the reader to the introduction in [Steinke and Stroppel 2013].

In the present note, we only use a weaker transitivity assumption on 1 but
combine this with additional assumptions. Our results can (and will) be applied to
elation Laguerre planes with additional homogeneity assumptions, e.g., in [Steinke
and Stroppel 2018] (see Theorem 2.3 below).

Finite Laguerre planes of odd order q are equivalent to antiregular generalized
quadrangles of order q (i.e., with parameters (q, q)); see [Thas et al. 2006, Theo-
rem 2.4.2]. Derivation at an antiregular point of a generalized quadrangle of odd
order q produces a Laguerre plane of order q. Conversely, the Lie geometry of
a Laguerre plane of odd order yields a generalized quadrangle with an antiregu-
lar point. Thus this generalized quadrangle is antiregular; see [Thas et al. 2006,
Theorem 2.4.6]. However, this construction does not work when q is even.

On the other hand, a finite elation Laguerre plane of order q (regardless of
whether q is even or odd) is equivalent to a generalized oval (or pseudo-oval) with
q+ 1 points and thus to a translation generalized quadrangle of order q; see [Casse
et al. 1985] or [Thas et al. 2006].

The elation group E is a 3m-dimensional vector space over some field F, and
the stabilizer Ex of each point x is a 2m-dimensional vector subspace of E . Un-
der a duality the Ex yield a family of q + 1 vector subspaces of dimension m
in F3m. Changing to projective notation one sees that, geometrically, a finite ela-
tion Laguerre plane of order q is equivalent to a (q+1)-set of (m−1)-dimensional
subspaces in the (3m−1)-dimensional projective space over F; compare [Casse
et al. 1985]. In [Thas et al. 2006] such a set is called a generalized oval. In fact,
a generalized oval is just a 4-gonal family of type (q, q) in an abelian group; see
[Thas et al. 2006, 3.2.2]. One obtains a translation generalized quadrangle of or-
der q from a generalized oval, and on the other hand, every translation generalized
quadrangle of order q arises from a generalized oval in this way; see [Thas et al.
2006, Theorem 3.5.1] or [Payne and Thas 2009, 8.7.1].

With the correspondence between Laguerre planes and certain generalized quad-
rangles as above, our results on Laguerre planes have corresponding formulations
in generalized quadrangles, but we mainly use the language of Laguerre planes.

1. Translation planes

Theorem 1.1. Let P be a finite projective plane of order n. Assume that a subgroup
D ≤ Aut(P) fixes each point on some line L. If n2 divides the order of D then D
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contains a subgroup T of order n2 consisting of elations with axis L. In particular,
the plane P is a translation plane, and the order n is a prime power.

Proof. For each nontrivial element δ ∈ D there is a (unique) center cδ , i.e., a point cδ
such that δ fixes each line through cδ ([Baer 1946], see [Hughes and Piper 1973,
Theorem 4.9]). The elations in D are just those in the set

T := {id} ∪ {τ ∈ D r {id} | cτ ∈ L};

that set forms a normal subgroup of D (see [Hughes and Piper 1973, Theorem 4.13]).
For any point x outside L , the stabilizer Dx consists of id and elements with

center x . The order of any element of Dx divides n−1. So the order of Dx and the
number n2 of points outside L are coprime, and D acts transitively on the set A of
points outside L . For each δ ∈ D r T we have cδ /∈ L , and δ ∈ Dcδ yields that the
order of δ divides n− 1, and is coprime to n2.

Let B denote the set of T -orbits in A. Then D acts on B, and so does D/T
because T E D acts trivially on B. Transitivity of D on A implies that D/T is
transitive on B. Now |B| = n2/|T | divides |D/T |. The latter order is coprime
to n2 because each member (distinct from T ) of the quotient has a representative
of order coprime to n2. So |B| = 1, and transitivity of T is proved. �

Theorem 1.2. Let L be a Laguerre plane of finite order n with kernel 1. If ∞ is a
point such that n2 divides the order of the stabilizer 1∞ then the derived projective
plane P∞ is a dual translation plane, and the order n is a prime power.

Proof. The group D induced by 1∞ on the dual P of P∞ satisfies the assumptions
of Theorem 1.1. �

Theorem 1.3. Let L be a Laguerre plane of finite order n, and assume that there is
a point∞ such that n2 divides the order of the stabilizer 1∞. If there exist a circle
K ∈ C∞ and a subgroup H ≤ Aut(L)∞ such that H fixes each circle touching K
in∞ and H acts transitively on K r {∞}, then P∞ has Lenz type V (at least), and
is coordinatized by a semifield.

Proof. From Theorem 1.2 we know that P∞ is a dual translation plane. The
translation axis in the dual of P∞ is the common point v for the generators in
the projective closure of A∞. The elations of P∞ with center v and axis W form
a group of order n; we denote that group by V and note that V is a group of
translations of A∞.

Our assumptions on H secure that H induces a group of translations of A∞;
the common center is the point at infinity for the “horizontal line” K r {∞}. We
obtain a transitive group H V of translations on A∞. So P∞ is also a translation
plane, and has Lenz type V at least. �
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2. Shift groups

Recall that a shift group on a projective plane is a group of automorphisms fixing
an incident point-line pair (x, Y ) and acting regularly both on the set of points
outside Y and on the set of lines not through x .

Theorem 2.1. Let L be a finite Laguerre plane of odd order, and assume that there
exists a point u and a subgroup S ≤ Aut(L)u such that S induces a transitive group
of translations on the affine plane Au .

(1) If s ∈ [u]r {u} is fixed by S then S induces a shift group on Ps .

(2) If S fixes a point t of L and induces a transitive group of translations on At

then t = u.

Proof. Let n denote the order of L. Assume that s ∈ [u]r {u} is fixed by S. Then S
induces a group of automorphisms of Ps ; we have to exhibit an incident point-line
pair (x, Y ) such that S acts regularly both on the set of points outside Y and on the
set of lines not through x .

It is obvious that S acts regularly on the set of affine points in Ps because that
set coincides with the set of points of Au . We let the line W at infinity play the role
of Y. Also, the set of vertical lines (induced by generators) is invariant under S, so
we let their point at infinity play the role of x (so x ∈ W is the point v at infinity
of vertical lines).

It remains to show that S acts regularly on the set of nonvertical lines of As ;
these lines are induced by the circles through s. Assume that τ ∈ S fixes a circle C
through s. Our assumption that n be odd implies that the translation of Au induced
by τ does not have any orbit of length 2, and we obtain that τ is trivial if there is
a set of one or two points outside [u] invariant under τ .

Note that no vertical line distinct from [u] is fixed by τ when τ is not the identity.
As τ induces a translation on Au , there exists D ∈ Cu such that τ fixes each circle
touching D in u (these circles induce the parallels to the line induced by D on Au).
Pick a point z ∈C r {s}, and let D′ be the circle through z touching D in u. Then τ
leaves the intersection D′∩C invariant. This is a set with one or two elements, and
we find that τ is trivial. So the orbit of C under S has length |S| = n2, and fills all
of Cs . Thus S acts regularly on the set of nonvertical lines of As , as required.

Now assume that S fixes t and induces a transitive group of translations on At .
Then t ∈ [u] because S acts regularly on the set of points outside [u]. For any
circle C ∈ Ct , we pick two points a, b ∈ C r {t}. Then there exists τ ∈ S such
that τ(a)= b. As τ is a translation both of Au and of At , the orbit of a under 〈τ 〉
is contained both in the line C of At and in some line B of Au , that is, in some
circle B through u. Since n is odd, that orbit has at least three points, and B = C .
This yields t = u, as claimed. �



ODD ORDER GENERALIZED QUADRANGLES AND LAGUERRE AND SHIFT PLANES 51

Theorem 2.2. Assume that L is a finite Laguerre plane of odd order n, and let∞
be a point. Let U denote the set of all points u ∈ [∞]r {∞} such that there exists
a subgroup Su ≤ Aut(L) of order n2 fixing both∞ and u and acting as a group of
translations on Au . Then the following hold:

(1) There are at least |U | many different shift groups on P∞.

(2) If |U |> 1 then A∞ is a translation plane.

(3) If A∞ is a translation plane and U is not empty then P∞ has Lenz type V
at least and can be coordinatized by a commutative semifield, and the middle
nucleus of such a coordinatizing semifield has order at least |U | + 1.

(4) If |U |>
√

n then P∞ is Desarguesian.

Proof. Using Theorem 2.1 we see for any u ∈ U that Su is a shift group on P∞,
and different points t, u ∈U yield different groups St and Su . This gives the first
assertion. All these shift groups have the same fixed flag in P∞.

If a finite projective plane admits more than one shift group, it is a translation
plane; see [Knarr and Stroppel 2009, 10.2]. If a translation plane admits at least
one shift group then it can be coordinatized by a commutative semifield ([Knarr
and Stroppel 2009, 9.12], [Spille and Pieper-Seier 1998]) and the different shift
groups with the same fixed flag are parameterized by the nonzero elements of the
middle nucleus of such a semifield; see [Knarr and Stroppel 2009, 9.4].

The additive group of the coordinatizing semifield forms a vector space over the
middle nucleus (see [Hughes and Piper 1973, p. 170]). If the middle nucleus has
more than

√
n elements then that vector space has dimension 1, and the middle

nucleus coincides with the semifield. This means that the semifield is a field, and
the plane is Desarguesian. �

Theorem 2.2 is used in [Steinke and Stroppel 2018] to prove the following:

Theorem 2.3. Let L be a finite elation Laguerre plane of odd order. If there exists
a point ∞ such that Aut(L)∞ acts two-transitively on G r {[∞]} then the affine
plane A∞ is Desarguesian, and L is Miquelian. �

Remark 2.4. If P is a projective plane of even order then a shift group on P will
never be elementary abelian; see [Knarr and Stroppel 2009, 1.5, 5.8]. Thus a shift
group on such a plane will not act as a transitive group of translations on any other
affine plane (of the same order).

With the correspondence between Laguerre planes and certain generalized quad-
rangles as mentioned in the introduction, Theorem 2.3 yields the following. Here
we use the standard notation of x⊥ for all points collinear to x in a generalized
quadrangle Q and π(x, y) for the affine plane obtained at an antiregular point x ;
see [Thas et al. 2006, Theorem 2.4.1] for a definition).



52 GÜNTER F. STEINKE AND MARKUS STROPPEL

Corollary 2.5. Let Q be a finite translation generalized quadrangle of odd order
q with an antiregular base point x. If there exists a point y collinear to x such
that the stabilizer Aut(Q)x,y acts two-transitively on x⊥r {x, y}⊥⊥, then the affine
plane π(x, y) is Desarguesian, and Q is the classical orthogonal generalized quad-
rangle Q(4, q).
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