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Abstract

Let S = (P,B, I) be a finite generalized quadrangle (GQ) having order
(s, t). Let p be a point of S. A whorl about p is a collineation of S fixing
all the lines through p. An elation about p is a whorl that does not fix any
point not collinear with p, or is the identity. If S has an elation group acting
regularly on the set of points not collinear with p we say that S is an elation
generalized quadrangle (EGQ) with base point p. The following question
has been posed: Can there be two non-isomorphic elation groups about the
same point p? In this presentation, we show that there are exactly two (up
to isomorphism) elation groups of the Hermitian surface H(3, q2) over a
finite field of characteristic 2.
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1 Introduction

The focus of this article is H(3, q2), the Hermitian surface in three-dimensional
projective space over the field GF(q2), where q = 2e. The first results were
discovered by Tim Penttila, for q = 2 and q = 4, using the software package
Magma [5]. In this paper we give a constructive proof for any q = 2e. We
introduce generalized quadrangles with some basic definitions.

Let P and B be two non-empty sets, called points and lines, with an incidence
relation I such there are two positive integers s and t satisfying

(1) Each point is incident with t+1 lines; any two points are mutually incident
with at most one line.
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(2) Each line is incident with s+ 1 points; any two lines are mutually incident
with at most one point.

(3) Given a line L and a point x not incident with L there is a unique point y
and a unique line M such that x IM I y I L .

Such a collection S = (P ,B, I) is called a generalized quadrangle of order
(s, t) written GQ(s, t). The dual of a GQ(s, t) is the GQ(t, s) obtained by inter-
changing the roles of points and lines. Furthermore, any theorem or definition
given for a GQ can be dualized by interchanging the words points and lines. It
will therefore be assumed that whenever a definition or theorem is given, its
dual has also been given.

Two points incident with a common line are said to be collinear and two lines
incident with a common point are concurrent. If x and y are collinear we use
the notation x ∼ y. Similarly, if L and M are concurrent we denote this L ∼M .

If X is a set of points (respectively, lines) of S, then X⊥ denotes the set of
all points collinear (resp., lines concurrent) with everything in X . If X = {x} is
a singleton set, it is common to write X⊥ as x⊥. The set X⊥⊥, is the set of all
points collinear (resp., lines concurrent) with all of X⊥. By convention x ∈ x⊥.

Let x, y be two noncollinear points of a GQ(s, t). We say that {x, y} is a
regular pair provided |{x, y}⊥⊥| = t + 1; that is, if |{x, y}⊥⊥| is as large as
possible. If x is a point such that for every y, with x 6∼ y, we have|{x, y}⊥⊥| =

t + 1, then we say x is a regular point. A set {x, y, z} of pairwise non-collinear
points is called a triad of points. If {x, y, z} is a triad of points, then all points
in {x, y, z}⊥ are called centers.

Recall that a GQ is classical if it is isomorphic to a GQ (or its dual) that can
be embedded in a projective space.

2 Elation generalized quadrangles

Let S = (P ,B, I) be a GQ(s, t), s ≥ 1, t ≥ 1, and let p ∈ P be a point of S. A
whorl about p is a collineation of S that leaves invariant each line incident with
p. If there is a group of whorls acting transitively on the points not collinear
with p we say that p is a center of transitivity. Let θ be a whorl about p. If
θ = id or if θ fixes no point of P \ p⊥, then θ is an elation about p. If there is a
group G of elations about p acting regularly on P \ p⊥, we say S is an elation
generalized quadrangle (EGQ) with elation group G and base point p. We will
often denote this quadrangle as (S(p), G), or simply S(p). A skew-translation GQ

(STGQ), is an EGQ (S(p), G) where G contains a full group of symmetries about
p. All known GQ with parameters (q2, q) are in fact STGQ. Moreover, a result
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obtained by X. Chen [2] and independently by D. Hachenberger [3] states that
an STGQ must have both s and t powers of the same prime. If G is abelian we
say S(p) is a translation generalized quadrangle, denoted TGQ.

Let G be a group with order s2t. Then let F = {A0, A1, . . . , At} be a family
of t + 1 subgroups of G, each with order s, and let F ∗ = {A∗0, A∗1, . . . , A∗t } be
another family of t+ 1 subgroups of G, each having order st where Ai ≤ A∗i for
each 0 ≤ i ≤ t.

Using the group G we define a coset geometry, which we denote S (∞), as
follows. There are three types of points; (i) elements g ∈ G, (ii) cosets A∗i g,
(iii) a symbol (∞). There are two types of lines; (i) cosets Aig, (ii) symbols
[Ai]. Incidence is as follows; the symbol (∞) is incident with the t + 1 lines
of type (ii), the s cosets of A∗i are the other s points on a line [Ai], each point
A∗i g is incident with lines corresponding to the cosets Aih that are completely
contained in the coset A∗i g, the remaining points on a line Aih are the group
elements contained in the coset Aih.

Theorem 2.1. Let G be a group of order s2t and let F = {A0, A1, . . . , At} be a
family of t + 1 subgroups, each with order s, and let F ∗ = {A∗0, A∗1, . . . , A∗t } be
another family of t + 1 subgroups, each having order st where Ai ≤ A∗i for each
0 ≤ i ≤ t. Then if we build the coset geometry S(∞) as prescribed above, S(∞) is a
GQ, having order (s, t), if and only if properties K1 and K2 hold, where

K1 : AjAi ∩Ak = {id} for all distinct i, j, k ,

K2 : A∗j ∩ Ai = {id} for all i 6= j .

In the previous theorem, we call F a 4-gonal family of G, and {G,F, F ∗} is
called a Kantor family.

It is also well known that the set F ∗ is completely determined by the elements
in F . Define Ω = ∪{Ai : 0 ≤ i ≤ t}, then A∗i = Ai ∪ {Aig : Aig ∩ Ω = ∅}. The
next theorem is also well known.

Theorem 2.2. Let S = (P ,B, I) be a GQ(s, t). If G is an elation group about a
point p, q a point in P \ p⊥, and {p, q}⊥ = {x0, . . . , xt}, for 0 ≤ i ≤ t, let Ai be
the stabilizer of the line through q and xi, and A∗i be the stabilizer of the point xi.
Then F = {Ai : 0 ≤ i ≤ t} is a 4-gonal family of G and the coset geometry S (∞)

obtained from this Kantor family {G,F, F ∗} is a GQ isomorphic to S.

Theorem 2.3 (S.E. Payne and K. Thas). Let S be a GQ and let H be a group of
whorls about the point x acting transitively on the set X = P \ {x}⊥. The set of
elations in H does not form a group if and only if (at least) one of the following
conditions is satisfied:

(1) There is a j ≥ 2 for which |Fix(σ)| = j for some σ ∈ H .



120 R.L. Rostermundt

(2) There is a proper thick sub-GQ of S containing x (and all the lines through
x) fixed pointwise by a non-identity element of H .

3 Elation groups of H(3, q2)

For this paper we will assume that q = 2e, F = GF(q), and as usual the F-trace
function is defined as

tr(α) =

e−1∑

i=0

α2i .

We then choose δ ∈ GF(q) with tr(δ) = 1, and let ζ be a root of the polynomial
x2 + x+ δ. Put F2 = {a+ bζ : a, b ∈ GF(q)}; a quadratic extension of F.

Lemma 3.1. The element ζq = ζ + 1 is also a root of the polynomial, and if
α = a+ bζ, then tr(b) = tr(α+ αq).

Let S = H(3, q2) be the Hermitian surface in projective 3-space. Its con-
struction is well known. Consider the projective space PG(V ), where V is a
4-dimensional vector space over F2. Without loss of generality we choose the
Hermitian form H : V × V 7→ F where

H(x̄, ȳ) = x1y
q
4 + x2y

q
3 + x3y

q
2 + x4y

q
1 .

The set of all absolute points and totally isotropic lines of PG(3, q2) forms the
Hermitian surface H(3, q2). This is a GQ(q2, q).

Theorem 3.2 ([4]). Suppose that S = (P ,B, I) is a GQ of order (s, t), s, t > 1,
with s and t powers of the same prime p. Suppose (∞) is a regular point that is a
center of transitivity, and let W∞ be the full group of whorls about the point (∞).
Let Sp be a Sylowp subgroup of W∞. Then we have

1. |Sp| = s2t, or

2. p = 2, |S2| = 2s2t, and S contains a proper thick sub-GQ of order t isomor-
phic to the symplectic GQ, denoted W (t); consequently, s = t2.

Corollary 3.3. Let q = 2e and S = H(3, q2). Every point of S is a regular point,
and for each point p of S, if S2 is a Sylow 2 subgroup of the entire group of whorls
about p, then |S 2| = 2q5.

Consider the point p = (0, 0, 0, 1). If P is the set of all points of H(3, q2), then
P\p⊥ is the set of q5 points (1, α, β, µ) ∈ PG(3, q2) satisfying µ+µq+αβq+αqβ =
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0. The group of matrices

Ep =








1 α β µ

0 1 0 βq

0 0 1 αq

0 0 0 1


 ∈ GL(4, q2) : αβq + βαq + µ+ µq = 0





is an elation group about p, as this group acts regularly on the set of points
in P \ {p⊥}

(
the Ep-orbit of (1, 0, 0, 0) is the set of points (1, α, β, µ) where

µ+ µ̄+αβ̄+ ᾱβ = 0
)

and fixes every line through p. It is often more convenient
to represent this group as the set of triples

Ep =
{

[α, β, µ] : α, β, µ ∈ F2 and αβq + βαq + µ+ µq = 0
}

with group operation

[α, β, µ] ∗ [α′, β′, µ′] = [α+ α′, β + β′, µ+ µ′ + αβ′q + βα′q ] .

Next define the Hermitian preserving involution φ : PG(3, q2) → PG(3, q2) :

(x, y, z, w) 7→ (xq , yq, zq, wq). Then φ induces a collineation that is a whorl
about the point p. If we adjoin φ to Ep we form the group

W2 =
{

[α, β, µ] ◦ φi : α, β, µ ∈ F2 and αβq + βαq + µ+ µq = 0
}

with group operation being composition of maps. That is, for g = [α, β, µ] ◦ φi
and g′ = [α′, β′, µ′] ◦ φj we have

g ∗ g′ = [α+ α′q
i

, β + β′q
i

, µ+ µ′q
i

+ αβ′q
i+1

+ βα′q
i+1

] ◦ φi+j .

Then |W2| = 2q5 and Theorem 3.2 gaurantees W2 is a Sylow2 subgroup of the
group of whorls about p.

Theorem 3.4. The set of all elations about p does not form a group.

Proof. Since Fix(φ) ⊃ {(1, a, b, c) : a, b, c ∈ F}, Theorem 2.3 guarantees that the
set of all elations about p does not form a group.

Theorem 3.5. The only elements in W2 that fix any points not collinear with
p = (0, 0, 0, 1) are the conjugates of φ.

Proof. Suppose that x is a point opposite p that is fixed by φ. As Ep ≤ W2 the
size of the orbit of x under W2 is exactly q5. By the orbit-stabilizer theorem
the size of the stabilizer of x in W2 is 2; i.e., |W2x | = 2. Therefore, W2x =

{id, φ}. Now choose any point y opposite p. Because Ep acts regularly on
points not collinear with p, there is a unique g ∈ Mp such that yg = x. So
(y)gφg

−1

= y. Thus gφg−1 ∈ W2y and by the orbit-stabilizer theorem we get
W2y = {id, gφg−1}.
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Corollary 3.6. A subgroupE ≤W2, with |E| = q5, is an elation group ofH(3, q2)

if and only if E contains no conjugates of φ.

As usual, for g, h ∈ W2, let [g, h] = g−1h−1gh; the commmutator of g, h.
Denote the commutator subgroup of W2 as W ′2. We observe that each conjugate
of φ is in the coset of the commutator subgroup containing φ. That is,

gφg−1 = gφg−1φ−1φ = [g−1, φ] · φ .

Then since W ′2 = {[a, b, c] : a, b, c ∈ Fq} we see that W ′2 6= W ′2 · φ.

We can choose the following 2q2 distinct coset representatives of the factor
group W2/W

′
2 :
{

[α, β, 0] ◦ φi : α = 0 + ai, β = 0 + bi, i = 0, 1
}
.

Put W2 = W2/W
′
2 and represent its elements as triples;

W2 = {(a, b, i) : a, b ∈ Fq, i = 0, 1} .

Lemma 3.7 ([6]). Let G be a finite p-group where Φ(G) is the Frattini subgroup.
Then Φ(G) = G′Gp where G′ is the commutator subgroup and Gp is the subgroup
of G generated by all pth powers. Moreover, G/Φ(G) is a vector space over GF(p).

Theorem 3.8. The factor group W2 is a vector space over GF(2).

Proof. Every non-identity element in W2 has order two or four. Moreover, if
|g| = 4 it is easy to show that g2 ∈ S′2. It follows that W 2

2 ≤ W ′2, and W ′2 =

Φ(W2).

We can treat F as an e-dimensional vector space over GF(2). Then for a fixed
ζ ∈ F∗, the map

trζ(x) =

e−1∑

i=0

(ζx)2i

is a linear functional; i.e., trζ : F 7→ GF(2). Letting ζ vary over F∗ gives us
exactly q − 1 non-zero linear functionals on F, and for each ζ ∈ F∗ there corre-
sponds a unique hyperplane in F giving q − 1 distinct hyperlplanes. But every
hyperplane of F corresponds to a non-zero vector in F. Hence {trζ : ζ ∈ F∗}
gives us all linear functionals from F to GF(2).

Next, for some ζ ∈ F define the map Tζ,σ : W2 → GF(2) as Tζ,σ(a, b, i) =

trζ(a) + trσ(b) + i. This is a linear functional from W2 onto GF(2). The kernel
is a hyperplane and it is easy to see that the vector (0, 0, 1) is not in the kernel
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of Tζ,σ. This gives us q2 hyperplanes of S2/S
′
2 without the vector (0, 0, 1) and

these correspond to subgroups of W2 with order q5 that do not contain any
conjugates of φ. That is, these hyperplanes correspond to elation groups about
the point p. If we then define the map T ∗ζ,σ(a, b, i) = trζ(a) + trσ(b) we get the
other q2 hyperplanes of W2, each one containing the vector (0, 0, 1). Each of
these hyperplanes corresponds to a subgroup of W2 of order q5 that contains
conjugates of φ.

We have shown that there are q2 elation groups about the point p = (0, 0, 0, 1).
Furthermore, PΓU(4, q2) is transitive on the points of H(3, q2) and this holds for
all points on the Hermitian surface. We summarize in the following theorem.

Theorem 3.9. Given a point p of H(3, q2), there are exactly q2 elation groups of
H(3, q2) about p.

We represent these groups in W2 as follows. For some ζ ∈ F and α ∈ F2,
define the map Tζ(α) = trζ(α + αq) ∈ GF(2). Then using Observation 3.1 we
see that for each pair ζ, σ ∈ F we get an elation group

Eζ,σ =
{

[α, β, µ] ◦ φTζ(α)+Tσ(β) : αβq + βαq + µ+ µq = 0
}
.

We refer to E0,0 as the familiar group and the other q2 − 1 groups as exotic.

Theorem 3.10. All of the q2 − 1 exotic elation groups are pairwise isomorphic.

Proof. We represent E1,0 as a subgroup of PΓU(4, q2), the entire stabilizer of
H(3, q2). Recall that ifA,B ∈ PGU(4, q2) and σ, σ′ ∈ Aut(F2), then in PΓU(4, q2)

we have the group product

(A ◦ σ) ∗ (B ◦ σ′) =
(
A ·Bσ−1

)
◦ (σ · σ′) ,

where B σ−1

= [b σ
−1

ij ].

It is well known that |PΓU(4, q2)| = 2e ·q6(q+1)2(q3 +1)(q4−1). We first look
at that particular Sylow

2
subgroup of PGU(4, q2) which is the subgroup of all

upper-triangular matrices with ones on the diagonal. We denote this group as
M2. For a matrix M to be in PGU(4, q2) it must satisfy MB(M q)T = B, where
B is the bilinear form associated with H(3, q2). Therefore,

M2 =








1 a b c

0 1 d bq + aqd

0 0 1 aq

0 0 0 1


 :

abq + aqb+ c+ cq = 0

d = dq




.

This subgroup has order q6 and is the stabilizer of the flag (L, p), where L is
the line given by x1 = x2 = 0 and p = (0, 0, 0, 1). If we adjoin each field
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automorphism whose order is a power of two we get a Sylow
2

subgroup of
PΓU(4, q2). The normalizer in PGU(4, q2) of M2, which we denote by NM2 , is
the group of all upper-triangular matrices.

NM2 =








1 x y z

0 w−q r yqw + rxq

0 0 w xqw−q

0 0 0 1


 :

xyq + xqy + z + zq = 0

rwq = wrq

w 6= 0




.

If we adjoin all the automorphisms of F2 this gives us the normalizer, which
we denote as N∗M2

, of the Sylow2 subgroup of PΓU(4, q2). Moreover, |N∗M2
| =

2e ·q6(q2−1). We next show that the index of the normalizer of an exotic elation
group in N∗M2

is q2−1. That is, we show that the normalizer of an exotic elation
group in N∗M2

has order 2e · q6.

First note that all of the field automorphisms normalize the elation group
E1,0. So we consider the normalizer of E1,0 in NM2 . Choose the element

g = M ◦ φT1(α) =




1 α β µ

0 1 0 β̄

0 0 1 ᾱ

0 0 0 1


 ◦ φ

T1(α)

in E1,0 and choose an arbitrary matrix A ∈ NM2 , so that A ·g ·A−1 = B ◦φT1(α),

where B = AM
(
A−1

)qT1(α)

. First, when T1(α) = 1 we have B21 = wq−q
2

=

wq−1 = 1 if and only if w ∈ F. Then, with w ∈ F we have

B12 = w(xq
T1(α)

+ x+ α) .

It follows that

T1[w(xq
T1(α)

+ x+ α)] = T1[w(xq
T1(α)

+ x) + wα]

= T1[w(xq
T1(α)

+ x)] + T1(wα) = T1(wα)

for all α ∈ F2, and that w = 1. Then, given w = 1, we must have B23 =

r+rq
T1(α)

= 0, and r ∈ F. Given these conditions on w and r we have AgA−1 =
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C ◦ φT1(α) where

C =




1 xq
T1(α)

+ x+ α
r(xq

T1(α)

+ x+ α)

+ y + yq
T1(α)

+ β
∗

0 1 0
r(x̄q

T1(α)

+ x̄+ ᾱ)

+ ȳ + ȳq
T1(α)

+ β̄

0 0 1 x̄q
T1(α)

+ x̄+ ᾱ

0 0 0 1




,

and

∗ = µ+ z + zq
T1(α)

+ β̄x+ βx̄q
T1(α)

+ ᾱy + ᾱq
T1(α)

y + αȳq
T1(α)

+ xȳq
T1(α)

+ x̄q
T1(α)

yq
T1(α)

+ xq
T1(α)

ȳq
T1(α)

.

So AgA−1 ∈ E1,0 for all choices x, y, z satisfying xȳ + yx̄ + z + z̄ = 0, and the
normalizer of E1,0 in N∗M2

has order 2e · q6. Hence, there are q2 − 1 conjugates
of E1,0 in N∗M2

. It follows that all q2− 1 exotic elation groups are conjugate and
hence isomorphic.

From now put E = E1,0 and T = T1. Further, we will denote an element
[α, β, µ] ◦ φT (α) as simply [α, β, µ]. Let x̄ = xq , and if we define the map α̂ : x 7→
xα̂ = xq

T (α)

we have the following binary operation in E.

[α, β, µ] ∗ [α′, β′, µ′] = [α+ α′α̂, β + β′α̂, µ+ µ′α̂ + α(β̄′)α̂ + β(ᾱ′)α̂] .

Moreover, straightforward computations give us

[α, β, µ]−1 = [αα̂, βα̂, µα̂ + (ᾱβ)α̂ + (β̄α)α̂] .

The following properties of the function α̂ will help with computations.

Lemma 3.11. Suppose a, b ∈ F2 and c ∈ F. Then for any x ∈ F2 we have

(i) x0̂ = x.

(ii) xâ = x̂̄a.

(iii) xĉ = x.

(iv) x(̂ab̂) = xâ.

(v) xâ+b =
(
xâ
)b̂

=
(
xb̂
)â

.
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Theorem 3.12. Each of the exotic elation groups of H(3, q2) is not isomorphic to
the familiar example.

Proof. In the familiar example the center of the group is equal to the commu-
tator subgroup and E0,0 has nilpotency class 2. However, each of the exotic
elation groups has nilpotency class 3. To see this choose g = [α, β, µ] and
h = [α′, β′, µ′] in E and compute [g, h]. Using the facts in Observation 3.11
we arrive at [g, h] = [a, b, c], where

a =
(
α+ αα̂

′
)α̂

+
(
α′ + α′α̂

′
)α̂′

,

b =
(
β + βα̂

′
)α̂

+
(
β′ + β′α̂

′
)α̂′

.

Now consider the following cases:

(i) α̂ = α̂′ = 1: Then [g, h] = [0, 0, c] with c ∈ F.

(ii) α̂ = α̂′ = q: Then [g, h] = [α+ ᾱ+ α′ + ᾱ′, β + β̄ + β′ + β̄′, c] with c ∈ F.

(iii) α̂ = 1 and α̂′ = q: Then [g, h] = [α+ ᾱ, β + β̄, c] with c ∈ F.

(iv) α̂ = q and α̂′ = 1: Then [g, h] = [α′ + ᾱ′, β′ + β̄′, c] with c ∈ F.

Clearly, in case (ii) we have â = 1, where a = (α+α′)+(α+ α′). So the possible
values taken by the first coordinate in this case are a subset of the possible
values of the first coordinate in cases (iii) and (iv). Then since the relative trace
function trq : x 7→ x + xq is a homomorphism from F2 → F, it follows that
there are q/2 possible choices for the first coordinate of any commutator. It is
then easy to see that for [g, h] = [a, b, c] the coordinate b can take on all possible
elements of F. Next choose, α, α′, β′ ∈ F, and we get [g, h] = [0, 0, α′(β + β̄)],
and we have all of F as possible entries in the third coordinate c. Then since the
product of two commutators is again a commutator we get E ′ = {[α + ᾱ, b, c] :

b, c ∈ F; α ∈ F2 and α̂ = 1} and |E′| = q3/2.

Finally, using case (iv) from above, we see that if h ∈ E ′, then [g, h] is in
Z(E) and E has nilpotency class 3.

We summarize the above with the following main result.

Theorem 3.13. Let S = H(3, q2) and p be any point of S. Then, up to isomor-
phism, there are exactly two elation groups about p.

We also observe that Z(E) = {[0, 0, c] : c ∈ GF(q)} = Z(E0,0).
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4 Looking forward

Consider the important theorem due to R.C. Bose.

Theorem 4.1 (Bose). Let S = (P,B, I) be a GQ of order (q2, q). Then every set
of three pairwise non-concurrent lines has exactly q + 1 transversals.

We can now give the following definition.

Definition 4.2. A GQ S with parameters (q2, q) has Property (G) at the point p
provided the following holds. Let L1 and M1 be distinct lines incident with the
point p. Let M1,M2,M3,M4 be distinct lines and L1, L2, L3, L4 be distinct lines
for which Li ∼Mj whenever i+ j ≤ 7. Then L4 ∼M4.

One of the most powerful recent results characterizing flock-GQ by Prop-
erty (G) was given by J. A. Thas in [7], with one missing case in characteristic
two, which was completed by M. Brown in [1].

Theorem 4.3 (J. A. Thas and M. Brown). Let S = (P ,B, I) be a GQ(q, q2),
q > 1, and assume that S satisfies Property (G) at some line l. Then S is the dual
of a flock-GQ.

Theorem 4.4 (S.E. Payne and K. Thas). Let S(F) be a non-classical flock gener-
alized quadrangle of order (q2, q), q > 1, q even. Then the set of all elations about
(∞) does form a group.

The previous theorems should be helpful in characterizing any EGQ admit-
ting an exotic elation group. This is the most obvious question. Another problem
worth considering is the following.

Question 4.5. Are there any non-classical EGQ admitting one of the exotic elation
groups?

Another problem worth considering is the following.

Question 4.6. If G is an elation group, is there a bound on the nilpotency class
of G?

We should remark that a very different and independent approach to the
problem of whether an EGQ admits a non-classical elation group with base point
p appears in a paper by K. Thas [8]. The author offers the following conjecture.

Conjecture 4.7. Let S = (S(p), G) be an EGQ with Kantor-family {G,F, F ∗}
and suppose that, for some A∗ ∈ F ∗, A∗ is not normal in G. Then S (which has
order (s, t)) has non-isomorphic (full) elation groups, and S has a sub-GQ of order
(s/t, t) fixed pointwise by some non-trivial collineation (possibly under some mild
extra assumption).
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