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Abstract

We look at the construction of constant composition codes (CCCs) from

various types of partitions in finite projective spaces. In particular, we con-

struct robust classes of codes using regular spreads of PG(2n − 1, q) and

Baer subgeometry partitions of PG(2n, q
2). For each class of codes, we

bound the minimum distance by considering how such partitions can in-

tersect. As such, we prove results about the intersection of regular spreads

and Baer subgeometry partitions, two of the classical partitions generated

by subgroups of a Singer group. In addition, we examine other partitions of

objects embedded in finite projective spaces and their associated codes. In

each case, we compare our codes to a code of comparable parameters that

meets the Plotkin bound.
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1 Introduction

Constant Composition Codes, or CCCs, have been recently examined as an ef-

fective form of error correcting coding over electric power lines [15]. They also

arise in frequency hopping, when a schedule is needed to determine frequencies

on which to transmit [9]. Two special cases of CCCs are constant weight binary

codes and permutation codes, both of which have been studied in some depth.
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Recently, many constructions of CCCs were presented in [4] using techniques in

algebra and combinatorics.

In the present article, we look at the more general CCCs and construct exam-

ples using techniques from finite projective geometry. Our techniques involve

the partitioning of projective spaces and objects embedded in projective spaces.

Codewords correspond to partitions and determining bounds on the minimum

distance requires an understanding of how distinct partitions intersect. As such,

we study the intersection of spreads and Baer subgeometry partitions, as well

as the intersection of partitions of quadratic cones, ovoids, hyperbolic quadrics,

and unitals.

Let C be a k-ary code of length n and minimum distance d on the alphabet

{1, 2, . . . , k}. As usual, the elements of C are called codewords. The code C is

said to have constant weight composition [n1, n2, . . . , nk] if every codeword has

ni occurrences of symbol i for i = 1, . . . , k. The code C is a constant composi-

tion code, or CCC([n1, n2, . . . , nk], d). Let A([n1, n2, . . . , nk], d) denote the maxi-

mum size of such a CCC. When writing compositions, the exponential notation

nt1
1 , nt2

2 , . . . , nth

h will be used to abbreviate

[
t1

︷ ︸︸ ︷
n1, . . . , n1,

t2
︷ ︸︸ ︷
n2, . . . , n2, . . . ,

th
︷ ︸︸ ︷
nh, . . . , nh

]
.

Codes with composition 1n are also known as permutation arrays and are de-

noted by PA(n, d). They have been studied in depth in [3].

We recall Section 4 of [4] where CCCs are constructed from resolvable de-

signs. Let X be a set of size n and B a collection of nonempty subsets of X

(blocks) whose sizes belong to K. If t and λ are positive integers, the pair

(X,B) is a t-wise balanced design with index λ if every subset of size t of X is

contained in exactly λ blocks. We now restrict ourselves to the case when λ = 1.

A design (X,B) is called resolvable if B can be partitioned into partitions, or

resolution classes, of X. If in addition each resolution class contains the same

number of blocks of each size, the design is called class-uniformly resolvable.

When all blocks have the same size, say k, such designs are called Steiner systems

and are denoted S(t, k, n). For an S(t, k, n) to be resolvable, we need k | n, and

an easy count shows that there are
(
n
t

)
/
(
k
t

)
blocks and

(
n−1
t−1

)
/
(
k−1
t−1

)
resolution

classes. Theorem 4.1 of [4] says that every such resolvable design D can be

used to construct a CCC. We summarize this result for clarity.

Let D be the Steiner system S(t, k, n) and define a code CD of length n as

follows. Label the coordinate positions of the codewords with the points of D.

Every resolution class will correspond to a different codeword. For a resolution

class R, arbitrarily assign to each block of the class a different element from

the alphabet. Now create a codeword cR in the natural way. If coordinate i
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corresponds to point P lying in a block assigned with alphabet member j, then

the ith coordinate is given value j. In this fashion, we create a codeword with

composition [kn/k]. The minimum distance of CD is determined by how two

distinct resolutions can intersect. By the definition of S(t, k, n), any two blocks

meet in at most t − 1 points. There are k points in each block and n/k blocks

in a given resolution class. Given two resolution classes R1 and R2, the worst

case scenario is that every pair of blocks B1 ∈ R1 and B2 ∈ R2 that have the

same label actually meet in t − 1 points. This implies that the two correspond-

ing codewords have at most n
k (t − 1) coordinates in common. Hence, the two

codewords differ in at least d = n − n
k (t − 1) = n

k (k − t + 1) coordinates.

Note also that any particular resolution gives rise to multiple codewords by

permuting the members of the alphabet using elements of a permutation ar-

ray. Recall that a permutation array, PA(n, d), is simply a CCC with composi-

tion 1n. Hence, a permutation array consists of a list of permutations of the

integers {1, 2, . . . , n} with the property that any two permutations agree in at

most n − d positions. It follows that permuting the members of our alphabet

using a permutation array with parameters PA(n/k, ⌈d/k⌉) will give us multiple

codewords for every resolution class. In summary, the resolvable design gives

rise to a CCC([kn/k], n
k (k− t+1)) having r ·s codewords where r =

(
n−1
t−1

)
/
(
k−1
t−1

)

is the number of resolution classes and s is the maximum size of a permutation

array with parameters PA(n/k, ⌈d/k⌉).

The permutation array plays an important role in establishing a lower bound

on the size of our codes. In order for us to find the best possible lower bounds

for our codes, we rely on some results about permutation arrays that can col-

lectively be found in [5]. Let M(n, d) be the maximum size of a permutation

array of length n and minimum distance d. The following results will be useful

in subsequent arguments.

Proposition 1.1. For every n and d ≤ n,

M(n, d) ≥ max{M(n − 1, d),M(n, d + 1)} .

Proposition 1.2 ([3]). If q is a prime power, then M(q, q − 1) = q(q − 1).

Proposition 1.3 ([6]). If q is a prime power, then M(q+1, q−1) = (q+1)q(q−1).

Inductively applying Propositions 1.1 and 1.3 we get the following which

shall prove useful in the sequel.

Corollary 1.4. For fixed n and d let α be a prime power with d < α < n. Then

M(n, d) ≥ α3 − α.

A natural construction of a CCC based on finite geometry appears in [4]

and involves the affine plane. The classical affine plane of order q denoted
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by AG(2, q) is a resolvable design with parameters S(2, q, q2). Moreover, the

maximum size of a permutation array PA(q, q−1) is q(q−1). Hence, we naturally

construct a CCC[qq, q(q−1)] of size (q+1)q(q−1) and distance q(q−1) (note that

q+1 is the number of parallel classes in an affine plane of order q). In this article

we aim to generalize this type of construction using other partitioning ideas

from finite geometry. In particular, we relax the condition that the resolution

classes actually partition the blocks from the design. Rather, we allow for two

distinct partitions to share a common block. With this relaxed condition, we

are able to find many examples of CCCs that arise naturally from partitioning

ideas in finite geometry. We describe each construction in detail and bound the

minimum distance using geometric arguments.

By loosening the condition on how partitions can intersect, we lose the ability

to apply the well-known Plotkin bound to our codes. The Plotkin bound states

that a k-ary code of length n and minimum distance d has at most d
d−n+n/k

codewords, provided that the denominator is positive. Our partitions have the

property that each of the subsets in the partition has the same size, say λ, imply-

ing that n/k = λ. Hence, the condition for the Plotkin bound is that d > n−λ. If

we allow two partitions to have one subset in common, it follows that d ≤ n−λ.

So, one on hand, we lose the power of the Plotkin bound for determining the

optimality of our codes. However, in every one of our constructions we are able

to show that the minimum distance is not far from n − λ, and that our code

contains many more codewords than would be obtained from a code with the

same n and k, and with only slightly larger d (which is necessary to apply the

Plotkin bound). We address this in more detail in Section 5 after discussing our

constructions.

The article is structured as follows. Sections 2 and 3 give details about how

regular spreads and Baer subgeometry partitions of finite projective spaces can

intersect. We construct codes from these partitions and geometric arguments

are then used to bound their minimum distances. Section 4 looks at other

partitions, mostly of objects embedded in projective spaces, and we again bound

minimum distances using the geometry. In each of these sections, bounds on the

sizes of the relevant permutation arrays are given. The final section of the article

summarizes our results and compares our codes to other codes that meet the

Plotkin bound.

2 Regular spreads

Our first class of CCCs is developed using spreads. A spread of the projective

space Σ = PG(2n− 1, q) is a partition of Σ into (n− 1)-spaces. We start with an

overview of spreads in PG(3, q).



Partitions and related constant composition codes 53

Definition 2.1. A regulus of Σ = PG(3, q) is a collection of q + 1 lines of Σ with

the property that any other line meeting three of the regulus lines meets all of

them.

A straight forward linear algebra argument shows the following.

Lemma 2.2. Let l1, l2, and l3 be three distinct, pairwise disjoint lines of Σ. Then

there exists a unique regulus containing l1, l2, and l3.

For q > 2, we will say that a spread S of Σ is regular if for every three distinct

elements of S, the unique regulus determined by them is a subset of S. There is

a well-known connection between regular spreads of Σ and finite Desarguesian

projective planes. More generally, every spread of Σ (regular or not) can be used

to construct a finite projective plane of order q2, not necessarily Desarguesian.

Simple counting can be used to show that Σ contains (q2 + 1)(q2 + q + 1)

lines. Moreover, basic linear algebra can be used to show the following.

Proposition 2.3. Let R be a regulus of Σ and let l be a line of Σ that is skew to

every line of R. Then the exists a unique regular spread of Σ containing both R
and l. Hence, two regular spreads of Σ intersect in at most q + 1 spread lines.

Using some group theory, one can show that the number of regular spreads

of Σ is 1
2q4(q − 1)(q3 − 1) (see [11, Theorem 25.6.6]) and that every spread

contains q(q2 + 1) reguli.

We now turn to the construction of a constant composition code from the

lines of Σ. Let CS be the code of length q3+q2+q+1, each of whose coordinates

is labeled with a point of Σ and let S be the set of all regular spreads of Σ.

For each regular spread S of S, we define a codeword cS as follows. Every

line of S is arbitrarily assigned a symbol in {1, 2, . . . , q2 + 1}, and coordinates

corresponding to points lying on the same line of S are given that symbol in cS .

Because two distinct regular spreads can only intersect in at most q+1 lines, we

are able to bound the minimum distance. If two spreads met in q + 1 lines that

were labeled identically, and the remaining identically labeled pairs of lines

all met in a single point, the total number of common coordinates would be

(q + 1)(q + 1) + (q2 − q) = 2q2 + q + 1.

Theorem 2.4. The code CS described above is a CCC([(q + 1)q2+1], d) containing
1
2q4(q − 1)(q3 − 1) · s codewords, where d ≥ q3 − q2 and s is the maximum size of

a PA(q2 + 1, q2 − 2q + 2).

Proof. The composition of the code CS follows from the construction. Since

two codewords can have at most 2q2 + q + 1 coordinates in common, the

minimum distance is at least (q3 + q2 + q + 1) − (2q2 + q + 1) = q3 − q2.
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Hence, the minimum distance for the associated permutation array is at least
⌈

d
k

⌉
=
⌈
(q3 − q2)/(q + 1)

⌉
=
⌈

q2 − 2q + 2 − 2
q+1

⌉

= q2 − 2q + 2. �

Proposition 1.1 implies that M(q2+1, q2−2q+2) ≥ M(q2+1, q2−1). Hence,

from Proposition 1.3 it follows that M(q2 + 1, q2 − 2q + 2) ≥ (q2 + 1)q2(q2 − 1).

This gives us the following.

Corollary 2.5. A([(q + 1)q2+1], q3 − q2) ≥ 1
2q6(q4 − 1)(q3 − 1)(q − 1) ≈ 1

2 q14 .

These codes can be generalized in a natural way using (n − 1)-spreads of

PG(2n − 1, q). Lemma 2.2 still holds with the term “line” replaced with the

more general “(n − 1)-space”. The size of the intersection of two spreads, as

discussed in Proposition 2.3, however, is no longer bounded by q + 1. In order

to generalize our construction, one needs to determine the maximum possible

intersection size for two regular spreads of PG(2n − 1, q).

Theorem 2.6. Let S1 and S2 be regular spreads of PG(2n − 1, q) with n > 2.

Then, S1 and S2 intersect in at most m + 1 spread elements where m is the size of

the maximum proper subfield of GF(qn).

Proof. We consider the associated affine planes. Two distinct regular spreads,

S1 and S2, of PG(2n − 1, q) can be used to construct two Desarguesian affine

planes coordinatized by the field GF(qn). The spread, in this setting, corre-

sponds to points on the line at infinity and can be viewed as the elements of

the corresponding field, together with the new symbol ∞. These elements cor-

respond to slopes in the Euclidean plane and more details about how one goes

about coordinatizing a finite affine plane can be found in [12].

If two regular spreads have at least three (n− 1)-spaces in common, then we

can coordinatize the common spread elements vectorially with x = 0, y = 0,

and y = x. Here, coordinates for affine points are represented with ordered

pairs (x, y), and the spread elements correspond to our Euclidean notion of

slope. Hence, we are choosing coordinates for our planes in such a way that the

slopes corresponding to 0, 1, and ∞ are common to the two planes.

Let the first regular spread have coordinate field K and the second regular

spread have coordinate field L. Then, the remaining spread elements (for either

spread) can take the form y = kx as k varies over the elements of K or L.

So, the number of spread elements that S1 and S2 have in common is one

more than the size of the intersection of K and L. The problem, therefore,

boils down to determining the subfield structure of the finite field of order qn.

Letting m be the size of the maximum (proper) subfield of GF(qn), we see that

|S1 ∩ S2| ≤ m + 1. �



Partitions and related constant composition codes 55

Note that if n is prime, then the maximal possible subfield is GF(q) and the

intersection of S1 and S2 is a regulus of size q+1 as discussed in Proposition 2.3.

However, two spreads of PG(7, q), for instance, could intersect in as many as

q2 + 1 solids. The process of “lifting” and “retracting” equivalent spreads lying

in projective spaces of different dimensions may shed some light on this (see

[14] for an overview of this procedure). As an example, suppose S1 and S2 are

two regular spreads of PG(3, q2). Then, as discussed above, S1 and S2 could

intersect in at most a regulus which, in this case, contains q2 + 1 lines. Assume

that this is the case. There is a lifting process that takes a line-spread of PG(3, q2)

to a solid-spread of PG(7, q) whereby each line in PG(3, q2) lifts to a unique solid

of PG(7, q). So, the q2 +1 lines forming a regulus (the intersection of S1 and S2)

in PG(3, q2) lift to q2+1 solids of PG(7, q). Hence, the two corresponding spreads

of PG(7, q) lifted from S1 and S2 each contain q4 + 1 spread elements and meet

in q2 + 1 spread elements.

Now let Sn be the set of all regular spreads of PG(2n− 1, q). It can be shown

(again in [11]) that

|Sn| =
q2n(n−1)

n(qn − 1)

2n−1∏

i=1

(qi − 1) .

As before, we construct a CCC CSn
by creating a codeword for each regular

spread of PG(2n − 1, q) in the same fashion as above.

Theorem 2.7. Let k be the largest proper divisor of n and let s denote the maxi-

mum size of a PA

(

qn + 1,
(q2n−1 − qn+k−1)(q − 1)

qn − 1

)

. The code CSn
is a

CCC

([(
qn − 1

q − 1

)qn+1
]

, d

)

consisting of
q2n(n−1)

n(qn − 1)

2n−1∏

i=1

(qi − 1) · s codewords, where d ≥ q2n−1 − qn+k−1 .

Proof. The composition of the code CS follows from the construction. Now

suppose S1 and S2 are two regular spreads of PG(2n − 1, q) corresponding to

codewords c1 and c2. We wish to determine how many coordinates they could

have in common. As before, the two spreads could share at most qk + 1 spread

elements where GF(qk) is the maximal subfield of GF(qn). In addition, pairs of

spread elements from the two spreads that are labeled the same could intersect

in at most an (n − 2)-space. Hence, the two codewords could share at most

(qk + 1) qn
−1

q−1 + (qn − qk) qn−1
−1

q−1 = 1
q−1 (q2n−1 + qn+k − qn+k−1 − 1) common

coordinates. Subtracting this from the length of q2n
−1

q−1 gives us an upper bound
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of (q2n−1−qn+k−1) for d. The parameters for the permutation array follow from

the construction discussed in Section 1. �

The permutation array needed for the previous class of codes has minimum

distance which is roughly qn. Hence, we can use Propositions 1.1 and 1.3 to

bound the minimum size of our desired permutation array and therefore give a

lower bound on the size of these codes.

Corollary 2.8. We have

A

([(
qn − 1

q − 1

)qn+1
]

, q2n−1 − qn+k−1

)

≥
q2n(n−1)

n(qn − 1)

2n−1∏

i=1

(qi − 1) · (qn − 1)qn(qn + 1)

≈
1

n
q4n2

−n .

3 Baer subgeometry partitions

We can construct similar codes using partitions of the finite projective plane

PG(2, q2). Recall that a Baer subplane of π = PG(2, q2) is a subplane π0 isomor-

phic to PG(2, q). It is well known how to construct a Baer subplane partition

of π.

Let L be the finite field of order q6 and let α be a primitive element of L.

Then L can be viewed as a 3-dimensional vector space over the finite field

K = GF(q2), and therefore may be used as a model for PG(2, q2). Powers of

the primitive element represent projective points, and any two powers whose

quotient is in K represent the same projective point. Therefore, the field ele-

ments

1, α, α2, α3, . . . , αq4+q2

represent the q4 + q2 + 1 distinct projective points of PG(2, q2). Note that the

next field element, αq4+q2+1, when raised to the q2 − 1 power gives αq6
−1 = 1.

Therefore, αq4+q2+1 is an element of K and so represents the same projective

point as the field element 1.

Now, let G be the group acting on π induced by multiplication by α. So, G is

a cyclic group that acts regularly on the points of π, a Singer group. Let g be a

generator of G and consider the subgroup H < G generated by gq2
−q+1. Clearly,

H has order q2 + q + 1 and it is well-known that the orbits of H in π form Baer

subplanes. We say that the orbits of H form the classical Baer subplane partition.
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It is also well-known [10] that there are many Singer groups that act regu-

larly on the points (and lines) of π. As a result, many Baer subplane partitions

can be constructed by simply using subgroups of different Singer groups. Using

a group theoretic argument to count these groups [10, Theorem 4.35], it can be

shown that the set of Baer subplane partitions B of π, satisfies

|B| ≥
1

3
q6(q2 − 1)(q4 − 1)

since each Singer subgroup gives rise to a classical Baer subplane partition. We

note that there exist Baer subplane partitions that do not arise in this fash-

ion. However, we will not make use of such non-classical partitions here. Let

B be the set of all classical Baer subplane partitions. It follows that |B| =
1
3 q6(q2−1)(q4−1). Moreover, it was shown in [16] that by counting the number

of ordered triples (B1, B2, P ) where B1 and B2 are Baer subplanes in the clas-

sical Baer subplane partition P , that there is a unique classical Baer subplane

partition containing two fixed disjoint Baer subplanes.

We now construct a constant composition code from the classical Baer sub-

plane partitions of π in the same fashion that we constructed the codes from

regular spreads. Let CB be the code of length q4 + q2 + 1, each of whose coor-

dinates is labeled with a point of π. For each Baer subplane partition B in B,

we define a codeword cB as follows. Every Baer subplane of B is arbitrarily

assigned a symbol in {1, 2, . . . , q2 − q + 1}, and coordinates corresponding to

points lying on the same subplane of B are given that symbol in cB .

Theorem 3.1. The code CB described above is a CCC([(q2 + q + 1)q2
−q+1], d)

containing 1
3 q6(q2 − 1)(q4 − 1) · s codewords where d ≥ q(q − 1)(q2 − 1) and s is

the maximum size of a PA(q2 − q + 1, (q − 1)2).

Proof. The composition of the code CB follows from the construction. We bound

d using the fact that two distinct Baer subplane partitions can only intersect in at

most one Baer subplane. In [1] the different intersection patterns for two Baer

subplanes of π were determined, and it was shown that the maximum number

of points that two distinct Baer subplanes can have in common is q + 2.

Now let c1 and c2 be two distinct codewords of CB. We wish to determine the

maximum number of coordinates these two codewords could have in common.

To attain this maximum, we would have two corresponding partitions sharing

a Baer subplane whose coordinates are labeled the same. In addition, all of the

remaining pairs of commonly labeled Baer subplanes from the two partitions

would meet in q + 2 points each. Hence, the maximum number of coordinates

that c1 and c2 could have in common is

(q2 + q + 1) + (q2 − q)(q + 2) = q3 + 2q2 − q + 1 .
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Hence, the minimum distance is at least

q4 + q2 + 1 − (q3 + 2q2 − q + 1) = q4 − q3 − q2 + q = q(q − 1)(q2 − 1) .

The minimum distance for the associated permutation array is then necessarily

⌈q(q − 1)(q2 − 1)/(q2 + q + 1)⌉ =

⌈

q2 − 2q +
3q

q2 + q + 1

⌉

= (q − 1)2 . �

The known results on permutation arrays do not seem to provide much in-

sight on a maximum size for a permutation array PA(q2 − q + 1, (q − 1)2). We

could certainly use cyclic shifts of the alphabet to obtain at least q2 − q + 1

elements in our permutation array. These shifts give us at least a naive lower

bound.

Corollary 3.2. We have

A
([

(q2 + q + 1)q2
−q+1

]
, q(q − 1)(q2 − 1)

)

≥
1

3
q6(q2 − 1)(q4 − 1)(q2 − q + 1) ≈

1

3
q14 .

If the parameters of the code above satisfy the conditions of Corollary 1.4

then the bound attained is considerably improved.

Corollary 3.3. Assume there exists a prime power α with (q−1)2 < α < q2−q+1.

Then

A
([

(q2 + q + 1)q2
−q+1

]
, q(q − 1)(q2 − 1)

)

≥
1

3
q6(q2 − 1)(q4 − 1) · (α3 − α) ≈

1

3
q18 .

The above construction for CCCs from Baer subplanes can naturally be gen-

eralized to Baer subgeometries of PG(n, q2) when n is even. A divisibility con-

dition shows that n must be even in order for a Baer subgeometry partition to

exist. We first look at the problem of determining the maximum number of

points that two Baer subgeometries of PG(n, q2) could have in common. We

recall two theorems of [13].

Theorem 3.4 ([13, Theorem 1.3]). Let A1, A2, . . . , Ak be subspaces of order q

in PG(n, q2). The following two statements are equivalent:

1. The subspaces A1, A2, . . . , Ak satisfy the following two conditions:

• k ≤ q + 1 ;
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• 〈A1, A2, . . . , Ai−1, Ai+1, . . . , Ak〉 ∩ Ai = ∅ for all i = 1, 2, . . . , k .

2. There are Baer subgeometries B and B′ in PG(n, q2) such that A1, A2, . . . , Ak

are the components of B ∩ B′.

Theorem 3.5 ([13, Theorem 1.4]). There are at most q + 1 components in the

intersection of two Baer subgeometries of PG(n, q2), and they are independent.

We claim that the above theorems imply a result on the maximum number of

points that two Baer subgeometries could have in common.

Theorem 3.6. Let B and B′ be two Baer subgeometries of PG(n, q2). Then the

intersection B ∩ B′ contains at most qn−1 + qn−2 + · · · + q2 + q + 2 points.

Proof. We first claim that the only possible way for the intersection to contain

at least qn−1 points is for the intersection to contain a Baer hyperplane (a copy

of PG(n − 1, q)). Since Theorem 3.5 says that the intersection contains at most

q + 1 components, the only way to accumulate qn−1 points is for at least one

component to be a Baer hyperplane, or for roughly q components to be isomor-

phic copies of PG(n − 2, q). But the latter case is impossible since the existence

of two PG(n − 2, q)s in the intersection would contradict the second bullet in

part 1 of Theorem 3.4. Hence, in order to have |B∩B′| ≥ qn−1, the intersection

of B and B′ must contain exactly one hyperplane. This immediately implies

that any additional components in the intersection would necessarily be points,

and moreover, that there can only be one additional component. Hence, the

maximum size of B ∩B′ is qn−1 + qn−2 + · · ·+ q2 + q + 2 and consists of a Baer

hyperplane and one additional point. �

We now assume that n is even. In this case, the number of points of PG(n, q2)

factors as
q2n+2 − 1

q2 − 1
=

(
qn+1 − 1

q − 1

)(
qn+1 + 1

q + 1

)

and one can show that the orbits of the Singer subgroup of order qn+1
−1

q−1 all

form Baer subgeometries. Again using a group theoretic argument, one can

show that the number of Singer groups acting on PG(n, q2) is exactly equal to
1
n qn(n+1)Πn

i=1(q
2i − 1). For each Singer group, we can naturally take the Singer

subgroup of order qn+1
−1

q−1 and use it to create a Baer subgeometry partition of

PG(n, q2). Hence, each Singer group gives rise to a classical Baer subgeome-

try partitions of PG(n, q2). Let Bn be the set of all classical Baer subgeometry

partitions. It follows that |Bn| = 1
n qn(n+1)Πn

i=1(q
2i − 1).

The construction of a constant composition code from the set of Baer subge-

ometry partitions follows now just as in the case of spreads once we determine

how two distinct Baer subgeometry partitions can intersect.



60 T. Alderson • K. Mellinger

Theorem 3.7. Let P1 and P2 be two distinct Baer subgeometry partitions of

PG(n, q2), n even. Then, P1 and P2 have at most m+1
q+1 Baer subgeometries in

common, where m is the size of the maximal subfield of GF(qn+1).

Proof. We appeal to the well-known relationship between Baer subgeometry

partitions of PG(n, q2) and spreads of PG(2n + 1, q) for n even. Suppose that

P1 and P2 intersect in exactly i distinct Baer subgeometries. Furthermore, let

S1 and S2 be the spreads of PG(2n + 1, q) obtained from P1 and P2 via the lift-

ing method described in [11]. It follows that each Baer subgeometry common

to P1 and P2 will lift to a regulus of PG(2n + 1, q). Hence, the corresponding

spreads of PG(2n + 1, q) intersect in i(q + 1) distinct n-spaces. But by Theo-

rem 2.6, S1 and S2 meet in at most m + 1 spread elements, where m is the

maximum size of a subfield of GF(qn+1). Hence, i ≤ m+1
q+1 . �

We now construct a constant composition code from the classical Baer sub-

geometry partitions of PG(n, q2) in the same fashion as before. Let CBn
be the

code of length q2n + q2n−2 + · · ·+1, each of whose coordinates is labeled with a

point of PG(n, q2), n even. For each Baer subgeometry partition B in Bn, we de-

fine a codeword cB as follows. Every Baer subplane of B is arbitrarily assigned

a symbol in {1, 2, . . . , qn+1+1
q+1 }, and coordinates corresponding to points lying in

the same subgeometry of B are given that symbol in cB .

Theorem 3.8. Let k be the largest proper divisor of n + 1 and let s denote the

maximum size of a PA

(

qn+1 + 1

q + 1
,

⌈
(q − 1)(qn+1 − qk)(qn − 1)

(q + 1)(qn+1 − 1)

⌉)

. The code CBn

is a

CCC









(
qn+1 − 1

q − 1

)
“

qn+1+1

q+1

”

 , d





consisting of
1

n
qn(n+1)

n∏

i=1

(q2i − 1) · s codewords, where d ≥ (qn+1
−qk)(qn

−1)
q+1 .

Proof. The composition of the code CBn
follows from the construction. We

bound d using the fact that two distinct Baer subgeometry partitions can only

intersect in at most one Baer subgeometry. By Theorem 3.6, two distinct Baer

subgeometries can intersect in at most qn−1 + qn−2 + · · ·+ q2 + q +2 = qn
−1

q−1 +1

points.

Now let c1 and c2 be two distinct codewords of CBn
. We wish to bound the

maximum number of coordinates these two codewords could have in common.

The two corresponding partitions share at most qk+1
q+1 Baer subgeometries (The-

orem 3.7) whose coordinates may or may not be labeled the same; additionally,
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each of the remaining pairs of commonly labeled Baer subgeometries from the

two partitions meet in at most qn
−1

q−1 + 1 points each. Hence, the number of

common coordinates between c1 and c2 is bounded above by

(
qk + 1

q + 1

)(
qn+1 − 1

q − 1

)

+

(
qn+1 + 1

q + 1
−

qk + 1

q + 1

)(
qn − 1

q − 1
+ 1

)

.

This gives

d ≤
q2n+2 − 1

q2 − 1
−

q2n+1 + qn+k+1 − qn+k + qn+2 − qn+1 − qk+1 + qk − 1

q2 − 1

=
(qn+1 − qk)(qn − 1)

q + 1
.

A similar calculation as before gives the parameters for the permutation array.

�

Again, bounding the size of a permutation array with the parameters de-

scribed above seems very difficult. If we again use a naive lower bound of the

length qn+1+1
q+1 , we obtain the following.

Corollary 3.9. We have

A









(
qn+1 − 1

q − 1

)
“

qn+1+1

q+1

”

 ,
(qn+1 − qk)(qn − 1)

q + 1





≥
1

n
qn(n+1)

n∏

i=1

(q2i − 1)

(
qn+1 + 1

q + 1

)

≈
1

n
q2n2+3n .

If the parameters of the code above satisfy the conditions of Corollary 1.4

then we attain an improved bound.

Corollary 3.10. Assume there exists a prime power α with

qn+1 + 1

q + 1
> α >

⌈
(q − 1)(qn+1 − qk)(qn − 1)

(q + 1)(qn+1 − 1)

⌉

.
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Then

A









(
qn+1 − 1

q − 1

)
“

qn+1+1

q+1

”

 ,
(qn+1 − qk)(qn − 1)

q + 1





≥
1

n
qn(n+1)

n∏

i=1

(q2i − 1)
(
α3 − α

)

≈
1

n
q2n2+5n .

4 Codes from other partitions

We overview some other classes of partitions of finite projective spaces, and of

objects embedded in finite projective spaces, that could be used in the construc-

tion of new classes of constant composition codes.

4.1 Ovoidal fibrations

As discussed above, one way to construct a regular spread uses a subgroup of

a Singer group. Let L be the finite field of order q4, viewed as a 4-dimensional

vector space over the field GF(q). Let α be a primitive element for L. Then, the

field elements

1, α, α2, α3, . . . , αq3+q2+q

represent the distinct projective points in PG(3, q) and multiplication by α in-

duces a collineation on PG(3, q). We denote this Singer group by G. So, G is a

cyclic group of order q3 + q2 + q + 1.

Now let H be the cyclic subgroup of G of order q2+1. It was shown in [7] that

the orbits of this subgroup form ovoids of PG(3, q) and the partition is known

as an ovoidal fibration. Here we use the term ovoid to refer to a set of q2 + 1

points of PG(3, q), no three collinear. Just as regular spreads could be used to

generate CCCs, we can use ovoidal fibrations to generate new CCCs. As before,

each partition of PG(3, q) will naturally give rise to a codeword. In order to

bound the minimum distance of the code, we will again need to determine how

two such partitions intersect.

Lemma 4.1. If P1 and P2 be two partitions of PG(3, q) into ovoids as described

above using two distinct Singer subgroups. Then, P1 and P2 intersect in at most

one ovoid.
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Proof. It is known that the partition created by the group H is comprised of

elliptic quadrics [7]. Moreover, it can be shown that this partition is in fact a

pencil of quadrics as discussed in [2]. By the classification given in [2], there

is a unique pencil of quadrics comprised entirely of elliptic quadrics forming

a partition of PG(3, q). But two distinct quadrics uniquely determine a pencil.

Hence, given two disjoint elliptic quadrics, there is a unique partition of our

desired form through them. This immediately implies that P1 and P2 can meet

in at most one ovoid. �

Proposition 4.2. Two elliptic quadrics of PG(3, q) intersect in at most 2(q + 1)

points.

The proof of Proposition 4.2 can be found in [8], but also follows from the

classification of pencils of quadrics found in [2]. Since two elliptic quadrics

can only intersect in this relatively small number of points, we can bound the

minimum distance of the associated codes.

Theorem 4.3. The code CO described above is a CCC([(q2 + 1)q+1], d) consisting

of 1
2q4(q − 1)(q3 − 1) · s codewords, where d ≥ q3 − 2q2 − q and s is the maximum

size of a PA(q + 1, q − 2).

Proof. By Lemma 4.1, any two ovoidal partitions meet in at most one ovoid.

The remaining ovoids meet in at most 2(q + 1) points each. So, the maximum

number of coordinates in common between two corresponding codewords is

(q2 + 1) + q[2(q + 1)] = 3q2 + 2q + 1. Therefore, the minimum number of

coordinates where two codewords differ is q3 + q2 + q + 1 − (3q2 + 2q + 1) =

q3 − 2q2 − q. Since each partition arises from a subgroup of a Singer group, the

number of such partitions is the same as the number of 1-spreads of PG(3, q).

We obtain the parameters for the permutation array by noting that the alphabet

has size q + 1 and that
⌈

q3
−2q2

−q
q2+1

⌉

= q − 2. �

We can now use Propositions 1.1 and 1.3 to ensure that M(q + 1, q − 2) ≥
(q + 1)q(q − 1). This gives us a bound on the size of our codes.

Corollary 4.4. We have

A
(
[(q2 + 1)q+1], q3 − 2q2 − q

)
≥

1

2
q5(q − 1)(q2 − 1)(q3 − 1) ≈

1

2
q11 .

4.2 Linear flocks of a quadratic cone

We repeat our construction with linear flocks of a quadratic cone. Let π be a

plane sitting in Σ = PG(3, q) and let P be any point outside of π. Let O be an
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oval in the plane π and consider the set of points Q lying on any of the q + 1

lines joining P to a point of O, a so-called quadratic cone. Clearly Q contains

q2 + q + 1 points.

Now, let l be any line disjoint from Q and consider the set of planes through l.

There are q + 1 such planes and each plane meets the set Q in either a planar

cross section forming another oval, or in the special point P . Hence, by delet-

ing P , any line disjoint from Q corresponds to a partition of Q\P into q planar

sections, each of size q + 1. These partitions are known as linear flocks.

Lemma 4.5. Let l1 and l2 be two distinct lines disjoint from Q. The flocks corre-

sponding to l1 and l2 share at most one oval.

Proof. Suppose that the flocks corresponding to l1 and l2 share two ovals. Let

π1 and π2 be the two distinct corresponding planes of Σ containing these ovals.

Then l1 and l2 lie in both π1 and π2. But two distinct planes meet in at most one

line forcing l1 = l2, a contradiction. �

We now associate a CCC in the natural way. Define a code CQ of length

q2 + q where each coordinate is labeled with a point of Q \ P . Each flock

of Q determines a codeword. For any particular codeword, if points lie in a

common oval of the flock, they are given the same value in their corresponding

coordinates. Our alphabet has size q and each letter of our alphabet will appear

in each codeword exactly q + 1 times.

Theorem 4.6. For q > 2, the code CQ described above is a CCC([(q + 1)q], d)

consisting of
(

q4
−q3

2

)

· s codewords, where d ≥ (q−1)2 and s is the maximum size

of a PA(q, q − 2).

Proof. Simple counting shows the number of lines exterior to the cone Q to be
q4

−q3

2 . If two flocks share a common oval, then the corresponding codewords

could agree in those corresponding q +1 coordinates. The remaining q−1 ovals

in each flock could share at most two points. Hence, the maximum number of

coordinates that two codewords could have in common is (q + 1) + 2(q − 1) =

3q − 1. Since the code has length q2 + q, the minimum distance is bounded

below by (q2 + q) − (3q − 1) = q2 − 2q + 1 = (q − 1)2. The distance for our

permutation array is
⌈

(q−1)2

q+1

⌉

. When q > 2, this expression simplifies to exactly

q − 2. �

Using Propositions 1.1 and 1.2, we know that a permutation array PA(q, q−2)

contains at least q(q − 1) elements. This bounds the size of our codes generated

by linear flocks.
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Corollary 4.7. A([(q + 1)q], (q − 1)2) ≥ q(q − 1)
(

q4
−q3

2

)

≈ 1
2 q6.

It should be noted that the parameters for our code obtained from linear

flocks of a quadratic cone compare quite favorably to other known codes. For

instance, in [4] a CCC([qq], q2 − q) is obtained using the structure of finite fields

and it is shown that the code contains at least q3−q codewords. Our code above

has a very similar composition, but with many more codewords asymptotically.

Let Q be as above with vertex P . Consider a plane π meeting Q precisely in

P and let ℓ1 and ℓ2 be lines of π not meeting P . If F1 and F2 are the linear

flocks of Q associated with ℓ1 and ℓ2 respectively then F1 and F2 do not have a

conic in common. Indeed, a conic shared by both F1 and F2 would necessarily

be coplanar with ℓ1 and with ℓ2 contradicting the assumption that π meets Q
precisely in P . Hence, using the construction above yields a code in which

two codewords share at most 2q coordinates. As π contains precisely q2 lines

external to Q, and
⌈

q(q−1)
q+1

⌉

= q − 1, we obtain the following.

Theorem 4.8. There exist a CCC([(q+1)q], d) consisting of q2 ·s codewords, where

d ≥ q(q − 1) and s is the maximum size of a PA(q, q − 1).

Applying Proposition 1.2 directly gives us the following.

Corollary 4.9. A([(q + 1)q], q(q − 1)) ≥ q3(q − 1) ≈ q4.

4.3 Planar sections of a hyperbolic quadric

Let H be a hyperbolic quadric of Σ = PG(3, q). The classic example of a hy-

perbolic quadric is the set of points whose homogeneous coordinates satisfy the

quadratic form x0x1 +x2x3 = 0. It is well known that H contains (q+1)2 points

that are ruled by two families of q + 1 lines each.

Now let l be any line of Σ disjoint from the fixed hyperbolic quadric H, and

let π be any plane through l. Since l is disjoint from H, it follows by dimensions

that π must intersect every line that rules H in a point. In fact, the intersection

of H and the plane π must be a set of q + 1 points, no three collinear. Other

planes of Σ meet H in ruling lines of H. We will only be interested in the planes

that intersect H in an oval as described above.

Now consider the set of all lines l disjoint from H. We naturally associate

with every such line l a partition of H into q + 1 ovals. These partitions are

known as linear flocks. Additionally, we consider the two natural partitions of

H induced by families of ruling lines. We now mimic our construction from

the previous section this time applied to the hyperbolic quadric rather than the

quadratic cone. Again, the proof of this lemma is the same as that of Lemma 4.5.
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Lemma 4.10. Let l1 and l2 be two lines of Σ disjoint from H. Then the partitions

of H corresponding to these lines share at most one conic.

Now define a CCC CH of length (q+1)2 where each coordinate is labeled with

a point of H. Each partition of H determines a codeword. For any particular

codeword, if points lie in a common oval of the partition, they are given the

same value in their corresponding coordinates. In this setting, our alphabet has

size q + 1, each value appearing q + 1 times.

Theorem 4.11. The code CH defined above is a CCC([(q + 1)q+1], d) contain-

ing
(

1
2 q2(q − 1)2 + 2

)
· (q + 1)q(q − 1) codewords, where d ≥ q2 − q. Hence,

A
(
[(q + 1)q+1], q2 − q

)
is asymptotically greater than 1

2 q7.

Proof. The size of the code is determined by the number of partitions, or equiv-

alently, the number of lines skew to a hyperbolic quadric. This number can be

determined by elementary counting using properties of the hyperbolic quadric

and is 1
2q2(q − 1)2.

We now determine the bound on d. Two partitions can intersect in at most

one conic. This could lead to q + 1 common coordinates. The remaining conics

can pairwise intersect in at most two points. This could determine at most 2q

additional common values. Since the length of the code is (q+1)2, the minimum

distance is at most (q2 + 2q + 1)− (3q + 1) = q2 − q. The minimum distance for

our permutation array is
⌈

q(q−1)
q+1

⌉

= q − 1. By Proposition 1.3, it follows that

the size of our required permutation array PA(q + 1, q − 1) is (q + 1)q(q − 1).

This gives us our desired result. �

Again we note that our codes obtained here seem to have quite good param-

eters. Again comparing to the CCC(qq, q2 − q) constructed in [4], our code has

a similar composition, but with many more codewords asymptotically.

4.4 Partitions of unitals

Our last construction deals with the classical Hermitian curve in PG(2, q2). Any

Hermitian curve is equivalent to the set of points (x, y, z) whose homogeneous

coordinates satisfy the quadratic form xq+1 + yq+1 + zq+1 = 0. Let U be the set

of points satisfying this form.

It can be shown that U contains q3 + 1 points and that every line of the plane

meets U in either 1 or q + 1 points forming an isomorphic copy of PG(1, q)

(a so-called Baer subline). Now let P be any point of the plane outside of U . It

can be shown that q2 − q of the lines passing through P meet U in q + 1 points

each. Interestingly, the remaining q + 1 lines passing through P meet U in a
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single point each, and these q + 1 points of U , called the feet of P , are collinear.

In fact, they form a Baer subline. Moreover (see [10, Chapter 12]), it can be

easily shown that two points outside U can share at most one foot. Therefore,

every point P determines a partition of U into q2 − q + 1 disjoint Baer sublines.

We can use these partitions to again create a CCC.

Lemma 4.12. Any two partitions of U share at most one common Baer subline.

Proof. The technique here mirrors that of Lemma 4.5. Two disjoint lines of U
intersect in a unique point outside of U . Hence, two distinct points outside of U
cannot generate partitions sharing two distinct sublines. �

Now define a CCC CU of length q3+1 where each coordinate is labeled with a

point of U . As before, each partition of U determines a codeword in the natural

way. Our alphabet here has size q2 − q + 1 and each value appears q + 1 times.

Theorem 4.13. The code CU described above is a CCC([(q + 1)(q
2
−q+1)], d) with

q2(q2 − q + 1) · s codewords, where d ≥ q3 − q2 and s is the maximum size of a

PA(q2 − q + 1, q2 − 2q + 2).

Proof. The length is determined by the number of points outside of U . To bound

the minimum distance, we again need to determine how many coordinates

could be labeled the same in two distinct codewords. It is straight-forward

to show that two distinct partitions share at most one Baer subline, and at

most one foot. Therefore, the worst case scenario has two partitions sharing a

Baer subline labeled the same, and every other element of the partition shar-

ing one commonly labeled point with an element of the other partition. This

gives us a maximum of (q + 1) + (q2 − q) = q2 + 1 commonly labeled co-

ordinates. Hence, the minimum distance is bounded below by q3 − q2. The

parameters of the permutation array follow in the same way as before noting

that
⌈

q2(q−1)
q+1

⌉

= q2 − 2q + 2. �

As was the case with the Baer subgeometry partitions, the known results on

permutation arrays do not seem to provide much insight on a maximum size for

a permutation array PA(q2− q +1, q2−2q +2). Cyclic shifts of the alphabet give

us at least a naive lower bound of q2 − q + 1.

Corollary 4.14. A([(q + 1)(q
2
−q+1)], q3 − q2) ≥ q2(q2 − q + 1)2 ≈ q6.

If the parameters of the code above satisfy the conditions of Corollary 1.4

then we attain an improved bound.
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Corollary 4.15. Assume there exists a prime power α with

q2 − 2q + 2 < α < q2 − q + 1 .

Then A([(q + 1)(q
2
−q+1)], q3 − q2) ≥ q2(q2 − q + 1)

(
α3 − α

)
≈ q10.

5 Summary and concluding remarks

We exhibited many infinite classes of constant composition codes using various

partitioning ideas in finite projective spaces. By carefully analyzing the manner

in which two such partitions could intersect, we were able to bound the mini-

mum distances of our codes. In some cases, our codes compare favorably to a

class of codes constructed using the structure of finite fields.

Naturally, it would be nice to be able to apply the well-known Plotkin bound

to our codes. Recall that the Plotkin bound states that a k-ary code of length n

and minimum distance d has at most d
d−n+n/k codewords, provided that the

denominator is positive. As mentioned in the introduction, our codes yield

compositions where each component has a common size. Hence, n/k is an

integer and the denominator in the Plotkin bound is integral. Therefore, the

Plotkin bound says that, for fixed n and k, the size of the code is bounded by

a number which is at most d. By relaxing the condition that d − n + n/k is

positive, we are able to find many more codewords. In all of our codes, the

minimum distances are asymptotically the same (in q) as the minimum distance

required to apply the Plotkin bound. Table 1 provides a summary of our codes.

The last column gives the required value of d needed to apply the Plotkin bound

to a code with the same n and k as our code. This provides an estimate on the

maximum size of a code with the same n and k as our code, but with a minimum

distance satisfying d > n − λ. It seems reasonable to give up the slightly larger

minimum distance in order to generate such a large number of codewords.
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Table 1: Summary of CCCs

Description Composition Min. Dist. Size Plotkin

Spreads of PG(3, q) (q + 1)q2+1 ≥ q3 − q2 ≈ 1
2 q14 q3 + q2

Spreads of PG(2n − 1, q)
(

qn
−1

q−1

)qn+1

≥ q2n−1 − qn+k−1 ≈ 1
n q4n2

−n ≈ q2n−1

Baer partitions of PG(2, q2) (q2 + q + 1)q2
−q+1 ≥ q(q − 1)(q2 − 1) ≈ 1

3 q14 q4 − q

∗Baer partitions of PG(2, q2) (q2 + q + 1)q2
−q+1 ≥ q(q − 1)(q2 − 1) ≈ 1

3 q18 q4 − q

Baer partitions of PG(n, q2)
(

qn+1
−1

q−1

)
“

qn+1+1

q+1

”

≥ (qn+1
−qk)(qn

−1)
q+1 ≈ 1

n q2n2+3n ≈ q2n+2

∗Baer partitions of PG(n, q2)
(

qn+1
−1

q−1

)
“

qn+1+1

q+1

”

≥ (qn+1
−qk)(qn

−1)
q+1 ≈ 1

n q2n2+5n ≈ q2n+2

Ovoidal fibration (q2 + 1)q+1 ≥ q3 − 2q2 − q ≈ 1
2 q11 q3 + q

Linear flocks (1) (q + 1)q ≥ (q − 1)2 ≈ 1
2 q6 q2 − 1

Linear flocks (2) (q + 1)q ≥ q(q − 1) ≈ q4 q2 − 1

Hyperbolic quadric (q + 1)q+1 q2 − q ≈ 1
2 q7 q2 + q

Unitals (q + 1)(q
2
−q+1) q3 − q2 ≈ q6 q3 − q

∗Unitals (q + 1)(q
2
−q+1) q3 − q2 ≈ q10 q3 − q

∗ The conditions of Corollary 1.4 are assumed to be met.


