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Abstract

We construct polygonal graphs on the points of a generalized polygon in
general position with respect to a polarity.
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1 Polygonal graphs

Let (X, L, I) be a generalized n-gon with polarity o. Let Z be the set of points
in general position with respect to o, i.e., Z = {z € X | d(x,2) > n — 1}, with
distances measured in the point-line incidence graph ¥ of (X, L, T). (Thus, if n
is even then d(x,2°) = n—1 and if n is odd then d(x,2°) = n for x € Z.) Define
a graph I with vertex set Z by letting distinct vertices xz,y € Z be adjacent
(notation z ~ y) when x I y°.

Theorem 1.1. If n is odd, then T has girth g > n and each edge is contained in a
unique n-gon. If n is even, then I" has girth g > n+ 1 and each 2-path is contained
in a unique (n + 1)-gon.

Proof. Let us first collect information about the vertex set 7.

Stepl. Ifxola{laol ... Iay_1Taxflal ... 2] |1xgisaself-polar 2i-circuit
inY,andl<n+1,thenz; € Z(0<i<Il—1).

(Indeed, if dx(x;,27) = m, then we find an (m + [)-circuit in ¥, so that
m+1>2n.)
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Step2. Ifniseven,andx € Z,and xIx{ I ... [ x,_o Iz is the unique path
of length n — 1 joiningx toxz® in 3, thenx; ¢ Z (1 <i<n-—2).

(Indeed, applying o to this path, we find another path that must coincide
with this path, so that 27 = z,_1_; (1 <i<n—2).)

Now look at the graph I". Note thatif x ~y ~ zin T, thenx Iy’ I z in X.

Step 3. T does not have even circuits of length less than 2n and no odd circuits
of length less than n. In particular, if two vertices have distance less than n in T,
then there is a unique shortest path in T joining them.

(Indeed, if zg ~ 1 ~ ... ~ 2;_1 ~ xo is an [-circuit in I", and [ is even, then
xolafTaol ... Ix] | Iz isan l-circuitin ¥, and it follows that > 2n. If [ is
odd, then g [ 2§ x5l ... T x;_1 I 2§ is an l-path in ¥, and by Step 2 we have
[>n.)

Step 4. Ifnis odd, then each edge is contained in a unique n-gon.

(Indeed, if n is odd, and zy is an edge in T, then dx(z,y) = n — 1 and in
Y there is a unique geodesic z = zg [ x{ I xoI ... I z,_1 = y joining = and y.
This geodesic is part of the self-polar 2n-circuit

xolayTasl ... Ty Taflaylag] ... T2l {1z
in . Thus, by Step 1, g ~ 1 ~ ... ~ x,_1 ~ x¢ iS the unique n-gon on the
edge ry inT.)
Step 5. If n is even, then each 2-path is contained in a unique (n + 1)-gon.

(Indeed, if z ~ y ~ 2z in T, then dx(x,y) = dx(y,z) = n (since by Step 2
the unique point on y° that has distance n — 2 to y is not in Z). Let z =
xola§Tasl ... I2%_; = z° be the unique path of length n — 1 in ¥ joining «
to 2. Then

xolaflagl ... Tx) (ITylaflal ... Toxp_11y° Ty

is a self-polar (2n + 2)-circuit in 3. Thus, by Step 1, xg ~ 1 ~ ... ~ Ty =
z ~ y ~ z is the unique (n + 1)-gon on the pathx ~ y ~ zinT.)

This completes the proof. d

If (X, L, T)is a 2m-gon, then T" is a single edge. If (X, L, I) isa (2m+ 1)-gon,
then there are two possible polarities o; for one choice of o the graph I" consists
of a single vertex; for the other choice it is a (2m + 1)-gon itself.



A family of 2-arc transitive pentagraphs with unbounded valency 143

2 Pentagraphs

Now let us specialize to the finite case n = 4, i.e., let (X, L, I) be a generalized
quadrangle of order ¢ with a polarity . Then 2¢ is a square, cf. Payne [4].
Examples exist when ¢ is an odd power of 2, cf. Tits [9]. We define the graph T’
as before. As we shall see, I is a pentagraph, that is, any 2-path in I is contained
in a unique pentagon. (For this concept, and other examples, and some theory,
see Perkel [5, 6, 7, 8] and Ivanov [3].)

Theorem 2.1. T is a pentagraph of valency q on ¢ + q vertices, and has distance
distribution diagram

Proof. Recall that a point or line is called absolute (for o) if it is incident with
its image (under o). We shall use ~ for adjacency in I', and L for collinearity
in (X, L).

Step 1. Each line contains a unique absolute point, and, dually, each point is on
a unique absolute line.

(Indeed, if z is absolute, then z7 is the only absolute line on x, and if x is not
absolute then the unique line on x meeting x7 is the only absolute line on x.)

Step 2. The set A of absolute points under o is an ovoid in (X, L). The graph T’
has v = q(q? + 1) vertices.

(Indeed, each | € L meets A in a unique point. It follows that |A| = ¢* + 1.
But [X| = (¢+1)(¢* +1).)

Step 3. T'isregular of valency q, and does not contain triangles. Adjacent vertices
are non-collinear.

(Indeed, the neighbours of x are the ¢ nonabsolute points of x7.)

Step 4. T does not have quadrangles, and any two vertices at distance 2 de-
termine a unique pentagon. Two vertices have distance 2 if and only if they are
collinear and the line joining them is non-absolute.
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(Indeed, if x ~ y ~ z, then x and z are joined by the line y°. In particular, y is
the only common neighbour of z and z. Let z L p € 2. Then p ¢ A because the
unique absolute point on x? is collinear to x. Also the line [ = zp is not absolute
because z? passes through y and p # y. It followsthatz ~y ~ 2 ~ 17 ~p~ x
is the unique pentagon on z and z.)

Let us describe the distribution of vertices in I" around a vertex . Let m be the
absolute line on z, and let ' = m? = 2 N A be its absolute point. The vertex
set of I is partitioned into the following seven parts: Xy = {z}, X; = 27 \ 4,
Xy =2\ (AUm), X5 = m\ (AU{z}), X4 = {2/} \ (AUMU2), Xy = {y €
X\ A |y~ ze€ X, and yz is absolute}, and X3, consisting of the remaining
points. Our aim is to show that X; consists of the vertices at distance i from x
in T', where X4, and Xy, are distinguished by the fact that points in X,, have
neighbours in X5. (Note however that for ¢ = 2 we have X3 = (), and the graph
T is the disjoint union of two pentagons. If p is in the relation 4a to z, then z
is in relation 4b to p, i.e., relations 4a and 4b are paired, while the remaining
relations are self-paired.)

Step 5. We haVe ‘X0| == 1, |X1‘ = q’ |X2| = q(q — 1), ‘X3| frd q(q — 1)(q — 2))
[ X4a] = [Xap| = q(¢ — 1), |[X5| =g — 1.

(Indeed, the claims are clear for X; with ¢ < 2. The only vertices that do not
have distance 2 to some vertex of X, are the vertices that either are collinear
to the point ' = 2° N A (i.e., are in X4, U X5), or are joined to a vertex on x7 by
an absolute line (i.e., are in Xy;). The absolute line m on z contains ¢ vertices,
q — 1 other than z, and none of them is collinear to a point in Xy U X; U X,
so these vertices have distance at least 5 to x. The vertices adjacent to some
vertex in X are the ¢(q — 1) vertices of X,,. The vertices of X3 are collinear to
a unique vertex of z9, so this determines | X3]|.)

Step 6. Each vertex in X3 U Xy, has a unique neighbour in X 4.

(Indeed, let p € X3 U X4,. Then p° does not pass through z’ (since p ¢ m,
ie.,, p € XoU X5), so 2’ is collinear with a unique point z € p°. The line 2’z
is not absolute (since z ¢ m because p ¢ X, U X;) and the point z is not
absolute (since the line x’z contains only one absolute point), so z is the unique
neighbour of p in X; U Xy,. Clearly z € X; iff p € X5.)

This proves everything claimed in the diagram. O
Now let us look at the special case where ¢ = 22¢ + 1 and (X, L) is the Sp(4, q)

generalized quadrangle. The centralizer in Sp(4,q) of the polarity o is the
Suzuki group Sz(q) of order (¢® + 1)¢*(¢ — 1). This group is 2-transitive on
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the set A of absolute points, and 2-arc transitive on the graph I" (cf. Tits [9,
Th. 6.1]1). In this case we can be more precise about the stars in the diagram
above.

Theorem 2.2. The graph T is a 2-arc transitive pentagraph with distance distri-
bution diagram

Proof. If p and z are two non-collinear points, then {p, z}* is a hyperbolic line
that meets A in either O or 2 points (since A is an ovoid, and all tangents to A
are totally isotropic lines). We shall talk about exterior and secant (hyperbolic)
lines, respectively.

Step 1. Each vertex in Xy, U Xy has a unique neighbour in Xg.

(Indeed, if p € X4, or p € Xy, then {p,2}*+ N A contains the point 2’ (or
p’, respectively), so this hyperbolic line is a secant, and there are precisely g — 2
points in I" at distance 2 from both p and z.)

If p € X3, then {p,z}* N A contains either 0 or 2 points, so that p has either 0
or 2 neighbours in Xy;. Let us call the set of vertices of the former (latter) kind
X34 (X3, respectively).

Step 2. X3, is the set of vertices p such that the line xp is exterior. We have
[ Xza] = | Xz = 5a(¢ — 1)(g - 2).

(Indeed, the lines joining x to a point of Xy U X5 are the tangents (totally
isotropic lines) on z, the lines joining x to a point of X; U X3, U X, are the
exterior lines on z, and the lines joining x to a point of X3, are the secants on
z. But A has 1¢?(¢*> + 1) secants, and the same number of exterior lines. (In
fact, [ is secant iff I+ is exterior.))

The planes meet the set A either in one point: tangent planes, or in an oval
(having ¢ + 1 points): secant planes.
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Step 3. Ifp € Xo U X3 U Xy, then p has ¢ — 1 neighbours in X,.

(Indeed, if p € X5 U X3 U Xy, then = ¢ p°, and the plane (x, p?) is a secant
plane. In this plane, the point z is on one tangent, and on ¢ secants. One of
these secants contains p'; the remaining 1¢ — 1 contain each one neighbour of

p-)

This determines the entire diagram. O
Remark 2.3. The graph I', and the fact that it is 2-arc transitive for Sz(q), was
found independently by Fang Xin Gui, a student of Cheryl Praeger.

Remark 2.4. AutT is not primitive: the spread {a” | a € A} is a system of
blocks of imprimitivity. However, Aut I' acts 2-transitively on the set of blocks,
so that we do not find a nontrivial graph structure on the quotient.

Remark 2.5. Of course we also get finite heptagraphs (of valency ¢ = 3%¢ + 1)
starting from a generalized hexagon (of type G2(g¢)) with a polarity.

3 Addendum

The above was written in April 1992. In the meantime, Xin Gui Fang & C. E.
Praeger [1, 2] appeared where the above graphs are found in the classification
of certain 2-arc transitive graphs (and they refer to this work). As far as we
know, the relation to generalized polygons with polarity still does not appear in
the literature.
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