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Abstract

In this note we prove two theorems which contribute towards the clas-
sification of line-transitive designs. A special class of such designs are the
projective planes and it is this problem which the paper addresses. There
two main results:-

Theorem A: Let G act line-transitively on a projective plane P and let M
be a minimal normal subgroup of G. Then M is either abelian or simple or
the order of the plane is 3, 9, 16 or 25.

Theorem B: Let G be a classical simple group which acts line-transitively
on a projective plane. Then the rank of G is bounded.

Keywords: projective planes, simple groups

MSC 2000: 51A35 (primary), 20B25 (secondary)

1 Introduction

This paper is part of an ongoing programme to classify line-transitive automor-
phism groups of finite linear spaces. A special class of such spaces are the pro-
jective planes. This problem ought to be straightforward. In a classical paper
[14] A. Wagner has shown that if there are perspectivities then the plane is De-
sarguesian. It is then easy to see that the group of automorphisms, say G, is a
subgroup of PGL(3, q) containing PSL(3, q) for some prime-power q.

Now let G be a line-transitive automorphism group of a projective plane of
order n. Then an involution in G is either a perspectivity or a Baer involution
and will fix a subplane of order

√
n. It would appear that this is a strong condi-

tion but seems to give less information than one might expect. In fact Kantor in
[9] was unable to use this fact when considering the case when G is primitive.
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The number of lines (and points) in a projective plane is n2 + n + 1 and this
number is always odd. This plays a key part in Kantor’s classification.

In this paper we prove two main theorems. Both of these theorems are known
if G contains perspectivities, Theorem 1.1 is an immediate consequence of [7,
Theorem 3.18]. Theorem 1.2 is a consequence of the main result in the previ-
ously quoted paper of A. Wagner.

Theorem 1.1. Let G act line-transitively on a projective plane P and let M be a
minimal normal subgroup of G. Then M is either abelian or simple or the order of
the plane is 3, 9, 16 or 25.

In the proof of this theorem we already know that there is at most one non-
abelian minimal normal subgroup, [1, Theorem 2]. So to complete the proof
we need only consider those groups which have just one non-abelian minimal
normal simple subgroup.

Theorem 1.2. Let G be a classical simple group which acts line-transitively on a
projective plane. Then the rank of G is bounded.

It will always be assumed that we are considering a projective plane with
an automorphism group which is transitive on lines (and points). Since we
know that an involution is either a perspectivity or a Baer involution, see [8,
IV.4.3] it can be assumed in the proofs that all involutions are Baer involutions.
There are many papers which consider the action of simple groups on projective
planes which make the converse assumption that there are perspectivities, for
example, [13, 12, 11]. There are also papers which consider specific groups
acting with very few constraints; see for example [5].

Since PSL(3, q) is always represented as a transitive collineation group the
lower bound has to be 4 in the second theorem. By going through the proofs
with care a specific bound can be found, however since this is not best possible
it did not seem worth boring the reader with the details.

The following lemmas are quite well known but are put here for easy refer-
ence.

Lemma 1.3. [6, 20.9.1] Let P be a projective plane of order n. If Q is a subplane
of order m then m2 = n or m2 +m ≤ n.

Lemma 1.4. [6, 20.9.7] Let G be a line-transitive collineation group of a projec-
tive plane of order n. If an involution, s, is not a perspectivity then n is a perfect
square. Further s has exactly n+

√
n+ 1 fixed points.

We also know:-

Lemma 1.5. [8, XIII.13.1] Let A be an abelian collineation group of a projective
plane of order n then |A| ≤ n2 + n+ 1.
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2 Minimal Normal Subgroups

This section is devoted to the proof of Theorem 1.1. We note that by [1, Theo-
rem 2] G contains at most one non-abelian normal subgroup. We have to show
that if there is such a non-abelian normal subgroup then it is simple.

So assume that M is neither abelian nor simple. Then we can write M =

M1 ×M2 × · · · ×Md where d > 1 and each Mi is isomorphic to some simple
group. Let the projective plane have order n. We know from [1, Theorem 1] that
normal subgroups of G act faithfully on each orbit. Let N be a normal subgroup
of M . The set of fixed points ofN is the union of orbits of M and so N would be
in the kernel of the action of some orbit of M , contradicting the assertion that
M is faithful. Further since each Mi is simple, if it were to act unfaithfully on
an orbit it would have fixed points. This contradicts the assertion above. Hence
we may assume that each Mi acts without fixed points and faithfully on each of
its orbits.

Let T be a Sylow 2-subgroup of M . Since P has an odd number of points we
see that there is a point P so that T fixes P . Thus (Mi)P 6= 1 for 1 ≤ i ≤ d.
Since G acts transitively on P this must be true for all points P .

Choose P so that (M1)P has maximal order. We observe that [M2, (M1)P ] = 1

so PM2 consists of points fixed by (M1)P . Since Mj is faithful on all its orbits,
on points or lines, we see that PM2 contains at least 5 points as M2 is simple
non-abelian. Thus (M1)P fixes at least one line through P . The fixed set is
either a subplane or there exists a pair (P, l) where l is a line and every other
point fixed by (M1)P will be on l and every other fixed line will be incident with
P , [4, 3.1.2]. But as M2 does not fix any point or line we see that (M1)P fixes
a subplane whose order is at most

√
n, by Lemma 1.3

We now claim that for any line m incident with P there is a j so that (Mj)P
fixes m. Choose a line m incident with P . If (M1)P fixes m there is nothing
to prove. Let m1 be a line incident with P fixed by (M1)P , there is one by the
above argument. But G is transitive on lines so there is g ∈ G with m1.g = m.
Then Q = Pg is incident with m and ((M1)P )g fixes m. But there exists j so
that ((M1)P )g = (Mj)Q since g permutes the factors Mi. Let i 6= j. Then (Mi)P
commutes with (Mj)Q and so fixes the set of lines fixed by (Mj)Q. If (Mi)P
fixes m then we have proved our claim. If not we see that (Mj)Q fixes at least
two lines through P and so fixes P . However ((M1)P )g = (Mj)Q so by the
maximality of (M1)P we have that (Mj)Q = (Mj)P and the claim is proved.

We now count that each (Mj)P fixes at most
√
n+1 lines and so d(

√
n+1) ≥

n + 1. So d ≥ √n. Since M has an abelian subgroup of order at least 5d it
follows from Lemma 1.5 that n2 + n+ 1 ≥ 5d ≥ 5

√
n. This has no solutions.



194 Camina

3 Classical Simple Groups

Combining Lemmas 1.4 and 1.5 we get the following useful lemma.

Lemma 3.1. Let G act line-transitively on a projective plane of order n. Assume
that G contains an involution s with w conjugates in G and an abelian subgroup
A of order a. Then a ≤ 4w2.

Proof. Let z be the number of conjugates of s in GP , where GP is the stabiliser
of the point P . By counting we have that, using Lemma 1.4,

(n2 + n+ 1)z = (n+
√
n+ 1)w.

So we have the inequality n − √n + 1 ≤ w. This gives
√
n <

√
w + 1. So

n < 3w/2 and n2 + n+ 1 < 4w2.

We now use Lemma 1.5 to see that a ≤ n2 + n+ 1 and so the result follows.

Thus to prove Theorem 1.2 we need to find large abelian subgroups and
involutions with a small number of conjugates.

In the next lemma we list sizes of known abelian subgroups for the classical
groups.

Lemma 3.2. The following lists orders of some abelian subgroups for the relevant
groups. So in each case we have a lower bound for a.

1. PSL(2d+ 1, q) : a ≥ qd(d+1).

2. PSL(2d, q) : a ≥ qd2

.

3. PSp(2d, q) : a ≥ q(d(d+1))/2.

4. PSU(2d+ 1, q) : a ≥ qd(d+1).

5. PSU(2d, q) : a ≥ qd(d−1).

6. Ω(2d+ 1, q) : a ≥ qd(d−1)/2.

7. Ω+(2d, q) : a ≥ qd(d−1)/2.

8. Ω−(2d, q) : a ≥ q(d−1)(d−2)/2

Proof. For the estimates we need it is not hard to get the values above by con-
sidering certain matrix subgroups and using the forms given in Chapter 2 of
[10].
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Lemma 3.3. The following lists an upper bound for the number of conjugates, w,
of some involution.

1. PSL(2d+ 1, q) : w ≤ q2d(q2d+1 − 1).

2. PSL(2d, q) : w ≤ q4(d−1)(q2d − 1)(q2d−1 − 1)/(q2 − 1).

3. PSp(2d, q) : w ≤ q2d−2(q2d − 1)/(q2 − 1).

4. PSU(2d+ 1, q) : w ≤ q2d(q2d+1 + 1).

5. PSU(2d, q) : w ≤ q4d−2(q2d+1 − 1)(q2d + 1).

6. Ω(2d+ 1, q) : w ≤ 2q2d(q2d − 1).

7. Ω+(2d, q) : w ≤ (qd − 1)(qd−1 + 1)(q2d−4 − 1)/(q2 − 1).

8. Ω−(2d, q) : w ≤ qd + 1)(qd−1 − 1)(q2d−4 − 1)/(q2 − 1).

Proof. These are straightforward calculations, again using the matrix forms re-
ferred to above.

To prove Theorem 1.2 we note that logq(a) ≥ f(d) where f is quadratic in d,
Lemma 3.2. However logq(w) ≤ g(d) where g is linear in d, Lemma 3.3. Hence
for some d we get the result.

Corollary 3.4. Let G be a line-transitive collineation group of a projective plane
which has a non-abelian minimal normal subgroup, say M . Then M is either a
group of Lie type of bounded rank or an alternating group of small degree.

Proof. We know that M is simple. If M is alternating the results follow from
either [3] or [5]. If M is sporadic then the result follows from [2]. The only
cases left to consider are the situation when M is a classical group. In this situa-
tion we know that the outer automorphism group of M has order bounded by a
linear function of q, [10, Table 2.1.C], where M has characteristic q. The ingre-
dients in the proof of Theorem 1.2 are the existence of ‘large’ abelian subgroups
and of involutions with a ‘small’ number of conjugates. Since [G : MCG(M)]

is at most linear, the log of the size of the conjugacy class will still be bounded
above by a linear function of the rank. Similarly the log of size of the abelian
subgroups will be bounded below by a quadratic function. Thus the rank of M
will be bounded.
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