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Abstract

In this paper we define a ruled algebraic surface of PG(3, q2), called a
hyperbolicQF -set and we prove that it is contained in the Hermitian surface
of PG(3, q2). Also, we characterise a hyperbolic QF -set as the intersection
of two Hermitian surfaces.

Keywords: Hermitian surface, collineation.

MSC 2000: 51E20, 05B25.

1 Introduction

Let PA and PB be the pencils of lines with vertices two distinct points A and
B in PG(2, q2). Let αF be the involutory automorphism of GF (q2) given by
x ∈ GF (q2) 7→ xq ∈ GF (q2) and let Φ be an αF -collineation between PA and
PB . If Φ does not map the line A∨B onto the line B∨A, then the set of points of
intersections of corresponding lines under Φ is called a CF -set (see [3], [4]). If
Φ maps the line A∨B onto the line B∨A, then the set of points of intersections
of corresponding lines under Φ is called a degenerate CF -set (see [5]).

Every CF -set has q2 + 1 points, it is of type (0, 1, 2, q+ 1) with respect to lines
of PG(2, q2) and every (q+ 1)-secant line intersects such a set in a Baer subline.
The (q+ 1)-secant lines number q− 1 and all contain a common point C not on
the CF -set. Those lines, together with the lines C ∨ A and C ∨ B, form a Baer
subpencil. The point C is called the centre of the CF -set. Also, every CF -set is
projectively equivalent to the algebraic curve with equation

x1x
q
2 − xq+1

3 = 0.

Under the André–Bruck–Bose representation of PG(2, q2) in PG(4, q) these
subsets correspond to three-dimensional elliptic quadrics contained in suitable
hyperplanes of PG(4, q).
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Every degenerate CF -set has 2q2+1 points, it is of type (1, 2, q+1, q2+1) with
respect to lines of PG(2, q2) and every (q + 1)-secant line intersects such a set
in a Baer subline. Also, every degenerate CF -set is the union of the line A ∨ B
and a Baer subplane meeting the line A∨B in a Baer subline. Every degenerate
CF -set is projectively equivalent to the algebraic curve with equation

x3(x1x
q−1
2 − xq2) = 0.

The points A and B are called the vertices of a CF -set (degenerate or not).

Observe that the construction of a CF -set (degenerate or not) is a variation
of Steiner’s projective construction of conics.

In a similar way, we obtain an algebraic surface of PG(3, q2) by using a vari-
ation of Steiner’s projective generation of hyperbolic quadrics.

2 Definition and properties

Let a and b be two skew lines of the projective space PG(3, q2) and let Pa and Pb
be the pencils of planes with axes a and b. Let Φ be an αF -collineation between
Pa and Pb; the set of points of intersection of corresponding planes under Φ is
called a hyperbolic QF -set. In [3] it is proved that every hyperbolic QF -set of
PG(3, q2) is projectively equivalent to the algebraic surface with equation

x1x
q
4 − x2x

q
3 = 0.

The lines a and b are called the axes of the hyperbolic QF -set.

Every hyperbolicQF -set has (q2 +1)2 points and it is the union of q2 +1 skew
lines, each a transversal of a and b. These lines, together with a and b, are all
the lines contained in a hyperbolic QF -set.

In the following two propositions we investigate the intersection of a hyper-
bolic QF -set with lines and planes of PG(3, q2).

Proposition 2.1. Every line of PG(3, q2) intersects a hyperbolicQF -set in 0, 1, 2, q+

1 or q2 + 1 points. The (q+ 1)-secant lines intersects a hyperbolic QF -set in a Baer
subline.

Proof. Let Q be a hyperbolic QF -set defined by an αF -collineation Φ between
the pencils of planes with axes two skew lines a and b of PG(3, q2). For a line `
of PG(3, q2), four cases are distinguished.

(1) Either ` = a or ` = b.

In this case ` is a (q2 + 1)-secant line.
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(2) ` is a transversal line of a and b.

In this case, if Φ(a ∨ `) = b ∨ l, then ` is a (q2 + 1)-secant line. Otherwise
` intersects Q exactly in two points, one on a and one on b. Hence ` is a
2-secant line.

(3) ` intersects a and it is skew with b.

Since the plane a ∨ ` intersects Q in the union of the two lines a and
Φ(a ∨ `) ∩ (a ∨ `), it follows that ` is a 1-secant or 2-secant line. The same
argument holds if ` intersects b and is skew to a.

(4) ` is skew with both a and b.

In this case the αF -collineation of the line ` defined by

φ` : P ∈ ` 7−→ Φ(a ∨ P ) ∩ ` ∈ `

has ` ∩ Q as set of fixed points. It follows from [2] that ` intersects Q in
0, 1, 2, or q + 1 points and, if ` is a (q + 1)-secant line to Q, then `∩Q is a
Baer subline of `.

Proposition 2.2. Every plane of PG(3, q2) intersects a hyperbolicQF -set in a pair
of distinct lines, in a CF -set or in a degenerate CF -set.

Proof. Let Q be a hyperbolic QF -set defined by an αF -collineation Φ between
the pencils of planes with axes two skew lines a and b of PG(3, q2). For a plane
π of PG(3, q2), two cases are distinguished.

(1) π contains either a or b.

If π contains a, then π∩Q is the union of two distinct lines a and π∩Φ(π).
The same argument holds if π contains b.

(2) π contains neither a nor b.

In this case Φ induces an αF -collineation between the pencils of lines
PA(π) and PB(π) of π with vertices A = π ∩ a and B = π ∩ b defined by:

Φπ : ` ∈ PA(π) 7−→ Φ(a ∨ `) ∩ π ∈ PB(π).

Observe thatQ∩π is the set of points of intersection of corresponding lines
under Φπ. Hence Q ∩ π is a CF -set which is degenerate or not according
as Φπ maps the line A ∨ B onto itself or not.
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In [4] and [5] it is shown that, given in PG(2, q2) two points A and B and a
Baer subline `0 of a line `, with A and B not on `, there exists only one CF -set,
possibly degenerate, with vertices A and B containing `0.

A similar result holds for hyperbolicQF -sets as shown in the following propo-
sition.

Proposition 2.3. Let a and b be two skew lines of PG(3, q2), let ` be a line skew to
both a and b, and let `0 be a Baer subline of `. Then there exists a unique hyperbolic
QF -set of PG(3, q2) with axes a and b that meets ` in `0.

Proof. There exists a bijective map Ψ between the set of αF -collineations of the
line ` into itself and the set of the αF -collineations between the pencils of planes
Pa and Pb with axes a and b. Given f and Ψ, there exists the αF -collineation
Ψf defined by:

Ψf : π ∈ Pa 7−→ f(π ∩ r) ∨ b ∈ Pb.
By Lemma 3.2 in [4] there exists a unique αF -collineation f0 of the line `

into itself fixing the Baer subline `0 pointwise. Hence Ψf0 is the unique αF -
collineation between Pa and Pb such that every point on `0 belongs to the inter-
section of corresponding planes. Hence the hyperbolic QF -set defined by Ψf0 is
the unique one with axes a and b containing `0.

It is known that given, in a three-dimensional projective space, two skew
lines a and b and a non-degenerate conic C in a plane π neither through a nor
through b, there exists a unique hyperbolic quadric containing a, b and C.

A similar result holds for hyperbolicQF -sets as shown in the following propo-
sition.

Proposition 2.4. Let a and b be two skew lines of PG(3, q2), let π be a plane
containing neither a nor b, and let A = a ∩ π, B = b ∩ π. If C is a CF -set,
possibly degenerate, contained in π with vertices A and B, then there exists a
unique hyperbolic QF -set of PG(3, q2) with axes a and b containing C.

Proof. Let ` be a (q+1)-secant line to C contained in π and let `0 = `∩C. Since `
contains neitherA norB, it follows that ` is skew to both a and b. By Proposition
2.3 there exists a unique QF -set Q of PG(3, q2) generated by an αF -collineation
Φ between the pencils of planes with axes a and b and containing `0. The map
Φ induces an αF -collineation Φπ between the pencils of lines of π with vertices
A and B defined by:

Φπ : r ∈ PA(π) 7−→ Φ(r ∨ a) ∩ π ∈ PB(π).
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The points of `0 are points of intersection of corresponding planes under Φ,
hence these are points of intersections of corresponding lines under Φπ. It fol-
lows that the CF -set of the plane π defined by Φπ contains the subline `0 and
hence it coincides with C; see Proposition 3.3 in [4] and Proposition 2.3 in [5].
Since the points of C are points of intersection of corresponding lines under Φπ,
they also belong to the intersection of corresponding planes under Φ. Hence Q
contains C.

Proposition 2.5. Let `,m, n be three skew lines of PG(3, q2), and let a and b be
two transversal lines of `,m, n. Then there exists a unique hyperbolic QF -set with
axes a and b containing `,m, n.

Proof. By duality we can construct a hyperbolicQF -set as the set of lines joining
corresponding points under an αF -collineation between the lines a an b. Let
L = ` ∩ a,M = m ∩ a,N = n ∩ a, L′ = ` ∩ b,M ′ = m ∩ b,N ′ = n ∩ b. We may
choose a frame of PG(3, q2) such that

L = (1, 0, 0, 0), M = (0, 1, 0, 0), N = (1, 1, 0, 0),

L′ = (0, 0, 1, 0), M ′ = (0, 0, 0, 1), N ′ = (0, 0, 1, α),

with α 6= 0. The αF -collineation,

f : (x1, x2, 0, 0) ∈ a 7−→




0 0 0 1

0 0 1 0

1 0 0 0

0 α 0 0







x1
q

x2
q

0

0


 ∈ b,

maps L to L′, M to M ′, and N to N ′; so it defines a hyperbolic QF -set with
axes a and b containing `,m, n.

Let f and g be two αF -collineations between a and b mapping L,M,N onto
L′,M ′, N ′, respectively. Then the projectivity g−1 ◦ f of the line a fixes the
points L,M,N and so is the identity. Hence f = g. This proves that there exists
a unique hyperbolic QF -set with axes a and b containing `,m, n.

Let Q be a hyperbolic QF -set of PG(3, q2) with axes a and b generated by an
αF -collineation Φ, and let ` be a transversal line of a and b that is a 2-secant
line to Q. There are q2 − 1 planes π1, . . . , πq2−1 through ` such that πi ∩Q = Ci
is a CF -set with centre Ci and two planes `∨ a and `∨ b intersecting Q in a pair
of distinct lines.

Let C be a CF -set of PG(2, q2) with vertices A and B and with centre C,
defined by an αF -collineation Φ between the pencils of lines PA and PB . Recall
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that Φ maps the line A∨B onto the line B ∨C and the line A∨C onto the line
B ∨ A.

Proposition 2.6. The centres Ci of the q2 − 1 CF -sets Ci are on a common line.

Proof. Let A = `∩ a and B = `∩ b. Let ai = A∨Ci and let bi = B ∨Ci. We will
prove that the line (a ∨ ai) ∩ (b ∨ bi) is independent of i and hence contains all
points Ci.

The collineation Φ maps the plane a∨ak to the plane b∨ ` and the plane a∨ `
to the plane b ∨ bk for every k, since Φ induces on πk a collineation between
pencils of lines with vertices πk ∩ a and πk ∩ b which maps ak = A ∨ Ck onto
` = A∨B and ` onto bk = B∨Ck . It follows that a∨ai = a∨aj and b∨bi = b∨bj .
The assertion follows.

3 Hyperbolic QF -sets and Hermitian surfaces

A Hermitian surface of PG(3, q2) is the set H of all absolute points of a non-
degenerate unitary polarity. It has (q2 + 1)(q3 + 1) points, and every line of
PG(3, q2) intersects H in 1, q+ 1 or q2 + 1 points. The (q + 1)-secant lines each
intersect H in a Baer subline. Every plane of PG(3, q2) intersects H either in a
Hermitian curve or in a Baer subpencil.

In [4] it is shown that every Hermitian curve of PG(2, q2) contains CF -sets.
In the following proposition we prove that every Hermitian surface of PG(3, q2)

contains hyperbolic QF -sets.

Proposition 3.1. Let H be a Hermitian surface of PG(3, q2) and let a and b be
two skew lines contained in H. Then there exists a hyperbolic QF -set with axes a
and b contained in H.

Proof. Let u be the polarity associated with H. Let α be a plane of the pencil
with axis a. Since a is contained in H, it follows that u(α) is on a. Hence the
following map may be defined:

Φ : α ∈ Pa 7−→ b ∨ u(α) ∈ Pb.

Since Φ is an αF -collineation, the set of points of intersection of corresponding
planes under Φ is a hyperbolicQF -set, sayQ, of PG(3, q2). Also, for every plane
α ∈ Pa, the line Φ(α) ∩ α = (b ∨ u(α)) ∩ α, contained in Q, joins the two points
points u(α) and α ∩ b, which are conjugate with respect to the polarity u, and
hence is contained in H. Therefore Q is contained in H.
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A set of k mutually skew lines contained in a Hermitian surface H is called a
k-span. A k-span ofH is called H-complete if it is not contained in a (k+1)-span
of H. In [6] the following has been proved.

Proposition 3.2. The q2+1 lines meeting two skew lines ofH form anH-complete
span.

Here we prove the following result.

Proposition 3.3. Let H be a Hermitian surface of PG(3, q2). The union of the
lines on H meeting two skew lines a and b of H is a hyperbolic QF -set with axes a
and b.

Proof. Let u be the polarity associated with H. The αF -collineation,

Φ : α ∈ Pa 7→ b ∨ u(α) ∈ Pb,
gives a hyperbolic QF -set Q of PG(3, q2) contained in H. Let ` be a transversal
line of a and b contained in H and let P = ` ∩ a. The plane a ∨ ` is the tangent
plane to H at P since the lines a and ` are contained in H. So u(a∨ `) = P and
hence Φ(a ∨ `) = b ∨ P and Φ(a ∨ `) ∩ (a ∨ `) = `. It follows that ` ⊆ Q. Since
the points and the lines of H form a generalized quadrangle, it follows that the
lines on H meeting a and b number q2 + 1. Hence the union of the lines on H
meeting a and b coincides with Q.

In [9] B. Segre gives the following definition. If H and H′ are Hermitian
surfaces of PG(3, q2) with associated polarities u and u′, then H and H′ are
permutable Hermitian surfaces if and only if uu′ = u′u. Also, in [9] the following
is proved.

Result 3.4. If q is odd and H,H′ are permutable Hermitian surfaces of PG(3, q2),
then uu′ is a projectivity with two skew lines a, b of fixed points (Biaxial harmonic
involutorial collineation).

Under the hypothesis of the previous theorem, the lines a and b are called
fundamental lines of H and H′. In [1] the following is proved.

Result 3.5. If q is odd, H,H′ are permutable Hermitian surfaces of PG(3, q2)

and the fundamental lines a, b are contained in H ∩ H′, then H ∩ H′ is a ruled
determinantal variety and it is a complete H-span.

A similar result obtains for QF -sets.

Proposition 3.6. LetH andH′ be distinct Hermitian surfaces of PG(3, q2), q > 2,
with associated polarities u and u′, and let a and b be two skew lines contained in
H∩H′. Then H∩H′ is a hyperbolic QF -set with axes a and b if and only if u and
u′ agree on the points of a ∪ b.
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Proof. Suppose that H ∩ H′ is a hyperbolic QF -set Q of PG(3, q2). Let P be
a point on the line a and let `P = (P ∨ b) ∩ u(P ) be the unique line through
P contained in Q, different from a. The line `P is the unique line through P

contained in H which is a transversal of a and b. Let `′P = (P ∨ b)∩u′(P ) be the
unique line through P contained in H′ which is a transversal of a and b. Since
Q = H∩H′, we have that `′P = `P , hence u(P ) = u′(P ). This proves that u and
u′ agree on the points of a. In a similar way u and u′ agree on the points of b.

Conversely, if u and u′ agree on the points of a ∪ b, then u and u′ agree also
on the planes through a. Consider the following αF -collineations:

Φ : α ∈ Pa 7−→ b ∨ u(α) ∈ Pb,
Φ′ : α ∈ Pa 7−→ b ∨ u′(α) ∈ Pb.

Since u and u′ agree on the planes through a, so Φ = Φ′ and hence they define
the same QF -set, say Q. From Proposition 3.1 it follows that Q is contained in
H ∩H′.

It is now shown that Q = H ∩H′. Suppose, on the contrary, that there exists
a point C ∈ (H ∩ H′) \ Q. Let u(C) be the tangent plane to H at C. Any line
contained in Q is also contained in H and does not contain C. Hence any line
contained in Q is not contained in u(C), since the lines of H contained in u(C)

all pass through C. It follows that a and b are not contained in u(C) and so they
intersect u(C) in A and B respectively. Since the line A ∨ B is not contained in
Q, the plane u(C) intersects Q in a CF -set C. Also, the line C ∨ A intersects Q
only in A. Indeed, if there is a further point P on (C ∨ A) ∩ Q, the unique line
` through P contained in Q together with a and P ∨ A would give a triangle
contained in H. In the same way, the line C ∨ B intersects Q only in B. Hence
C is the union of the points A and B with q− 1 Baer sublines each of them on a
line of the Baer subpencil u(C) ∩ H different from C ∨ A and from C ∨ B (see
[2], [4]). Since Q ⊂ H∩H′, it follows that C is contained in bothH∩u(C) and
H′ ∩ u(C).

Each of the q − 1 lines of the Baer subpencil u(C) ∩ H, other than C ∨ A
and C ∨ B, intersects H′ in at least q + 2 points, since C ∈ H′, and hence it is
contained inH′. It follows that, for q ≥ 3, there are at least two lines of the Baer
subpencil u(C)∩H that are contained inH∩H′, hence u(C)∩H = u(C)∩H′, so
u(C) = u′(C). Therefore uu′(C) = C and since uu′ is a projectivity of PG(3, q2)

fixing a and b pointwise, it follows that uu′ is the identity. Hence u = u′ and so
H = H′, a contradiction.

From the last proposition the following result holds.

Proposition 3.7. LetH andH′ be two permutable Hermitian surfaces of PG(3, q2),
q odd. If the skew fundamental lines a and b lie on H, then the intersection of H
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and H′ is a hyperbolic QF -set with axes a and b.

Let l,m, n be three skew lines of PG(3, q2) contained in a Hermitian surface
H and let Q+ be the hyperbolic quadric of PG(3, q2) containing l,m, n. We will
show that H ∩Q+ is the union of two Baer subreguli.

Indeed, let a and b be two transversal lines of l,m, n contained in H. Let R
be the regulus containing l,m, n and letR′ be its opposite regulus. Let R be the
Baer subregulus of R containing l,m, n. Let t be a line of R not in R. The line t
meetsH in two points, namely t∩a and t∩b. It follows that either |t∩H| = q+1

or t is contained in H.

As in the proof of Proposition 2.5, let f : a 7−→ b be the αF -collineation
generating the unique hyperbolicQF -set, Q, with axis a and b containing l,m, n
and let g : a 7−→ b be the projectivity generating the unique hyperbolic quadric
Q+ containing l,m, n. The maps f and g agree on the points of a Baer subline
a0 of a since f and g agree on the points l ∩ a,m∩ a, n∩ a. The point t∩ a does
not belong to a0, and hence t is not contained in Q. Since Q is the union of all
the transversal lines of a and b contained in H, it follows that t is not contained
in H. Hence t meets H in a Baer subline t0.

Through every point P of t0 there is a unique line of R′. This line meets H
in at least q + 2 points, and therefore is contained in H ∩ Q+. This show that
Q+ ∩H contains the union of the two Baer subreguli R and R′, where R′ is the
Baer subregulus of R′ whose lines meet the points of t0.

Let k be a line of R not in R and let P = k ∩ a. It follows that P /∈ a0, and
hence f(P ) 6= g(P ); therefore the line k is not contained in Q and hence it is
not contained in H. So k ∩ H contains only the points of intersection between
k and the lines of R′. Hence Q+ ∩ H is the union of the two Baer subreguli R
and R′.

This shows that the following proposition holds.

Proposition 3.8. Let l,m, n be three skew lines of PG(3, q2) contained in a Her-
mitian surface H and let Q+ be the hyperbolic quadric of PG(3, q2) containing
l,m, n. Then H ∩Q+ is the union of two Baer subreguli.

4 Representation on the Klein quadric

The lines of PG(3, q2) are represented under the Plücker map by the points of
the Klein quadric Q+(5, q2) of PG(5, q2). In this section we describe the set of
points on the Klein quadric representing the lines of a hyperbolic QF -set.

First we observe the following. Let a and b be two skew lines of PG(3, q2)

which are conjugate with respect to the Frobenius involutory automorphism αF
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of GF (q2), and let Σ = PG(3, q) be the set of self-conjugate points with respect
to αF . The map f sending a point on a to its conjugate point on b is an αF -
collineation; hence the set of lines joining every point P of a to the point f(P )

on b form a hyperbolic QF -set of PG(3, q2). Also, these lines intersect Σ in lines
of a regular spread of Σ, [8, Section 17.1]). Conversely, the lines of a regular
spread of Σ = PG(3, q), when extended to PG(3, q2), form a hyperbolic QF -set.

Let S be a regular spread of Σ = PG(3, q). The lines of S are represented,
under the Plücker map, by the points of an elliptic quadric Q−(3, q) obtained
as intersection of the Klein quadric Q+(5, q) with a 3-dimensional subspace of
PG(5, q); see, for example [8, Section 15.4]).

Since the lines of a hyperbolic QF -set of PG(3, q2) are the q2 + 1 extended
lines of a regular spread of Σ together with the axes a and b, it follows that
those lines are represented, under the Plücker map, by the points of an elliptic
quadricQ−(3, q) obtained as the intersection of the Klein quadricQ+(5, q2) with
a 3-dimensional Baer subspace of PG(5, q2) together with the two other points
a∗ and b∗ of Q+(5, q2) which represent the lines a and b.

Finally, it should be noted that in [7] J. W. Freeman studied certain partial
spreads of PG(3, q2) called pseudoreguli. A pseudoregulus of PG(3, q2) is the set
of q2 + 1 lines of a regular spread of Σ = PG(3, q), when extended to lines of
PG(3, q2). Hence given a hyperbolicQF -setQ with axes a and b, the q2 +1 lines
of Q different from a and b form a pseudoregulus; conversely, the q2 + 1 lines of
a pseudoregulus of PG(3, q2) form a hyperbolic QF -set.
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