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Abstract

We construct polygonal graphs on the points of a generalized polygon in

general position with respect to a polarity.
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1 Polygonal graphs

Let (X,L, I) be a generalized n-gon with polarity σ. Let Z be the set of points

in general position with respect to σ, i.e., Z = {x ∈ X | d(x, xσ) ≥ n− 1}, with

distances measured in the point-line incidence graph Σ of (X,L, I). (Thus, if n

is even then d(x, xσ) = n−1 and if n is odd then d(x, xσ) = n for x ∈ Z.) Define

a graph Γ with vertex set Z by letting distinct vertices x, y ∈ Z be adjacent

(notation x ∼ y) when x I yσ.

Theorem 1.1. If n is odd, then Γ has girth g ≥ n and each edge is contained in a

unique n-gon. If n is even, then Γ has girth g ≥ n+1 and each 2-path is contained

in a unique (n+ 1)-gon.

Proof. Let us first collect information about the vertex set Z.

Step 1. If x0 I x
σ
1
I x2 I . . . I xl−1 I x

σ
0
I x1 I . . . I xσ

l−1
I x0 is a self-polar 2l-circuit

in Σ, and l ≤ n+ 1, then xi ∈ Z (0 ≤ i ≤ l − 1).

(Indeed, if dΣ(xi, x
σ

i
) = m, then we find an (m + l)-circuit in Σ, so that

m+ l ≥ 2n.)
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Step 2. If n is even, and x ∈ Z, and x I xσ
1
I . . . I xn−2 I x

σ is the unique path

of length n− 1 joining x to xσ in Σ, then xi 6∈ Z (1 ≤ i ≤ n− 2).

(Indeed, applying σ to this path, we find another path that must coincide

with this path, so that xσ

i
= xn−1−i (1 ≤ i ≤ n− 2).)

Now look at the graph Γ. Note that if x ∼ y ∼ z in Γ, then x I yσ I z in Σ.

Step 3. Γ does not have even circuits of length less than 2n and no odd circuits

of length less than n. In particular, if two vertices have distance less than n in Γ,

then there is a unique shortest path in Γ joining them.

(Indeed, if x0 ∼ x1 ∼ . . . ∼ xl−1 ∼ x0 is an l-circuit in Γ, and l is even, then

x0 I x
σ
1
I x2 I . . . I xσ

l−1
I x0 is an l-circuit in Σ, and it follows that l ≥ 2n. If l is

odd, then x0 I x
σ
1
I x2 I . . . I xl−1 I x

σ
0

is an l-path in Σ, and by Step 2 we have

l ≥ n.)

Step 4. If n is odd, then each edge is contained in a unique n-gon.

(Indeed, if n is odd, and xy is an edge in Γ, then dΣ(x, y) = n − 1 and in

Σ there is a unique geodesic x = x0 I x
σ
1
I x2 I . . . I xn−1 = y joining x and y.

This geodesic is part of the self-polar 2n-circuit

x0 I x
σ

1
I x2 I . . . I xn−1 I x

σ

0
I x1 I x

σ

2
I . . . I xσ

n−1
I x0

in Σ. Thus, by Step 1, x0 ∼ x1 ∼ . . . ∼ xn−1 ∼ x0 is the unique n-gon on the

edge xy in Γ.)

Step 5. If n is even, then each 2-path is contained in a unique (n+ 1)-gon.

(Indeed, if x ∼ y ∼ z in Γ, then dΣ(x, y) = dΣ(y, z) = n (since by Step 2

the unique point on yσ that has distance n − 2 to y is not in Z). Let x =

x0 I x
σ
1
I x2 I . . . I xσ

n−1
= zσ be the unique path of length n − 1 in Σ joining x

to zσ. Then

x0 I x
σ

1
I x2 I . . . I xσ

n−1
I y I xσ

0
I x1 I . . . I xn−1 I y

σ I x0

is a self-polar (2n + 2)-circuit in Σ. Thus, by Step 1, x0 ∼ x1 ∼ . . . ∼ xn−1 =

z ∼ y ∼ x is the unique (n+ 1)-gon on the path x ∼ y ∼ z in Γ.)

This completes the proof. �

If (X,L, I) is a 2m-gon, then Γ is a single edge. If (X,L, I) is a (2m+1)-gon,

then there are two possible polarities σ; for one choice of σ the graph Γ consists

of a single vertex; for the other choice it is a (2m+ 1)-gon itself.
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2 Pentagraphs

Now let us specialize to the finite case n = 4, i.e., let (X,L, I) be a generalized

quadrangle of order q with a polarity σ. Then 2q is a square, cf. Payne [4].

Examples exist when q is an odd power of 2, cf. Tits [9]. We define the graph Γ

as before. As we shall see, Γ is a pentagraph, that is, any 2-path in Γ is contained

in a unique pentagon. (For this concept, and other examples, and some theory,

see Perkel [5, 6, 7, 8] and Ivanov [3].)

Theorem 2.1. Γ is a pentagraph of valency q on q3 + q vertices, and has distance

distribution diagram
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Proof. Recall that a point or line is called absolute (for σ) if it is incident with

its image (under σ). We shall use ∼ for adjacency in Γ, and ⊥ for collinearity

in (X,L).

Step 1. Each line contains a unique absolute point, and, dually, each point is on

a unique absolute line.

(Indeed, if x is absolute, then xσ is the only absolute line on x, and if x is not

absolute then the unique line on x meeting xσ is the only absolute line on x.)

Step 2. The set A of absolute points under σ is an ovoid in (X,L). The graph Γ

has v = q(q2 + 1) vertices.

(Indeed, each l ∈ L meets A in a unique point. It follows that |A| = q2 + 1.

But |X| = (q + 1)(q2 + 1).)

Step 3. Γ is regular of valency q, and does not contain triangles. Adjacent vertices

are non-collinear.

(Indeed, the neighbours of x are the q nonabsolute points of xσ.)

Step 4. Γ does not have quadrangles, and any two vertices at distance 2 de-

termine a unique pentagon. Two vertices have distance 2 if and only if they are

collinear and the line joining them is non-absolute.
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(Indeed, if x ∼ y ∼ z, then x and z are joined by the line yσ. In particular, y is

the only common neighbour of x and z. Let z ⊥ p ∈ xσ. Then p 6∈ A because the

unique absolute point on xσ is collinear to x. Also the line l = zp is not absolute

because zσ passes through y and p 6= y. It follows that x ∼ y ∼ z ∼ lσ ∼ p ∼ x

is the unique pentagon on x and z.)

Let us describe the distribution of vertices in Γ around a vertex x. Let m be the

absolute line on x, and let x′ = mσ = xσ ∩ A be its absolute point. The vertex

set of Γ is partitioned into the following seven parts: X0 = {x}, X1 = xσ \ A,

X2 = x⊥ \ (A∪m), X5 = m\ (A∪{x}), X4a = {x′}⊥ \ (A∪m∪xσ), X4b = {y ∈
X \ A | y ∼ z ∈ X1 and yz is absolute}, and X3, consisting of the remaining

points. Our aim is to show that Xi consists of the vertices at distance i from x

in Γ, where X4a and X4b are distinguished by the fact that points in X4a have

neighbours in X5. (Note however that for q = 2 we have X3 = ∅, and the graph

Γ is the disjoint union of two pentagons. If p is in the relation 4a to x, then x

is in relation 4b to p, i.e., relations 4a and 4b are paired, while the remaining

relations are self-paired.)

Step 5. We have |X0| = 1, |X1| = q, |X2| = q(q − 1), |X3| = q(q − 1)(q − 2),

|X4a| = |X4b| = q(q − 1), |X5| = q − 1.

(Indeed, the claims are clear for Xi with i ≤ 2. The only vertices that do not

have distance 2 to some vertex of X1, are the vertices that either are collinear

to the point x′ = xσ∩A (i.e., are in X4a∪X5), or are joined to a vertex on xσ by

an absolute line (i.e., are in X4b). The absolute line m on x contains q vertices,

q − 1 other than x, and none of them is collinear to a point in X0 ∪ X1 ∪ X2,

so these vertices have distance at least 5 to x. The vertices adjacent to some

vertex in X5 are the q(q − 1) vertices of X4a. The vertices of X3 are collinear to

a unique vertex of xσ, so this determines |X3|.)

Step 6. Each vertex in X3 ∪X4b has a unique neighbour in X4a.

(Indeed, let p ∈ X3 ∪ X4a. Then pσ does not pass through x′ (since p 6∈ m,

i.e., p 6∈ X0 ∪ X5), so x′ is collinear with a unique point z ∈ pσ. The line x′z

is not absolute (since z 6∈ m because p 6∈ X4a ∪ X1) and the point z is not

absolute (since the line x′z contains only one absolute point), so z is the unique

neighbour of p in X1 ∪X4a. Clearly z ∈ X1 iff p ∈ X2.)

This proves everything claimed in the diagram. �

Now let us look at the special case where q = 22e + 1 and (X,L) is the Sp(4, q)

generalized quadrangle. The centralizer in Sp(4, q) of the polarity σ is the

Suzuki group Sz(q) of order (q2 + 1)q2(q − 1). This group is 2-transitive on
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the set A of absolute points, and 2-arc transitive on the graph Γ (cf. Tits [9,

Th. 6.1]). In this case we can be more precise about the stars in the diagram

above.

Theorem 2.2. The graph Γ is a 2-arc transitive pentagraph with distance distri-

bution diagram
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Proof. If p and x are two non-collinear points, then {p, x}⊥ is a hyperbolic line

that meets A in either 0 or 2 points (since A is an ovoid, and all tangents to A

are totally isotropic lines). We shall talk about exterior and secant (hyperbolic)

lines, respectively.

Step 1. Each vertex in X4a ∪X4b has a unique neighbour in X4b.

(Indeed, if p ∈ X4a or p ∈ X4b, then {p, x}⊥ ∩ A contains the point x′ (or

p′, respectively), so this hyperbolic line is a secant, and there are precisely q− 2

points in Γ at distance 2 from both p and x.)

If p ∈ X3, then {p, x}⊥ ∩ A contains either 0 or 2 points, so that p has either 0

or 2 neighbours in X4b. Let us call the set of vertices of the former (latter) kind

X3a (X3b, respectively).

Step 2. X3a is the set of vertices p such that the line xp is exterior. We have

|X3a| = |X3b| =
1

2
q(q − 1)(q − 2).

(Indeed, the lines joining x to a point of X2 ∪ X5 are the tangents (totally

isotropic lines) on x, the lines joining x to a point of X1 ∪ X3b ∪ X4 are the

exterior lines on x, and the lines joining x to a point of X3a are the secants on

x. But A has 1

2
q2(q2 + 1) secants, and the same number of exterior lines. (In

fact, l is secant iff l⊥ is exterior.))

The planes meet the set A either in one point: tangent planes, or in an oval

(having q + 1 points): secant planes.
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Step 3. If p ∈ X2 ∪X3 ∪X4a then p has 1

2
q − 1 neighbours in X3a.

(Indeed, if p ∈ X2 ∪X3 ∪X4a, then x 6∈ pσ, and the plane 〈x, pσ〉 is a secant

plane. In this plane, the point x is on one tangent, and on 1

2
q secants. One of

these secants contains p′; the remaining 1

2
q − 1 contain each one neighbour of

p.)

This determines the entire diagram. �

Remark 2.3. The graph Γ, and the fact that it is 2-arc transitive for Sz(q), was

found independently by Fang Xin Gui, a student of Cheryl Praeger.

Remark 2.4. AutΓ is not primitive: the spread {aσ | a ∈ A} is a system of

blocks of imprimitivity. However, AutΓ acts 2-transitively on the set of blocks,

so that we do not find a nontrivial graph structure on the quotient.

Remark 2.5. Of course we also get finite heptagraphs (of valency q = 32e + 1)

starting from a generalized hexagon (of type G2(q)) with a polarity.

3 Addendum

The above was written in April 1992. In the meantime, Xin Gui Fang & C. E.

Praeger [1, 2] appeared where the above graphs are found in the classification

of certain 2-arc transitive graphs (and they refer to this work). As far as we

know, the relation to generalized polygons with polarity still does not appear in

the literature.
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