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ON “ABSTRACT” HOMOMORPHISMS OF SIMPLE ALGEBRAIC GROUPS

ON “ABSTRACT” HOMOMORPHISMS OF SIMPLE
ALGEBRAIC GROUPS

By A. BOREL and J. TITS

Tris Note describes some results pertaining chiefly to homomor-
phisms of groups of rational points of semi-simple algebraic groups,
and gives an application to a conjecture of Steinberg’s [9] on irredu-
cible projective representations. Some proofs are sketched. Full
details will be given elsewhere.

Norarion. The notation and conventions of [1] are used. In
particular, all algebraic groups are affine, k is a commutative field,
k an algebraic closure of k, p its characteristic, and @ is a k-group.
In this Note, @ is moreover assumed to be connected. k' also denotes
a commutative field.

Let ¢ : k — k' be a (non-zero) homomorphism. We let ¢G be the
k'-groups G@®,k" obtained from G by the change of basis ¢, and
¢, be the canonical homomorphism G,—*G, associated to ¢.

If p+#0, then Fr® denotes the p‘-th power homomorphism
A - A#¢ of a field of characteristic p (¢ =0,1,2,...). If p =0, Fr
is the identity. '

A connected semi-simple k-group H is adjoint if it is isomorphic
to its image under the adjoint representation, almost simple (resp.
stmple) over k if it has no proper normal k-subgroup of strictly
positive dimension (resp. #{e}).

1. Homomorphisms. 1.1. Let G' be semi-simple. G+ will denote
the subgroup of G, generated by the groups U,, where U runs
through the unipotent radicals of the parabolic k-subgroups of G.
The group G is normal in G,; it is 5 {e} if and only if rk,(G) > 0.
If, moreover, G is almost simple over k, then G is Zariski-dense in
G, and the quotient of G* by its center is simple except in finitely
many cases where k has two or three elements [10]. If f: G - H
is a central k-isogeny, then f(@*) = H*. The group G* is equal
to @, if k =k, or if G is k-split and simply connected; it is
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conjectured to be equal to G, if G' is simply connected and
rk,(G) > 0[10]. It is always equal to its commutator subgroup.

THEOREM 1.2. Assume k to be infinite, and @ to be almost
absolutely simple, of strictly positive k-rank. Let H be a subgroup of
G, contarning G+. Let k' be a commutative field, G’ a connected almost
absolutely simple k'-group, and a: H — G',, a homomorphism whose
kernel does mot contatn G, and whose image contains G'+. Assume
finally that either G is simply conmected or G’ is adjoint. Then there
exists an isomorphism ¢: k s k', ak’-isogeny B:*Q - G, and a
homomorphism y of H into the center of Q). such that a(x) = B(py(x)).
y(x) (x € H). Moreover, B 1s central, except possibly in the cases: p = 3,
G, G' split of type Gy;p = 2, G, Q' split of type Fy; p = 2, G, G split
of type B,,, C,,, where B may be special.

(The special isogenies are those discussed in [3, Exp. 21-24].) In
the following corollary, G'and G* need not satisfy the last assumption
of the theorem.

CoroLLARY 1.3. Assume G, 1is isomorphic to Gy.. Then k is
isomorphic to k', and G, Q' are of the same isogeny class.

Let G and G be the adjoint groups of @ and @”. The assumption
implies the existence of an isomorphism «: G+ = G'*. By the
theorem there is an isomorphism ¢ of & onto t’ and an isogeny u of
$@ onto ¢ , wWhence our assertion.

ReMarks 1.4. (i) It may be that the homomorphism y in (1.2)
is always trivial. It is obviously so if G'is adjoint, or if H is equal to
its commutator subgroup. Since G* is equal to its commutator
group, this condition will be fulfilled if @ is simply connected and
the conjecture Gy, = @+ of [10] is true, thus in particular if G splits
over k. Moreover, in that case the assumption G+ c ker « would
be superfluous.

(ii) The theorem has been known in many special cases, starting
with the determination of the automorphism group of the pro-
jective linear group [7]. We refer to Dieudonné’s survey [4] for the
automorphisms of the classical groups. For split groups over infinite
fields, see also [6].
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(iii) Assume k =£k', @ = @', ¢ adjoint, and % not to have any
automorphism s~ id. Theorem 1.2 implies then that every automor-
phism of @, is the restriction of an automorphism of &, which is
then necessarily defined over k. In particular, if % is the field of real
numbers R, every automorphism of G, is continuous in the ordinary
topology, as was proved first by Freudenthal [5].

(iv) The assumption rk, G > 0 is essential for our proof, but it
seems rather likely that similar results are valid for anisotropic
groups. This is the case for many classical groups [4]. Also,
Freudenthal’s proof is valid for compact groups. In fact, the
continuity of any abstract-group automorphism of a compact semi-
simple Lie group had been proved earlier, independently, bv
E. Cartan [2] and van der Waerden [11]. We note also that van der
Waerden’s proof remains valid in the p-adic case.

(v) The group Aut G, has also been studied when £ is finite.
See [4] for the classical groups, and [8] for the general case.

THEOREM 1.5. Assume k to be infinite, and G to be almost simple,
split over k. Let Q' be a semi-simple split k'-group, G (1 <1< s)
the almost simple normal cubgroups of &', and «: G, - G, a homo
morphism whose image s Zariski-dense. If G, =G, then G 1is
connected. Assume G' to be connected and either G simply connected
or G' adjoint. Then there exist homomorphisms ¢;: k — k' and k'-
isogenies B; : ;G G (1 < i< s), which are either central or special,
such that

a@)=[ [ Bioio) @), (€@,
Moreover, Fr'od,s= Frto ¢, if p=0and i j,orif p # 0 and (a, 2) %
0,)(1<3,j<s;8,0=0,1,2,..).

The proof of Theorem 1.5 goes more or less along the same lines
as that of Theorem1.2. In fact, it seems not unlikely that Theorem
1.5 can be generalized so as to contain Theorem 1.2. We hope to
come back to this question on another occasion.
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Exampre 1.6. The following example, which admits obvious
generalizations, shows that the assumption of semi-simplicity made
on G’ in Theorem 1.5 cannot be dropped.

Let ¢ =SL,, and N be the additive group of 2 X 2 matrices over
75-, of trace zero. Let d be a non-trivial derivation of k. Extend it
to a derivation of NV, by letting it operate on the coefficients, and
define h: G,— N, by h(g) =9~ 1.dg. Let G’ = G.N be the semi-direct
product of ¢ and N, where ¢ acts on N by the adjoint representa-
tion. Then g— (g, k(g)) is easily checked to be a homomorphism
of @, into G with dense image; clearly, it defines an ‘“‘abstract”
Levi section of Gy.

2. Projective representations. 2.1. Assume p # 0. For @ semi-
simple, let # or Z(@) be the set of p'(l = rank @) irreducible
projective representations whose highest weight is a linear combina-
tion of the fundamental highest weights with coefficients between 0
and p — 1. The following theorem, in a slightly different formula-
tion, was conjectured by R. Steinberg [9], for k=%. We show below
how it follows from Theorem 1.5 and [9], (Theorem 1.1).

THEOREM 2.2. Assume kto be infinite, p 0, and G k-split, simple,
adjoint. Let w: QT —PGL(n, k) be an irreducible (not necessarily
rational) projective representation of G. Then there exist distinct
homomorphisms ¢;: k— k, and elements 7 € .@(d’j @) (1<j<t), such
that w =11 70 961‘,0'

3

Proor. Let @' be the Zariski-closure of #(G},) in PGL,. It is
also an irreducible projective linear group, hence its center and
also its centralizer in PGL,, or in the Lie algebra of PGL,, are
reduced to {e}. Thus G is semi-simple, and its identity component
is adjoint. Moreover, by Theorem 1.5, G’ is connected. By Theorem
1.1 of [9], there exist elements =, e Z(G'), (1< a < q) such that
the identity representation of G’ is equal to I =, (Fr*). Let

a

@; (1 < ¢ < s) be the simple factors of G

The tensor product defines a bijection of Z(Gy) X ... X Z(G,)
onto Z(@'). We may therefore write
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=[] 7o (rucm@)i<a

1<i<s

Let now ¢;: k -k and B;: %G — G, be as in Theorem 1.5 (with k = k).
We have then

N

q)-

= ﬂ 750 (F1%)50 By o i o- (1)

But (Fr*)yo B; = B,; o (Fr")y, where B, ;is the transform of g; under
Fr*. Let ¢,; = Fr*o ¢;. Since @, (F; are adjoint, the morphisms g, ;
are either isomorphisms or special isogenies. Therefore, taking
([9], §11) into account, we see that

Toi =750 B €2 (@),  (I1<i<s;1<a<qg)

as
= H ’77'1;,5 ° (?Sa,i)o, (2)
a,i

and (1) yields
which proves the theorem, in view of the fact that the ¢,; are
distinct by Theorem 1.5.

3. Sketch of the proof of Theorem 1.2, In thisparagraph, k is
infinite and G'is semi-simple, of strictly positive k-rank.

The two following propositions are the starting point of the
proofs of Theorem 1.2 and Theorem 1.5.

Proposition 3.1. Let @ be a k'-group, and «:GT - G} a
non-trivial homomorphism. Let P be a minimal parabolic k-subgroup
of G and U its unipotent radical. Then «(U,) is a unipotent subgroup
contained in the identity component of @' and a(G*) c G'°. The field
k' is also of characteristic p.

Let § be a maximal k-split torus of P. It is easily seen that
St =8 n G is dense in S. It follows then from ([1], §11.1) that any
subgroup of finite index of S8*.U, contains elements s eS8t such
that (s, U,) = U,. From this we deduce first that U, is contained
in any normal subgroup of finite index of S*. U,, and then, that it
is also contained in the commutator subgroup of any such subgroup.
It follows that «(U,) is contained in the derived group of the
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identity component of the Zariski closure of «(S*.U,). The latter
being solvable, this implies that «(U,) is unipotent.

Let p’=char.k'. If p=£ 0, then U, is a p-group. Its image is a
p-group and is #£{e} since « is non-trivial, and G is generated by
the conjugates of U,; hence p=p’'. If p=0 and p’ 0, then
ker a« n U, has finite index in U, whence easily a contradiction
with the main theorem of [10].

ProrosiTioN 3.2. Let G' be a connected semi-simple k'-group.
Let P, S, U be as above, P~ the parabolic k-subgroup opposed to P
and containing Z(S), and U~ = R, (P~). Let H be a subgroup of G,
containing G and «: H — G;, be a homomorphism with dense image.
Then the Zariski-closures , @~ of a(P a H) and a(P~ n H) are two
opposed parabolic k'-subgroups, and @ n Q~, R,(Q), R,(Q~) are the
Zariski-closures of a(Z(S) n H), a(U,) and «(U;) respectively.

Let M, V, V- be the Zariski-closures of a(Z(S)n H), «(U,)
and «(U;) respectively. The groups V, V~ are unipotent, by
Proposition 3.1. The group @ is the union of finitely many
left translates of U~.P. Since a(H) is dense, this implies that
V—.M.V contains a non-empty open subset of G’. Let T be a
maximal torus of M and Y, Y~ be two maximal unipotent sub-
groups of M° normalized by 7' such that ¥—. 7'. ¥ is open in M?
(see [1], §2.3, Remarque). Then V~. Y~ and Y. V are unipotent
subgroups of @' normalized by T and V—. ¥~. T. Y. V contains a
non-empty open set of @’. Consequently ([1], §2.3), 7" is a maximal
torus of G', and V—.Y~, Y. V are two opposed maximal unipotent
subgroups. This shows that @, ¢~ are parabolic subgroups, M is
reductive, connected, and V = E (@), (resp. V- =R, (Q)). The
groups ), @~ are obviously &’-closed. Arguing as in Proposition 3.1,
we may find s €S n H suchthat (s, U,)=U,, (s, U;) = U; . It follows
then from ([1], §11.1) that Z(«(s))* = M. Hence M is defined over
k'([1], §10.3). By Grothendieck’s theorem ([1], §2.14), it contains
a maximal torus defined over k'. Hence ([1], §3.13), @, @, V, V—
are defined over k’.

3.3. We now sketch the proof of Theorem 1.2, assuming for
simplicity that @, G’ are adjoint and H = (,. Then « is injective.
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Proposition 3.2, applied to « and «~!, shows that @, @~ are two op-
posed minimal parabolic &'-subgroups of ¢’. Consequently, o induces
an isomorphism of A7(8)/Z(S) onto A" (M)/M, ie. of ,W(F) =, W
onto , W' = W(G'). For a €, @(G), let U, = U,[/U s, where we
put Uy, ={e} if 2a ¢,®. It may be shown that Uy, is the center
of U,,,. The groups U, may be characterized as minimal among the
intersections U n w(P) (w €, W) not reduced to {e¢}. It then follows
that o induces a bijection ay, : , @(G)— . O(GQ’) preserving the angles,
and isomorphisms U,; -~y V, - The group U, (resp. V, )
may be endowed canonically with a vector space structure such that
S (resp. a maximal k'-split torus 8’ of M) acts on it by dilatations.
The next step is to show that « : U,; 2, V, @ induces a
bijection ¢, between the algebras of dilatations. Let L, be the
subgroup of @ generated by U, and U _,,. The assumption that @
is almost absolutely simple is equivalent to the existence of one
element a €, ® such that the intersection X, of L, with the center
of Z(8) is one-dimensional, hence such that X° c §. This is the
main tool used in showing that «(S;) c S, hence that « maps
dilatations by elements of (k*)*> into dilatations. If p £ 2, this

suffices to yield the existence of ¢, : %k =, k’. In characteristic
two, some further argument, based on properties of groups of rank
one, is needed. It is clear that ¢, =¢, if b €,W(a). Using further
some facts about commutators, it is then easily proved that
&, = ¢, (a, b g,D) if o, preserves the lengths. If not, we show that
we are in one of the exceptional cases listed in the theorem, and we
reduce it to the preceding one by use of a special isogeny. Write
then ¢ instead of ¢,. Replacing G by *@, wemay assume k=¥,
¢ =1id. It is then shown that « : U, _=, V) is the restriction of a
k-isomorphism of wvarieties. On the other hand, since @’ is
adjoint, Z(S’) is isomorphic to its image in GL(b) under the
adjoint representation, where b is the sum of Lie algebras of the
Vy(a'e,®(G')). This implies readily that the restriction of « to
U; . P, is the restriction of a k-isomorphism of varieties of U™ . P
onto V—. Q. The conclusion then follows readily from the fact that
G is a finite union of translates x.U~. P (x € Gy).
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