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Abstract

Let Π be a projective plane of order n and let G be a collineation group

of Π with a point-orbit O of length v. We investigate the triple (Π,O, G)

when O has the structure of a non trivial 2-(v, k, 1) design, G induces a flag-

transitive and almost simple automorphism group on O and n ≤
P

(O) =

b + v + r + k.
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1 Introduction and statement of the result

A classical subject in finite geometry is the investigation of a finite projective

plane Π of order n admitting a collineation group G which acts doubly transi-

tively (flag-transitively) on a point-subset O of size v of Π. It dates back to 1967

and it is due to Cofman [9]. It is easily seen that either

(i) the structure of a non-trivial 2-(v, k, 1) design (i.e. k ≥ 3 and at least two

distinct blocks) is induced on O, or

(ii) O is an arc, or

(iii) O is a contained in a line.

The current paper entirely focuses on the situation in which O is a non-trivial

2-(v, k, 1) design. Several papers deal with the case n ≤ v. Conclusive results

where obtained by Lüneburg [35], in 1966, when O is a Ree unital, and later on

by Kantor [28], by Biliotti and Korchmáros [5, 6], when O is a Hermitian unital.

Characterization results were also provided by Ostrom-Wagner [43] in 1959 and

by Lüneburg [37] in 1976 when O is a projective subplane of Π.
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A fundamental contribution to the problem is the classification of the 2-tran-

sitive non-trivial 2-(v, k, 1) designs due to Kantor [30] in 1985, and some years

later, the classification of the flag-transitive non-trivial 2-(v, k, 1) designs due to

Buekenhout, Delandtsheer, Doyen, Kleidman, Liebeck and Saxl [2, 3, 34, 47].

Recently, Biliotti and Francot [4] investigated the general case when n ≤ v and

G acts doubly transitively on O, determining all possible collineation groups.

The problem of classifying the triple (Π,O, G) in the case where O is a non-

trivial 2-(v, k, 1) design for n > v, but v close to n, has also been investigated.

Indeed, Dempwolff [11] in 1985 dealt with the case O ∼= PG(2, q) and n = q3.

Such a case has been recently generalized by Montinaro [39] to n ≤ q3. More-

over, the author [40] shows that O cannot be a Ree unital of order q when

n ≤ q4, generalizing the result of Lüneburg [37]. Finally, in 2005, Biliotti and

Montinaro [8] showed that no solutions to the above problem involving non-

trivial 2-(v, k, 1) designs arise for n = v + 3.

In this paper we investigate the triples (O,Π, G) under the assumption that

O is a non-trivial 2-(v, k, 1) design, G is a collineation group of Π inducing an

almost simple and flag-transitive automorphism group on O and n ≤ ∑

(O),

where
∑

(O) = b+ v + r + k. Clearly b denotes the number of blocks of O and

r the number of blocks of O incident with any given point of O. In particular,

our result is contained in Theorem 1.1.

Let D be any set of points in Π. A line l of Π is called an external line,

or a tangent or a secant to D, according to |D ∩ l| = 0, 1 or k, with k > 1,

respectively. We may regard D as an incidence structure, where the blocks are

the secants of D. Any incidence structure represented in this way is said to be

embedded in Π. In particular, any orbit O of a collineation group G of Π may be

regarded as an embedded structure. A flag is an incident point-line pair of Π,

so O is said to be flag-transitive, if G is transitive on the flags of O. Finally a

flag-transitive orbit is said to be almost simple, if the group induced by G on O
is almost simple (i.e. G has a non-abelian simple normal subgroup L such that

L E G E Aut(L)).

Theorem 1.1. Let Π be a projective plane of order n and let G be a collineation

group of Π with a point-orbit O of length v. If O has the structure of a non-

trivial 2-(v, k, 1) design, the group G induces a flag-transitive and almost simple

automorphism group on O and n ≤ ∑

(O), then one of the following holds.

(1) G acts faithfully on O and one of the following occurs:

(a) v = n2 + n+ 1, O = Π ∼= PG(2, n) and PSL(3, n) ≤ G;

(b) v = n +
√
n + 1, O ∼= PG(2,

√
n), Π is a Desarguesian plane or a gener-

alized Hughes plane, and PSL(3,
√
n) ≤ G;
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(c) v = 7, O ∼= PG(2, 2), Π ∼= PG(2, 8) and PSL(3, 2) ≤ G;

(d) v = 7, O ∼= PG(2, 2), Π ∼= PG(2, 16) and PSL(3, 2) ≤ G;

(e) v = 13, n = 33, O ∼= PG(2, 3) and PSL(3, 3) ≤ G;

(f) v =
√
n3 + 1, O ∼= H(

√
n), Π ∼= PG(2, n) and PSU(3,

√
n) ≤ G;

(g) v =
4
√
n3 +1, O ∼= H( 4

√
n) is contained in a plane Π0

∼= PG(2,
√
n) which

is left invariant by G, and PSU(3, 4
√
n) ≤ G;

(h) v = n
2 (n−1), n = 2r, O ∼= W(n), Π ∼= PG(2, n) and PSL(2, n) ≤ G. Here

W(n) denotes the Witt space associated with PSL(2, n). Furthermore, the

projective extension of O is embedded in Π and the set C of external lines

to O is a line-hyperoval extending a line-conic of Π;

(i) v =
√

n
2 (

√
n− 1), n = 22r, O ∼= W(

√
n) and PSL(2,

√
n) ≤ G;

(j) v =
√

n−1
2

√
n, n = (2r + 1)2, O ∼= W(

√
n− 1) and PSL(2,

√
n− 1) ≤ G.

(2) G does not act faithfully on O and one of the following occurs:

(a) v = 75, O ∼= PG(2, 7), Π is the generalized Hughes plane over the excep-

tional nearfield of order 72 and SL(3, 7) ≤ G;

(b) v =
4
√
n3 + 1,

4
√
n3 ≡ 2 mod 3, O ∼= H( 4

√
n) is contained in a Desargue-

sian Baer subplane and SU(3, 4
√
n) ≤ G.

Furthermore, in each case, except in (1j) and possibly in (1i), the involutions in

G are perspectivities of Π.

Cases (1a)–(1d), (1f), (1h) and (2a) really occur. Case (1e) occurs in the

Desarguesian plane and in the Hering-Figueroa plane of order 33 (see [14] and

[19]). Furthermore, case (1g) occurs in the Desarguesian or Hughes planes,

and case (1i) occurs in the Desarguesian plane. Finally, cases (1j) and (2b) are

open. Some restrictions about the possible existence of an example for case (1j)

are provided in Corollary 3.10.

2 Preliminaries and background

We shall use standard notation. For what concerns finite groups the reader is

referred to [15] and [25]. The necessary background about finite projective

planes and 2-(v, k, 1) designs may be found in [24] and in [49], respectively.

Let Π = (P,L) be a finite projective plane of order n. If H is a collineation

group of Π and P ∈ P (l ∈ L), we denote by H(P ) (by H(l)) the subgroup of H

consisting of perspectivities with center P (axis l). Also, H(P, l) = H(P )∩H(l).

Furthermore, we denote by H(P, P ) (by H(l, l)) the subgroup of H consisting
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of elations with center P (axis l). A collineation group H of Π is said to be

irreducible on Π, ifH does not fix any point, line, or triangle of Π. An irreducible

collineation group H is said to be strongly irreducible on Π, if H does not fix any

proper subplane of Π.

Let X be a collineation group of Π and recall that Fix(X) denotes the subset

of Π consisting of the points and of the lines of Π which are fixed by X. If X

is planar, i.e. Fix(X) is a subplane of Π, we denote by o(Fix(X)) the order of

plane Fix(X).

Let N be a H-orbit of points in Π on which the structure of a non-trivial

2-(v, k, 1) design can be induced. Suppose that N admits a parallelism, that is

the blocks of N are partitioned into parallel classes such that each class is a

partition of the points of N . If for each pencil Φ of parallel blocks, the blocks

of Φ pass through a common point PΦ of Π, and all PΦ’s lie in the same line lN
of Π, then, following [13] we say that the projective extension of N is embedded

in Π.

Before starting our investigation we recall some combinatorial and group-

theoretical results which are useful hereafter. The following theorem deals with

the general structure of G.

Theorem 2.1 (Buekenhout et al. [2]). Suppose that G is a flag-transitive group

of automorphisms of a non-trivial design D. Then either

(I) G is almost simple: that is, G has a non-abelian simple normal subgroup N

such that N E G E Aut(N), or

(II) G is of affine type: that is, the set of points of D carries the structure of an

affine space AG(t, p) which is invariant under G, and G contains the whole

translation group T of AG(t, p), (so T E G ≤ AGL(t, p)).

The non-trivial 2-(v, k, 1) designs D admitting a flag-transitive automorphism

group G are classified in [47] when G is of type (I) and in [34] when G is of

type (II), respectively. In our analysis we focus entirely on case (I) and we have:

Theorem 2.2 (Saxl [47]). Let D be a design and suppose that G is a flag-transitive

almost simple group of automorphisms of D. Then one of the following occurs:

(i) D ∼= PG(d, q), d ≥ 2, and either PSL(d + 1) ≤ G ≤ PΓL(d + 1, q) or

(d, q) = (3, 2) and G ∼= A7;

(ii) D ∼= H(q) is a Hermitian unital and PSU(3, q2) ≤ G ≤ PΓU(3, q);

(iii) D ∼= R(q), q = 3h, h odd, h ≥ 1, is a Ree unital associated to 2G2 (q) ≤ G ≤
2G2 (q) .Zh;

(iv) D ∼= W(q), q = 2h ≥ 8, is a Witt space associated to PSL(2, q) ≤ G ≤
PΓL(2, q).
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We shall make extensive use the following definition and lemma, which are

independent of the context of non-trivial 2-(v, k, 1) designs embedded in projec-

tive planes.

Definition 2.3. Let D be a non-trivial 2-(v, k, 1) design. Then

∑

(D) = b+ v + r + k,

where r = v−1
k−1 is the number of blocks which are incident with any given point

of D and b = v(v−1)
k(k−1) is the total number of blocks of D.

Lemma 2.4. The following relations hold:

(1)
∑

(

PG(d, q)
)

=
q2d+1 + qd+3 + qd+2 − 2qd+1 − 2qd + q4 − 4q2 + 4

(q2 − 1) (q − 1)
;

(2)
∑

(

H(q)
)

= q4 + 2q2 + q + 2 ;

(3)
∑

(

R(q)
)

= q4 + 2q2 + q + 2, where q = 3h and h is odd, h ≥ 1 ;

(4)
∑

(

W(q)
)

=
q

2
(3q + 2), where q = 2h ≥ 8 .

Proof. Omitted. �

The following theorem, which relies on the results of Ostrom-Wagner [43],

Lüneburg [37] and Dempwolff [11], deals with the case O ∼= PG(2, q) and

n ≤ q3.

Theorem 2.5 ([39]). Let Π be a finite projective plane of order n and let G be a

collineation group of Π inducing a group containing PSL(3, q) on a subplane Π0

of order q. If n ≤ q3, then one of the following occurs:

(1) Π0
∼= PG(2, q), PSL(3, q) ≤ G and one of the following occurs:

(a) n = q, and Π = Π0;

(b) n = q2, Π is a Desarguesian plane or a generalized Hughes plane and Π0

is a Baer subplane of Π;

(c) n = q3.

(2) Π0
∼= PG(2, 7), Π is the generalized Hughes plane over the exceptional nearfield

of order 72 and SL(3, 7) ≤ G.

Based on a similar idea, the following theorem generalizes a result of Lüneburg

[35].
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Theorem 2.6 ([40]). If R(q), q = 3h, is embedded in a finite projective plane

Π of order n, with n ≤ q4, in such a way that 2G2 (q) is induced on R(q) by a

collineation group G of Π. Then h = 1, G acts faithfully on R(3) as PΓL(2, 8) and

one of the following occurs:

(1) Π ∼= PG(2, 8), G leaves a line oval C of Π invariant and O consists of the

external points of C;

(2) n = 26.

We conclude the preliminaries with the following numerical lemma that will

be useful in dealing with the case when O is an Hermitian unital of order 22h,

h > 1.

Lemma 2.7. Let f , h, t and λ1 be positive integers. Then the Diophantine equation

f
22h − 1

3
= 1 + 2tλ1(2

h+1 + 2tλ1) (1)

has no solutions for h > 1, t = ⌊(h+ 1)/2⌋ and λ1 ≤ 2h−t .

Proof. Set a = f/3. Then (1) becomes

a(22h − 1) = 1 + 2tλ1(2
h+1 + 2tλ1) . (2)

As λ1 ≤ 2h−t, then 1 + 2tλ1(2
h+1 + 2tλ1) ≤ 1 + 22h3. Then a ≤ 4 by (2).

Assume that (f, 3) = 3. Then a is an integer. Since the second part of (2) is

odd and since a ≤ 4, then either a = 1 or 3. Assume that a = 1. Then 22h =

2+2tλ1(2
h+1 +2tλ1) by (2). A contradiction, since 22 ∤ 2+2tλ1(2

h+1 +2tλ1) as

t ≥ 1 while h > 1. So a = 3. Then 22h3 = 4 + 2tλ1(2
h+1 + 2tλ1) again by (2). If

t ≥ 2, then 23 ∤ 4 + 2tλ1(2
h+1 + 2tλ1). This forces h = 1. A contradiction by our

assumption. Thus t = 1 and hence h = 2 and λ1 = 1, 2, since t = ⌊(h+ 1)/2⌋
and 1 ≤ λ1 ≤ 2h−t. So, substituting t = 1, h = 2 and λ1 = 1, 2 in (2), we obtain

a contradiction since a must be a positive integer as (f, 3) = 3.

Assume that (f, 3) = 1. Then f ≤ 12 as a = f/3 and a ≤ 4. Furthermore

f is odd, since 1 + 2tλ1(2
h+1 + 2tλ1) in (1) is so. All these informations yield

f ∈ {1, 5, 7, 11}. Now, by managing (1), we obtain

22hf = (3 + f) + 2t3λ1(2
h+1 + 2tλ1) . (3)

If f ∈ {7, 11}, then 22 ∤ 2 + 2tλ1(2
h+1 + 2tλ1) as t ≥ 1. A contradiction, since

h > 1. Hence f ∈ {1, 5}. If f = 1, then (3) becomes 22h = 4+2tλ1(2
h+1+2tλ1).

If t ≥ 2, then 23 ∤ 4 + 2tλ1(2
h+1 + 2tλ1). A contradiction, since h > 1 by our

assumptions. So t = 1 and hence h = 2 and λ1 = 1, 2 as h > 1, t = ⌊(h+ 1)/2⌋
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and 1 ≤ λ1 ≤ 2h−t by our assumptions. Now, substituting these values in (3),

we obtain a contradiction since f = 1. Thus f = 5. Then (3) becomes 22h5 =

23 + 2t3λ1(2
h+1 + 2tλ1). If t ≥ 2, then 24 ∤ 4 + 2tλ1(2

h+1 + 2tλ1). This yields

that 24 ∤ 22h5 as 22h5 = 23 + 2t3λ1(2
h+1 + 2tλ1). A contradiction. So t = 1,

h = 2 and λ1 = 1, 2, as t = ⌊(h+ 1)/2⌋ and 1 ≤ λ1 ≤ 2h−t. By substituting

these values in (3), we obtain again a contradiction as f = 5. This completes

the proof. �

Now, let Π be a finite projective plane of order n and let G be a collineation

group of Π with a flag-transitive and almost simple point-orbit O. Let N be

the kernel of the action of G on O. As a consequence of the our assumptions,

the pair (O, G/N) is listed in Theorem 2.2. So, in order to classify the triples

(Π,O, G) when n ≤ ∑

(O), we treat the cases N = 〈1〉 and N 6= 〈1〉 separately.

3 The faithful action

Throughout this section we assume that N = 〈1〉. Hence G acts faithfully on O.

Lemma 3.1. Let Π be a projective plane of order n and let G be a collineation

group of Π with a point-orbit O ∼= PG(d, q), on which G acts faithfully and induces

a flag-transitive almost simple automorphism group. If n ≤ ∑

(O) then (d, q) 6=
(3, 2).

Proof. Assume O ∼= PG(3, 2). Then either G ∼= A7 or PSL(4, 2) ≤ G by Theo-

rem 2.2(i). As A7 < PSL(4, 2), we may assume G ∼= A7.

Note that n ≤ 60 as
∑

(PG(3, 2)) = 60 by Lemma 2.4(1). On the other hand,

n > 15 by [4]. Therefore 16 ≤ n ≤ 60. Let P ∈ O. Then GP
∼= PSL(2, 7) by

[1]. Now, let σ be an arbitrary involution in GP . Then σ fixes exactly 3 of the 5

secants to O through P (see [42]). Thus σ is a Baer involution of Π and hence

n is a square, namely n = 16, 25 or 49.

Assume n = 16. Since GP is transitive on O−{P} and since |O − {P}| = 14,

we have a contradiction by [12, 4.6(a), (b), 4.8(i)].

Assume n = 25. Let ϕ be any element of order 7 in GP . Then ϕ fixes at

least 5 lines of [P ] and 2 lines of Π − [P ], as n + 1 ≡ 5 mod 7 and n2 ≡ 2

mod 7. Thus ϕ is planar with o(Fix(ϕ)) = 4 + 7θ, where θ ≥ 0. Actually,

θ = 0 by [24, Theorem 3.7], since n = 25. Hence o(Fix(ϕ)) = 4. Note that

NGP
(〈ϕ〉) = 〈ϕ,ψ〉 where o(ψ) = 3. Also NGP

(〈ϕ〉) is the unique maximal

subgroup of GP
∼= PSL(2, 7) containing ϕ. Hence for each line u ∈ Fix(ϕ)∩ [P ],

either GP,u = 〈ϕ〉 or GP,u = 〈ϕ,ψ〉 or GP,u = GP . Assume that GP,m =

〈ϕ〉 for some line m ∈ Fix(ϕ) ∩ [P ]. Then
∣

∣mGP

∣

∣ = 24. Furthermore, we
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have
∣

∣sGP

∣

∣ = 7 for any line s ∈ [P ] ∩ O. Hence
∣

∣mGP

∣

∣ +
∣

∣sGP

∣

∣ ≥ 31. On

the other hand,
∣

∣mGP

∣

∣ +
∣

∣sGP

∣

∣ ≤ 26 as n + 1 = 26, mGP ∪ sGP ⊆ [P ] and

mGP ∩ sGP = ∅. A contradiction. Thus either GP,u = 〈ϕ,ψ〉 or GP,u = GP for

each line u ∈ Fix(ϕ) ∩ [P ]. Thus Fix(ϕ) ∩ [P ] = Fix(〈ϕ,ψ〉) ∩ [P ] and hence

|Fix(〈ϕ,ψ〉) ∩ [P ]| = 5. Assume that |Fix(〈ϕ,ψ〉) ∩ [P ] − Fix(GP ) ∩ [P ]| ≥ 3.

Let ui, i = 1, 2, 3, be some of the lines of [P ] fixed by the group 〈ϕ,ψ〉 but

not by the group GP . Then
∣

∣

∣
uGP

i

∣

∣

∣
= 8 for each i = 1, 2, 3. Furthermore, as

〈ϕ,ψ〉 is maximal in GP , the line ui is the unique line in uGP

i which is fixed

by 〈ϕ,ψ〉 for each i = 1, 2, 3. Thus uGP

h ∩ uGP

j = ∅ for each h, j = 1, 2, 3

with h 6= j. Then there are at least three GP -orbits on [P ] each of length

8. So these GP -orbits involve 24 of the lines of [P ]. Then n + 1 ≥ 24 + 7,

since
∣

∣sGP

∣

∣ = 7 for any s ∈ [P ] ∩ O. A contradiction, since n = 25. Thus

|Fix(〈ϕ,ψ〉) ∩ [P ] − Fix(GP ) ∩ [P ]| ≤ 2 and hence |Fix(GP ) ∩ [P ]| ≥ 3. Now,

we may repeat the above argument with l in the role of [P ] for each line l ∈
Fix(GP ) ∩ [P ]. This yields |Fix(GP ) ∩ l| ≥ 3 for each line l ∈ Fix(GP ) ∩ [P ].

Then GP is planar and Fix(GP ) is a proper subplane of Fix(σ) since ϕ and σ

fix exactly 0 and 3 lines in [P ] ∩ O, respectively. That contradicts [24, Theorem

3.7] since Fix(σ) has order 5.

Finally, assume that n = 49. Then GP
∼= PSL(2, 7) contains a unique conju-

gate class of involutions which are homologies of Π by [22]. A contradiction,

since σ ∈ GP and σ is a Baer involution of Π. �

Lemma 3.2. Under the same assumptions as in Lemma 3.1, we have d = 2.

Proof. Assume d ≥ 3. Then PSL(d + 1, q) ≤ G by Theorem 2.2(i) and by

Lemma 3.1, since G is faithful, flag-transitive and almost simple on O. Since

all the assumptions are satisfied by the subgroup of G which is isomorphic to

PSL(d + 1, q), we may assume G ∼= PSL(d + 1, q). Let T be a subgroup of G

consisting of the projective transvections of PSL(d+1, q) fixing the same hyper-

plane of O pointwise, as d ≥ 3. That is Fix(T ) ∩ O ∼= PG(d − 1, q). Hence T is

planar. Set FixO(T ) = Fix(T ) ∩ O. Clearly, FixO(T ) ⊆ Ψ ⊆ Fix(T ). Assume

d > 3. Then FixO(T ) ⊂ Ψ, since FixO(T ) ∼= PG(d − 1, q). Let W be any given

point of FixO(T ). Then there are exactly qd−1−1
q−1 lines of FixO(T ) ∼= PG(d−1, q)

through W by [49, Theorem 1.4.10]. Thus, there are at least qd−1−1
q−1 + 1 lines

of Ψ through W , since FixO(T ) ⊂ Ψ. Therefore, o(Ψ) ≥ qd−1−1
q−1 . If Ψ = Fix(T ),

let us consider the subgroup J of NG(T ) such that J ∼= PSL(d, q). Then J acts

doubly transitively on FixO(T ) ∼= PG(d − 1, q) and acts faithfully on Fix(T ). If

o(Fix(T )) ≤ qd−1
q−1 , we obtain a contradiction by [4, Theorem 3.13 and Propo-

sition 3.14]. Hence, we may assume that o(Fix(T )) > qd−1
q−1 in this case. If
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Ψ is a proper subplane of Fix(T ), then o(Fix(T )) ≥
(

qd−1−1
q−1

)2

by [24, The-

orem 3.7]. In particular, this implies o(Fix(T )) ≥ qd−1
q−1 as d > 3. Therefore,

o(Fix(T )) ≥ qd−1
q−1 in any case, and

(

qd − 1

q − 1

)2

≤ n ≤ ∑

(O) (4)

by [24, Theorem 3.7]. Hence

(qd − 1)2

(q − 1)2
≤ n ≤ q2d+1 + qd+3 + qd+2 − 2qd+1 − 2qd + q4 − 4q2 + 4

(q2 − 1) (q − 1)
(5)

by Lemma 2.4(1). Multiplying each term of (5) by (q2 − 1)(q − 1) we obtain

q2d − qd+3 − qd+2 − q4 + 4q2 + q − 3 ≤ 0 . (6)

That is

qd+2
[

q(qd−3 − 1) − 1
]

+ (4q2 + q − 3) − q4 ≤ 0 , (7)

which is impossible as d > 3. Now, we rule out the case d = 3 in five steps.

(I) q is odd.

Assume that q is even. Then τ is a Baer involution of Π. Note that Fix(τ) ∩
O ∼= PG(2, q) as d = 3. Let us consider the subgroup R of CG(τ) such that R ∼=
PSL(3, q). Then R acts on Fix(τ). Moreover, R acts in its natural 2-transitive

permutation representation on Fix(τ)∩O ∼= PG(2, q). Lemma 2.4(1) with d = 3

yields
∑

(O) = q4 + 2q3 + 4q2 + 4q + 4, and then, by using (4), that q4 < n <

(q + 2)4. This yields
√
n < q3 for q > 2. Furthermore,

√
n < q3 for q = 2 by

a direct substitution in (4). Hence, we may apply Theorem 2.5, with Fix(τ) in

the role of Π, to assert that either
√
n = q or

√
n = q2. A contradiction in any

case as n > q4. Thus q is odd.

(II) If G fixes a point of Π, then the involution σ in G represented by the matrix

diag(−I2, I2) is a Baer collineation of Π.

Assume that G fixes a point Q on Π. Clearly Q ∈ Π−O. Then G acts on [Q].

Note that each line through Q intersecting O is a tangent to O, as G is primitive

on O. As q is odd by (I), let σ be the involution in G represented by the matrix

diag(−I2, I2). Then σ fixes pointwise two skew lines on O and hence σ fixes

exactly 2(q + 1) tangents to O through Q. Therefore, σ is a Baer collineation

of Π, since there are exactly q4−1
q−1 tangents to O through Q.
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(III) If G fixes a line of Π, then it fixes a point on this line.

Assume that G fixes a line l of Π. Clearly l is external to O. We assume that

G does not fix points on l and this leads to a contradiction, as we are going to

see.

Assume that distinct lines of O intersect l in distinct points. Then there exists

X ∈ l such that
∣

∣XG
∣

∣ = b, as G is transitive on the lines of O. If l = XG,

then the commuting involutions σ and σ′ = diag(1,−1, 1,−1) are homologies

of Π, since they fix exactly two points on l. Indeed, the actions of σ and σ′ on

XG and on the lines of PG(3, q) are the same, but they have no common fixed

points on l. A contradiction by [29, Lemma 3.1]. Then there exists Y ∈ l−XG.

Then
∣

∣Y G
∣

∣ > 1 by our assumption. Therefore
∣

∣Y G
∣

∣ ≥ v, where v = q4−1
q−1 is the

minimal primitive permutation representation degree of G ∼= PSL(4, q). Note

that
∣

∣l − (XG ∪ Y G)
∣

∣ ≤ r + k + 1, since
∣

∣Y G
∣

∣ ≥ v,
∣

∣XG
∣

∣ = b and n ≤ ∑

(O).

Now observe that v > r + k + 1 being v = q4−1
q−1 , r = q3−1

q−1 and k = q + 1. Thus,

if l 6= XG ∪ Y G, the group G fixes l − (XG ∪ Y G) pointwise, since any non-

trivial G-orbit has length at least v = q4−1
q−1 . That contradicts our assumptions.

Hence l = XG ∪ Y G. Then either
∣

∣Y G
∣

∣ = v or
∣

∣Y G
∣

∣ > v. Assume the latter

occurs. Then
∣

∣Y G
∣

∣ ≥ qv by [33, Lemma 4.2 and Table II], for |G| > 1012 and

by [31] for |G| ≤ 1012. Therefore qv ≤ v + r + k + 1 as Y G ⊆ l −XG. Again a

contradiction, since v = q4−1
q−1 , r = q3−1

q−1 and k = q + 1. So l = XG ∪ Y G with
∣

∣Y G
∣

∣ = v and
∣

∣XG
∣

∣ = b. Then σ fixes exactly q + 3 points on l. Namely q + 1

points on Y G and 2 points on XG (this follows by the fact that the actions of

σ on Y G and on XG are the same as those on the points and on the lines of

PG(3, q), respectively). So σ is a Baer collineation and hence n = (q + 2)2. A

contradiction, since n = b + v − 1, with v = q4−1
q−1 and b = (q2 + 1)(q2 + q + 1)

as O ∼= PG(3, q).

Hence there are two distinct secants to O, say s1 and s2, concurring at a

point P . Then Gs1
, Gs2

≤ GP , as G fixes l. Therefore 〈Gs1
, Gs2

〉 ≤ GP . Then

G = GP , since Gs1
and Gs2

are two distinct maximal parabolic subgroups of G

(see [32] and [31]). That contradicts our assumptions. This completes the

proof of (III).

(IV) The group G contains involutory perspectivities.

Let σ be the involution in G represented by the matrix diag(−I2, I2). Assume

that σ is a Baer collineation of Π. Now, consider the subgroup H of CG(σ)

consisting of the matrices diag(A, I2), where A ∈ PSL(2, q). ThenH ∼= PSL(2, q)

and H acts on Fix(σ). In particular there exists a secant u to O such that σ and

H fix the q + 1 points of u ∩ O.



Flag-transitive and almost simple orbits in finite projective planes 11

If H contains Baer collineations of Fix(σ), then n must be a fourth power.

Note that, by the first inequality of (5), we have n > q4. Then 4
√
n > q and

hence 4
√
n ≥ q+1, since 4

√
n is an integer. Thus n ≥ (q+1)4. On the other hand,

n ≤ ∑

(O) = q4 + 2q3 + 4q2 + 4q + 4. So (q + 1)4 ≤ q4 + 2q3 + 4q2 + 4q + 4.

A contradiction. Thus each involution in H is a perspectivity of Fix(σ), since H

contains a unique conjugate class of involutions. In particular each involution

in H has axis u∩Fix(σ), since σ and H fix the q+1 points of u∩O by the above

argument. Thus H = H(u ∩ Fix(σ)), since H is generated by its involutions.

Assume q > 3. Then H = H(C, u ∩ Fix(σ)) for some point C ∈ Fix(σ)

by [24, Theorems 4.14 and 4.25], since H is non-abelian simple. Then either

|H| | √
n or |H| | √

n − 1 according to whether C does or does not lie on

u ∩ Fix(σ) respectively. This yields
√
n ≥ q(q2 − 1)/(q − 1, 2) in any case as

|H| = q(q2 − 1)/(q − 1, 2). Thus

[

q(q2 − 1)

(q − 1, 2)

]2

≤ q4 + 2q3 + 4q2 + 4q + 4 (8)

as n ≤ q4 + 2q3 + 4q2 + 4q + 4. Inequality (8) yields q ≤ 3, contrary to our

assumption.

Assume q ≤ 3. Actually q = 3 by Lemma 3.1 as d = 3. Then
∑

(O) = 187 and

hence n ≤ 132 as n is a square and n ≤ ∑

(O). On the other hand n > 34 by the

first inequality of (5), as q = 3. Thus
√
n = 10, 11, 12 or 13, since n is a square.

The case
√
n = 10 cannot occur by [24, Theorem 13.18]. Finally, if

√
n = 12,

then H ∼= A4. A contradiction by [27]. Hence either
√
n = 11 or

√
n = 13. Now,

consider the group R = H × L where H is defined as above (for q = 3) and L

consists of the matrices diag(I2, B), where B ∈ PSL(2, 3). Then R ∼= A4 × A4

and R ≤ CG(σ). In particular R acts faithfully on Fix(σ). As
√
n = 11 or

13, then R contains a subgroup R0 of homologies of Fix(σ) isomorphic to E16.

Then R0(D, a) for some point D ∈ Fix(σ) and some line a ∈ Fix(σ) by [29,

Lemma 3.1]. Thus 16 | (
√
n − 1). A contradiction, since

√
n = 11 or 13. Thus

the assertion (III).

(V) The final contradiction.

By (IV) the group G contains involutory perspectivities of Π. In particular

the proof of (IV) implies that the involution σ in G represented by the matrix

diag(−I2, I2) is a perspectivity of Π. This yields that G does not fix points or

lines by (II) and (III) respectively. This yields in turn that G does not fix tri-

angles, since G is simple. Therefore the group G ∼= PSL(4, q) is an irreducible

collineation group of Π containing involutory perspectivities. A contradiction

by [48].

Thus d = 2 and hence the assertion. �
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Lemma 3.3. Let Π be a projective plane of order n and let G be a collineation

group of Π with a point-orbit O ∼= PG(d, q), on which the group G acts faithfully

and induces a flag-transitive almost simple automorphism group. If n ≤ ∑

(O)

then d = 2 one of the following occurs:

(1) n = q, Π = O ∼= PG(2, q) and PSL(3, q) ≤ G;

(2) n = q2, Π is either a Desarguesian plane or a generalized Hughes plane,

O ∼= PG(2, q) is a Baer subplane of Π and PSL(3, q) ≤ G;

(3) n = 8, q = 2, Π ∼= PG(2, 8), O ∼= PG(2, 2) and PSL(3, 2) ≤ G;

(4) n = 16, q = 2, Π ∼= PG(2, 16), O ∼= PG(2, 2) and PSL(3, 2) ≤ G;

(5) n = 27, q = 3, O ∼= PG(2, 3) and PSL(3, 3) ≤ G.

Proof. Clearly O ∼= PG(2, q) by Lemma 3.2. Then n ≤ ∑

(O) = 2q2 + 4q + 4

by Lemma 2.4(1). If q > 3 then we have 2q2 + 4q + 4 ≤ q3. Hence if q > 3

or if q ∈ {2, 3}, n ≤ q3 we may apply Theorem 2.5 and obtain assertions (1),

(2), (3) and (5) of our statement. We assume now q = 2 or 3; the inequalities

q3 < n ≤ 2q2 + 4q + 4 yield 9 ≤ n ≤ 20 or 28 ≤ n ≤ 34, respectively.

Assume q = 2, 9 ≤ n ≤ 20. If the involutions in G are Baer collineations

of Π, then n = 16 by [22]. Since PSL(3, 2) ∼= PSL(2, 7) it follows from [12,

4.6(a), (b), 4.8(i)] that this cannot be the case. Hence the involutions in G

are elations of Π, since they induce elations on O ∼= PG(2, 2). Therefore n is

even. Then n = 10, 12, 14, 16, 18, 20. The cases n = 10, 14 or 18 are ruled out

by [24, Theorem 13.18]. The case n = 12 is ruled out by [27]. Hence either

n = 16 or n = 20. Assume the latter occurs. Let E be the set of points of Π

which do not lie on any secant to O. Then |E| = 288. Furthermore, G leaves E
invariant. In particular the stabilizer in G of any point of E has odd order, since

each involution has center in O and axis a secant to O. So, for any point P ∈ E
the group GP is isomorphic either to Z7 or to Z3 or to Z7.Z3, as G ∼= PSL(2, 7).

Thus the corresponding PG, which clearly lies in E , has length 24, 56 or 8,

respectively. Thus 288 = |E| = x124 + x256 + x38. Now, let 〈γ〉 be a subgroup of

G of order 7. As n = 20, then either 〈γ〉 fixes exactly 1 point on Π or a subplane

of Π of order at least 6. Actually the latter cannot occur by [24, Theorem 3.7].

Hence γ fixes exactly one point of Π. Let Q be such a point. Clearly Q ∈ E , since

|E| = 288 and o(γ) = 7. On the other hand, by [41, Relation (9)], the group

〈γ〉 fixes 3, 0 or 1 points on PG according to whether PG has length 24, 56 or

8, respectively. This in conjunction with the fact that 〈γ〉 fixes exactly one point

in E yields (x1,x2, x3) = (0, 5, 1) in the above Diophantine equation. Let 〈ρ〉 be

a subgroup of G of order 3. Then 〈ρ〉 fixes exactly 2 points in each G-orbit of

length 56 or 8 by [41, Relation (9)]. Thus 〈ρ〉 fixes exactly 12 points on E , as

x2 = 5 and x3 = 1. This yields that 〈ρ〉 fixes exactly a subplane of Π of order at
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least 3, since n ≡ 2 mod 3. We have o(Fix(〈ρ〉)) ∈ {3, 4} by [24, Theorem 3.7].

Moreover, as any involution in G normalizing 〈ρ〉 is an elation of Π, the group G

must induce an elation on Fix(〈ρ〉). Thus the case o(Fix(〈ρ〉)) = 3 is ruled out.

Hence o(Fix(〈ρ〉)) = 4. Now, let l be any line of Fix(〈ρ〉). Then 3 | (n − 4), as

〈ρ〉 must be semiregular on l − Fix(〈ρ〉). A contradiction, since n = 20. Hence

n = 16 and part 4. of our statement follows from [12].

Assume q = 3, 28 ≤ n ≤ 34. Thus n cannot be a square. Then the involu-

tions in G are homologies of Π, since they induce homologies of O ∼= PG(2, 3).

Therefore n is odd and hence n = 29, 31 or 33. Actually the case n = 33 cannot

occur by [24, Theorem 3.6]. Let F be the set of points of Π which do not lie

on any secant to O. Then |F| = (n − 3)(n − 9). Furthermore, G leaves F in-

variant. In particular the stabilizer in G of any point of F has odd order, since

each involution in G has center in O and axis a secant to O. Thus each G-orbit

in F must have length divisible by 16 as 16 | |G|. Therefore 16 | |E|. That is

16 | (n − 3)(n − 9). A contradiction since n = 29 or 31. This completes the

proof. �

Lemma 3.4. Let Π be a finite projective plane of order n and let G ∼= PSU(3, q)

be a collineation group of Π with a point-orbit O ∼= H(q), q > 2. If n ≤ ∑

(O),

then G contains involutory perspectivities of Π.

Proof. Let σ be an involution in G and suppose that it is a Baer collineation of

Π.

Assume that q is odd. Then σ fixes exactly q+1 points of O lying on a secant l.

Furthermore, σ fixes a set Sσ of q2 − q secants and Sσ ∪ {l} is a partition of the

points of O (see [23]). The group C = CG (σ) induces a transitive permutation

group C̄ ∼= PGL(2, q) on Sσ, and C̄r
∼= Zq+1 for any r ∈ Sσ. Assume there exist

two distinct lines r and s of Sσ that intersect Fix(σ)∩(l−O) in one and the same

point X. Then all the lines of Sσ pass through X, since
〈

C̄r, C̄s

〉 ∼= PGL(2, q).

Thus o(Fix(σ)) ≥ q2 − q, since σ fixes Sσ ∪ {l}.

Suppose that o(Fix(σ)) > q2 − q. Then |E| > 0, where E denotes the set of

external lines to O lying in Fix(σ)∩ [X]. Clearly C acts on E with kernel 〈σ〉. In

particular there exists a subgroup C1 of C such that C̄1 = C1/ 〈σ〉 ∼= PSL(2, q).

Clearly C̄1 acts in its natural 2-transitive permutation representation of degree

q+1 on l∩O. Furthermore, either C̄1 fixes E elementwise or C̄1 has a non-trivial

orbit on E .

Suppose that C̄1 fixes E elementwise. Let ρ̄ be any involution in C̄1. Then ρ̄

fixes either 0 or 2 secants to O through X according to whether q ≡ 1 mod 4

or q ≡ 3 mod 4 respectively, since C̄1 is transitive on Sσ and C̄1,u
∼= Z q+1

2

for

each u ∈ Sσ by [23].
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Assume that q ≡ 1 mod 4. Thus ρ̄ is a Baer collineation on Fix(σ), since

ρ̄ fixes exactly 2 points lying in l ∩ O ⊂ Fix(σ) and at least the point X ∈
Fix(σ)∩ (l−O). Furthermore, ρ̄ does not fix any secants to O through X, other

than l. Thus 4
√
n + 1 = |E| + 1, since ρ̄ fixes E elementwise. Since

√
n + 1 =

|E| + q2 − q + 1, we obtain
√
n = 4

√
n + q2 − q. Thus

√
n = q2. A contradiction

by [41, Theorem 1.2], since E ∪ {l} ⊂ Fix(C̄1) and |E| > 0.

Assume that q ≡ 3 mod 4. Then ρ̄ is a Baer collineation on Fix(σ), since ρ̄

fixes exactly 2 secants to O through X other than l. Thus 4
√
n+1 = |E|+3, since

ρ̄ fixes E elementwise. Since
√
n+ 1 = |E| + q2 − q + 1, we obtain

√
n− 4

√
n =

q2 − q − 2. That is
4
√
n( 4

√
n− 1) = (q + 1)(q − 2) . (9)

Clearly 4
√
n 6= q. Thus, either 4

√
n( 4

√
n − 1) ≥ q(q + 1) or 4

√
n( 4

√
n − 1) ≤

(q − 1)(q − 2) according to whether 4
√
n ≥ q + 1 or 4

√
n ≤ q − 1 respectively. A

contradiction in any case by (9).

Suppose that C̄1 has a non-trivial orbit on E . Since the length of each C̄1-orbit

is the multiple of some non-trivial primitive permutation representation degree

of C̄1, we have that |E| ≥ d0(C̄1), where d0(C̄1) denotes the minimal of such

degrees of C̄1. If q /∈ {3, 5, 7, 9, 11}, then d0(C̄1) = q + 1. Hence σ fixes at least

q2−q+1+(q+1) lines throughX, since
√
n+1 = |E|+q2−q+1. So o(Fix(σ)) ≥

q2 +1. That is
√
n ≥ q2 +1. On the other hand n ≤ q4 +2q2 +q+2 as n ≤ ∑

(O)

and
∑

(O) = q4 +2q2 + q+2 by Lemma 2.4(2). That is n < (q2 +2)2 and hence√
n < q2 + 2. As a consequence

√
n = q2 + 1. As q is odd by our assumptions,

then
√
n ≡ 2 mod 4 and

√
n > 2. A contradiction by [24, Theorem 13.18],

since C̄1
∼= PSL(2, q) acts faithfully on Fix(σ). Thus q ∈ {3, 5, 7, 9, 11}. If q 6= 9,

then o(Fix(σ)) ≥ q2 by the same argument as above, since d0(C̄1) = q. The

previous argument rules out the case o(Fix(σ)) ≥ q2 +1. Hence o(Fix(σ)) = q2.

That contradicts [41, Theorem 1.2], since C̄1 fixes the flag (X, l) and q 6= 9.

Hence q = 9. Then
√
n ≤ 82, since n ≤ ∑

(O) and
∑

(O) = 6734. Note that√
n = 82 cannot occur by the above argument involving [24, Theorem 13.18].

Hence
√
n ≤ 81. On the other hand,

√
n = |E| + 72. Hence |E| < 10. Recall that

E contains a non-trivial C̄1-orbit on E . Then either |E| = 6λ+ µ for some λ ≥ 1

and µ ≥ 0, since the unique primitive permutation degree of PSL(2, 9) less than

10 is 6. Clearly λ = 1 as |E| < 10. Note that µ denotes the number of lines of

E fixed by the whole group C̄1. Moreover, each involution in C̄1 fixes exactly 2

lines in the C̄1-orbit of length 6 lying in E . Also, each involution in C̄1 fixes the

line l. So the involutions in C̄1 are Baer collineations of Fix(σ). Thus
√
n = 81,

since
√
n must be a square and 72 <

√
n ≤ 81. Then µ = 2. Hence E consists

of three C̄1-orbits of length 6, 1, 1. So Fix(C̄1) consists of more than one flag.

Again a contradiction by [41, Theorem 1.2].

Now, assume that o(Fix(σ)) = q2 − q. Let β̄ be any involution of C̄1. If q ≡ 3
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mod 4, then β̄ fixes exactly two secants to O through X, other than l. Thus β̄ is

a Baer collineation on Fix(σ) with o(Fix(β̄)) = 2. So q2−q = 4. A contradiction.

Hence q ≡ 1 mod 4 as q is odd. Then β̄ does not fix any secant to O through X,

other than l. On the other hand, the collineation β̄ fixes exactly 2 points lying

in l ∩ O ⊂ Fix(σ) and at least the point X ∈ Fix(σ) ∩ (l − O). Then β̄ fixes a

Baer involution of Fix(σ). A contradiction, since β̄ does not fix any secant to O
through X other than l.

Hence, we may assume that any two distinct lines of Sσ intersect l in distinct

points. Then l ∩ Fix(σ) contains l ∩ O and the intersection points of l with

each line of Sσ. Thus
√
n ≥ q2. Actually either

√
n = q2 or

√
n = q2 + 1,

since
√
n ≤

√

∑

(O) where
∑

(O) = q4 + 2q2 + q + 2 by Lemma 2.4(2). If√
n = q2, then C̄1 acts transitively on l ∩ Fix(σ) − O, since C̄1 is transitive on

Sσ. Hence l ∩ Fix(σ) consists of two C̄1-orbits of points of length q + 1 and

q2 − q. A contradiction by [41, Theorem 1.2], since q is odd. If
√
n = q2 +1, the

above argument involving Theorem 13.18 of [24] rules out this case. Thus the

involutions in G are homologies of Π when q is odd.

Assume that q is even. Let Q be a Sylow 2-subgroup of G containing σ. Then

Z(Q) is an elementary abelian 2-group of order q fixing exactly a point Y in O
and all the q2 secants to O through Y (see [23]). Note that the involutions in

Z(Q) are Baer, since σ is a Baer involution and G contains a unique conjugate

class of involutions. Thus n ≥ (q2 − 1)2 by [24, Theorem 3.7]. On the other

hand, we have that n ≤ ∑

(O) = q4 + 2q2 + q + 2 by Lemma 2.4(2), and

hence n < (q2 + 2)2. So either n = (q2 − 1)2 or n = q4 or n = (q2 + 1)2, as

n ≥ (q2−1)2. Thus the involutions in Z(Q) fix the same
√
n+1 lines through Y ,

since they fixes the same q2 secants to O through Y . Then Z(Q) is semiregular

on [Y ]−Fix(Z(Q)). Therefore Q is semiregular on [Y ]−Fix(Z(Q)), since each

involution in Q lies in Z(Q) being q even. Thus q3 | (n − √
n), being |Q| = q3

and |[Y ] − Fix(Z(Q))| = n − √
n. Then either q3 | √n or q3 | (

√
n − 1). A

contradiction in any case, since
√
n = q2 −1 or

√
n = q2 or

√
n = q2 +1. Thus σ

is a perspectivity of Π. As a consequence each involution in G is a perspectivity

of Π, since G ∼= PSU(3, q) has a unique conjugate class of involutions. This

completes the proof. �

Lemma 3.5. Let Π be a finite projective plane of order n and let G ∼= PSU(3, q)

be a collineation group of Π with a point-orbit O ∼= H(q), q > 2. If n ≤ ∑

(O),

then G acts strongly irreducibly on a G-invariant subplane Π0
∼= PG(2, q2) of Π

containing O. In particular, the following hold:

(1) Π = Π0 or n ≥ q4;

(2) the involutions inG are either homologies or elations of Π according to whether

q is odd or even, respectively.



16 A. Montinaro

Proof. If n ≤ q3 + 1, the assertion follows by [4, Theorem 3.10]. Hence we may

assume that n > q3 + 1. We proceed stepwise.

(I) G does not fix any point of Π.

Suppose that G = GP for some point P ∈ Π. Clearly P /∈ O. Then [P ]

contains q3 + 1 tangents to O, since G is primitive on O. Then P cannot be

the center of any perspectivity lying in G, since G is faithful on O. Hence the

axis of any involutory perspectivity contains P . Then q is even by [23], since

any involution in G fixes q + 1 collinear points in O for q odd. Furthermore,

each point in O is the center of an involutory perspectivity by [23]. Hence each

involution fixes at most 2 lines through P .

Suppose that n is even. Then each line of [P ] tangent to O is the axis of

some the involutory elation in G, since q is even. As n > q3 + 1, there exists an

external line e to O through P . Clearly |Ge| is odd. Then n+ 1 ≥ q3 + 1 +
∣

∣eG
∣

∣,

since |[P ]| = n+ 1, eG ⊂ [P ] and the group G is transitive on the tangents to O
through P . Moreover q3 |

∣

∣eG
∣

∣, since q is even and |Ge| is odd. If |Ge| ≤ 3(q+1)2

j ,

where j = (3, q+ 1), then
∣

∣eG
∣

∣ ≥ q3(q− 1)(q2 − q+ 1)/3. A contradiction, since

eG ⊂ [P ] and n ≤ q4. Hence |Ge| > 3(q+1)2

j . Then q = 2 and |Ge| | 9 by [16],

since |Ge| is odd. A contradiction, since q > 2 by our assumption.

Now, suppose that n is odd. For each Sylow 2-subgroup Qi of G, with 1 ≤
i ≤ q3 + 1, denote by Ui the center of Qi. Then Ui = Ui(Xi, zi) for some point

Xi ∈ O and some line zi ∈ [P ], for each 1 ≤ i ≤ q3 + 1, since n is odd, q is

even and G is transitive on O. Clearly Xw 6= Xf for each 1 ≤ w, j ≤ q3 + 1

with w 6= f . If there exist zh = zt for some 1 ≤ h, t ≤ q3 + 1 with h 6= t,

then Ui is a Frobenius complement by [24, Theorem 4.25]. A contradiction, by

[44, Proposition 18.1(i)], since q > 2. Hence there are exactly q3 + 1 external

lines zi to O through P such that Ui = Ui(Xi, zi). Now it easily seen that, the

stabilizer of any external line, which is not a zi, 1 ≤ i ≤ q3 + 1, must have odd

order. So, by using similar arguments to that used above, involving [16], we

may conclude that the lines zi, with 1 ≤ i ≤ q3 + 1, are the unique lines of [P ]

which are external to O. Hence n + 1 = 2(q3 + 1). That is n = 2q3 + 1. Hence

[P ] is the disjoint union of two 2-transitive G-orbits both of length q3 + 1. Let

Z ∼= Z q+1

j
be a subgroup of G ∼= PSU(3, q2), where j is defined as above. Clearly

Z fixes exactly 2(q + 1) lines of [P ]. Furthermore, Z fixes two points on each of

these line other than P , since (2q3 + 1, q + 1) = 1 and (2q3, q + 1) = 1. Hence

Z is planar. In particular Z fixes exactly q + 1 points of O lying on a secant s.

Furthermore, Z leaves a partition J of q2 − q+ 1 secants invariant, with s ∈ J ,

by [23]. In particular NG(Z) acts on Fix(Z), inducing NG(Z)/Z ∼= PGL(2, q).

Arguing as in Lemma 3.4, either there exists a point R ∈ Fix(Z) ∩ s such that
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J ⊂ [R], or any two distinct lines in J intersect s − O in distinct points. This

yields o(Fix(Z)) ≥ q2 − q in any case. A contradiction by [24, Theorem 3.7],

since n = 2q3 + 1, q is even and q > 2.

(II) G does not fix any line of Π.

Suppose that G = Gl for some line l of Π. Clearly l ∩ O = ∅. If l is the axis

of some involutory perspectivity in G, then q is even and hence n odd by [23].

Moreover G(l, l) 6= 〈1〉 by [24, Theorem 4.25], since G fixes l and acts on O
transitively. Note that G(l, l) ⊳ G, since G fixes l. Then G = G(l, l), since G is

simple as q > 2 and G(l, l) 6= 〈1〉. So G fixes l pointwise. A contradiction by (I).

Hence l contains the centers of all involutory perspectivities of G. Thus q is odd

by [23]. Pick two distinct involutory perspectivities σ and φ in G with axis a

and c respectively, such that a 6= c and such that Sσ ∩ Sφ share a secant m.

The secants in Sσ and in Sφ meet l in the center of σ and φ, respectively. In

particular, both centers coincide with l ∩ m, since m ∈ Sσ ∩ Sφ. So σ fixes

Sσ ∪ Sφ. A contradiction.

(III) G acts irreducibly on Π.

Assume that G leaves invariant a triangle ∆. Then G fixes ∆ pointwise, since

G is simple as q > 2. A contradiction, since G does not fix points by (I). Thus G

is irreducible on Π.

(IV) G acts strongly irreducibly on a G-invariant subplane Π0
∼= PG(2, q2) of Π

containing O. In particular, either Π = Π0 or n ≥ q4.

By Lemma 3.4 and by (III), we have that G is irreducible on Π and it contains

perspectivities of Π. Then by [18, Lemma 5.3] the centers and the axes of the

perspectivities in G generate a subplane Π0 containing O ∼= H(q) and on which

G acts strongly irreducibly. Then o(Π0) ≥ q2 since Π0 contains all the q4+q2−q3
secants of O. Note that, again by [18], any other subplane of Π left invariant

by G contains Π0.

Assume that q is odd. Then the involutions in G are homologies of Π by

Lemma 3.4, since Π0
∼= PG(2, q2). Therefore, by [29, Theorem C(iii)], the

group G leaves invariant a plane Π1 of order q2 containing a unital H1(q). In

particular Π1
∼= PG(2, q2) and G acts on H1(q) in its natural action by [23].

Then Π0 = Π1 and H(q) = H1(q), since Π0 ⊂ Π1 and o(Π0) ≥ q2 by the above

remark. At this point the assertion for q odd follows by [24, Theorem 3.7].

Assume that q is even. Then the involutions in G are elations of Π by [20,

Proposition 6.1]. Suppose that o(Π0) > 22h. Then it must be o(Π0) > 26h by
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[7, Lemma 5.4]. A contradiction, since n ≤ ∑

(O) = 24h + 22h+1 + 2h + 2 by

Lemma 2.4 (2). Thus Π0
∼= PG(2, 22h) and again the assertion follows by [24,

Theorem 3.7]. �

Lemma 3.6. Let Π be a finite projective plane of order n and let G ∼= PSU(3, q), q

odd, be a collineation group of Π with a point-orbit O ∼= H(q). If n ≤ ∑

(O), then

G contains involutory perspectivities andG is strongly irreducible on aG-invariant

subplane Π0 of Π containing O. In particular, one of the following occurs:

(1) n = q2, Π0 = Π ∼= PG(2, q2);

(2) n = q4, Π0
∼= PG(2, q2) is a Baer subplane of Π.

Proof. If n ≤ q4, the assertion follows from Lemma 3.5. Hence assume that

n > q4. We rule out this case in two steps.

(I) n = q4 + 2q2 − 2q.

Note that n ≥ q4 + q2 by [24, Theorem 3.7], since Π0
∼= PG(2, q2) and

n > q4. As q is odd the involutions in G are homologies of Π by Lemma 3.5(2).

Then (q − 1) | (n − 1) by [29, Theorem C(iii)]. Thus n = q4 + q2 + λ with

λ ≥ 1 and (q − 1) | (λ + 1). Then λ = λ1(q − 1) − 1, λ1 ≥ 1, and hence

n = q4 + q2 + λ1(q − 1) − 1. Let Z(U) be the center of a Sylow p-subgroup

U of G. Then Z(U) is an elementary abelian p-group of order q. Furthermore

Z(U) induces on Π0 an elation group having the same center P ∈ O and the

same axis c tangent to O in P (see [23]). Let s be a secant to O through P .

Clearly s is a secant to Π0 and Z(U) is semiregular on s∩Π0−{P}. Assume that

Z(U)R 6= 〈1〉 for some point R on s − Π0. Then Z(U)R is planar in Π, since U

is transitive on [P ] ∩ O and Z(U)R ⊳ U . Then each element in Z(U) is planar,

since they are conjugate inG. Let τ ∈ Z(U), τ 6= 1. Then o(Fix(〈τ〉)) ≥ q2, since

|Fix(τ) ∩ c| ≥ q2 + 1. Actually, either o(Fix(〈τ〉)) = q2 or o(Fix(〈τ〉)) = q2 + 1,

since n ≤ ∑

(O) = q4 + 2q2 + q + 2 by Lemma 2.4(2).

Assume that o(Fix(〈τ〉)) = q2 + 1. Note that the collineation ζ in G rep-

resented by the matrix diag(−1, 1,−1) centralizes Z(U). Hence ζ and acts on

Fix(〈τ〉). In particular ζ acts non-trivially on Fix(〈τ〉), since it acts non-trivially

on Fix(〈τ〉) ∩ O by [23]. This is impossible by [24, Theorem 13.18], since

o(Fix(〈τ〉)) = q2 + 1 with q2 + 1 ≡ 2 mod 4 and q2 + 1 > 2 as q is odd.

Hence o(Fix(〈τ〉)) = q2. Then |Fix(τ) ∩ c| = q2 +1 and hence |Fix(Z(U)) ∩ c| =

q2 + 1, since the non-trivial elements in Z(U) are conjugate in G and since

|Fix(Z(U)) ∩ c| ≥ q2 + 1. Thus Z(U) is semiregular on c − Fix(Z(U)). Hence

q | (n − q2) as |U | = q and |c− Fix(Z(U))| = n − q2. That is q | n. Then

q | (λ1 + 1), since n = q4 + q2 + λ1(q − 1) − 1. Thus λ1 = λ2q − 1, λ2 ≥ 1, and
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hence

n = q4 + (λ2 + 1)q2 − (λ2 + 1)q . (10)

Since n is odd, n ≤ ∑

(O) = q4 + 2q2 + q + 2 by Lemma 2.4(2), it follows that

n ≤ q4 + 2q2 + q + 1. Hence (λ2 − 1)q2 − (λ2 + 2)q − 1 ≤ 0 by (10). This yields

either λ2 = 1, or λ2 = 2 and q = 3. Thus either n = q4 + 2q2 − 2q or n = 99 and

q = 3. Assume the latter occurs. Let S be a Sylow 2-subgroup of G ∼= PSU(3, 3).

Then |S| = 25 and hence |S| ∤ 4(n + 1) as n = 99. A contradiction by [17,

Satz 2], since n ≡ 3 mod 4. Thus the assertion (I).

(II) The final contradiction.

Let E be the set of lines of Π which are external to Π0. Denote by S and T
the sets of the secants and of tangents to Π0. Then S and T have size q4 +q2 +1

and (q4 + q2 + 1)(n− q2) respectively. Now it is a straightforward computation

to see that |E| = 2q2 (q − 1)
2 (

q2 + q + 2
)

, since |E| = n2 + n + 1 − (|S| + |T |)
and n = q4 + 2q2 − 2q.

Since the involutions in G are perspectivities of Π and of Π0, then Ge has

odd order for each line e ∈ E . Now assume there exists a line x in E such

that (|Gx| , q+1
j ) = 1, j = (q + 1, 3), and let γ be an element of order a prime

divisor of q+1
j . Then 〈γ〉 induces an (A, l)-homology group on Π0 by [23]. In

particular |Fix(γ) ∩ Π0 ∩ l| = q2 + 1. Nevertheless 〈γ〉 is planar on Π, since

〈γ〉 fixes x in E . Note that x intersects l − Π0 again since x ∈ E . Thus 〈γ〉
fixes at least q2 + 2 points on l and hence o(Fix(〈γ〉)) ≥ q2 + 1 as γ is planar

on Π. Arguing as above, with 〈γ〉 in the role of 〈τ〉, we have o(Fix(〈γ〉)) =

q2 + 1. Now, let σ be an involutions centralizing 〈γ〉 (we can pick σ in the

same cyclic subgroup of G of order q+1
j containing 〈γ〉). Then σ acts non-

trivially on Fix(〈γ〉), since Gx has odd order and x ∈ Fix(〈γ〉) ∩ E . At this point

the above argument involving [24, Theorem 13.18] rules out this case. Hence
(

|Ge| , q+1
j

)

= 1, j = (q + 1, 3), for each line e ∈ E . That is
(q+1)2

j

∣

∣

∣

∣eG
∣

∣ for

each line e ∈ E (see [38]). Therefore
(q+1)2

j | 2q2 (q − 1)
2 (

q2 + q + 2
)

, since

E consists of non-trivial G-orbits and |E| = 2q2 (q − 1)
2 (

q2 + q + 2
)

. Actually
(q+1)2

j | 16, as ( q+1
j , q − 1) = ( q+1

j , q2 + q + 2) = 2. Hence (q + 1)2 = 2ij, where

1 ≤ i ≤ 4 and j = (q + 1, 3). Thus j = 1 and hence q ≡ 1 mod 3. At this point,

easy computations show that no value of q is admissible. This completes the

proof. �

Lemma 3.7. Let Π be a finite projective plane of order n and let G ∼= PSU(3, q) be

a collineation group of Π with a point-orbit O ∼= H(q), q > 2. If n ≤ ∑

(O), then

G contains involutory perspectivities andG is strongly irreducible on aG-invariant

subplane Π0 of Π containing O. In particular, one of the following occurs:
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(1) n = q2, Π0 = Π ∼= PG(2, q2);

(2) n = q4, Π0
∼= PG(2, q2) is a Baer subplane of Π.

Proof. In order to obtain the assertion we have to investigate only the case q =

22h, since the assertion is true for q odd by Lemma 3.6. Hence, assume that q =

22h. Recall that the involutions in G are elations of Π by [20, Proposition 6.1].

Assume n ≥ 24h + 22h. Recall that n ≤ ∑

(O) = 24h + 22h+1 + 2h + 2. If

n = 24h + 22h+1 + 2h + 2, then n ≡ 2 mod 4 as h > 1. A contradiction by [24,

Theorem 13.18]. Then n ≤ 24h +22h+1 +2h, since n is even. We prove that this

leads to a contradiction in five steps.

(I) Let C ∼= Z(2h+1)/j , j = (2h + 1, 3). If there exists δ ∈ C, δ 6= 1, which is

planar on Π, then o(Fix(δ)) = 22h and hence |Fix(δ) ∩ Π0 ∩ c| = 22h + 1.

Let C ∼= Z(2h+1)/j , where j = (2h + 1, 3). Then NG(C)/C = PSL(2, 2h) by

[23]. Clearly NG(C) is the minimal such that NG(C)/C ∼= PSL(2, 2h). Since C

is abelian and C ⊳ NG(C), then C E CNG(C)(C) E NG(C). As NG(C)/C ∼=
PSL(2, 2h), then either CNG(C)(C) = C or CNG(C)(C) = NG(C). If the former

occurs, then NG(C)/C = NG(C)/CNG(C)(C) ≤ Aut(C). A contradiction, since

C is cyclic while NG(C)/C = PSL(2, 2h). So CNG(C)(C) = NG(C). That is

C ≤ Z(NG(C)). Furthermore NG(C)′ = NG(C) by the minimality of this one.

Hence NG(C) is perfect central extension of PSL(2, 2h) by C. Then NG(C) =

C × L, where L ∼= PSL(2, 2h) by [32, Theorem 5.1.4].

Assume there exists δ ∈ C, δ 6= 1, which is planar on Π. Then o(Fix(δ)) ≥
22h, since C induces a group of homologies on Π0

∼= PG(2, 22h) having the

same center X and the same axis l by [23]. Clearly L acts on Fix(δ), since L

centralizes C. In particular L ∼= PSL(2, 2h) has two orbits on Fix(δ) ∩ Π0 ∩ l

of length 22h + 1 and 22h − 2h respectively (see [23]). If o(Fix(δ)) > 22h, then

o(Fix(δ)) = 22h + 1 by [24, Theorem 3.7], since n ≤ 24h + 22h+1 + 2h. Then L

fixes the point D, where {D} = Fix(δ)∩ l−Π0. Thus any Sylow 2-subgroup of L

fixes exactly 2 points on Fix(δ)∩ l, namely D and a point lying in the L-orbit of

length 2h+1. Therefore any Sylow 2-subgroup of L, which is elementary abelian

of order 2h, induces a group of homologies of Fix(δ). Note that L fixes X, since

L centralizes C and C induces a group of homologies on Π0
∼= PG(2, 22h) having

the same centerX and the same axis l. Hence L fixes the lines l andXD and the

points X and D on Fix(δ). Thus distinct Sylow 2-subgroups of L are homology

groups having either the same center and distinct axes, or distinct centers and

the same axis. Indeed, distinct Sylow 2-subgroups of L fixes distinct points on

the L-orbit on l ∩ Π0 of length q + 1 (exactly one per each Sylow 2-subgroup

of L). Then the Sylow 2-subgroups of L are Frobenius complements by [24,

Theorem 4.25]. Then h = 1 and q = 2, since they must be cyclic by [44,
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Proposition 18.1.(i)]. A contradiction, since q > 2 by our assumptions. Thus

o(Fix(δ)) = 22h and hence assertion (I).

(II) We have

n = 24h + 22h + 2h+tλ1

where 0 ≤ λ1 ≤ 2h−t and t = ⌊(h+ 1)/2⌋.

Let Z be the center of a Sylow 2-subgroup Q of G. Then Z is an elementary

abelian group of order 2h and Z = Z(A, c) for some point A ∈ O and some line

c of Π0 which is tangent to O in A by Lemma 3.4 and by [23]. Thus 2h | n.

Then n = 2hλ for some positive integer λ ≥ 23h + 2h as n ≥ 24h + 22h. Thus

λ = 23h + 2h + λ0 with λ0 ≥ 0. Hence n = 24h + 22h + 2hλ0, λ0 ≥ 0.

Assume λ0 ≥ 1. Since Z is semiregular on Π − c, and since each involution

in Q lies in Z as q = 2h, then also Q is semiregular on Π − c. So 23h | n2, since

|Q| = 23h. Then 23h | 22hλ2
0 and hence 2h | λ2

0, since n = 24h +22h +2hλ0. Thus

λ0 = 2tλ1, where λ1 ≥ 1 and t = ⌊(h+ 1)/2⌋ (note that λ1 even number is also

admissible). Hence n = 24h+22h+2h+tλ1, λ1 ≥ 1. As n ≤ 24h+22h+1+2h by the

above argument, and being n = 24h +22h +2h+tλ1, we have 2h+tλ1 ≤ 22h +2h.

That is 2tλ1 ≤ 2h + 1 and hence 1 ≤ λ1 ≤ 2h−t, since λ1 is a positive integer

and t = ⌊(h+ 1)/2⌋.
Assume that λ0 = 0. Then it is easy to determine that n = 24h + 22h, which

is assertion (II) for λ1 = 0.

(III) Let E be the set of lines of Π which are external to Π0. Then

|E| = 26h + 25h+tλ1 + 23h+tλ1 + 22h+2tλ2
1 ,

where 0 ≤ λ1 ≤ 2h−t and t = ⌊(h+ 1)/2⌋.

Let E be the set of lines of Π which are external to Π0. Denote by S and

T the sets of the secants and of tangents to Π0, respectively. Then S and T
have size 24h + 22h + 1 and (24h + 22h + 1)(n − 22h), respectively. Therefore

|S| + |T | = (24h + 22h + 1)(n+ 1 − 22h) and we obtain

|S| + |T | = (24h + 22h)n+ (n+ 1) − 26h . (11)

As |E| = n2+n+1−(|S|+|T |) and by bearing in mind that n = 24h+22h+2h+tλ1,

λ1 ≥ 0, we have

|E| = (24h + 22h)n+ 2h+tλ1n+ (n+ 1) − (|S| + |T |) . (12)

Now, by combining (11) and (12), we have

|E| = 2h+tλ1n+ 26h . (13)
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As n = 24h + 22h + 2h+tλ1, by (13) we obtain

|E| = 26h + 25h+tλ1 + 23h+tλ1 + 22h+2tλ2
1 . (14)

(IV) Each G-orbit in E has length
23h(2h+1)(22h−1)

µ , µ = 1 or 3.

Observe that E = ∪y
i=1e

G
i , y ≥ 1 and

∣

∣eG
i

∣

∣ > 0, since Gei
has odd order for

each 1 ≤ i ≤ y. Hence

|E| =
y
∑

i=1

∣

∣eG
i

∣

∣ . (15)

Set
∣

∣eG
∣

∣ = min
{∣

∣eG
i

∣

∣ : 1 ≤ i ≤ y
}

. Then |E| ≥ y
∣

∣eG
∣

∣ by (15). Hence

|Ge| ≥
y23h(23h + 1)(22h − 1)

j(26h + 25h+tλ1 + 23h+tλ1 + 22h+2tλ2
1)
, (16)

by (II) and since |G| = 23h(23h + 1)(22h − 1)/j, j = (2h + 1, 3).

As λ1 ≤ 2h−t, we have

y23h(23h + 1)(22h − 1)

j(26h + 25h+tλ1 + 23h+tλ1 + 22h+2tλ2
1)

≥ y23h(23h + 1)(22h − 1)

j(26h+1 + 24h+1)

and hence

|Ge| ≥
y(23h + 1)(22h − 1)

2h+1j(22h + 1)
. (17)

It is easily seen that |Ge| > max(9, 2h − 1) as h > 1. Now, assume that
(

|Ge| , 2h+1
j

)

6= 1. Then there exists a non-trivial element ψ in Ge of order

a divisor of 2h+1
j . Since the cyclic subgroups of G of order 2h+1

j are conjugate

in G (indeed G is transitive on the lines on O), then we may assume that ψ ∈ C.

Then ψ is planar with o(Fix(ψ)) = 22h and |Fix(ψ) ∩ Π0 ∩ c| = 22h + 1 by (I).

Nevertheless ψ fixes the external e to Π0, the secant c to Π0 and hence the

point e ∩ c. As e ∈ E then e ∩ c lies in c − Π0. Thus ψ fixes at least q2 + 2

points on C contradicting (I). Thus |Ge| is odd, |Ge| > max(9, 2h − 1) and

(|Ge| , 2h+1
j ) = 1. Then Ge ≤ Z 22h

−2h+1

j

.Z3 by [16] (note that ( 22h−2h+1
j , 3) = 1

by [18, Lemma 3.9]). Now, by using (17), it is plain to see that |Ge| > 22h−2h+1
3j

as h > 1. Hence 22h−2h+1
j | |Ge| as Ge ≤ Z 22h

−2h+1

j

.Z3. Actually, the previous

proof can be repeated for each Gei
, 1 ≤ i ≤ y, in order to show that 22h−2h+1

j |
|Gei

| and Gei
≤ Z 22h

−2h+1

j

.Z3. Hence |Gei
| = µi

22h−2h+1
j , µi = 1 or 3, for each

1 ≤ i ≤ y. Therefore
∣

∣eG
i

∣

∣ = 23h(2h+1)(22h−1)
µi

, µi = 1 or 3, for each 1 ≤ i ≤ y.
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(V) The final contradiction.

By (IV), we have 22h−1
3 |

∣

∣eG
i

∣

∣ for each 1 ≤ i ≤ y, since

|G| = 23h(23h + 1)(22h − 1)/j, j = (2h + 1, 3) .

Then 22h−1
3 | |E| as |E| =

y
∑

i=1

∣

∣eG
i

∣

∣. Then

22h − 1

3

∣

∣

∣

∣

(

26h + 2tλ1(2
5h + 23h + 22h+tλ1)

)

by (III). Easy computations yield 22h−1
3 | (1+2tλ1(2

h+1+2tλ1)). Hence f 22h−1
3 =

1 + 2tλ1(2
h+1 + 2tλ1) with f ≥ 1, h > 1, t = ⌊(h+ 1)/2⌋ and 1 ≤ λ1 ≤ 2h−t. A

contradiction by Lemma 2.7.

We conclude that n = q4. �

Lemma 3.8. Let Π be a finite projective plane of order n and let G ∼= 2G2 (q),

q = 3h, h odd, h ≥ 1, be a collineation group of Π with a point-orbit O ∼= R(q). If

n ≤ ∑

(O), then h = 1, G ∼= PΓL(2, 8), O ∼= R(3) and one of the following occurs:

(1) Π ∼= PG(2, 8), G leaves a line oval C of Π invariant and O consists of the

external points of C;

(2) n = 26.

Proof. Note that n ≤ ∑

(O) = q4 + 2q2 + q + 2, where q = 3h and h is odd,

h ≥ 1 by Lemma 2.4(3). Assume that n > q4. Then q4 < n < (q2 + 2)2, since
∑

(O) < (q2 + 2)2. Let ψ be any involution of G ∼= 2G2 (q). If ψ is a Baer

involution of Π, then n is square. Then n = (q2 + 1)2, since q4 < n < (q2 + 2)2.

Note that CG(ψ) = 〈ψ〉 × PSL(2, q) by [35]. Furthermore PSL(2, q) acts non-

trivially on Fix(ψ), since Fix(ψ) ∩ O contains a line s ∩ O, s line of Π, and

PSL(2, q) acts on s ∩ O in its natural 2-transitive permutation representation of

degree q + 1 (see [35]). So PSL(2, q) acts faithfully on Fix(ψ). A contradiction

by [24, Theorem 13.18], since
√
n ≡ 2 mod 4 and

√
n > 2, being

√
n = q2 + 1

and q = 3h, h ≥ 1. Thus ψ is a perspectivity of Π.

Assume h > 1. Then G = G(Q, l) by [20, Lemma 4.3] and |G| | n. That is

q3(q3 + 1)(q − 1) | n. A contradiction, since n ≤ (q2 + 1)2 + (q + 1).

Assume h = 1. Then G ∼= PΓL(2, 8). Let S be any Sylow 2-subgroup of G.

If n is odd, then each involution in S is a homology of Π. Then S = S(P, l)

by [29, Lemma 3.1], since S ∼= E8, the elementary abelian group of order 8. A

contradiction, since distinct involutions inG fix distinct blocks of R(3) pointwise

by [35]. Thus n is even and either S = S(X,X) for some point X ∈ Π −R(3),
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or S = S(a, a) for some external line a to R(3), since S ∼= E8. Actually, the

latter is ruled out by the above argument. Hence S = S(X,X). In particular

the axis of each elation in S is a secant of R(3) by [35]. Let U be another Sylow

2-subgroup of G. Then U = U(Y, Y ) for some point Y of Π −R1 by the above

argument with U in the role of S. Clearly G′ = 〈S,U〉 ∼= PSL(2, 8). If X = Y ,

then G′ = G′(X,X) which is abelian by [24, Theorem 4.14], since distinct

involutions in G have distinct axes which are secants of R(3). A contradiction,

since G′ ∼= PSL(2, 8). Hence X 6= Y . Then S and U fix the external line e = XY

to R1. Hence G′ = 〈S,U〉 fixes e. Clearly XG′ ⊆ e and
∣

∣XG′
∣

∣ = 9, since

G′
X

∼= E8.Z7. As n > 81, we have XG′

( e. Then G′
Q has odd order for each

Q ∈ e−XG′

, since each involution in G′ is an elation of center in XG′

and axis a

secant to R1. Hence e−XG′

is union of non-trivial G′-orbits of length divisible

by 23, since 23 | |G′|. Then each of these orbits must have length divisible by

either 56 or 72 by [1], since
∣

∣e−XG′
∣

∣ ≤ 72. Consequently, since 81 < n < 104,

we have that n− 8 = n+ 1− 9 must be divisible by 56 or by 72, a contradiction.

Hence n ≤ q4 and the assertion follows from Theorem 2.6. �

Lemma 3.9. Let Π be a finite projective plane of order n and let G ∼= PSL(2, 2h),

h ≥ 3, be a collineation group of Π with a point-orbit O ∼= W(2h). If n ≤ ∑

(O),

then

(1) Π ∼= PG(2, 2h), the projective extension of O is embedded in Π and the set C
of the external lines to O is a line-hyperoval extending a line conic, or

(2) n = 22h, or

(3) n = (2h + 1)2, h > 3, and the involutions in G are Baer collineations of Π.

Proof. If h = 3, then R(3) ∼= W(8) by [47, Example 1.4], and hence assertions

(1) and (2) follow from Lemma 3.8 in this case. Hence we may assume h > 3.

Let S be a Sylow 2-subgroup of G. Then S is elementary abelian of order 2h

fixing a point P on Π, since n2 + n + 1 is odd. Actually P ∈ Π − O by [47,

Lemma 7.1].

Assume that each involution in S is a Baer collineation of Π (recall that there

exists a unique conjugate class of involutions in G). Then each involution in S

fixes exactly
√
n+ 1 lines through P . Then

2h |
[

n+ 1 + (2h − 1)(
√
n+ 1)

]

by [24, Result 1.4]. Hence 2h | (n−√
n). Thus either 2h | (

√
n− 1) or 2h | √n.

Then either
√
n = 2h or

√
n = 2h + 1 or

√
n ≥ 2h+1. On the other hand,

n ≤ ∑

(O) = 2h(2h−13+1) by Lemma 2.4(4). Thus the case
√
n ≥ 2h+1 is ruled

out. Hence either
√
n = 2h or

√
n = 2h + 1 and we have assertions (2) and (3),

respectively.



Flag-transitive and almost simple orbits in finite projective planes 25

Now, assume that each involution in S is a perspectivity of Π. By [10], the

group S fixes a pencil Φ of parallel lines in O elementwise. Furthermore, for

each line s in Φ there exists a unique non-trivial element in S fixing s ∩ O
pointwise. Hence |Φ| = 2h − 1. Moreover S = S(Q,Q) for some Q on Π−O by

[29, Lemma 3.1], since S is abelian of order at least 8. Since n > 2h − 1, there

exists a line a ∈ [Q] which is external to O. Then S is semiregular on a − {Q},

since the axis of each involution in S is a secant to O. Thus 2h | n. Now, let

R be another Sylow 2-subgroup of G. Then R = R(C,C) by arguing as above

with R in the role of S. Then G = 〈R,S〉 fixes the line QC, since both S and R

fix QC. Then the projective extension of O is embedded in Π, since QG ⊆ QC,

the point Q is the center of a pencil of parallel lines in O and G is flag-transitive

on O. Then either n + 1 = 2h + 1, or n = 2h−1(2h − 1), or n ≥ 22h−1 by [13,

Proposition 2.1], since v = 2h−1(2h − 1). Actually the case n = 2h−1(2h − 1) is

ruled out, since 2h | n. Hence either n = 2h or n ≥ 22h−1 and 2h | n.

Assume that n = 2h. Then G ∼= PSL(2, 2h) is 2-transitive on QC, since

QG = QC and
∣

∣QG
∣

∣ = 2h + 1. Then Π ∼= PG(2, 2h), by [36, Satz 3]. It is

easily seen that there is exactly one external line to O through each point of

QC, other than QC, since each Sylow 2-subgroup of G fixes a pencil of parallel

lines in O each of size 2h − 1 by [10]. Let C be the set of these external lines

to O. Then |C| = 2h + 1, since G is 2-transitive on C. Thus either there exists

a point X ∈ Π − QC such that C ⊂ [X], or C is a line conic of Π. If C ⊂ [X],

then G fixes X and hence S = S(Q,QX). A contradiction, since S consists

of elations having the same center Q but distinct axes which are secants to O.

Hence C is a line conic and C ∪ {QC} is a line-hyperoval of Π extending C. That

is assertion (1).

Assume that n ≥ 22h−1 and 2h | n. Then QG ( QC. Let B be a point

on QC which is not the center of any pencil of parallel lines to O. Then GB

must have odd order. Hence GB ≤ Z2h±1 by direct inspection of the list of

subgroups of G given in [25, Haupsatz 8.27]. Furthermore
∣

∣BG
∣

∣ ≤ 22h−13,

since n ≤ 2h(2h−13 + 1) and
∣

∣QG
∣

∣ = 2h + 1. Thus |GB | ≥ (22h − 1)/2h−13 and

hence GB
∼= Z2h±1, as GB ≤ Z2h±1. That is

∣

∣BG
∣

∣ = 2h(2h ∓ 1). Let x− and

x+ be the number of G-orbits on QC −QG of length 2h(2h − 1) and 2h(2h + 1)

respectively. Then

2h(2h − 1)x− + 2h(2h + 1)x+ = n− 2h , (18)

since
∣

∣QC −QG
∣

∣ = n − 2h. In particular (x− + x+)2h(2h − 1) ≤ 22h−13

by (18), since n ≤ 2h(2h−13 + 1). If x− + x+ ≥ 2, then 2h+1(2h − 1) ≤ 2h−13.

A contradiction. Thus x− + x+ = 1 and hence either (x−, x+) = (1, 0) or

(x−, x+) = (0, 1). Assume the latter occurs. Then 2h(2h + 1) = n − 2h by (18)

and hence n = 22h + 2h+1. So, QC consists of two G orbits of length 2h + 1

and 2h(2h + 1). Then the group GB
∼= Z2h−1 fixes exactly 4 points on QC,
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namely two in each G-orbit on QC. Furthermore there exists a subgroup G∗
B of

GB , such that [GB : G∗
B ] ≤ 3, fixing at least 4 lines, including QC, through B,

since (n, 2h − 1) = 3 and being n = 22h + 2h+1. Let η be any involution in G

normalizing GB . Then η normalizes G∗
B , since GB

∼= Z2h−1. In particular η

moves B as
∣

∣BG
∣

∣ = 2h(2h + 1). Thus G∗
B is planar and o(Fix(G∗

B)) = 3, since

GB (and hence G∗
B) fixes exactly 4 points on QC. Clearly η acts non-trivially on

Fix(G∗
B). Thus η induces a homology on Fix(G∗

B) as o(Fix(G∗
B)) = 3. A contra-

diction, since η is an elation of Π. Thus (x−, x+) = (1, 0) and hence n = 22h.

That is assertion (2). �

Corollary 3.10. If case (2) or (3) of Lemma 3.9 occurs and if the involutions in G

are Baer collineations of Π when case (2) occurs, then the following hold:

(1) Each Sylow 2-subgroup of G induces a group of perspectivities having the same

center and the same axis on the Baer subplane fixed by any one of its involu-

tion;

(2) If n = (2h + 1)2 is a prime power, then n is actually the square of a Fermat

prime.

Proof. Assume either n = 22h or n = (2h + 1)2, and that the involutions in G

are Baer collineations of Π. We may also assume h > 3 by Lemmas 3.8 and 3.9.

Let S be a Sylow 2-subgroup of G. Then S is elementary abelian of order 2h. As

GP
∼= D2(2h+1) for each P ∈ O, then Fix(α) 6= Fix(β) for α, β ∈ S − {1}, with

α 6= β. In particular Fix(S) ⊂ Fix(σ) for each σ ∈ S − {1}. Furthermore, since

b = 22h − 1 and since G is transitive on the lines of O, the group S fixes exactly

2h − 1 lines of O.

Assume that β induces a Baer involution on Fix(α). Then
√
n must be a

square. If
√
n = 2h + 1, then ( 4

√
n− 1)( 4

√
n+ 1) = 2h. As ( 4

√
n− 1, 4

√
n+ 1) = 2,

then 4
√
n − 1 = 2 and 4

√
n + 1 = 2h−1. A contradiction since h > 3. Hence√

n = 2h and h is even. Note that S acts on the plane Fix(α) ∩ Fix(β) fixing at

least
√
n − 1 = 2h − 1 lines on it. Clearly among these lines there are 2h − 1

secants to O. As
√
n− 1 > 4

√
n+ 8

√
n+ 1, and since the order of Fix(α)∩Fix(β)

is 4
√
n (recall that Fix(α) 6= Fix(β)), we have Fix(S) = Fix(α)∩Fix(β). Let l be

any line of Fix(S). Then each non-trivial involution in S fixes exactly
√
n− 4

√
n

points on l which are not fixed by any other involution in S. Then S must be

semiregular on the non-empty point-set l − ∪σ∈S−{1}(Fix(σ) ∩ l). Hence

2h | (n+ 1 − (2h − 1)(
√
n− 4

√
n) − ( 4

√
n+ 1)) .

Hence 2h | (n+
√
n− 2 4

√
n). As

√
n = 2h and h is even, we have 2h | 2

h
2
+1. This

yields h = 2. A contradiction since h > 3. Thus each non-trivial element in S

induces a perspectivity on Fix(S). Actually, as S fixes exactly 2h − 1 > 3 lines
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of O and since S is a abelian, the group S induces the group S/ 〈α〉 on Fix(α)

consisting of perspectivities having the same center C and the same axis a. We

have thus assertion (1).

Now, assume that n = (2h + 1)2 is a prime power, then 2h + 1 = uj for

some prime u and some j ≥ 1. Then j = 1 and u is a Fermat prime by [45,

Result (B1.1)], as h > 3. We have thus assertion (2). �

Example 3.11. Let Π0
∼= PG(2, 2h) be a subplane of Π ∼= PG(2, 22h) and let C be

a line hyperoval of Π0 consisting of a line-conic C0 and an additional line l. Clearly

HC ∼= PSL(2, 2h) fixes l and acts 2-transitively on C0. By [10], the external lines

to C and the points of Π−C define an incidence structure O which is left invariant

by HC . In particular O ∼= W (2h) and HC acts flag-transitively on O.

The first part of Theorem 1.1 is now a consequence of the results in this

section.

4 The non-faithful action

Throughout this section we assume that N 6= 〈1〉. Then N is planar on Π, since

O ⊆ Fix(N) and O is a non-trivial 2-(v, k, 1) design. We may also assume that

G is minimal with respect to the property that G/N is flag transitive on O.

Lemma 4.1. Then N = Φ(G), where Φ(G) is the Frattini subgroup of G.

Proof. Let S be a Sylow t-subgroup of N . Then S ⊳ G by the minimality of G,

since G = NG(S)N by the Frattini’s argument. Thus N is nilpotent. Suppose

that N 6≤ Φ(G). Then there exists a maximal subgroup H of G such that G =

NH by [25, Satz 3.2(b)]. Clearly H is flag-transitive on O. Furthermore H < G

and H
H∩N

∼= G
N . A contradiction by the minimality of G. Hence N ≤ Φ(G). Note

that GP is maximal in G for each point P ∈ O, since N ⊳ GP and since G/N

is primitive on O by [21]. Hence Φ(G) ⊳ GP for each point P ∈ O. Thus

N = Φ(G). �

Lemma 4.2. If G/N is non-abelian simple, then one of the following holds:

(1) G is a perfect central extension of G/N , or

(2) there exists a Sylow t-subgroup S of N such that G/N ≤ SL(W ), where

W = S/Φ(S) and Φ(S) is the Frattini subgroup of S.

Proof. If N ≤ Z(G) we have the assertion (1), since G = G′ by the minimality

of G. Hence we may assume that N 6≤ Z(G). Then there exists a Sylow t-sub-

group S ofN such that S 6≤ Z(G), sinceN is nilpotent. SetW = S/Φ(S), where
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Φ(S) is the Frattini subgroup of S. Clearly G acts on W . Let R be the kernel of

the action of G on V . If U is the Sylow u-subgroup of N , where u is a prime,

u 6= t, then [S,U ] = 〈1〉, since N is nilpotent. This yields N E R E G, since

S′ ≤ Φ(S), S being a t-group. If R = G, then each Sylow j-subgroup of G, with

j 6= t, centralizes S by [15, Theorem 5.1.4]. That is CG(S) � N . Furthermore,

CG(S) ⊳ G as S ⊳ G. Then N ⊳ CG(S)N E G. Hence G = CG(S)N , since

G/N is non-abelian simple and since CG(S) � N . Actually, G = CG(S) since

N = Φ(G) by Lemma 4.1. A contradiction, since S 6≤ Z(G). Hence R < G.

Then R = N as G/N is non-abelian simple. Then G/N ≤ ΓL(W ), since W is

a vector space over GF(t). Actually G/N ≤ SL(W ), since G/N is non-abelian

simple. Thus we have assertion (2). �

Corollary 4.3. In case (2) of Lemma 4.2, we have |S| ≥ 1 + d0(G/N), where

d0(G/N) is the minimal primitive permutation representation of G/N .

Proof. By Lemma 4.2(2) there exists a Sylow t-subgroup S of N such that

G/N ≤ SL(W ), where W = S/Φ(S) and Φ(S) is the Frattini subgroup of S.

In particular G/N ≤ PSL(W ) as G/N is non-abelian simple. Then |PG(W )| ≥
d0(G/N), where d0(G/N) denotes the minimal primitive permutation represen-

tation ofG/N . This yields |W | ≥ 1+d0(G/N) and hence |S| ≥ 1+d0(G/N). �

It should be pointed out that the lower bound for |S| given in the previous

corollary is not the best one. Indeed, stronger inequalities are given in Theo-

rem 5.3.9 and Proposition 5.4.11 of [32].

Lemma 4.4. Let Π be a projective plane of order n and let G be a collineation

group of Π with a point-orbit O of length v. Assume that O has the structure of

a non-trivial 2-(v, k, 1) design, the group G induces a flag-transitive and almost

simple automorphism group on O and n ≤ ∑

(O). If G does not act faithfully on

O, then one of the following holds:

(1) n ≥ q4, O ∼= H(q), q > 2, Fix(N) ∼= PG(2, q2) and G/N ∼= PSU(3, q);

(2) n ≥ q2, O ∼= W(q), q = 22h, h ≥ 3, Fix(N) ∼= PG(2, q) and G/N ∼=
PSL(2, q);

(3) Π is the generalized Hughes plane over the exceptional nearfield of order 72,

O ∼= PG(2, 7) and SL(3, 7) ≤ G;

(4) n > q3, q = 2 or 3, O = Fix(N) ∼= PG(2, q) and G/N ∼= PSL(3, q).

Proof. Assume that O ( Fix(N). Clearly Fix(N) is a proper subplane of Π,

since N 6= 〈1〉. Clearly G/N acts faithfully on Fix(N). If m is the order of

Fix(N), then from [24, Theorem 3.7] and our assumption we obtain

m ≤ √
n ≤

√

∑

(O) . (19)
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If O ∼= PG(d, q), d ≥ 2, then q < m ≤
√

∑

(O) (note that the first inequality

follows from the fact that O ( Fix(N)). Now, we may use the same argument of

Lemma 3.2 involving transvections and Theorem 3.7 of [24] in order to obtain

(

qd − 1

q − 1
− 1

)2

≤ m ≤
√

∑

(O) . (20)

Using Lemma 2.4(1), we obtain

(qd − q)4

(q − 1)4
≤ q2d+1 + qd+3 + qd+2 − 2qd+1 − 2qd + q4 − 4q2 + 4

(q2 − 1) (q − 1)
. (21)

Now, arguing as in the first part of Lemma 3.2, we reduce to the case d = 2 or 3.

These values are ruled out, since they do not satisfy (21) as (d, q) 6= (2, 2), (2, 3).

Assume either O ∼= H(q), q > 2, or O ∼= R(q), q = 32h+1. Then m ≤
√

q4 + 2q2 + q + 2 by (19) and by Lemma 2.4(2)–(3). This yields m < q2 + 2.

Then, by the first part of Theorem 1.1, with Fix(N) in the role of Π, we have

O ∼= H(q), q > 2, Fix(N) ∼= PG(2, q2) and by G/N ∼= PSU(3, q), since N 6= 〈1〉
and m < q2 + 2. That is assertion (1).

Assume O ∼= W(q), q = 2h, h ≥ 3. Then m ≤
√

q(3q + 1)/2 by (19) and

Lemma 2.4(2). This yields m < q2. Then m = q and hence Fix(N) ∼= PG(2, q)

by the first part of Theorem 1.1. Thus we obtain assertion (2).

Finally, assume O = Fix(N). Then O is symmetric and hence O = Fix(N) ∼=
PG(2, q) by Theorem 2.2. Therefore G/N ∼= PSL(3, q), since G/N is flag-

transitive on O and G is almost simple. If n ≤ q3, then O ∼= PG(2, 7), Π is

the generalized Hughes plane over the exceptional nearfield of order 72 and

SL(3, 7) ≤ G by Theorem 2.5. That is assertion (3). If n > q3, then q = 2 or 3,

since n ≤ ∑

(O) = 2q2+4q+4 by our assumption and Lemma 2.4(1). Therefore

we have assertion (4). �

Lemma 4.5. The case n > q3, q = 2 or 3, O = Fix(N) ∼= PG(2, q) and G/N ∼=
PSL(3, q) does not occur.

Proof. Assume O = Fix(N) ∼= PG(2, q), q = 2 or 3, G/N ∼= PSL(3, q) and

n > q3. If q = 3, then 28 ≤ n ≤ 34, since q3 < n <
∑

(O) = 2q2 + 4q + 4 by

Lemma 2.4(1). Thus n cannot be a square and hence N has odd order. Further-

more, the involutions in G are homologies of Π, since they induce homologies

on O ∼= PG(2, 3). At this point we may use the same argument of Lemma 3.3 to

rule out this case. Hence q = 2. Then 9 ≤ n ≤ 20.

Assume there exists δ ∈ N , δ 6= 1, such that Fix(N) ( Fix(δ). Then either

o(Fix(δ)) = 4 or o(Fix(δ)) ≥ 6 by [24, Theorem 3.7]. If the latter occurs, then

n ≥ 36 again by [24, Theorem 3.7]. A contradiction, since n ≤ 20. Hence

o(Fix(δ)) = 4, then n = 16 by [46], since n ≤ 20.
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Now consider N(δ) = {α ∈ N : Fix(α) = Fix(δ)}. Then N(δ) is a non-trivial

subgroup of N , since Fix(δ) is a Baer subplane of Π. Clearly N(δ) = N(α) for

each α ∈ N(δ). Thus we may set N0 = N(δ). Clearly Fix(N0) = Fix(δ) and

hence Fix(N0) is a Baer subplane of Π. Assume there exists g ∈ G such that

Ng
0 ∩ N0 6= 〈1〉. Thus Fix(N0) = Fix(Ng

0 ), since Fix(N0) and hence Fix(Ng
0 )

are Baer subplanes of Π. Then N0 = Ng
0 . Hence distinct conjugates of N0 in G

have trivial intersection and the corresponding Baer subplanes intersect exactly

in Fix(N).

Now, consider NG
0 and NN

0 . Then
∣

∣NN
0

∣

∣ |
∣

∣NG
0

∣

∣, since N ⊳ G. In particular,

it is easy to see that

∣

∣NG
0

∣

∣

∣

∣NN
0

∣

∣

=
|G| / |NG(N0)|
|N | / |NN (N0)|

=
|G/N |

|N/(NG(N0) ∩N)| .

Since N/(NG(N0) ∩N) ∼= NG(N0)N/N , then

∣

∣NG
0

∣

∣ /
∣

∣NN
0

∣

∣ = [G/N : NG(N0)N/N ] . (22)

If [G/N : NG(N0)N/N ] = 1, then
∣

∣NG
0

∣

∣ =
∣

∣NN
0

∣

∣ by (22). Hence N0 ⊳ G. In

particular N0 ⊳ N and hence N acts as N/N0 on Fix(N0). Since N/N0 must be

semiregular on u ∩ (Fix(N0) − Fix(N0)), where u is any secant of Fix(N), we

have [N : N0] = 2 and hence G/N0
∼= Z2.PSL(2, 7). That is G/N0

∼= SL(2, 7). A

contradiction by [1], since G/N0 ≤ PΓL(3, 4) being Fix(N0) ∼= PG(2, 4). Thus

[G/N : NG(N0)N/N ] > 1 and hence [G/N : NG(N0)N/N ] ≥ 7, since the mini-

mal primitive permutation representation degree of G/N ∼= PSL(2, 7) is 7. Then
∣

∣NG
0

∣

∣ ≥ 7
∣

∣NN
0

∣

∣ by (22). Let l be a secant line of Fix(N). Note that, by the

above argument different conjugates of N0 in G cover different pairs of points

on l−Fix(N), since |l ∩ (Fix(N0) − Fix(N))| = 2. Hence 2
∣

∣NG
0

∣

∣ ≤ |l − Fix(N)|.
That is 14

∣

∣NN
0

∣

∣ ≤ 14, since
∣

∣NG
0

∣

∣ ≥ 7
∣

∣NN
0

∣

∣ and |l − Fix(N)| = 14. This yields
∣

∣NG
0

∣

∣ = 7,
∣

∣NN
0

∣

∣ = 1 and hence N ⊳ N0. Then [N : N0] = 2 arguing as

above. Suppose there exists a distinct conjugate N∗
0 of N0 in G. By the above

argument with N∗
0 in the role of N0, we have [N : N∗

0 ] = 2. This yields that

N ∼= E4, since [N : N0] = 2 and N ∩ N∗
0 = 〈1〉. Thus N ≤ Z(G) and hence

G is a perfect central extension of PSL(2, 7) by Lemma 4.2. Then N ∼= Z2 by

[32, Theorem 5.1.4], since N 6= 〈1〉 by our assumptions. Therefore N0 must

be trivial. A contradiction, since δ ∈ N0 and δ 6= 1. Thus N0 ⊳ G and hence

N0 ⊳ N . Then the above argument rules out this case. Hence, we may assume

that N is semiregular on l − Fix(N), where l is the above secant. If N has even

order, then N contains Baer involutions of Π, since Fix(N) = O ∼= PG(2, 2).

Then n = 4, since N is semiregular on l − Fix(N). A contradiction, since

n > 23 by our assumption. Hence N has odd order. Thus each involution of

G acts faithfully on O. Then each such involution is either a Baer collineation
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or an elation of Π, since O ∼= PG(2, 2). Thus either n is a square or n is even.

Then n = 9, 12, 14, 16, 18, 20, since 9 ≤ n ≤ 20. The cases n = 10, 14 or 18

are ruled out by [24, Theorem 13.18]. The case n = 12 is ruled out by [26].

Hence n = 9, 16 or 20. Then either N ∼= Z7 for n = 9 or 16, or N ∼= Z5

for n = 9, since |N | | |l − Fix(N)| again by the semiregularity of N , since

|l − Fix(N)| = n − 2 and since N is non-trivial of odd order. Then N ≤ Z(G)

and hence G is a perfect central extension of PSL(2, 7) by Lemma 4.2. Then

G = G0 × N , where G0
∼= PSL(2, 7) by [32, Theorem 5.1.4], as N has odd

order. Therefore G = G0
∼= PSL(2, 7), since N = Φ(G) by Lemma 4.1. A

contradiction, since N 6= 〈1〉 by our assumptions. �

Lemma 4.6. Let Π be a projective plane of order n and let G be a collineation

group of Π with a point-orbit O. Assume that O has the structure of a non-

trivial 2-(v, k, 1) design, the group G induces a flag-transitive and almost simple

automorphism group on O and n ≤ ∑

(O). If G does not act faithfully on O, then

one of the following holds:

(1) O ∼= PG(2, 7), Π is the generalized Hughes plane over the exceptional nearfield

of order 72 and SL(3, 7) ≤ G;

(2) we have n ≥ q4, q ≡ 2 mod 3, q > 2, O ∼= H(q), Fix(N) ∼= PG(2, q2) and

SU(3, q) ≤ G.

Proof. By Lemmas 4.4 and 4.5, one of the following occurs:

(1) O ∼= PG(2, 7), Π is the generalized Hughes plane over the exceptional

nearfield of order 72 and SL(3, 7) ≤ G;

(2) O ∼= H(q), q > 2, Fix(N) ∼= PG(2, q2) is a Baer subplane of Π and G/N ∼=
PSU(3, q);

(3) O ∼= W(q), q = 2h, h ≥ 3, Fix(N) ∼= PG(2, q) and G/N ∼= PSL(2, q).

As case (1) does indeed occur, we shall focus on the remaining two cases.

Suppose that N ≤ Z(G). Then G is a perfect central extension of G/N by

Lemma 4.2(1). Therefore G ∼= SU(3, q), N = Z3 and q ≡ 2 mod 3 by [32, The-

orem 5.1.4], since N 6= 〈1〉 by our assumption. Thus we obtain assertion (2).

Suppose that N � Z(G). Then, by Corollary 4.3, there exists a Sylow t-sub-

group S of N such that |S| ≥ 1 + d0(G/N), where d0(G/N) is the minimal

primitive permutation representation of G/N .

Assume that O ∼= H(q), q > 2. As d0(G/N) = q3+1 for q 6= 5 and d0(G/N) =

51 for q = 5 by [32], we have that |S| ≥ q3 + 2 for q 6= 5 and |S| ≥ 51 for q = 5,

respectively. Moreover, it is easy to see that Fix(N) = Fix(α) for each non-

trivial α ∈ N by [24, Theorem 3.7]. Thus S is semiregular on s − s ∩ Fix(N)
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for each secants s to O. Therefore |S| | q2(q2 − 1). A contradiction, since S is a

t-group with either |S| ≥ q3 + 2 for q 6= 5 or |S| ≥ 51 for q = 5.

Assume that O ∼= W(2h), h ≥ 3. Let α ∈ N , α 6= 1. Then α is planar,

since Fix(N) ∼= PG(2, 2h). If O ( Fix(α), then o(Fix(α)) ≥ 22h and hence

n ≥ 24h by [24, Theorem 3.7]. A contradiction since n ≤ ∑

(O) = 2h(2h−13+1)

by Lemma 2.4(4). Thus Fix(N) = Fix(β) for each β ∈ N , β 6= 1. Then

|N | | (n − 2h), since N is semiregular on l − (l ∩ O) for any secant line l to O.

In particular |S| | (n − 2h). Then |S| ≤ 22h−13 as n ≤ 2h(2h−13 + 1). If t 6= 2,

instead of using the inequality |S| ≥ 1 + d0(G/N), we use the inequality |S| ≥
22h−1, as |S/Φ(S)| ≥ 22h−1 by [32, Theorem 5.3.9], since G/N ≤ PSL(S/Φ(S))

and h ≥ 3. Then |S| ≥ 22h−1 and hence 22h−1 ≤ 22h−13, as |S| ≤ 22h−13

by the above argument. It is a straightforward computation to show that the

inequality 22h−1 ≤ 22h−13 is impossible, as h ≥ 3. So t = 2. Thus N contains

Baer involutions. This yields n = 22h, since Fix(N) ∼= PG(2, 2h) and since

Fix(N) = Fix(β) for each β ∈ N , β 6= 1. Moreover |N | | 2h(2h − 1), since N is

semiregular on l−(l∩O) for any secant line l to O. In particular |S| | 2h(2h−1).

A contradiction, since S is a 2-group and since |S| ≥ 2h + 2 by Corollary 4.3,

being d0(G/N) = 2h + 1. This completes the proof. �

Theorem 4.7. Let Π be a projective plane of order n and let G be a collineation

group of Π with a point-orbit O of length v. Assume that O has the structure of

a non-trivial 2-(v, k, 1) design, the group G induces a flag-transitive and almost

simple automorphism group on O and n ≤ ∑

(O). If G does not act faithfully on

O, then one of the following holds:

(1) Π is the generalized Hughes plane over the exceptional nearfield of order 72,

O ∼= PG(2, 7) and SL(3, 7) ≤ G;

(2) we have n = q4, q ≡ 2 mod 3, q > 2, O ∼= H(q), Fix(N) ∼= PG(2, q2) and

SU(3, q) ≤ G.

Furthermore, the involutions in G are perspectivities of Π.

Proof. As a consequence of Lemma 4.6, in order to complete the proof of this

theorem, we need to investigate only the case n ≥ q4, q ≡ 2 mod 3, q > 2,

O ∼= H(q), Fix(N) ∼= PG(2, q2) and SU(3, q) ≤ G.

We proceed stepwise.

(I) The involutions in G are either homologies or elations of Π according to

whether q is odd or even respectively.

Note that the group G ∼= SU(3, q) has a unique conjugate class of involutions,

since N ∼= Z3 is central in G. Hence assume that the involutions in G are Baer
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collineations of Π. Then either n = q4 or (q2 + 1)2, since q4 ≤ n ≤ ∑

(O) =

q4 + 2q2 + q + 2 by Lemma 2.4(2).

Assume that q is odd. The case n = (q2 +1)2 cannot occur by Theorem 13.18

of [24], since for any involution in γ in G the group CG(γ) induces a group con-

taining PGL(2, q) on Fix(γ). Thus n = q4. Then the involutions inG are homolo-

gies of Π by [41, Proposition 2.6], and sinceG contains a unique conjugate class

of involutions. A contradiction by our assumption. Therefore q is even. Now, let

Z be the center of a Sylow 2-subgroup Q of G. Then Z is an elementary abelian

2-group inducing on Fix(N) ∼= PG(2, q2) an elation group having the same cen-

ter A ∈ O and the same axis c which is tangent to O in A (see [23]). Thus

|Fix(Z) ∩ Fix(N) ∩ c| = q2 + 1. Then
√
n + 1 = |Fix(Z) ∩ c| = q2 + 1 or q2 + 2

according to whether n = q4 or (q2 + 1)2 respectively, since the involutions in

G are Baer collineations of Π. Therefore Z is semiregular on c − Fix(Z). Then

Q is semiregular on c − Fix(Z), since each involution in Q lies in Z and q is

even. So q3 | (n−√
n), since |Q| = q3 and |c− Fix(Z)|. Thus either q3 | √n or

q3 | (
√
n − 1). A contradiction in any case, since

√
n = q2 or q2 + 1. Thus we

have assertion (I), since Fix(N) ∼= PG(2, q2).

(II) n = q4.

As n ≥ q4 we have either n = q4 or n ≥ q4 + q by [24, Theorem 3.7]. If the

latter occurs, then the set E of the external lines to Fix(N) is non-empty. Now,

it is a plain argument to see that the proofs of Lemmas 3.6 and 3.7 still work,

with Fix(N) in the role of Π0, leading to a contradiction. Indeed, N ∼= Z3 is

semiregular on E and N is disjoint from any Sylow p-subgroup of G, p a prime

divisor of q, as q ≡ 2 mod 3. Thus n = q4 and hence the assertion. �

The proof of the second part of Theorem 1.1 is now complete.
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