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The exterior splash in PG(6, q): transversals

Susan G. Barwick and Wen-Ai Jackson

Let π be an order-q-subplane of PG(2, q3) that is exterior to `∞. Then the
exterior splash of π is the set of q2

+ q + 1 points on `∞ that lie on an extended
line of π . Exterior splashes are projectively equivalent to scattered linear sets
of rank 3, covers of the circle geometry CG(3, q), and hyper-reguli in PG(5, q).
We use the Bruck–Bose representation in PG(6, q) to investigate the structure
of π , and the interaction between π and its exterior splash. We show that the
point set of PG(6, q) corresponding to π is the intersection of nine quadrics, and
that there is a unique tangent plane at each point, namely the intersection of the
tangent spaces of the nine quadrics. In PG(6, q), an exterior splash S has two
sets of cover planes (which are hyper-reguli) and we show that each set has three
unique transversal lines in the cubic extension PG(6, q3). These transversal lines
are used to characterise the carriers and the sublines of S.

1. Introduction

In [Barwick and Jackson 2012; 2014], we studied order-q-subplanes of PG(2, q3)

and determined their representation in the Bruck–Bose representation in PG(6, q).
A full characterisation in PG(6, q) was given for order-q-subplanes that are secant
or tangent to `∞ in PG(2, q3). In [Rottey et al. 2015], this was generalised to
study subplanes of PG(2, qn) in PG(2n, q). The cases when the subplane is secant
or tangent to `∞ yield nice geometric characterisations. However, the case of an
order-q-subplane π of PG(2, q3) that is exterior to `∞ yields a complex structure
denoted [π ] in PG(6, q). Our main motivation in this article is to investigate the
geometric properties of the structure [π ]. The splash of π gives crucial informa-
tion about the geometrical properties of [π ], and so we also study the interplay in
PG(6, q) between [π ] and its splash.

The splash of a subplane π of PG(2, qn) is defined to be the set of points on `∞
that lie on an extended line of π . In [Barwick and Jackson 2015] it was shown that
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the splash of a tangent order-q-subplane of PG(2, q3) is a linear set. In [Lavrauw
and Zanella 2015] the notion of splash was generalised from subplanes to subge-
ometries, and to general field extensions. It was shown that a splash is a linear set,
and conversely, a linear set is a splash.

In this article we let π be a subplane of PG(2, q3) of order q that is exterior to `∞.
The lines of π meet `∞ in a set S of size q2

+q+1, which we call the exterior splash
of π . Properties of the exterior splash of PG(2, q3) were studied in [Barwick and
Jackson 2016]. The sets of points in an exterior splash has arisen in many different
situations, namely scattered Fq -linear sets of rank 3, covers of the circle geometry
CG(3, q), hyper-reguli in PG(5, q), and Sherk surfaces of size q2

+q+1. Scattered
linear sets are surveyed in [Lavrauw 2016]. An important result is that all scattered
Fq -linear sets of rank 3 are projectively equivalent [Lavrauw and Zanella 2015].

This article proceeds as follows. In Section 2 we introduce the notation we use
for the Bruck–Bose representation of PG(2, q3) in PG(6, q), as well as presenting
some other preliminary results.

We next introduce coordinates; as all scattered Fq -linear sets of rank 3 are projec-
tively equivalent, we will work with an exterior splash equivalent to the set of points

{(x, xq) : x ∈ GF(q3)\{0}}.

In Section 3 we coordinatise an order-q-subplane B in PG(2, q3) that is exterior
to `∞, with this exterior splash. This order-q-subplane will be used in many of the
proofs in this article.

In Section 4, we study the structure of an order-q-subplane in PG(6, q). We
show that it contains q2

+ q + 1 twisted cubics and is the intersection of nine
quadrics. Further, we show that there is a unique tangent plane at each point,
which is the intersection of the tangent spaces of these nine quadrics.

We next study the exterior splash S of `∞ in the Bruck–Bose representation
in PG(5, q). By results of Bruck [1973], S has two switching sets denoted X,Y,
which we call covers of S. The three sets S,X,Y are called hyper-reguli in [Ostrom
1993]. In Section 5, we look at the exterior splash

{(x, xq) : x ∈ GF(q3)\{0}},

and working in PG(6, q), find coordinates for the two covers X,Y. In Section 6,
we show that each of the sets S,X,Y has a unique triple of conjugate transversal
lines in the cubic extension PG(5, q3). Theorem 6.5 characterises the carriers of an
exterior splash as the only planes of the regular spread that meet all nine transversal
lines. Theorem 6.6 shows that the nine transversal lines are common to the set of
q − 1 disjoint splashes of `∞ that have common carriers. We interpret this result
in terms of replacing hyper-reguli to create André planes. In Section 7 we use the
transversal lines to characterise the order-q-sublines of an exterior splash in terms
of how the corresponding 2-reguli meet the cover planes.
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2. The Bruck–Bose representation
2A. The Bruck–Bose representation of PG(2, q3) in PG(6, q). We introduce
the notation we will use for the Bruck–Bose representation of PG(2, q3) in PG(6, q).
We work with the finite field Fq of order q . A 2-spread of PG(5, q) is a set of q3

+1
planes that partition PG(5, q). A 2-regulus of PG(5, q) is a set of q + 1 mutually
disjoint planes π1, . . . , πq+1 with the property that if a line meets three of the
planes, then it meets all q + 1 of them. A 2-regulus R has a set of q2

+ q + 1
mutually disjoint ruling lines that meet every plane of R. A 2-regulus is uniquely
determined by three mutually disjoint planes, or four (ruling) lines (mutually dis-
joint and lying in general position). A 2-spread S is regular if for any three planes
in S, the 2-regulus containing them is contained in S. See [Hirschfeld and Thas
1991] for more information on 2-spreads.

The following construction of a regular 2-spread of PG(5, q) will be needed. Em-
bed PG(5, q) in PG(5, q3) and let g be a line of PG(5, q3) disjoint from PG(5, q).
Let gq, gq2

be the conjugate lines of g; both of these are disjoint from PG(5, q).
Let Pi be a point on g; then the plane 〈Pi , Pq

i , Pq2

i 〉 meets PG(5, q) in a plane.
As Pi ranges over all the points of g, we get q3

+1 planes of PG(5, q) that partition
PG(5, q). These planes form a regular 2-spread S of PG(5, q). The lines g, gq, gq2

are called the (conjugate skew) transversal lines of the 2-spread S. Conversely,
given a regular 2-spread in PG(5, q), there is a unique set of three (conjugate skew)
transversal lines in PG(5, q3) that generate S in this way.

We will use the linear representation of a finite translation plane P of dimension
at most three over its kernel, due independently to André [1954] and Bruck and
Bose [1964; 1966]. Let 6∞ be a hyperplane of PG(6, q) and let S be a 2-spread
of 6∞. We use the phrase a subspace of PG(6, q)\6∞ to mean a subspace of
PG(6, q) that is not contained in 6∞. Consider the following incidence structure:
the points of A(S) are the points of PG(6, q)\6∞; the lines of A(S) are the 3-
spaces of PG(6, q)\6∞ that contain an element of S; and incidence in A(S) is
induced by incidence in PG(6, q)\6∞. Then the incidence structure A(S) is an
affine plane of order q3. We can complete A(S) to a projective plane P(S); the
points on the line at infinity `∞ have a natural correspondence to the elements of
the 2-spread S. The projective plane P(S) is the Desarguesian plane PG(2, q3) if
and only if S is a regular 2-spread of 6∞ ∼= PG(5, q) (see [Bruck 1969]). For the
remainder of this article, we use S to denote a regular 2-spread of 6∞ ∼= PG(5, q).

We use the following notation. If T is a point of `∞ in PG(2, q3), we use [T ] to
refer to the plane of S corresponding to T. More generally, if X is a set of points
of PG(2, q3), then we let [X ] denote the corresponding set in PG(6, q). If P is
an affine point of PG(2, q3), we generally simplify the notation and also use P
to refer to the corresponding affine point in PG(6, q), although in some cases, to
avoid confusion, we use [P].
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When S is a regular 2-spread, we can relate the coordinates of P(S)∼= PG(2, q3)

and PG(6, q) as follows. Let τ be a primitive element in Fq3 with primitive poly-
nomial x3

− t2x2
− t1x − t0. Every element α ∈ Fq3 can be uniquely written as

α = a0+ a1τ + a2τ
2 with a0, a1, a2 ∈ Fq . Points in PG(2, q3) have homogeneous

coordinates (x, y, z) with x, y, z ∈ Fq3 , not all zero. Let the line at infinity `∞
have equation z = 0; so the affine points of PG(2, q3) have coordinates (x, y, 1).
Points in PG(6, q) have homogeneous coordinates (x0, x1, x2, y0, y1, y2, z) with
x0, x1, x2, y0, y1, y2, z ∈ Fq . Let 6∞ have equation z = 0. Let P = (α, β, 1) be a
point of PG(2, q3). We can write α = a0+ a1τ + a2τ

2 and β = b0+ b1τ + b2τ
2

with a0, a1, a2, b0, b1, b2 ∈ Fq . We want to map the element α of Fq3 to the vector
(a0, a1, a2), and we use the following notation to do this:

[α] = (a0, a1, a2).

This gives some notation for the Bruck–Bose map, denoted ε, from an affine point
P= (α, β, 1)∈PG(2, q3)\`∞ to the corresponding affine point [P]∈PG(6, q)\6∞,
namely

ε(α, β, 1)= [(α, β, 1)] = ([α], [β], 1)= (a0, a1, a2, b0, b1, b2, 1).

More generally, if z ∈ Fq , then ε(α, β, z)= ([α], [β], z)= (a0, a1, a2, b0, b1, b2, z).
Consider the case when z= 0, that is, a point on `∞ in PG(2, q3) has coordinates

L = (α, β, 0) for some α, β ∈ Fq3 . In PG(6, q), the point ε(α, β, 0)= ([α], [β], 0)
is one point in the spread element [L] corresponding to L . Moreover, the spread
element [L] consists of all the points {([αx], [βx], 0) : x ∈ F′

q3}. Hence the regular
2-spread S consists of the planes {[kx], [x], 0] : x ∈ F′

q3} for k ∈ Fq3 ∪ {∞}.
With this coordinatisation for the Bruck–Bose map, we can calculate the coor-

dinates of the transversal lines of the regular 2-spread S.

Lemma 2.1 [Barwick and Jackson 2012]. Let p0 = t1 + t2τ − τ 2
= −τ qτ q2

,
p1 = t2 − τ = τ q

+ τ q2
, p2 = −1, and A = (p0, p1, p2). Then in the cubic ex-

tension PG(6, q3), one transversal line of the regular 2-spread S contains the two
points A1= (p0, p1, p2, 0, 0, 0, 0)= (A, [0], 0) and A2= (0, 0, 0, p0, p1, p2, 0)=
([0], A, 0).

2B. Some useful homographies. In order to simplify the notation in some of the
following coordinate-based proofs, we define some homographies which will be
useful. We can represent an element x = x0+ x1τ + x2τ

2
∈ Fq3 as a point [x] =

(x0, x1, x2) in PG(2, q). For k ∈ F′
q3 , consider the homography ζk in PGL(3, q)

with matrix Mk that maps [x] to [kx]. Let k ∈ F′
q3 and write k = k0+ k1τ + k2τ

2,
then Mk = k0 M1+ k1 Mτ + k2 Mτ 2 , and hence

Mk A = k A and Mk Aq2
= kq2

Aq2
, (1)
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where A = (p0, p1, p2)
t is defined in Lemma 2.1. We use ζk to define the homog-

raphy θk of PG(5, q), k ∈ Fq3 :

θk : ([x], [y])→ ([kx], [y])= (Mk[x], [y]).

From the matrix Mτ , we construct three more homographies of PG(2, q) with
matrices U0,U1,U2 that help with the notation in the proof of Theorem 7.4. For
i = 0, 1, 2, (with pi as in Lemma 2.1), let

Ui = (p0 I + p1 Mτ + p2 M2
τ )

q i
=


pq i

0 τ q i
pq i

0 τ 2q i
pq i

0

pq i

1 τ q i
pq i

1 τ 2q i
pq i

1

pq i

2 τ q i
pq i

2 τ 2q i
pq i

2

.
Then

Ui

a0
a1
a2

= (a0+ a1τ
q i
+ a2τ

2q i
)


pq i

0

pq i

1

pq i

2

, a0, a1, a2 ∈ Fq3 .

Note that if a0, a1, a2 ∈ Fq , and α= a0+a1τ+a2τ
2, then [α] = (a0, a1, a2)

t, and we
write the matrix equation as Ui [α] = α

q i
Aq i

.

2C. Sublines in the Bruck–Bose representation. An order-q-subplane of PG(2,q3)

is a subplane of PG(2, q3) of order q . Equivalently, it is an image of PG(2, q) under
PGL(3, q3). An order-q-subline of PG(2, q3) is a line of an order-q-subplane of
PG(2, q3). An order-q-subline of PG(1, q3) is defined to be one of the images of
PG(1, q)= {(a, 1) : a ∈ Fq} ∪ {(1, 0)} under PGL(2, q3).

In [Barwick and Jackson 2012; 2014], we determine the representation of order-
q-subplanes and order-q-sublines of PG(2, q3) in the Bruck–Bose representation
in PG(6, q), and we quote the results for order-q-sublines which are needed in this
article. We first introduce some terminology to simplify the statements. Recall that
S is a regular 2-spread in the hyperplane at infinity 6∞ in PG(6, q).

Definition 2.2. (i) An S-special conic is a nondegenerate conic C contained in a
plane of S, such that the extension of C to PG(6, q3) meets the transversals
of S.

(ii) An S-special twisted cubic is a twisted cubic N in a 3-space of PG(6, q)\6∞
about a plane of S, such that the extension of N to PG(6, q3) meets the
transversals of S.

Theorem 2.3 [Barwick and Jackson 2012]. Let b be an order-q-subline of PG(2, q3).

(i) If b ⊂ `∞, then in PG(6, q), b corresponds to a 2-regulus of S. Conversely
every 2-regulus of S corresponds to an order-q-subline of `∞.
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(ii) If b meets `∞ in a point, then b corresponds to a line of PG(6, q)\6∞.
Conversely every line of PG(6, q)\6∞ corresponds to an order-q-subline of
PG(2, q3) tangent to `∞.

(iii) If b is disjoint from `∞, then in PG(6, q), b corresponds to an S-special
twisted cubic. Further, a twisted cubic N of PG(6, q) corresponds to an order-
q-subline of PG(2, q3) if and only if N is S-special.

In [Barwick and Jackson 2012], we also determine the representation of secant
and tangent order-q-subplanes of PG(2, q3) in PG(6, q). The representation of an
exterior order-q-subplane in PG(6, q) is more complex to describe. One of the
motivations of this work is to investigate this representation in more detail. Some
aspects of the representation are discussed in more detail in Section 4.

2D. Properties of exterior splashes. We need some group theoretic results about
order-q-subplanes and exterior splashes; the first appears in [Barwick and Jackson
2016].

Theorem 2.4. Let G = PGL(3, q3) be the collineation group acting on PG(2, q3).
The subgroup G` fixing a line ` is transitive on the order-q-subplanes that are
exterior to `, and is transitive on the exterior splashes of `.

This theorem can be proved by generalising the arguments in [Barwick and
Jackson 2015]. In particular, it involves looking at two important subgroups of G.
The first subgroup fixes an order-q-subplane, and the following property will be
very useful.

Theorem 2.5. The group K = PGL(3, q3)π acting on PG(2, q3) and fixing an
order-q-subplane π is transitive on the points of π .

The second important subgroup is I = Gπ,` which fixes an order-q-subplane π ,
and a line ` exterior to π . By [Barwick and Jackson 2016], I fixes exactly three
lines: `, and its conjugates m, n with respect to π ; and I fixes exactly three points:
E1 = ` ∩ m, E2 = ` ∩ n, E3 = m ∩ n, which are conjugate with respect to π .
Further I identifies two fixed points E1 = `∩m, E2 = `∩ n on ` which are called
the carriers of the exterior splash S of π . This is consistent with the definition
of carriers of a circle geometry CG(3, q); see [Barwick and Jackson 2016]. In
[Lunardon et al. 2014], scattered linear sets of pseudoregulus type are considered,
and they use the term “transversal points”. The fixed points and fixed lines of I are
used to define an important class of conics in an order-q-subplane π with respect
to an exterior line `. A conic of π whose extension to PG(2, q3) contains the three
points E1, E2, E3 is called a (π, `)-carrier conic of π . A dual conic of π whose
extension to PG(2, q3) contains the three lines `,m, n is called a (π, `)-carrier-
dual conic. Note that carrier-conics/dual conics were called special-conics/dual
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conics in [Barwick and Jackson 2016]; we change the name here so that the term
“special” is reserved for objects in PG(6, q).

3. Coordinatising an exterior order-q-subplane

Recall from Theorem 2.4 that the group of homographies of PG(2, q3) is transitive
on pairs (π, `) where π is an order-q-subplane exterior to the line `. So if we
want to use coordinates to prove a result about exterior order-q-subplanes, we can
without loss of generality prove it for a particular exterior order-q-subplane. In
this section we calculate the coordinates for an exterior order-q-subplane B of
PG(2, q3) whose exterior splash has a simple form. Set

K =

−τ 1 0
−τ q 1 0
ττ q
−τ − τ q 1

, K ′ =

 −1 1 0
−τ q τ 0
−τ 2q τ 2 τ − τ q

. (2)

Let σ be the homography of PG(2, q3) with matrix K. Note that as K K ′ is a
Fq3-multiple of the identity matrix, it follows that K ′ is a matrix for the inverse
homography σ−1. Thus, if we write the points X of PG(2, q3) as column vectors,
and the lines ` of PG(2, q3) as row vectors, then σ(X)= K X and σ(`)= `K ′. The
order-q-subplane π0 = PG(2, q) is secant to `∞. We show that the subplane σ(π0)

is exterior to `∞ and has the desired simple form as exterior splash.

Theorem 3.1. In PG(2, q3), let π0 = PG(2, q), let σ be the homography with
matrix K given in (2), and let B= σ(π0). Then B is an order-q-subplane exterior
to `∞ with exterior splash S= {(k, 1, 0) : k ∈ Fq3, kq2

+q+1
= 1} and carriers E1 =

(1, 0, 0) and E2 = (0, 1, 0).

Proof. Note that σ maps π0 = PG(2, q) to B and the line `= [−ττ q , τ + τ q ,−1]
to `∞ = [0, 0, 1]. By [Barwick and Jackson 2016], π0 is exterior to ` and has
carriers E = (1, τ, τ 2) and Eq

= (1, τ q , τ 2q) on `. Hence B is exterior to `∞ and
has carriers σ(E) = (0, 1, 0) and σ(Eq) = (1, 0, 0) on `∞. By considering the
action of σ on the lines [l,m, n] (l,m, n ∈ Fq , not all zero) of π0, we calculate
the lines of B are `l,m,n = [−l − τ qm − τ 2qn, l + τm + τ 2n, n(τ − τ q)], with
l,m, n ∈ Fq , not all zero. The exterior splash of B consists of the points Ql,m,n =

`l,m,n∩`∞= (l+τm+τ 2n, (l+τm+τ 2n)q , 0). Writing y = l+τm+τ 2n, gives
Ql,m,n ≡ (y, yq , 0)≡ (y1−q , 1, 0) and writing y= τ− j for some j ∈ {0, . . . , q3

−2}
yields Ql,m,n ≡ (τ

j (q−1), 1, 0). Note that if we write j = n(q2
+ q + 1)+ i where

0 ≤ i < q2
+ q + 1, then τ j (q−1)

= τ i(q−1). So we may assume that Ql,m,n =

(τ i(q−1), 1, 0) with 0≤ i < q2
+ q + 1. It is useful to observe that

S= {(k, 1, 0) : k ∈ Fq3, kq2
+q+1
= 1} ≡ {(τ (q−1)i , 1, 0) : 0≤ i < q2

+ q + 1}

as the solutions to kq2
+q+1
= 1 are τ i(q−1), 0≤ i < q2

+ q + 1. �
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4. The structure of the subplane in PG(6, q)

If π is an exterior order-q-subplane of PG(2, q3), then in the Bruck–Bose represen-
tation in PG(6, q), π corresponds to a set of q2

+ q + 1 affine points denoted [π ].
It is difficult to characterise the structure of [π ]. We note that as π contains
q2
+ q + 1 order-q-sublines that are exterior to `∞, then by Theorem 2.3, [π ]

contains q2
+ q + 1 S-special twisted cubics, each lying in a 3-space through a

distinct plane of the exterior splash of π . In this section we aim to determine more
about the structure of [π ].

4A. The intersection of nine quadrics. We show that the structure [π ] of PG(6, q)
corresponding to an exterior order-q-subplane π of PG(2, q3) is the intersection of
nine quadrics in PG(6, q). This is analogous to [Barwick and Jackson 2015, The-
orem 9.2] which shows that a tangent order-q-subplane of PG(2, q3) corresponds
to a structure in PG(6, q) that is the intersection of nine quadrics.

Theorem 4.1. Let π be an exterior order-q-subplane in PG(2, q3). The corre-
sponding set [π ] in PG(6, q) is the intersection of nine quadrics.

Proof. By Theorem 2.4, we can without loss of generality prove this for the order-
q-subplane B coordinatised in Section 3. We use the homographies σ, σ−1 with
matrices K , K ′ respectively, given in (2). A point P= (x, y, 1)∈PG(2, q3) belongs
to B if its preimage K ′P = (−x+ y, −τ q x+τ y, −τ 2q x+τ 2 y+(τ−τ q)) belongs
to π0 = PG(2, q). Suppose firstly that −x + y 6= 0, then

K ′P ≡
(

1,
−τ q x + τ y
−x + y

,
−τ 2q x + τ 2 y+ (τ − τ q)

−x + y

)
.

This belongs to π0 = PG(2, q) if and only if the second and third coordinates
belong to Fq , that is, (

−τ q x + τ y
−x + y

)q

=
−τ q x + τ y
−x + y

, (3)

(
−τ 2q x + τ 2 y+ (τ − τ q)

−x + y

)q

=
−τ 2q x + τ 2 y+ (τ − τ q)

−x + y
. (4)

Writing x = x0 + x1τ + x2τ
2 and y = y0 + y1τ + y2τ

2, where xi , yi ∈ Fq and
i = 1, 2, 3, then equating powers of 1, τ, τ 2, yields three quadratic equations from
each condition, a total of six, each of which represents a quadric in PG(6, q).

Secondly, suppose −τ q x + τ y 6= 0, then

K ′P ≡
(
−x + y
−τ q x + τ y

, 1,
−τ 2q x + τ 2 y+ (τ − τ q)

−τ q x + τ y

)
.
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As before, this lies in π0 if and only if(
−x + y
−τ q x + τ y

)q

=
−x + y
−τ q x + τ y

, (5)

(
−τ 2q x + τ 2 y+ (τ − τ q)

−τ q x + τ y

)q

=
−τ 2q x + τ 2 y+ (τ − τ q)

−τ q x + τ y
, (6)

leading to a further six quadrics in PG(6, q). The equations (3) and (5) give the
same triple of quadrics. Hence the point P lies in B if and only if the point [P]
lies on a total of nine quadrics in PG(6, q). Finally, note that if both −x + y = 0
and −τ q x+ τ y = 0, then x = y = 0 and the point P has coordinates (0, 0, 1). This
satisfies all the quadratic equations from (3), (4), (6), and so in PG(6, q), [P] lies
on each of the nine quadrics. �

4B. Tangent planes at points of an exterior subplane. We now consider a point P
lying in an exterior order-q-subplane π of PG(2, q3). In the Bruck–Bose represen-
tation in PG(6, q), P corresponds to an affine point which we also denote by P. We
show that in PG(6, q), there is a unique tangent plane TP at P to the structure [π ].
We show that there are two equivalent ways to define this tangent plane. Recall
from Theorem 2.3 that the order-q-sublines of π correspond to twisted cubics in
PG(6, q). Theorem 4.2 shows that we can define TP by looking at the tangent lines
at P to these twisted cubics. Then Theorem 4.3 shows that we can define TP by
looking at the tangent space of P with respect to the nine quadrics defined by [π ].

Theorem 4.2. Let π be an exterior order-q-subplane of PG(2, q3), and let P be
a point of π . Label the lines of π through P by `0, . . . , `q . In PG(6, q), `i corre-
sponds to a twisted cubic [`i ]. Let mi be the unique tangent line to [`i ] through P.
Then the lines m0, . . . ,mq lie in a plane TP , called the tangent plane of [π ] at P.

Proof. By Theorems 2.4 and 2.5, we can without loss of generality prove this for
the order-q-subplane B coordinatised in Section 3, and the point P = (0, 0, 1) of B.
First consider the order-q-subplane π0 = PG(2, q). The point P = (0, 0, 1) lies
in π0, and the lines of π0 through P have coordinates `′m = [m, 1, 0], m ∈ Fq ∪{∞}.
Points on the line `′m distinct from P have coordinates P ′x = (1,−m, x) for x ∈ Fq .
We map the plane π0 to B using the homography σ with matrix K given in (2). As
σ(P)= P, the lines of B through P are `m = σ(`

′
m), m ∈ Fq ∪ {∞}. Points on the

line `m distinct from P have coordinates

Px = σ(P ′x)= (−τ −m, −τ q
−m, ττ q

+ (τ + τ q)m+ x),

for x ∈ Fq .
To convert this to a coordinate in PG(6, q), we need to multiply by an element of

Fq3 so that the last coordinate lies in Fq . Let F(x)= ττ q
+ (τ +τ q)m+ x (the third

coordinate in Px ). As F(x) ∈ Fq3 , we have F(x)q
2
+q+1
∈ Fq . So in PG(6, q), we
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have the point Px = ([−(τ +m)F(x)q
2
+q
], [−(τ q

+m)F(x)q
2
+q
], F(x)q

2
+q+1).

By Theorem 2.3, the line `m of PG(2, q3) corresponds to a twisted cubic [`m] =

{Px : x ∈ Fq} ∪ {P} of PG(6, q). Consider the unique tangent to [`m] through P,
and let Im be the intersection of this tangent with 6∞. We will show that the
points Im , m ∈ Fq ∪ {∞}, form a line. To calculate the coordinates of Im , we let
Qx = P Px ∩6∞. To calculate Im = Q∞, we use the homogeneous coordinate
technique of dividing by the largest power of x , and then substituting x =∞, that
is, replacing 1/x by 0. We use the notation limx→∞ to describe this technique.

Im = lim
x→∞

P Px ∩6∞ = lim
x→∞

([−(τ +m)F(x)q
2
+q
], [−(τ q

+m)F(x)q
2
+q
], 0)

= ([−(τ +m)], −[τ q
+m], 0).

Hence the points Im , m ∈ Fq ∪ {∞}, form a line ` = 〈([1], [1], 0), ([τ ], [τ q
], 0)〉

in 6∞. Hence the tangent lines m0, . . . ,mq to the twisted cubics of [π ] through P
form a plane TP = 〈`, P〉 through P, as required. �

Theorem 4.3. Let π be an exterior order-q-subplane of PG(2, q3), and let P be a
point of π . In PG(6, q), consider the intersection of the tangent spaces at P of the
nine quadrics corresponding to [π ]. Then this intersection is equal to the tangent
plane TP of [π ] at P as defined in Theorem 4.2.

Proof. By Theorems 2.4 and 2.5, we can without loss of generality prove this for
the order-q-subplane B coordinatised in Section 3, and the point P = (0, 0, 1) of B.
In PG(6, q), consider the nine quadrics corresponding to [B] which are given in
equations (4), (5) and (6). We want to find the set of lines through P that meet
each of these nine quadrics twice at P. Every line ` of PG(6, q) through P has the
form `= R P for some point R = ([u], [v], 0) ∈6∞, u, v ∈ Fq3 . So the points of `
are of the form Ps = P + s R = ([su], [sv], 1) where s ∈ Fq . Substituting the point
Ps into the quadrics of (4) gives

(−τ 2qsu+τ 2qsv+(τ−τ q))q(−su+sv)= (−τ 2qsu+τ 2sv+(τ−τ q))(−su+sv)q .

This expression is a polynomial of degree two in s. The line `= P R is tangent to
the three quadrics of (4) if this expression has a repeated root s = 0, that is, if the
coefficient of s is equal to zero. That is,

(τ − τ q)q(−u+ v)= (τ − τ q)(−u+ v)q,

and so k = (−u + v)/(τ − τ q) is in Fq . Rearranging gives v = k(τ − τ q)+ u.
Substituting the point Ps into the quadrics of (5) gives no constraints. Substituting
the point Ps into the quadrics of (6) and simplifying gives that the constraint m =
(−τ qu+ τv)/(τ − τ q) lies in Fq , and so v = (m(τ − τ q)+ τ qu)/τ . Equating this
with the expression for v obtained from (4) gives u = m− kτ , and so v = m− kτ q.
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Hence the line `= P R is tangent to all nine quadrics when R has form

R = ([u], [v], 0)= ([m− kτ ], [m− kτ q
], 0)= m([1], [1], 0)− k([τ ], [τ q

], 0).

Thus the tangent space to [B] at P is the plane through P and the line

`= 〈([1], [1], 0), ([τ ], [τ q
], 0)〉

of 6∞. This is the same as the tangent plane TP to [B] at P calculated in the proof
of Theorem 4.2. �

5. Coordinatising the exterior splash and its covers

Let S be an exterior splash of PG(1, q3). In the Bruck–Bose representation, S

corresponds to a set of q2
+q+1 planes of the regular 2-spread S in6∞∼=PG(5, q).

To simplify the notation, we use the same symbol S to denote both the points of
the exterior splash on `∞, and the planes of the exterior splash contained in S.
In [Barwick and Jackson 2016], we show that an exterior splash is projectively
equivalent to a cover of the circle geometry CG(3, q). Hence by Bruck [1973],
there are two switching sets X, Y for S. That is, X and Y consist of q2

+ q + 1
planes each, such that the planes of the three sets S, X and Y each cover the
same set of points. Further, planes from different sets meet in unique points, and
planes in the same set are disjoint. The three sets S,X,Y are called hyper-reguli
in [Culbert and Ebert 2005; Ostrom 1993]. In this article, we call the families X

and Y covers of the exterior splash S.
In this section we take the order-q-subplane B coordinatised in Section 3, with

exterior splash S, and use [Ostrom 1993] to calculate the coordinates of the two
covers of S. We will characterise the two covers in terms of the subplane B.

We call one cover of S the tangent cover with respect to B, and denote it by TB,
or if there is only one subplane under consideration, we shorten this to T. The
nomenclature for tangent covers comes from Theorem 5.3 which shows that the
tangent planes TP of [B] meet 6∞ in lines that lie in distinct planes of the cover T.

We call the other cover of S the conic cover with respect to B, and denote
it by CB, or C. The nomenclature for the conic cover comes from [Barwick and
Jackson 2017] which shows that the planes in the cover C are related to the (B, `∞)-
carrier conics of B.

A certain type of embedding is looked at in [Lavrauw et al. 2015]. Specialising
their results to PG(5, q), their embedding Q2,q is equivalent to the set S∪C∪T.
They determine the collineation group stabilising Q2,q . In particular they demon-
strate: a collineation of PG(5, q) that fixes Q2,q and permutes the families S, C, T;
and a collineation fixing Q2,q that permutes the planes in each family. Further,
[Lavrauw et al. 2015] determines the equation of Q2,q . In Lemma 5.1 we describe
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the homogeneous coordinates for the planes in S,C,T in the format we will work
with, and in Lemma 5.2 we calculate the matrix of a homography that fixes the
planes in S, permutes the planes of T, and permutes the planes of C (this is the
map ϕ0,0(τ, τ ) of [Lavrauw et al. 2015]).

Lemma 5.1. Let S be the exterior splash of the exterior order-q-subplane B coor-
dinatised in Section 3. Let K= {k = τ i(q−1)

: 0≤ i < q2
+ q + 1}. In PG(6, q), S

and its two covers T,C have planes given by

S= {[Sk] = {([kx], [x], 0) : x ∈ F′q3} : k ∈K},

T = {[Tk] = {([kx], [xq
], 0) : x ∈ F′q3} : k ∈K},

C= {[Ck] = {([kx], [xq2
], 0) : x ∈ F′q3} : k ∈K}.

Proof. The points of `∞ in PG(2, q3) have coordinates Sk=(k,1,0) for k∈Fq3∪{∞}.
Hence in the Bruck–Bose representation of `∞ in 6∞ ∼= PG(5, q), planes of the
regular 2-spread S are given by [Sk] = {([kx], [x]) : x ∈ F′

q3}, for k ∈ Fq3 ∪ {∞}.
Consider the homography β (of order 3) of 6∞∼=PG(5,q) defined by

β : ([x], [y])→ ([x], [yq
]). (7)

We consider the action of β on the planes of [Sk]. For each k ∈ Fq3 ∪ {∞}, de-
fine the planes [Tk], [Ck] by β([Sk]) = [Tk] and β([Tk]) = [Ck]. That is, [Tk] =

{([kx], [xq
]) : x ∈ F′

q3}, and [Ck] = {([kx], [xq2
]) : x ∈ F′

q3}.
We now consider the exterior order-q-subplane B coordinatised in Section 3

which by Theorem 3.1 has exterior splash S= {Sk = (k, 1, 0) : k ∈K} ⊂ `∞, and
carriers S∞= (1, 0, 0), S0= (0, 1, 0). Note that in PG(5, q), the carriers of B lie in
each of the three sets of planes, as [S0] = [T0] = [C0] and [S∞] = [T∞] = [C∞]. In
PG(5, q), we have S={[Sk] : k ∈K}. Let T={[Tk] : k ∈K} and C={[Ck] : k ∈K},
then β : S 7→ T 7→ C. By [Ostrom 1993], the sets S, T, C cover the same set
of points. Moreover, planes in the same set are disjoint, and planes from different
sets meet in one point. That is, T and C are the two covers of S. �

The next lemma calculates the action of a useful homography of PG(6, q) (this
is the map ϕ0,0(τ, τ ) of [Lavrauw et al. 2015]). Recall that τ is a zero of the
primitive polynomial x3

− t2x2
− t1x − t0.

Lemma 5.2. Let S be the exterior splash of the exterior order-q-subplane B coor-
dinatised in Section 3 with covers C and T coordinatised in Lemma 5.1. Consider
the homography 2 ∈ PGL(7, q) with 7× 7 matrixM 0 0

0 M 0
0 0 1

, where M =

0 0 t0
1 0 t1
0 1 t2

.
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Then in PG(6, q), 2 fixes each plane of the regular 2-spread S, maps the cover
plane [Ck] ∈C to [Cτ 1−q k] ∈C, and the cover plane [Tk] ∈T to [T

τ 1−q2 k] ∈T, k ∈K.

Proof. It is straightforward to show that 2 fixes the planes of the regular 2-spread S
(so it also fixes the planes of the exterior splash S). In fact 〈2〉 acts regularly on
the set of points, and on the set of lines, of each spread element. Note that M is the
matrix Mτ defined in Section 2B, and so M[x] = [τ x]. Consider the action of 2
on a point of the cover plane [Ck] ∈ C coordinatised in Lemma 5.1. We have

([kx], [xq2
], 0)2 = ([τkx], [τ xq2

], 0)≡ ([τ 1−qk(τ q x)], [(τ q x)q
2
], 0)

which lies in the cover plane [Cτ 1−q k] of C. Similarly a point ([kx], [xq
], 0) in

the cover plane [Tk] ∈ T maps under 2 to the point ([τ 1−q2
k(τ q2

x)], [(τ q2
x)q ], 0)

which lies in the cover plane [T
τ 1−q2 k] of T. �

Theorem 5.3. Let P be a point of an exterior order-q-subplane π . In PG(6, q),
the tangent plane TP at P to [π ] meets 6∞ in a line that lies in a plane of the
tangent cover T of [π ]. Moreover, distinct points of π correspond to distinct cover
planes of T.

Proof. By Theorems 2.4 and 2.5, we can without loss of generality prove this result
for the order-q-subplane B coordinatised in Section 3 and the point P= (0, 0, 1)∈B.
In PG(6, q), let TP be the tangent plane at P. The line `= TP ∩6∞ was calculated
in the proof of Theorem 4.2 to be

`= {a([1], [1], 0)+ b([τ ], [τ q
], 0) : a, b ∈ Fq}.

The points of ` all lie in the plane [T1] = {[x], [xq
],0) | x ∈ F′

q3}, which by Lemma 5.1
is a plane of the tangent cover T of B. The collineation of Lemma 5.2 is transitive
on the cover planes of T, hence each cover plane contains a line of a distinct tangent
plane. Hence there is a one-to-one correspondence between points of π and cover
planes of T. �

6. Transversal lines of covers

Recall that a regular 2-spread in PG(5, q) has three (conjugate skew) transversals
in PG(5, q3) which meet each (extended) plane of S. In this section we consider
an exterior splash S ⊂ S, and show in Lemma 6.1 that the transversals of the 2-
spread S are the only lines of PG(5, q3) that meet every extended plane of S. We
then consider the two sets of cover planes T and C. Corollary 6.2 shows that each
can be uniquely extended to regular 2-spread, and we calculate the coordinates
of the corresponding transversal lines in Theorem 6.3. Theorem 6.5 shows that
the nine transversals of S, C and T can be used to characterise the carriers of
the exterior splash S. Theorem 6.6, looks at the transversal lines in the situation
when `∞ is partitioned into exterior splashes with common carriers.
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6A. The exterior splash and its covers have unique transversals. If X is a set in
PG(6, q) (such as a line, a plane, or a conic), then we denote its natural extension
to PG(6, q3) by X ∗. Let S be the regular 2-spread in 6∞ of the Bruck–Bose
representation in PG(6, q). If we extend the planes of S to PG(6, q3), yielding S∗,
then there are exactly three transversal lines to S∗, that is, three lines that meet
every plane of S∗. These three lines are conjugate and skew. We now consider an
exterior splash S ⊂ S and extend the planes of S to PG(6, q3), yielding S∗. We
show that there are exactly three lines of PG(6, q3) that meet every plane of S∗,
namely the three transversals of S.

Lemma 6.1. Let S be a regular 2-spread in PG(5, q), and let S⊂ S be an exterior
splash. In the cubic extension PG(5, q3), there are exactly three transversals to S,
namely the three transversals of S. Hence S lies in a unique regular 2-spread,
namely S.

Proof. The three conjugate transversal lines of the regular 2-spread S, denoted
gS, gq

S
, gq2

S
, are also transversals of S. Suppose there is a fourth transversal line `

of S. Then the four lines gS, gq
S
, gq2

S
, ` are pairwise skew. Further, these four lines

are ruling lines of a unique 2-regulus R of 6∗
∞
∼= PG(5, q3), which contains the set

of extended planes S∗. Now consider two planes [L], [M] ∈ S; the corresponding
points L ,M of `∞ in PG(2, q3) lie in two order-q-sublines contained in S by
[Lavrauw and Van de Voorde 2010, Corollary 15]. Hence by Theorem 2.3, [L], [M]
lie in two 2-reguli R1,R2 which are contained in S. Let P be a point in [L], then
there are unique lines m1,m2 through P that are ruling lines of R1,R2 respectively.
Now R1, R2 lie in S, and so lie in R, so the extended lines m∗i , i = 1, 2, are two
ruling lines of R that meet in a point P, a contradiction. Hence the line ` cannot
exist. That is, there are only three transversal lines to S, and these are necessarily
the transversals of S. �

As S, C, T are projectively equivalent by [Lavrauw et al. 2015, Theorem 16],
an analogous result holds for the two covers of S.

Corollary 6.2. In PG(5, q), let S be an exterior splash with covers T and C. Then
in the cubic extension PG(5, q3),

(i) the cover T has exactly three transversal lines in PG(5, q3)\PG(5, q), denoted
gT, gq

T, gq2

T , and so T lies in a unique regular 2-spread,

(ii) the cover C has exactly three transversal lines in PG(5, q3)\PG(5, q), denoted
gC, gq

C
, gq2

C
, and so C lies in a unique regular 2-spread.

Later we will need the coordinates of the point of intersection of the transversal
lines with the corresponding cover planes, and we calculate these next.

Theorem 6.3. Let B be the order-q-subplane coordinatised in Section 3 with ex-
terior splash S and covers C,T. Let p0 = t1+ t2τ − τ 2

=−τ qτ q2
, p1 = t2− τ =
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τ q
+ τ q2

, p2 = −1, and η = p0+ p1τ + p2τ
2. Let A1 = (p0, p1, p2, 0, 0, 0, 0),

A2 = (0, 0, 0, p0, p1, p2, 0). Then in PG(6, q3),

(i) one transversal line of S is gS = 〈A1, A2〉, and gS ∩ [Sk]
∗
= k A1+ A2,

(ii) one transversal line of T is gT = 〈A1, Aq2

2 〉, and gT ∩ [Tk]
∗
= k A1+ η

1−q2
Aq2

2 ,

(iii) one transversal line of C is gC = 〈A1, Aq
2〉, and gC ∩ [Ck]

∗
= k A1+ η

1−q Aq
2 .

Proof. We use the coordinatisation in PG(5, q) of the exterior splash S of B and
the two covers T, C given in Lemma 5.1. Lemma 2.1 shows that gS = 〈A1, A2〉 is
a transversal line for the regular 2-spread S, where A1 = (p0, p1, p2, 0, 0, 0) =
(A, [0]) and A2 = (0, 0, 0, p0, p1, p2) = ([0], A). Hence gS = 〈A1, A2〉 is a
transversal line for the exterior splash S. The planes of the regular 2-spread
S are [Sk] = {([kx], [x]) : x ∈ F′

q3}, k ∈ Fq3 ∪ {∞}. We first show that the ex-
tended plane [Sk]

∗ meets the line gS in the point k A1 + A2. Consider the point
P = p0([k], [1]) + p1([kτ ], [τ ]) + p2([kτ 2

], [τ 2
]) of PG(5, q3), and note that

P ∈ [Sk]
∗. Using the matrix Mk defined in Section 2B, we have

P = p0(Mk[1], [1])+ p1(Mk[τ ], [τ ])+ p2(Mk[τ
2
], [τ 2
])= (Mk A, A)= (k A, A)

by (1). Hence P = k A1+ A2 which lies in gS = 〈A1, A2〉, that is, P is the inter-
section of gS and [Sk]

∗ proving part (i).
Consider the homography β defined in (7), acting on PG(5, q3). The proof of

Lemma 5.1 shows that β maps gS to gT, and maps gT to gC. Each element y ∈ F′
q3

can be considered as a point [y] in PG(2, q). The collineation of PG(2, q) mapping
the point [y] to [yq

] is a homography, and can be represented using a matrix N with
entries in Fq . We omit the transpose notation, and write N [y] = [yq

]. Hence we can
write the collineation β as β([x], [y])= ([x], N [y]). Clearly β(A1)= A1, and we
show that β(A2)= A q2

2 . Recall the point A= (p0, p1, p2)= p0[1]+ p1[τ ]+ p2[τ
2
],

so N A = p0[1] + p1[τ
q
] + p2[τ

2q
]. Using the matrix Mk from Section 2B, it is

straightforward to write this as N A=(pq2

0 I + pq2

1 Mτ + pq2

2 Mτ 2)q [1]. Now

(pq2

0 I+pq2

1 Mτ+pq2

2 Mτ 2)[1]= Aq2
and (pq2

0 I+pq2

1 Mτ+pq2

2 Mτ 2)Aq2
=ηq2

Aq2

by (1). So repeated use of (1) yields N A = ηq2(q−1)Aq2
= η1−q2

Aq2
. Further, as N

is over Fq , we have

N A = η1−q2
Aq2

, N Aq
= ηq−1 A, N Aq2

= ηq2
−q Aq . (8)

Hence β(k A1+ A2)= k A1+ η
1−q2

Aq2

2 . As β : gS 7→ gT, we have gT ∩ [Tk]
∗
=

k A1+ η
1−q2

A q2

2 and gT = 〈A1, Aq2

2 〉, proving part (ii). Similarly, calculating

β(k A1+ η
1−q2

Aq2

2 )= k A1+ η
1−q2

+q2
−q Aq

2 = k A1+ η
1−q Aq

2,

and using β : gT 7→ gC, we get gC∩[Ck]
∗
= k A1+η

1−q Aq
2 and gC = 〈A1, Aq

2〉. �
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We can use the transversals of the covers T and C to generalise the notion of S-
special conics and twisted cubics in PG(6, q) defined in Definition 2.2. We define
C-special here, T-special is similarly defined.

Definition 6.4. (i) A C-special conic is a nondegenerate conic C contained in a
plane of C, such that the extension of C to PG(6, q3) meets the transversals
of C.

(ii) A C-special twisted cubic is a twisted cubic N in a 3-space of PG(6, q)\6∞
about a plane of C, such that the extension of N to PG(6, q3) meets the
transversals of C.

6B. Characterising the carriers in PG(6, q). Letting S be a regular 2-spread of
PG(5, q), and S be an exterior splash contained in S, with covers C and T, we can
then characterise the carriers of S in terms of the nine transversals of S, C and T.

Theorem 6.5. Let S be a regular 2-spread of PG(5, q), and let S ⊂ S be an ex-
terior splash with covers C, T, whose corresponding triples of transversal lines
are gS, gq

S
, gq2

S
, gC, gq

C
, gq2

C
, and gT, gq

T, gq2

T , respectively. Then the carriers of S

are the only two planes of S whose extension to PG(5, q3) meets all nine transver-
sal lines.

Proof. By Theorem 2.4, we can without loss of generality show this for the exterior
splash S of the exterior order-q-subplane B coordinatised in Section 3, with car-
riers E1 = (1, 0, 0), E2 = (0, 1, 0). In PG(6, q), the transversal lines gS, gq

S
, gq2

S

each meet the carriers [E1], [E2] of S. We use the notation for planes [Sk] ∈ S,
[Tk] ∈ T and [Ck] ∈ C from Lemma 5.1. By Corollary 6.2, in the cubic extension
PG(5, q3), the transversal lines gT, gq

T, gq2

T meet each plane [Tk], k ∈ Fq3 ∪ {∞};
and the transversal lines gC, gq

C
, gq2

C
meet each plane [Ck], k ∈ Fq3 ∪ {∞}. The

carriers of S satisfy [E2] = [S0] = [T0] = [C0] and [E1] = [S∞] = [T∞] = [C∞].
Hence in the cubic extension PG(5, q3), all nine transversal lines meet the carriers
of S.

We now show that no other plane of the regular 2-spread S meets all nine
transversal lines. We use the homography with matrix Mk defined in Section 2B.
A plane of the regular 2-spread S distinct from [E1], [E2] has the form [Sk] =

{([kx], [x], 0) : x ∈ F′
q3}, for some k ∈ F′

q3 . This plane is spanned by the three points

S0,k = ([k], [1], 0) = (Mk(1, 0, 0), (1, 0, 0)),

S1,k = ([kτ ], [τ ], 0) = (Mk(0, 1, 0), (0, 1, 0))

S2,k = ([kτ 2
], [τ 2
], 0)= (Mk(0, 0, 1), (0, 0, 1)).

Hence the extension [Sk]
∗ to PG(5, q3) contains the points

Sk, j = c0S0, j + c1S1, j + c2S2, j ,
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where ci ∈ Fq3 , not all zero. By Theorem 6.3, a general point X on the transver-
sal line gT has coordinates X = r A1+ Aq2

2 = (r p0, r p1, r p2, pq2

0 , pq2

1 , pq2

2 ), for
some r ∈ Fq3 ∪ {∞}. Now S j,k = X if and only if ci = pq2

i , i = 0, 1, 2, and
Mk(c0, c1, c2)= r(p0, p1, p2). That is, Mk Aq2

= r A. However, Mk Aq2
= kq2

Aq2
,

by (1), so there are no solutions to c0, c1, c2. Hence the transversal line gT does
not meet any further plane of the regular 2-spread S, and so gq

T, gq2

T do not meet
any further plane of S. A similar argument shows that the lines gC, gq

C
, gq2

C
do not

meet any further plane of the regular 2-spread S. �

6C. Transversal lines of exterior splashes with common carriers. As exterior
splashes are equivalent to covers of the circle geometry CG(3, q), there are q − 1
disjoint exterior splashes on `∞ with common carriers E1, E2. We show that in
PG(6, q), the covers of these disjoint exterior splashes have common transversals.

Theorem 6.6. Let S0, . . . ,Sq−1 be q − 1 disjoint exterior splashes on `∞ with
common carriers E1, E2, and let exterior splash S j have covers C j , T j . Then
the covers C0, . . . ,Cq−1 have common transversal lines gC, gq

C
, gq2

C
, and the covers

T0, . . . ,Tq−1 have common transversal lines gT,g
q
T,g

q2

T .

Proof. By Theorem 2.4, we can without loss of generality prove this for the order-
q-subplane B coordinatised in Section 3. Let K = {k ∈ F′

q3 : kq2
+q+1

= 1} =
{k = τ i(q−1)

: 0 ≤ i < q2
+ q + 1}. Recall that B has carriers E1 = (1, 0, 0),

E2= (0, 1, 0), and exterior splash S0={Sk,0= (k, 1, 0) : k ∈K}. Let K j = τ
jK, for

j=0, . . . , q−2, be the q−1 cosets of K in F′
q3 . Let S j ={Sk, j = (k, 1, 0) :k∈K j },

0≤ j ≤q−2. Consider the homography ξ acting on `∞ that maps the point (x, y, 0)
to (τ x, y, 0). Then ξ fixes E1, E2, maps S j to S j+1 (0 ≤ j ≤ q − 3), and maps
Sq−2 to S0. Hence S0, . . . ,Sq−1 are the q − 1 disjoint exterior splashes on `∞
with carriers (1, 0, 0) and (0, 1, 0).

In6∞∼=PG(5, q), we have planes [Sk, j ]={([kx], [x]) : x ∈ F′
q3}∈S, and define

the planes [Tk, j ] = {([kx], [xq
]) : x ∈ F′

q3}, and [Ck, j ] = {([kx], [xq2
]) : x ∈ F′

q3},
for k ∈ K j . So S j = {[Sk, j ], k ∈ K j }, and define T j = {[Tk, j ], k ∈ K j } and
C j = {[Ck, j ], k ∈ K j }. Note that T0, C0 are the covers of the exterior splash S0

of B. Now consider the map θτ of PG(5, q) acting on 6∞ defined in Section 2B;
it maps S j to S j+1, T j to T j+1, and C j to C j+1. Hence T j and C j are covers
for S j . By Theorem 6.3, the transversal line of T0 is gT = 〈A1, Aq2

2 〉. Using (1),
we see that the homography θτ fixes gT, and so gT is a transversal for all T j .
So gT, gq

T, gq2

T are transversal lines of T j for each j = 0, . . . , q − 2. Similarly,
gC, gq

C
, gq2

C
are transversal lines of C j for each j = 0, . . . , q − 2. �

Remark 6.7. We can interpret this result using the terminology of [Culbert and
Ebert 2005]. We can partition the planes of a regular 2-spread into q − 1 disjoint
hyper-reguli with common carriers. Each hyper-regulus has two replacement hyper-
reguli, which correspond to our conic and tangent covers. If we replace all q − 1
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hyper-reguli of S with hyper-reguli of the same type (that is, all belonging to C, or
all belonging to T), then the resulting 2-spread has transversals either gC, gq

C
, gq2

C

or gT, gq
T, gq2

T , and so is regular. Hence the resulting André plane is Desarguesian.
If we replace all the hyper-reguli of S with a combination of hyper-reguli from
each type, then the resulting 2-spread is not regular, and so the resulting André
plane is non-Desarguesian.

7. Sublines of an exterior splash

In this section we characterise the order-q-sublines of S with respect to the covers
of S and their transversal lines.

7A. Background. Let π be an exterior order-q-subplane of PG(2, q3) with exte-
rior splash S on `∞. There are 2(q2

+q+ 1) order-q-sublines in an exterior splash
which lie in two families of size q2

+q+1. These families are studied in [Lavrauw
and Van de Voorde 2010; Barwick and Jackson 2016].

We first describe properties of the two families given in [Lavrauw and Van de
Voorde 2010]; here the two families are called regular and irregular with respect to
a plane in one of the covers. That is, let S be an exterior splash in PG(5, q), and let
α be a plane that meets each plane of S in a point, so α lies in one of the covers X

or Y of S. In PG(2, q3), let b be an Fq -subline contained in S, so by Theorem 2.3,
in PG(6, q), [b] is a 2-regulus. The subline b is called regular with respect to α if
α∩[b] is a line, otherwise b is irregular. Suppose α lies in the cover X, and α∩[b]
is a line, then each plane in the cover X meets [b] in a line, and each plane in the
cover Y meets [b] in a set of points which is not collinear. We adapt the phrases
regular and irregular with respect to α in terms of the covers of S. We say b is
both X-regular and Y-irregular if each plane in X meets [b] in a line. In particular,
we note that if we start with a scattered Fq-linear set of rank 3 of PG(1, q3), then
an Fq-subline b contained in the linear set can be categorised as both regular and
irregular (by choosing α in different covers).

In [Lunardon and Polverino 2004], it is shown that if S is an exterior splash
of `∞ in PG(2, q3), then there is an order-q-subplane β and point P such that S is
the projection of β from P onto `∞. In [Barwick and Jackson 2016, Theorem 5.2],
the projection and splash constructions are compared, and it is shown that in almost
all cases, the projection and exterior splash of β are distinct. In [Lavrauw and
Van de Voorde 2010], the two families of sublines of S are characterised in relation
to a point P and subplane β which project S: one family arises from projecting
the sublines of β, the other arises from projecting certain conics of β. The latter
family are described as irregular in [Lavrauw and Van de Voorde 2010], although
it is not specified which cover these sublines are irregular with respect to.

Now we describe properties of the two families given in [Barwick and Jackson
2016]. Here the two families of order-q-sublines of S are characterised with respect
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to geometric objects of an exterior π with exterior splash S. If A is a point of π ,
then the pencil of q + 1 lines of π through A meets `∞ in an order-q-subline of S,
called a π -pencil-subline of S. Recall from Section 2D that a (π, `∞)-carrier-dual
conic of π is a dual conic that contains the three lines fixed by the subgroup I
fixing π and `. If 0 is a (π, `∞)-carrier-dual conic of π , then the lines of 0 meet
`∞ in an order-q-subline of S, called a π-dual-conic-subline of S. Note that in
[Barwick and Jackson 2016, Theorem 4.4], we show that it is possible to switch
the roles of the two families by considering different associated order-q-subplanes.

7B. A characterisation of the sublines of an exterior splash. We now consider
the interaction in PG(6, q) of the two families of order-q-sublines of S with the
two covers of S. We show in Theorem 7.1 that each family meets planes from
one cover in lines, and planes from the other cover in conics. Theorem 7.2 shows
that the converse is true, and so we have a characterisation of the order-q-sublines
of S. This allows us to relate the families from [Barwick and Jackson 2016] and
[Lavrauw and Van de Voorde 2010]. Theorem 7.4 shows that the conics concerned
in each case are special with respect to the conic cover.

Suppose R is a 2-regulus in PG(5, q), and consider a plane α that meets R in a
set of q + 1 points. Then an easy counting argument shows that these points form
either a line or a conic in α. We abbreviate this to “R meets α in a line or a conic”.

Theorem 7.1. Let π be an exterior order-q-subplane with exterior splash S, conic
cover C, and tangent cover T.

(i) A π-pencil-subline of S corresponds in PG(6, q) to a 2-regulus that meets
each plane of T in a distinct line, and meets each plane of C in a conic.

(ii) A π-dual-conic-subline of S corresponds in PG(6, q) to a 2-regulus that
meets each plane of T in a conic, and meets each plane of C in a distinct
line.

Proof. Let P be a point in the exterior order-q-subplane π , and let d be the corre-
sponding π-pencil-subline of S. By Theorem 2.3, in PG(6, q), [d] is a 2-regulus
contained in S. Consider the tangent plane TP to [π ] at P. By Theorem 4.2,
the lines of TP through P meet 6∞ in points that lie in distinct planes of the 2-
regulus [d]. Hence TP ∩6∞ is a ruling line of the 2-regulus [d]. By Theorem 5.3,
this ruling line TP ∩ 6∞ lies in a tangent cover plane. The homography 2 of
Lemma 5.2 fixes the planes of [b] and is transitive on the cover planes of T. Hence
each ruling line of [b] meets a unique cover plane of T.

A straightforward geometric argument shows that planes of T,C meet a 2-
regulus of S in a line or a conic. Hence a conic cover plane meets the 2-regulus [d]
in a conic. As there are q2

+ q + 1 π-pencil-sublines of S, every line in a plane
of T is a ruling line for some 2-regulus corresponding to a π -pencil-subline. Hence
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if [d ′] is a 2-regulus of S corresponding to a π -dual-conic-subline, then planes of T

meet [d ′] in conics, and so planes of C meet [d ′] in ruling lines of [d ′]. Moreover,
applying the homography of Lemma 5.2 shows that each ruling line of [d ′] lies in
a unique conic cover plane. �

By Theorem 2.3, there is a one-to-one correspondence between the order-q-
sublines of S in PG(2, q3), and the 2-reguli contained in S in PG(6, q). Hence the
converse of Theorem 7.1 is also true, and so we have a characterisation of order-q-
sublines of S relating to the cover planes of the associated order-q-subplane.

Theorem 7.2. Let π be an exterior order-q-subplane with exterior splash S, conic
cover C, and tangent cover T.

(i) A 2-regulus contained in S that meets some plane of T in a line corresponds
to a π -pencil-subline of S.

(ii) A 2-regulus contained in S that meets some plane of C in a conic corresponds
to a π -pencil-subline of S.

(iii) A 2-regulus contained in S that meets some plane of T in a conic corresponds
to a π -dual-conic-subline of S.

(iv) A 2-regulus contained in S that meets some plane of C in a line corresponds
to a π -dual-conic-subline of S.

This allows us to determine the relationship between the different family naming
used in [Barwick and Jackson 2016] and [Lavrauw and Van de Voorde 2010].

Corollary 7.3. Let π be an exterior order-q-subplane with exterior splash S, conic
cover C, and tangent cover T.

(i) Let b be a π -pencil-subline of S, then b is T-regular and C-irregular.

(ii) Let d be a π -dual-conic-subline of S, then d is C-regular and T-irregular.

In fact, we can give a stronger characterisation of the order-q-sublines of S,
namely that the conics of Theorem 7.1 are special with respect to the associated
cover. In order to prove that the conics are special, we need to introduce coordi-
nates, and the proof is calculation intensive.

Theorem 7.4. Let π be an exterior order-q-subplane with exterior splash S, conic
cover C, and tangent cover T.

(i) A 2-regulus of S corresponding to a π-pencil-subline of S meets each plane
of C in a C-special conic.

(ii) A 2-regulus of S corresponding to a π-dual-conic-subline of S meets each
plane of T in a T-special conic.
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Proof. By Theorem 2.4, we can without loss of generality prove this for the ex-
terior order-q-subplane B coordinatised in Section 3. We start with the order-q-
subplane π0 = PG(2, q) and the line ` = [−ττ q , τ + τ q ,−1] which is exterior
to π0. Note that using the notation for p0, p1, p2 given in Theorem 6.3, we have
`= [pq2

0 , pq2

1 , pq2

2 ]. A line of π0 has coordinates [l,m, n] for l,m, n ∈ Fq , and
meets ` in the point W ′l,m,n = (−n(τ + τ q)−m, l − nττ q , mττ q

+ l(τ + τ q)).
We apply the homography σ of Section 3 with matrix K to map π0 and ` to B

and `∞, respectively. The point W ′l,m,n of ` maps to the point Wl,m,n = K W ′l,m,n =
(l+mτ + nτ 2, l+mτ q

+ nτ 2q , 0) of `∞. Writing ε = εl,m,n = l+mτ + nτ 2, we
have Wε =Wl,m,n = (ε, ε

q , 0)≡ (ε1−q , 1, 0). Using the notation from Lemma 5.1,
this is the point Sε1−q ∈ `∞. In PG(6, q), Wε corresponds to the spread plane
[Wε] = [Wl,m,n] = {([εx], [εq x], 0)≡ ([ε1−q x], [x], 0) : x ∈ F′

q3} = [Sε1−q ].
Fix a point P = (a, b, c) of π0, so a, b, c,∈ Fq , not all zero. Let

L= {(l,m, n) : l,m, n ∈ Fq not all zero, and la+mb+ nc = 0}.

The q + 1 lines of π0 through P have coordinates [l,m, n] ∈ L. These q + 1 lines
meet the exterior line ` of π0 in a π0-pencil-subline which, under the collineation σ ,
maps to a B-pencil-subline d of `∞. By Theorem 2.3, in PG(6, q), d corresponds
to the 2-regulus [d] which we denote by R, so R= [d] = {[Wε] = [Sε1−q ] : ε ∈W},
where W= {ε = εl,m,n = l +mτ + nτ 2

: (l,m, n) ∈ L}. For each α ∈ F′
q3 , consider

the set of points tα = {([εα], [εqα], 0) : ε ∈W}. As W is closed under addition, tα
is a line of 6∞ ∼= PG(5, q); further tα meets every plane in R. Hence tα is a ruling
line of the 2-regulus R.

By Theorem 7.2(ii), the 2-regulus R meets a cover plane of the conic cover C in
a conic Ck = [Ck]∩R for k ∈K. To show that the conic Ck is C-special, we need to
extend it to PG(5, q3), and show that it meets the three transversal lines of C. To do
this, we extend the 2-regulus R of 6∞ ∼= PG(5, q) to a 2-regulus R∗ of PG(5, q3),
so C∗k = [Ck]

∗
∩R∗. We then use coordinates to show that one of the planes of R∗

contains the transversal line gq2

C
of C, and then deduce that C∗k meets gq2

C
.

To extend R to a 2-regulus R∗ of PG(5, q3), we find four lines in PG(5, q3)

that meet each extended plane of R. As a 2-regulus is uniquely determined by
four ruling lines in general position, we can use these four lines to define the 2-
regulus R∗. The transversal line gS of the regular 2-spread S can be used as one
of our ruling lines; for the other three ruling lines, we use the extended lines t∗1 ,
t∗τ , t∗

τ 2 , which each meet every plane of R. So R∗ is the 2-regulus of PG(5, q3)

determined by the four ruling lines t∗1 , t∗τ , t∗
τ 2, gS (which are in general position),

and further R∗ ∩6∞ =R.
We now exhibit a plane γ of R∗ that contains the transversal line gq2

C
of the

conic cover C. Extend the set L to

L∗ = {(l,m, n) : l,m, n ∈ Fq3 not all zero, and la+mb+ nc = 0}.
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We use the matrix Mτ defined in Section 2B, and write M = Mτ . The ruling
line t∗

τ i , i = 0, 1, 2, has points Pτ i ,l,m,n with (l,m, n) ∈ L∗, where Pτ i ,l,m,n =

l(M i
[1],M i

[1], 0)+m(M i
[τ ],M i

[τ q
], 0)+ n(M i

[τ 2
],M i
[τ 2q
], 0). Recall that

the order-q-subline d corresponds to the fixed point P = (a, b, c) ∈ π0. Consider
the following (l,m, n) ∈ L∗:

l = cτ − bτ 2, m = aτ 2
− c, n = b− aτ. (9)

Note that for these l,m, n we have

l +mτ + nτ 2
= 0. (10)

For l,m, n as in (9), consider the plane γ spanned by the three points P1,l,m,n ∈ t∗1 ,
Pτ,l,m,n ∈ t∗τ , Pτ 2,l,m,n ∈ t∗

τ 2 . We first show that γ is a plane of the 2-regulus R∗ by
showing that the fourth ruling line gS of R∗ also meets γ . By Theorem 6.3, gS =

〈A1, A2〉, and we show that gS meets γ by showing that the point A2 lies in γ . With
l,m, n given by (9), consider the point F = p0 P1,l,m,n + p1 Pτ,l,m,n + p2 Pτ 2,l,m,n
of γ . To simplify the notation, we use the point A = (p0, p1, p2)

t, and matrix
U0= p0 I+ p1 M+ p1 M2 defined in Section 2B, and note that U0[α]=αA. We have

F = (lU0[1] +mU0[τ ] + nU0[τ
2
], lU0[1] +mU0[τ

q
] + nU0[τ

2q
], 0)

= (l A+mτ A+ nτ 2 A, l A+mτ q A+ nτ 2q A, 0).

By (10), F ≡ ([0], A, 0)= A2, and by Lemma 2.1, gS = 〈A1, A2〉, so F ∈ gS ∩ γ .
That is, the four ruling lines t∗1 , t∗τ , t∗

τ 2, gS of the 2-regulus R∗ all meet the plane γ ,
and so γ is a plane of R∗.

We now show that the transversal line gq2

C
of C lies in the plane γ of R∗. Let

G = pq2

0 P1,l,m,n + pq2

1 Pτ,l,m,n + pq2

2 Pτ 2,l,m,n , and note that G ∈ γ . We use the
matrix

U2 = pq2

0 I + pq2

1 M + pq2

1 M2

defined in Section 2B, and note that U2[α] = α
q2

Aq2
, so we have

G = (lU2[1] +mU2[τ ] + n2U2[τ
2
], lU2[1] +mU2[τ

q
] + nU2[τ

2q
], 0)

= (l Aq2
+mτ q2

Aq2
+ nτ 2q2

Aq2
, l Aq2

+mτ Aq2
+ nτ 2 Aq2

, 0).

By (10), G ≡ (Aq2
, [0], 0)= Aq2

1 , so γ contains the points G = Aq2

1 and F = A2.
Hence by Theorem 6.3, γ contains the transversal line gq2

C
= 〈Aq2

1 , A2〉 of C.
We showed above that the 2-regulus [d] =R meets a cover plane [Ci ] of C in

a conic Ci . We want to show that Ci is a C-special conic, that is, we want to show
that in PG(6, q3), the extended conic C∗i = [Ci ]

∗
∩R∗ contains the three points

gC ∩ [Ci ]
∗, gq

C
∩ [Ci ]

∗, gq2

C
∩ [Ci ]

∗. We have shown that the transversal line gq2

C
of

C lies in a plane γ of R∗. As the extended cover plane [Ci ]
∗ meets the transversal

line gq2

C
in a unique point denoted Pi , we have

Pi = [Ci ]
∗
∩ gq2

C
= [Ci ]

∗
∩ γ ∈ [Ci ]

∗
∩R∗ = C∗i .
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Hence C∗i contains the point gq2

C
∩ [Ci ]

∗, and hence it also contains the conjugate
points gq

C
∩ [Ci ]

∗, gC ∩ [Ci ]
∗. That is, the conic Ci = [Ci ] ∩ R is a C-special

conic, completing the proof of part (i). As C and T are projectively equivalent by
[Lavrauw et al. 2015, Theorem 16], part (ii) holds by symmetry. �

8. Conclusion

An investigation into the interaction between an exterior order-q-subplane π of
PG(2, q3), and its exterior splash on `∞ began in [Barwick and Jackson 2016].
The main focus of that paper was to show that exterior splashes are projectively
equivalent to scattered Fq-linear sets of rank 3, covers of circle geometries, Sherk
sets of size q2

+q+ 1. Further, we investigated the geometric relationship between
the order-q-sublines of S and the points of π . The current article focusses on
using the Bruck–Bose representation in PG(6, q) to continue the study of exterior
splashes, in particular their interplay with order-q-subplanes. The notion of special
conics and special twisted cubics is closely tied with this interplay.
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