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Upsilon-like concordance invariants from
sln knot cohomology

LUKAS LEWARK

ANDREW LOBB

We construct smooth concordance invariants of knots K which take the form of
piecewise linear maps Çn.K/W Œ0; 1�!R for n� 2 . These invariants arise from sln
knot cohomology. We verify some properties which are analogous to those of the
invariant ‡ (which arises from knot Floer homology), and some which differ. We
make some explicit computations and give some topological applications.

Further to this, we define a concordance invariant from equivariant sln knot cohomol-
ogy which subsumes many known concordance invariants arising from quantum knot
cohomologies.
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1 Introduction

1.1 Where the invariants come from

Given an oriented knot diagram D of a knot K , a basepoint on D, and a choice
of monic degree n � 2 polynomial (the potential) @w 2 CŒx�, the construction of
the Khovanov–Rozansky sln knot cohomology gives a filtered cochain complex of
finitely generated free CŒx�=@w–modules (see Gornik [4], Khovanov and Rozansky [9],
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746 Lukas Lewark and Andrew Lobb

Krasner [10], Lobb [19] and Wu [32]):

� � � � Fj C i
@w.D/� FjC1C i

@w.D/� � � � ;

d W Fj C i
@w.D/! Fj C iC1

@w
.D/; d2

D 0:

This filtration F is known as the quantum filtration.

In previous work [14], the authors studied the associated graded vector space to the
cohomology

Grj H i
@w.D/ WD

Fj H i
@w
.D/

Fj�1H i
@w
.D/

in the cases when @w is a product of distinct linear factors. In these cases, the bigraded
complex vector space Grj H i

@w
.D/ is an invariant of K ; it is of total dimension n and

supported in grading i D 0.

The quantum gradings of the support of the cohomology give rise to lower bounds on
the smooth 4–ball genus of the knot, and it was a principal object of [14] to demonstrate
that these bounds are heavily dependent on the choice of @w , and display interesting
behavior from various points of view.

For this paper, our starting point is somewhat different: we fix the potential to be
@wD xn�xn�1 . In the cases where n� 3 (which turn out to be the interesting cases)
this potential is not a product of distinct linear factors. The bigraded vector space
Grj H i

@w
.D/ is still an invariant of K , but it now has dimension equal to one more

than the dimension of standard Khovanov–Rozansky sln�1 cohomology; see Rose and
Wedrich [29]. The copy of the sln�1 cohomology arises from the root x D 0 of @w ,
which is of multiplicity n� 1, while the extra copy of C should be thought of as sl1
cohomology corresponding to the simple root x D 1.

There is an easily described cocycle  2 C 0
@w
.D/ generating this extra copy of C .

The minimum j (suitably renormalized) such that

Œ � 2 Fj H 0
@w.D/

turns out to be a Q–valued invariant of the smooth concordance class of K , and to
provide a lower bound on the smooth 4–ball genus of K . It is not quite a concor-
dance homomorphism to Q (as we shall see later in examples), but it is at least a
quasihomomorphism (a homomorphism up to some bounded error).

We note here that this value of j is characterized by being the minimal value of j

such there exists a  0 2 Fj C 0
@w
.D/ which is cohomologous to  . This minimal value
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may well not be attained by  itself, and in fact the quantum filtration grading of the
cocycle  corresponds to the “slice-Bennequin” bound on the smooth 4–ball genus
of K arising from the diagram D.

So far, this story has concerned the quantum filtration; now we introduce another
filtration on C �

@w
.D/ preserved by the differential, which we shall call the x–filtration

(previously used in the case @w D xn in Lewark [13]). Given a cochain c 2 C i
@w
.D/,

this is the filtration that simply counts the maximal power k � n� 1 of x such that
c D xkc0 for some c0 2 C i

@w
.D/. In other words it is the filtration

f0g � xn�1C i
@w.D/� xn�2C i

@w.D/� � � � � xC i
@w.D/� C i

@w.D/:

The cocycle  mentioned above is quite uninteresting when looked at from the point of
view of the x–filtration. In fact,  is a 1–eigenvector for the action of x , so certainly
we have

 D xn�1 2 xn�1C 0
@w.D/:

However, there is the possibility that  may be cohomologous with elements which
are both of lower quantum filtration and of lower x–filtration. Indeed we shall give
examples where this is the case, and it is the existence of such examples that makes
our construction nontrivial.

Now that we have two filtrations on the cochain complex, we can blend them in a
similar way to the blending of the algebraic and Alexander filtrations in knot Floer
homology. As in knot Floer homology, where the blending gives the invariant ‡ , we
get a piecewise linear map on an interval,

Çn.D/W Œ0; 1�!R:

1.2 A few words about equivariant cohomology

Before turning to the comparison with invariants arising from Floer homology, we
consider the most general setting in which concordance invariants arise from sln knot
cohomology.

For a given knot diagram D of a knot K , the equivariant cohomology of K is the
cohomology of a graded cochain complex CU.n/.D/ of free modules over a multi-
variable polynomial ring [10]. By specializing these variables to take values in the
complex numbers, one obtains all of the filtered sln Khovanov–Rozansky cochain
complexes C@w.D/. It follows that the equivariant cohomology subsumes all of the
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known information contained in Khovanov–Rozansky cohomology about the slice
genus and concordance class of K , including that in Çn.K/. The ‡ –like properties
and computability of Çn.K/ nevertheless give it advantages over the full equivariant
cohomology.

We pursue the equivariant viewpoint in the final section of the paper, extracting a
concordance invariant directly. This takes the form of a particular indecomposable
summand Sn.K/ of CU.n/.D/ up to isomorphism. In the case of a knot K for
which this summand is a shifted free module of rank 1, the slice genus information
that we know how to extract from sln cohomology only depends on the shift, and
consequently Çn.K/, for example, is linear for all n� 2.

1.3 Some Floer homological invariants

We now provide context for our main results by briefly discussing ‡ and some other
invariants arising from Floer homology.

Ozsváth and Szabó [24] and Rasmussen [25] defined the invariant � , which takes
integer values on knots in the 3–sphere. This (or more precisely its negative) was the
first example of a slice-torus invariant.

Definition 1.1 (see Livingston [17] and Lewark [13]) Let �W C!R be a homomor-
phism from the smooth concordance group of oriented knots to the reals. We say that
� is a slice-torus invariant if:

(1) g�.K/� j�.K/j for all oriented knots K , where we write g�.K/ for the smooth
slice genus of K .

(2) �.T .p; q//D�1
2
.p� 1/.q� 1/ for T .p; q/ the .p; q/ torus knot.

The second example — the s invariant, or, more precisely, �1
2
s — was due to Ras-

mussen [27] and had a purely combinatorial definition in terms of the Lee perturba-
tion [12] of Khovanov cohomology. The reason for our normalization convention
in Definition 1.1 is that there is a slew of such invariants (see for example Wu [32],
Lobb [19] and Lewark and Lobb [14]) arising from sln Khovanov–Rozansky cohomol-
ogy, which (in the original definition of Khovanov and Rozansky [9]) is supported in
negative quantum gradings for nontrivial positive knots.

Slice-torus invariants are good, for example, for finding free summands of the knot
concordance group, and sets of linearly independent slice-torus invariants are even
more useful from this point of view. A weakness of slice-torus invariants is that they
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all agree on quasipositive and homogeneous knots; see Kawamura [7], Lewark [13]
and Lobb [20]. The class of homogeneous knots includes all alternating knots. For an
alternating knot K , every slice-torus invariant � satisfies �.K/D�1

2
�.K/, where �

is the classical knot signature. Therefore, slice-torus invariants necessarily miss some
of the information contained in the smooth concordance class of a knot.

Let us turn next to the knot invariant ‡ defined by Ozsváth, Stipsicz and Szabó [22]
and interpreted in an excellent survey article by Livingston [18]. This takes the form of
a piecewise linear map ‡.K/W Œ0; 1�!R: The actual domain of definition of ‡.K/
is the interval Œ0; 2�, but we allow ourselves to consider this restriction since ‡.K/
satisfies ‡.K/.1C t/D ‡.K/.1� t/.

We now collect some facts about ‡ under the heading of the following theorem:

Theorem 1.2 [22] (1) ‡.K/ is a smooth concordance invariant of K .

(2) ‡ is a homomorphism from the smooth concordance group of knots to the group
of piecewise linear functions on the interval.

(3) j‡.K/.t/j � tg�.K/ for all t , where we write g�.K/ for the smooth 4–ball
genus of K .

(4) For small t , ‡.K/.t/ D ��.K/t (we may write this as ‡.K/0.0/ D ��.K/,
where the right-hand derivative is understood).

(5) For quasialternating knots, we have ‡.K/.t/ D ��.K/t D �1
2
�.K/t for all

t 2 Œ0; 1�.

We note further that the concordance homomorphism to R given by evaluating at
the right-hand endpoint K 7! �.K/ WD ‡.K/.1/ is interesting because it gives rise
to the lower bound

ˇ̌
�.K/� 1

2
�.K/

ˇ̌
� 
4.K/ on the smooth nonorientable 4–ball

genus 
4 [23]. It can be shown that � always takes values in the integers.

Related to �.K/ is an invariant '.K/ defined by Golla and Marengon [3] in terms
of earlier invariants defined by Rasmussen [26] and studied by Ni and Wu [21]. This
invariant '.K/ gives rise to a similar lower bound, namely 1

2
�.K/�'.K/� 
4.K/.

In contrast to � , however, ' takes values only in the nonnegative integers, so (given
that it is not identically zero) it cannot be a concordance homomorphism. However, it
is at least subadditive with respect to the connected sum of knots, which we denote
by #:

'.K1 # K2/� '.K1/C'.K2/:

We note that the related bound 1
2
�.K/�'.K/ for 
4.K/ is superadditive.
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1.4 Main results

We begin by running down the list of properties of ‡ given in Theorem 1.2, and
seeing where those of Çn agree or differ. Firstly, there is the question of concordance
invariance.

Theorem 1.3 The map Çn.D/ is a knot invariant, so we may write it as Çn.K/.
Furthermore, Çn.K/ only depends on the smooth concordance class of K .

Next we observe that Çn is almost a concordance homomorphism.

Theorem 1.4 We have that Çn is a quasihomomorphism from the smooth concordance
group of knots to the group of piecewise linear functions on the interval. More precisely,
if we write K1 # K2 for the connect sum of the knots K1 and K2 then we have

jÇn.K1 # K2/.t/� Çn.K1/.t/� Çn.K2/.t/j � 2t

for all t 2 Œ0; 1�.

This can be regarded as either a strength or a weakness of Çn . The property of being a
homomorphism is restrictive, although it can be useful for some applications. We can
be more specific about the failure to be a concordance homomorphism. Firstly, note
that there is no failure near 0.

Theorem 1.5 The right-handed derivative Çn.K/
0.0/ is a slice-torus concordance

homomorphism in the sense of Definition 1.1.

This result puts us in line with the derivative at 0 of ‡.K/ as mentioned in Theorem 1.2.
At 1, on the other hand, we have the property of superadditivity:

Theorem 1.6 We have that

Çn.K1 # K2/.1/� Çn.K1/.1/C Çn.K2/.1/:

Both Çn.K/
0.0/ and Çn.K/.1/ are new knot invariants in their own right. They are sim-

ilar to concordance invariants considered in [14] coming from reduced and unreduced
cohomology, respectively. However, all previously defined sln concordance invariants
stem from cohomology with a separable potential, in contrast to the new invariants
from sln cohomology with potential xn�xn�1 .

Theorem 1.6 can be compared with the superadditive property of the bound on 
4

arising from ' discussed in the previous subsection. In fact, let us now turn to the
question of bounds on the smooth 4–ball genus.
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Theorem 1.7 For any 0< t � 1 we have that

g�.K/�

ˇ̌̌̌
Çn.K/.t/

t

ˇ̌̌̌
:

This is in direct analogy with the property (3) of ‡ given in Theorem 1.2 and is implied
by the next, more general, proposition.

Proposition 1.8 For two knots K0 and K1 , we write g�.K0;K1/ for the minimal
genus of a knot cobordism from K0 to K1 . Then we have that

g�.K0;K1/�
1

t
jÇn.K0/.t/� Çn.K1/.t/j:

It shall turn out that it really is necessary to upgrade from Khovanov cohomology to sln
Khovanov–Rozansky cohomology in order to obtain a nontrivial invariant. Khovanov
cohomology is equivalent to the case nD 2 of Khovanov–Rozansky cohomology, and
the well-known slice-torus invariant arising from Khovanov cohomology is just a scalar
multiple of Rasmussen’s invariant s.K/.

Proposition 1.9 We have
Ç2.K/.t/D�

1
2
s.K/t:

Of course, this implies for quasialternating knots K that we have

Ç2.K/.t/D�
1
2
�.K/t;

where � is the classical knot signature. It is a weakness of ‡ that it contains no
more information than � when applied to quasialternating knots; Proposition 1.9
shows that Ç2 suffers from a similar weakness. We shall see too that Çn is in general
uninteresting for some classes of knots (in particular torus knots) for which ‡ can be
interesting.

Proposition 1.10 For any knot K which is either quasipositive, quasinegative or
homogeneous, Çn.K/ is linear.

On the other hand, we find interesting (in other words nonlinear) values even of Ç3 on
quasialternating knots. This is in contrast to ‡ or to ' , neither of which can distinguish
a quasialternating knot from the .2; 2nC 1/ torus knot of the same signature. As an
example of the power of Çn , we have the following result:
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Figure 1: The connect sum of the pretzel knots P .7;�5; 4/ and P .�9; 7;�6/

Proposition 1.11 There exists a knot K on which ' , ‡ and all known slice-torus
invariants are trivial, but which cannot be slice since, for example, Ç3.K/¤ 0.

A knot K satisfying the properties of Proposition 1.11 can in fact be given explicitly,
and an example is given in Figure 1. We consider this knot K in detail in Section 6,
where we also show that the properties of Çn given above can be used to see that K is
of infinite order in the concordance group. In fact, for example, we can also deduce
the following result, not obtainable by known invariants:

Proposition 1.12 We write hQAi (respectively hAi) for the subgroup of the concor-
dance group generated by quasialternating (respectively alternating) knots. The knot
given in Figure 1 is of infinite order in the group hQAi=hAi.

In Section 6 we further consider the question of the independence of Çn and more
classical concordance invariants such as generalized signatures.

1.5 Discussion

The slew of concordance invariants arising from quantum sln knot cohomology seems
largely independent of those arising from Floer homology or gauge theory. For example,
Çn does not see any information beyond the slice genus for torus knots, while ‡ does,
but on the other hand Çn is found to be interesting for quasialternating knots while ‡
must be “standard”.

Geometry & Topology, Volume 23 (2019)
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Whether this independence can be pushed so far that one can find a knot K for which
Çn.K/ is nonzero for some n and all other known sliceness obstructions vanish is
perhaps less interesting than finding some new topological applications of Çn and
related quantum invariants. It is not obvious, for example, that Çn is insensitive to
torsion elements of the concordance group (this is also nonobvious for the unreduced
concordance invariants given in [14]).

The known exception to the orthogonality of quantum and Floer is Rasmussen’s in-
variant s , defined using Lee’s perturbation of Khovanov cohomology. Kronheimer
and Mrowka [11] showed that s is equal to a concordance homomorphism arising
from SU.2/ instanton knot Floer homology. One should then ask whether there is
more concordance information than Rasmussen’s invariant contained in Khovanov
cohomology over the complex numbers (note that the Rasmussen invariant can be
defined over any coefficient field using the Bar-Natan potential [2], and its value in
general depends on the coefficient field; see Lipshitz and Sarkar [16]). Knot Floer
homology, which is intimately connected with Khovanov cohomology, seems to admit
many refined invariants; could the same be true of Khovanov cohomology?

On the other hand, sln knot cohomologies when n� 3 already give orthogonal concor-
dance information to that arising from Floer homology. In the case nD 2 the failure
of Khovanov cohomology to do the same is, roughly speaking, due to the existence of
an unoriented skein exact sequence also often present in Floer homology theories. But
such skein exact sequences should not be present for instanton homologies with gauge
group SU.n/ for n� 3. This suggests that higher-index Floer homologies should see
much more of the concordance group than is seen by those most often currently studied.

Acknowledgements The authors thank BIRS and the Isaac Newton Institute for Math-
ematical Sciences (EPSRC grant EP/K032208/1) for support and hospitality during the
programs Synchronizing smooth and topological 4–manifolds and Homology theories
in low-dimensional topology, respectively, where work on this paper was undertaken.
Lewark gratefully acknowledges support by the SNSF grant 159208. Lobb gratefully
acknowledges support by the EPSRC grant EP/M000389/1. The authors thank the
referees for their careful reading and suggestions.

2 Definitions and conventions

In this section we lay out conventions for defining the invariant Çn.K/W Œ0; 1�!R. We
shall choose these definitions so that
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� Çn.K/ is piecewise linear,

� Çn.K/.0/D 0 for any knot K ,

� Çn.U /D 0 for U the unknot,

� Çn.T�2;3/.t/D t for T�2;3 the left-handed trefoil.

In what follows, D will denote a knot diagram with a basepoint and the potential is
@wD xn�xn�1 . We write C@w.D/ for the sln Khovanov–Rozansky cochain complex
of free finitely generated .CŒx�=@w/–modules arising from D. We write

� � � � Fj C i
@w.D/� FjC1C i

@w.D/� � � �

for the quantum filtration and

� � � � xkC i
@w.D/� xk�1C i

@w.D/� � � �

for the x–filtration. Both of these filtrations are preserved by the differential. Let us
point out that the quantum filtration is increasing (the higher the index, the bigger
the module), whereas the x–filtration is decreasing (the higher the index, the smaller
the module). So the quantum filtration grading of a nonzero cochain c 2 C@w.D/ is
the minimum j such that c 2 Fj C@w.D/, while the x–filtration grading of c is the
maximum k � n� 1 such that c 2 xkC@w.D/.

For all t 2 Œ0; 1� we describe an increasing filtration with index set R of C@w.D/

preserved by the differential. We write this filtration as

G`1

t C i
@w.D/� G`2

t C i
@w.D/

for all `1; `2 2R with `1 � `2 .

Definition 2.1 Writing † to denote a sum of vector spaces, we define

G`t C i
@w.D/D

X
`�t.kCj/�k

k�n�1

.Fj C i
@w.D/\xkC i

@w.D//:

Let the Gt –filtration grading of a nonzero cochain c 2 C i
@w
.D/ be the minimum `

such that c 2 G`t C i
@w
.D/.

This filtration has another, more graphical, interpretation, which is useful for calculation
and visualization. Suppose that we draw the line of slope t

1�t
through the point .`;�`/.
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Then, if a point .j ; k/ 2Z�f0; : : : ; n� 1g is above or to the left of this line, it means
exactly that

Fj C i
@w.D/\xkC i

@w.D/� G`t C i
@w.D/:

There is a cocycle  .D/ 2 C 0
@w
.D/ essentially first described by Gornik [4] (although

he considered rather the potential xn� 1) representing a nonzero cohomology class;
see Definition 4.2.

Definition 2.2 We define 
 .D/W Œ0; 1�!R by


 .D/.t/Dmin
˚
` W Œ .D/� 2 im

�
H 0.G`t C@w.D//!H 0

@w.D/
�	
;

where the map on cohomologies is induced by inclusion.

Equivalently, 
 .D/.t/ is the filtration grading of the cohomology class Œ .D/� 2
H 0
@w
.D/ with respect to the filtration induced on cohomology by Gt .

Definition 2.3 We define

Çn.D/.t/D
1

2.n�1/
Œ
 .D/.t/� 
 .U /.t/�;

where U is the zero-crossing diagram of the unknot.

Explicitly, 
 .U /.t/D .n� 1/.2t � 1/, as one computes from Definition 2.1.

3 A first example

As a first example of a knot with interesting (in other words nonlinear) Çn , let us
compute Çn.K/ for all n 2 f3; : : : ; 10g and K D P .2;�3; 7/, a pretzel knot (DT-
name 12n235 ). To lighten notation, we will mostly drop “.K/” in this section, writing
Çn for Çn.K/. We shall give the calculation for general n 2 f3; : : : ; 10g, but the reader
would do well to look at Figure 2 for concreteness, where the bones of the calculation
for Ç5 are displayed.

The starting point of the calculation shall be the equivariant complex of a diagram D

of K as defined by Krasner [10]. It is a complex, denoted by CU.n/.D/, of graded
free modules over the ring

Rn DCŒx; a0; : : : ; an�1�=.a0C a1xC � � �C an�1xn�1
Cxn/:

Up to homotopy equivalence, that complex is a knot invariant, and it specializes to
C@w.D/ when the formal variables ai are replaced by the coefficients of @w .

Geometry & Topology, Volume 23 (2019)
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x–filtration degree

quantum filtration degree

2

1

�
x4

0

�
�

x3

0

�
�

0

x2

�

S
�

1

n
S
0

8< :
Figure 2: The filtered complex S in cohomological grading �1 and 0 ,
special case nD 5 , as a complex of complex vector spaces, ie forgetting the
x–action. Dots represent copies of C and arrows nontrivial differentials. The
colored dots indicate the support of representatives of Œ � . Dots on or to the
left of the gray line of slope 1 lie in G�5

1=2
S.

We will use CU.n/ in a rather ad hoc manner, and refer the reader to Section 5 for a
more conceptual and detailed treatment. For a suitable diagram D of K , we computed
CU.n/.D/ for n 2 f3; : : : ; 10g with our program khoca [15], and found that for each
of those values of n, CU.n/.D/ is homotopy equivalent to a sum of five simpler
complexes, only one of which is nontrivial in cohomological grading 0. It follows
that this summand on its own determines Çn.K/, and hence we give it our exclusive
attention. The summand has the form

t0q�2nRn

˚t�1q�2Rn

@w0 22

@w00
,,

t0q2�2nRn

Here, @w0 and @w00 signify the first and second partial derivative with respect to x of
@w D xnCan�1xn�1C� � �Ca0 , and t iqj Rn denotes a free Rn –module of rank one
in .t; q/–grading .i; j /.

Since CU.n/.D/ exhibits this structure for all n 2 f3; : : : ; 10g, it is a reasonable
conjecture that it does in fact for all n� 3. The calculations that follow are valid for
all n� 3, and so they determine Çn for all n� 3 provided the conjecture holds.
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One may plug in an�1 D�1; an�2 D � � � D a0 D 0 to obtain the relevant summand S

of a filtered complex of free CŒx�=.xn � xn�1/–modules homotopy equivalent to
Cxn�xn�1.D/. Note that S0 is of rank two, and so we will write the cochains in
cohomological grading 0 as vectors with two entries. The complex S has the following
differential d�1 :

d�1.1/D

�
nxn�1� .n� 1/xn�2

n.n� 1/xn�2� .n� 1/.n� 2/xn�3

�
;

d�1.x/D

�
xn�1

n.n� 1/xn�1� .n� 1/.n� 2/xn�2

�
;

d�1.x�2/D

�
xn�1

2.n� 1/xn�1

�
:

To get into the spirit of things, let us abandon the general case for a second. We refer
the reader to Figure 2, which illustrates the complex S described above in the case
n D 5. The game we play is the following. First we find a cocycle representative
for Œ �. It shall turn out that the first representative we find generates the red dot in
Figure 2. Then we take a line (the gray line in that figure is one such example) of a
slope between 0 and 1. We position this line as far left as we can while still having
some cocycle cohomologous with  supported on or to the left of the line. Finally,
we compute Ç5 : the slope of the line corresponds to some t 2 Œ0; 1� and this leftmost
position will determine Ç5.t/. In this particular case we find a cocycle cohomologous
with  supported in the green dots (although to verify this for herself, the reader will
need to decorate the differentials in the figure with the correct coefficients).

We return now to the general case. Nevertheless, we will continue to rely on features of
Figure 2. Whenever we do this, the reader is invited to assure herself that the features
relied upon do indeed hold for 3� n� 10.

We shall see later that the subcomplex xn�1Cxn�xn�1.D/ has 1–dimensional coho-
mology, supported in cohomological grading 0 and generated by  . Therefore, we
see immediately that  is cohomologous to  0 D .x

n�1; 0/, since that vector lives in
xn�1C 0

xn�xn�1.D/, is a cocycle and is not a coboundary.

Figure 2 shows h 0i as a red dot. It is clearly visible that any line passing through the
red dot with slope between 0 and 1

2
has no other dots above it. The red dot (aka  0 )

has quantum filtration grading �n�1, x–filtration grading n�1, and thus Gt –grading
�2t � nC 1 (see Definition 2.1 and the paragraphs thereafter). So for 0� t � 1

3
, one

finds G�2t�nC1
t S D h 0i

�
note that t D 1

3
corresponds to a slope of 1

2

�
. For those t ,
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t

Ç5.K/.t/

�3=2

11=2

�5=8

Figure 3: Ç5.K/ for K the P .2;�3; 7/ pretzel knot

 0 is thus the “best” cocycle representative of Œ � with respect to the Gt –filtration.
Therefore, 
 .t/D�2t � nC 1, and so Çn.t/D�

n
n�1

t for t 2
�
0; 1

3

�
.

In fact, we claim that this holds even for t 2
�
0; 1

2

�
. To see this, let us verify that for

t � 1
2

, there is no representative  1 2 Œ �\ G`t S with ` < �2t � nC 1. For such t

and `,

(|) G`t S � h1; : : : ;xn�2
i˚ h1; : : : ;xn�4

i:

This can be easily seen graphically by considering which dots lie strictly above a
line of slope 1 through the red dot (this line is drawn in gray in Figure 2). The
difference  0 �  1 must be null-cohomologous, so equal to d�1.˛/ for some ˛ ;
because d�1.xi/D d�1.x2/ for i � 2, we may assume ˛ D �0C�1xC�2x2 . Note
that the second coordinate of  0� 1 is in h1; : : : ;xn�4i. This implies that �0 D 0,
since the coefficient of xn�3 in d�1.˛/ equals ��0.n�1/.n�2/. Graphically, in the
example nD 5 shown in Figure 2, the dot at .�6; 0/ is the only one mapping to .�8; 2/.
Similarly, one finds �1 D 0 by considering the coefficient of xn�2 , and finally �2 D 0

by considering the coefficient xn�1 . But this implies  0D 1 , contradicting  1 2 G`t .

Now, let ˇ D 2.n� 2/C 2nx� n2x2 and compute

d�1.2.n� 2/C 2nx� n2x2/

D

�
2n.n� 2/xn�1� 2.n� 1/.n� 2/xn�2

2n.n� 1/.n� 2/xn�2� 2.n� 1/.n� 2/2xn�3

�
C

�
2nxn�1

2n2.n� 1/xn�1� 2n.n� 1/.n� 2/xn�2

�
C

�
�n2xn�1

�2n2.n� 1/xn�1

�
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D

�
n.n� 2/xn�1� 2.n� 1/.n� 2/xn�2

�2.n� 1/.n� 2/2xn�3

�
:

This implies that Œ � has a representative  2 D  0� d�1.ˇ/=n.n� 2/ supported in
hxn�2i˚hxn�3i (support marked as green dots in Figure 2). The Gt –filtration grading
of  2 is �6t � nC 3. Hence, Çn has a breakpoint at t D 1

2
. It is the only one, since

for ` < �6t � nC 3 and t > 1
2

, we have once again (|). So, Çn.t/D �
nC2
n�1

t C 1
n�1

for t 2
�

1
2
; 1
�
. Figure 3 shows a plot of Ç5.t/.

4 Proofs

In this paper we are mainly concerned with the potential xn�xn�1 . Nevertheless, in
the first half of this section we shall work with a pair .@w; ˛/ given below.

Definition 4.1 Let @w2CŒx� be a degree n monic polynomial (the potential), together
with a root ˛ of @w which occurs with multiplicity 1.

The point of enlarging our attention in this way is to arrive at Definition 4.10 and
Proposition 4.11, which give s@w;˛.K/2Q, whose absolute value gives a lower bound
on the slice genus of K . We expect this invariant to depend heavily on the choice of
the pair .@w; ˛/ and to have properties analogous to those of the unreduced slice genus
bounds discussed in [14]. We do not, for example, expect it to give a knot concordance
homomorphism unless one takes highly nongeneric choices of the pair .@w; ˛/. It is
beyond the scope of this paper to explore these bounds further. After the first half of
this section we return to the potential xn�xn�1 .

Another direction left unexplored in this paper is the construction of a Ç–like concor-
dance invariant in the case that the potential has the form .xn � xn�1/p for some
monic p 2CŒx� with neither 0 nor 1 as roots. This should a priori be interesting for
different choices of p and of n � 2. We note here too that the choice in this paper
of potential xn�xn�1 is equivalent to the choice (mutatis mutandis) of any potential
.x�˛/.x�ˇ/n�1 with ˛; ˇ 2C and ˛ ¤ ˇ .

We begin with a definition of the Gornik cocycle  , which was originally defined by
Gornik [4] in the case that the potential is a product of distinct linear factors.

Definition 4.2 Suppose that D is a link diagram. The oriented resolution O.D/ of D

corresponds to a summand of the cochain group C 0
@w
.D/. If O.D/ has r components
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then this summand is isomorphic to

CŒx1;x2; : : : ;xr �=.@w.x1/; @w.x2/; : : : ; @w.xr //;

where xi is the variable corresponding to the i th component. The special cocycle
 .D/ 2 C 0

@w
.D/ is defined to be the element of this summand given by

 .D/D

rY
i�1

@w.xi/

xi �˛
:

The following lemma is essentially due to Gornik:

Lemma 4.3 We have that  .D/ is a cocycle.

If D is a basepointed diagram, then the cochain complex C@w.D/ has the structure
of a complex of free .CŒx�=@w/–modules, where x acts at the basepoint. Note that
 .D/ is an ˛–eigenvector for the action of x , and so Œ .D/� represents a class in
the ˛–eigenspace of H@w.D/. In fact, in the case that D is a diagram of a knot, this
˛–eigenspace is 1–dimensional and supported in cohomological grading 0.

A proof of this can be found in the proof of Theorem 2.15 of [31], which considers
colored perturbed sln cohomology of a .1; 1/–tangle (which for us is the diagram D cut
open at the basepoint). Specializing to the 1–colored case and working with a general
degree n potential @w , Theorem 2.15 identifies the cohomology of the �–eigenspace
of the complex C@w.D/ with the slm cohomology of D, where m is the multiplicity
of � as a root of @w . Since the sl1 cohomology of a knot is 1–dimensional, the result
follows.

Now we know that either Œ .D/�D 0 or Œ .D/� generates the ˛–eigenspace. To see
that Œ .D/� is such a generator, one could generalize arguments of Gornik’s. We in
fact deduce the result indirectly from the following proposition, whose proof in the
separable potential case was given in [19; 32], and extends to our current case with no
changes.

Proposition 4.4 If D1 is a link diagram obtained from the diagram D0 by a 1–
handle attachment, then the induced cochain map takes  .D1/ to a nonzero multiple
of  .D0/.

Remark 4.5 To be consistent with most of the literature, since we are speaking of knot
cohomology throughout this paper, we shall be thinking of the maps on the cohomology
induced by link cobordism contravariantly. This is essentially a stylistic choice.
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Figure 4: Adding two 1–handles, one on each side of a crossing

With this Proposition 4.4 in hand we are now ready to deduce the following:

Proposition 4.6 The class Œ .D/� 2H@w.D/ is nonzero.

Proof By adding two 1–handles for every crossing of D as shown in Figure 4, one
obtains a presentation of a cobordism that takes a diagram L of the unlink, in which
every component has either zero or one crossings, to the diagram D. In the light
of Proposition 4.4, it is therefore enough to verify that  .L/ represents a nonzero
cohomology class. Hence, it is enough to verify that  .U / represents a nonzero
cohomology class when U is a diagram of the unknot with at most one crossing.

In the case of zero crossings or of a positive crossing, this is trivially true since the
coboundaries of cohomological grading 0 consist of just the 0 element. In the case of
U with one negative crossing, the filtered degree of the differential ensures that  .U /
cannot be a coboundary.

For any two basepointed diagrams of a knot K , there exists a sequence of basepoint-
avoiding Reidemeister moves to get from one diagram to the other. We note that the
isomorphisms induced by such moves commute with the action of multiplication at
the basepoint. Therefore, since hŒ .D/�i is 1–dimensional and characterized as the
˛–eigenspace of such an action, we shall allow ourselves in future to refer to hŒ .D/�i
as hŒ .K/�i when it makes sense to do so.

Suppose that D is a diagram of a link with k components, each component with
a basepoint. By acting at the i th basepoint, we give H@w.D/ the structure of a
.CŒxi �=@w.xi//–module. This module structure is independent of the choice of the
basepoint and of the diagram.

The class Œ .D/� is an ˛–eigenvector for the action of each xi . In fact, it should be
true that

hŒ .D/�i D
\

i

ker.xi �˛W H@w.D/!H@w.D//:
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Unfortunately we have not been able to find a precise reference for this result, which
deserves a more general treatment than we wish to give in this paper. Consequently,
we circumvent its use by appealing to a topological trick (stated and proved in more
generality than we need in [19]).

Lemma 4.7 Suppose we are given a cobordism † ,! S3 � Œ0; 1� between two knots
Ki ,! S3 � fig for i D 0; 1, and a choice of diagram Di for each Ki . Then there
exists a movie presentation of †, starting with D0 and ending with D1 , in which the
elementary cobordisms occur in the following order:

(1) Attachment of 0–handles.

(2) Reidemeister moves.

(3) Attachment of 1–handles.

(4) Reidemeister moves.

(5) Attachment of 2–handles.

The point of this topological trick for us is the following lemma:

Lemma 4.8 Suppose that D is a diagram of a link, where the link consists of a knot
and the disjoint union of a k –component unlink. Writing xi for i D 0; 1; : : : ; k for
basepoints on each component, we have that

hŒ .D/�i D

k\
iD0

ker.xi �˛W H@w.D/!H@w.D//:

Proof First note that in the case k D 0 the result holds. In the case of k � 1, the
result is then seen to be true when D is the diagram in which each unknot component
has 0 crossings, since then the cochain complex is just a tensor product. Finally, note
that the ˛–eigenspace for the action of each xi does not change under Reidemeister
moves.

Proposition 4.9 Suppose that † is a smooth connected cobordism between knots K0

and K1 , and suppose it has a given movie presentation between diagrams D0 and D1 ,
satisfying the conditions of Lemma 4.7. Since all the 1–handle attachments have been
arranged to take place together, we assume they have been reordered so that the last k

1–handles each create a new component, where k is the total number of 2–handles of
the presentation.
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Then the map induced by the presentation

†�W H
0
@w.K1/!H 0

@w.K0/

satisfies

†�hŒ .K1/�i D hŒ .K0/�i �H 0
@w.K0/:

Furthermore, †� is induced by a cochain map of quantum filtration degree .n�1/g.†/,
where we write g for the genus.

Proof First note that 2–handle attachment gives an element 1 2H 0
@w
.U /DCŒx�=@w

for U the unknot. This element of course has nonzero projection onto the ˛–eigenspace
of x (using the projector which is multiplication by @w.x/=.x�˛/).

Let us then write the link appearing just before all the 2–handle attachments as K3=4D

K1 tU1 t � � � tUk , and let us write D3=4 for the diagram of this link that appears in
the presentation just after all the 1–handle attachments. We start by considering the
part of the presentation of † that takes D3=4 to D1 .

Since the isomorphisms induced by Reidemeister moves commute with the action of
the xi , the class Œ .D1/� is mapped to a nonzero element � 2H 0

@w
.K3=4/ that lies in

the ˛–eigenspace of x0 and that has nonzero projections onto the ˛–eigenspace of
each xi for 1� i � k .

Now we consider the 1–handle attachments. The final k of these split some knot K1=2

with diagram D1=2 into the link K3=4 with diagram D3=4 . Since 1–handle attachments
also commute with the action of the xi , we know that � must be mapped by the
presentation of this cobordism into the ˛–eigenspace of H@w.K1=2/. That it gets
mapped to a nontrivial multiple of the class Œ .D1=2/� follows from the observation
that

0¤

� rY
i�1

@w.xi/

xi �˛

�
� 2

k\
iD0

ker.xi �˛W H@w.K3=4/!H@w.K3=4//D hŒ .K3=4/�i;

and Proposition 4.4.

We now write D1=4 DD0 tU 0
1
t � � � tU 0

`
for the diagram occurring just after the 0–

handle additions, and K1=4 for the link that it represents. It follows from Proposition 4.4
and the fact that the Reidemeister isomorphisms commute with the action at basepoints,
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that Œ .D1=2/� gets mapped to a nontrivial element of

\̀
iD0

ker.xi �˛W H@w.K1=4/!H@w.K1=4//D hŒ .D1=4/�i:

It is then enough to observe that the map corresponding to 0–handle addition on an
empty diagram takes the element Œ .U /� to a nonzero scalar.

The statement about the quantum filtration degrees is automatic from the definitions of
the maps corresponding to the elementary cobordisms (see [32] for explicit forms of
these maps).

Definition 4.10 For a knot diagram D let us write u.D/ for the quantum filtration
grading of the class Œ .D/� 2H@w.D/. Let s@w;˛.D/ 2Q be given by

s@w;˛.D/D
u.D/�nC1

2.n�1/
:

Proposition 4.11 The quantity s@w;˛.D/ given in Definition 4.10 only depends on
the concordance class of the knot K represented by D. Furthermore, if we write g�.K/

for the smooth 4–ball genus of K , we have

g�.K/� js@w;˛.D/j:

Proof This follows immediately from Proposition 4.9 and the observation that u.U /D

n� 1 for U the 0–crossing diagram of the unknot.

We now return to the consideration of the case when the potential has the form @w D

xn�xn�1 .

Proposition 4.12 The map †� of Proposition 4.9 is induced by a cochain map of
x–filtration degree 0.

Proof Pick basepoints on D0 and D1 and connect these by a generic arc with no hor-
izontal tangencies. This gives a continuous choice of basepoints for each intermediate
frame of the movie presentation (apart from those finitely many singular basepoints
where the basepoint lies at a crossing). Then the action of multiplication at intermediate
basepoints either side of an elementary cobordism or singular basepoint commutes
with the induced cochain map.
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With this in place we are now ready to begin deducing our main theorems as stated in
the introduction.

Proof of Theorem 1.3 Propositions 4.9 and 4.12 imply that a concordance between
knots K0 and K1 (that is, a genus 0 knot cobordism between K0 and K1 ) gives
rise to a map H@w.K1/ ! H@w.K0/ induced by a cochain map which preserves
both the quantum and the x–filtrations. Hence, it preserves the Gt –filtration for all
t 2 Œ0; 1�. Furthermore, this map takes hŒ .K1/�i to hŒ .K0/�i. Likewise, by turning
the concordance upside down we get a Gt –preserving map H@w.K0/! H@w.K1/

taking hŒ .K0/�i to hŒ .K1/�i.

Since for any knot K and any t 2 Œ0; 1�, the definition of Çn.K/.t/ depends only on
the Gt –grading of hŒ .K/�i, we have Çn.K0/D Çn.K1/.

Theorem 1.7 will follow immediately from Proposition 1.8, whose proof we give now.

Proof of Proposition 1.8 Suppose that we have a genus g cobordism † from K0

to K1 . We have seen that there exists a presentation of † such that

†�hŒ .K1/�i D hŒ .K0/�i:

Furthermore, †� is induced by a cochain map which has degree 2.n�1/g with respect
to the quantum filtration and degree 0 with respect to the x–filtration. Therefore,
according to Definition 2.1, †� has degree 2t.n� 1/g with respect to the filtration Gt

for t 2 Œ0; 1�.

We next turn to our definition of 
 from Definition 2.2. Since we know that the
Gt –filtration is Reidemeister invariant, we can refer to 
 .K/ for K a knot. There is a
commutative square of maps in which the vertical arrows are induced by cobordism
and the horizontal arrows by inclusion of complexes:

H.G`t C@w.K1// //

��

H@w.K1/

��

H.G`C2t.n�1/g
t C@w.K0// // H@w.K0/

Hence, we see that


 .K1/.t/C 2t.n� 1/.g/� 
 .K0/.t/:
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Substituting this inequality into Definition 2.3 we see that

Çn.K1/.t/D
1

2.n�1/
Œ
 .K1/.t/� 
 .U /.t/�

�
1

2.n�1/
Œ
 .K0/.t/� 2t.n� 1/.g/� 
 .U /.t/�

D Çn.K0/.t/� tg;

thus giving half of the inequality in Proposition 1.8. For the other half, consider turning
† upside down to get a cobordism from K1 to K0 . Then, arguing as before,

Çn.K0/.t/� Çn.K1/.t/� tg:

Proof of Theorem 1.7 A slice surface of genus g for a knot K gives rise by puncturing
the surface to a knot cobordism of genus g between K0 WD K and K1 WD U, the
unknot. Now apply Proposition 1.8, and note that Definition 2.3 implies that Çn.U / is
identically 0.

We are now in a position where we can rapidly deduce that Çn is linear on some classes
of knots.

Proof of Proposition 1.10 The result is deduced immediately from Theorem 1.7 and
from two facts.

The first fact is that for any torus knot T .p; q/, Çn.T .p; q// is linear and of slope
�

1
2
.p�1/.q�1/ (note that the slope is, in absolute value, the slice genus of T .p; q/).

For positive torus knots this is straightforward, since the cochain complex is supported
in nonnegative gradings. This means that the Gornik generator  is cohomologous
only to itself and so the statement can be deduced just at the cochain level. For the
negative case, consider the negative torus knot T .p;�q/ (where p; q > 0) in the usual
way as a diagram of a p–stranded braid closure. Then note that, up to an overall shift
in quantum grading, C 0

@w
.T .p;�q// and d�1

�
C�1
@w
.T .p;�q//

�
are isomorphic to

C 0
@w
.T .p;�1// and d�1

�
C�1
@w
.T .p;�1//

�
, respectively. Since T .p;�1/ is a diagram

of the unknot U, it follows that Çn.T .p;�q// differs from Çn.U / by an overall shift.
Since Çn.U / is the zero function, it follows that Çn.T .p;�q// is linear. Finally, we
know from Theorem 1.5 that Çn.T .p;�q//0.0/D�Çn.T .p; q//

0.0/.

The second fact is that any knot K which is either quasipositive, quasinegative or
homogeneous can be exhibited as a slice of a minimal-genus knot cobordism between
a positive and negative torus knot (see [13] for explicit constructions).
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We now turn to the proof of Theorem 1.5. We advise the reader to refresh her knowledge
of the meaning of the function 
 as given in Definition 2.2, as well as of the graphical
characterization of the Gt –filtration given just before the definition of 
 .

Proof of Theorem 1.5 Let us write xn�1C@w.D/ for the subcomplex of elements of
x–grading n� 1 of the Khovanov–Rozansky complex of the based knot diagram D.
This inherits the quantum filtration by restriction. We write

r WDmin
˚
` W Œ � 2 im

�
H 0.F`xn�1C@w.D//!H 0

@w.D/
�	

for the reduced quantum grading (here “reduced” refers to the “reduced” subcomplex
xn�1C@w.D/).

For small values of t , since the cochain complex is finitely generated, it follows that if
the line of slope t

1�t
through .r; n� 1/ intersects .`;�`/ then we have 
 .D/.t/D `.

Hence, for small values of t we have

n�1C
 .D/.t/

r�
 .D/.t/
D

t

1�t
;

so

 .D/.t/D r t � .1� t/.n� 1/

and hence we have

 .D/0.0/D r C .n� 1/:

Then, using the fact that for U the unknot we have


 .U /D .2t � 1/.n� 1/;

we see that
Çn.D/

0.0/D r � .n� 1/:

So it remains to show that this is a concordance homomorphism. In particular, we need
to show that Çn.K1 # K2/

0.0/ D Çn.K1/
0.0/C Çn.K2/

0.0/ for any pair of knots K1

and K2 .

We shall follow the second half of the proof of Theorem 2.8 in [14] and write D1

and D2 for two diagrams with marked points and DDD1 #D2 for the marked diagram
formed by taking connect sum at the marked points. We shall write r1 , r2 and r in the
obvious way for the reduced quantum gradings.

We write ˆ for the map

ˆW C@w.D1/˝C@w.D2/! C@w.D/
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induced by 1–handle addition splitting D into D1 tD2 . This map ˆ restricts to map
of subcomplexes

ẑ W .xn�1
1 C@w.D1//˝ .x

n�1
2 C@w.D2//! .xn�1C@w.D//:

Following the argument in [14] (there replacing @w.x/ by xn � xn�1 and ˛ by 1),
we see that ẑ gives a filtered degree n� 1 isomorphism of cochain complexes (with
filtered degree 1� n inverse). Hence, we have

r1C r2� .n� 1/D r;

so that
.r1� .n� 1//C .r2� .n� 1//D r � .n� 1/;

as required.

Next we prove two propositions that will allow us to conclude that we have quasi-
additivity of Çn . The first says that the graph of Çn lies in the cone with apex the origin
and two sides given by the slope at 0 and the value at 1. The second is a boundedness
result on the size of such a cone.

Proposition 4.13 For any knot K and t 2 Œ0; 1�, we have that

tÇn.K/.1/� Çn.K/.t/� tÇ0n.K/.0/:

Proposition 4.14 For any knot K we have that

Ç0n.K/.0/� 1� Çn.K/.1/� Ç0n.K/.0/:

To prove these we shall refer to the function 
 given in Definition 2.2, as well as the
graphical characterization of the Gt –filtration given just before Definition 2.2.

Proof of Proposition 4.14 Let us again write xn�1C@w.D/ for the subcomplex of
elements of x–gradings n� 1. We consider the two maps of complexes

xn�1C@w.D/ ,! C@w.D/
xn�1

��! xn�1C@w.D/:

The first of these maps is inclusion and is filtered of quantum degree 0; the second of
these maps is filtered of quantum degree 2.n� 1/. Hence, taking our definition of r

from the proof of Theorem 1.5 and our definition of u from Definition 4.10 (dropping
“.D/” to lighten notation), we must have

r � 2.n� 1/� u� r:
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Now we have already computed that 
 0.0/D r C .n� 1/, and by definition we have

 .1/D u, hence we have


 0.D/.0/� 3.n� 1/� 
 .D/.1/� 
 0.D/.0/� .n� 1/:

Finally, we use the fact that for the unknot U we have 
 .U /.t/D .2t � 1/.n� 1/ and
Definition 2.3, giving Çn in terms of 
 , to obtain

Ç0n.D/.0/� 1D
1

2.n�1/
.
 0.D/.0/� 
 0.U /.0//� 1

D
1

2.n�1/
.
 0.D/.0/� 4.n� 1//

�
1

2.n�1/
.
 .D/.1/� .n� 1//D

1

2.n�1/
.
 .D/.1/� 
 .U /.1//

D Çn.D/.1/

�
1

2.n�1/
.
 0.D/.0/� 2.n� 1//D

1

2.n�1/
.
 0.D/.0/� 
 0.U /.0//

D Ç0n.D/.0/:

Proof of Proposition 4.13 Let u and r have the same meaning as in the proof
directly above, and let us consider 
 .D/. We shall think of this following the graphical
description given just before Definition 2.2.

For small t , the line of slope t
1�t

through .r; n � 1/ intersects the line given by
x C y D 0 in .
 .D/.t/;�
 .D/.t//. On the other hand, for values of t close to 1,
.
 .D/.t/;�
 .D/.t// lies on the line of slope t

1�t
through .u; 0/. One sees that

.r; n� 1/ is the first pivot point, and .u; 0/ is the final pivot point. In general, one
computes 
 .D/.t/ by finding the intersection of a line of slope t

1�t
with xCy D 0,

and as t varies from 0 to 1, this line pivots on a finite number of integer points in
Z� .Z\ Œ0; n� 1�/.

Since we know the first pivot point and the final pivot point, it follows that for any t ,
.
 .D/.t/;�
 .D/.t// must lie on a line of slope t

1�t
which intersects both the straight

line segment between .u; 0/ and .u; n� 1/, and the straight line segment between
.u; n � 1/ and .r; n � 1/. Suppose such a line runs through the point .u; h/ for
h2 Œ0; n�1�. Then, since the line must also run through the segment between .u; n�1/

and .r; n� 1/, it follows that the slope t
1�t

must satisfy

t

1�t
�

n�1�h

r�u
;
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which implies that

(}) h� n� 1�
t

1�t
.r �u/:

Now this line intersects xCy D 0 at .
 .D/.t/;�
 .D/.t//, hence

hC
 .D/.t/

u�
 .D/.t/
D

t

1�t
;

which implies that

 .D/.t/D t.uC h/� h:

Hence, we can compute Çn using Definition 2.3.

Çn.D/.t/D
1

2.n�1/
Œt.uC h/� h� .2t � 1/.n� 1/�

D
1

2.n�1/
Œh.t � 1/C tu� .2t � 1/.n� 1/�:

Now, we know that h � n� 1 and we know from the proof of Proposition 4.14 that
u� r � 2.n� 1/, so we have

Çn.D/.t/�
1

2.n�1/
Œ.n� 1/.t � 1/C tu� .2t � 1/.n� 1/�D

t

2.n�1/
Œu� .n� 1/�:

But we also know by definition that uD 
 .D/.1/, so

Çn.D/.1/D
1

2.n�1/
Œ
 .D/.1/� 
 .U /.1/�D

1

2.n�1/
Œu� .n� 1/�:

Hence, we deduce the first inequality of Proposition 4.13.

Now we use (}) to conclude the remainder of the proposition. We have

Çn.D/.t/D
1

2.n�1/
Œh.t � 1/C tu� .2t � 1/.n� 1/�

�
1

2.n�1/
Œ.n� 1/.t � 1/C t.r �u/C tu� .2t � 1/.n� 1/�

D
t

2.n�1/
Œr � .n� 1/�:

But we computed in the proof of Proposition 4.14 that 
 0.0/D r C .n� 1/, so

Ç0n.D/.0/D
1

2.n�1/
Œ
 0.D/.0/� 
 0.U /.0/�

D
1

2.n�1/
Œr C .n� 1/� 2.n� 1/�D

1

2.n�1/
Œr � .n� 1/�;

and hence we deduce the second inequality.
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Quasiadditivity of Çn now follows immediately.

Proof of Theorem 1.4 Proposition 4.13 says that the graph of Çn.K/ is supported
in a cone determined by Ç0n.K/.0/ and Çn.K/.1/. Then Proposition 4.14 says that
the cone can be taken to be the one given by the lines through the origin of slope
Ç0n.K/.0/ and of slope Ç0n.K/.0/� 1. But we know from Theorem 1.5 that Ç0n.0/ is a
knot concordance homomorphism.

Next we show that Ç2 contains exactly the same information as Rasmussen’s s invariant.
The essential point is that Rasmussen’s invariant can be defined either from the average
of two gradings in the unreduced Khovanov cohomology (as was done in [25]), or from
a single grading in the reduced Khovanov cohomology.

Proof of Proposition 1.9 We fix now nD 2 and @wDx2�x , and take our definitions
of r and u from the proofs of the preceding propositions.

The cohomology C@w.D/ is then 2–dimensional and supported in two quantum filtra-
tion gradings differing by 2, the average of which is �s.D/ (here the minus sign is
introduced by a different convention in sl2 Khovanov–Rozansky cohomology compared
to Khovanov cohomology). The number u is exactly the lower of these two filtration
gradings, so uD�s.D/� 1.

On the other hand, the cohomology of xC@w.D/ is 1–dimensional and supported in
quantum filtration grading �s.D/� 1, and this is exactly the number r . Hence, we
have r D uD�s.D/� 1.

Now, considering the graphical definition of Ç2.D/.t/ in terms of lines of slope t
1�t

,
the family of lines pivots first at t D 0 on the point .r; 1/D .�s.D/� 1; 1/ and finally
at t D 1 on the point .u; 0/D .�s.D/�1; 0/. Hence, there cannot be any intermediate
pivot points, from which we see that Ç2.D/ is linear, and the slope can be computed
as �1

2
s.D/.

Finally, we argue that Çn.1/ is superadditive with respect to connect sum.

Proof of Theorem 1.6 Let D1 tD2 be the disjoint union of the knot diagrams D1

and D2 , and let D be a knot diagram resulting from adding a 1–handle connecting
the two disjoint pieces.

Now, following our notation in previous proofs, we write u.D/ for the quantum
filtration grading of Œ .D/� in H@w.D/ (and similarly for D1 , D2 and D1 tD2 ).
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The 1–handle addition induces a quantum filtered degree n� 1 cochain map

hW C@w.D/! C@w.D1 tD2/

that, in cohomology, takes Œ .D/� to a nonzero multiple of Œ .D1/˝  .D2/�. It
follows that

u.D1/Cu.D2/D u.D1 tD2/� u.D/C n� 1:

Now we have

Çn.D1/.1/C Çn.D2/.1/D
1

2.n�1/
Œu.D1/� .n� 1/�C

1

2.n�1/
Œu.D2/� .n� 1/�

D
1

2.n�1/
Œ.u.D1/Cu.D2/� .n� 1//� .n� 1/�

�
1

2.n�1/
Œu.D/� .n� 1/�D Çn.D/.1/:

5 Equivariant cohomology and concordance

The goal of this section is to extract a smooth concordance invariant directly from the
equivariant sln cochain complex of a knot. It will unify all previously constructed
concordance invariants coming from versions of sln cohomology.

First, let us give more details on equivariant cohomology, which was only briefly
mentioned in Section 3. There is a version of sln cohomology for every monic
polynomial @w of degree n. Treating the coefficients of @w as formal variables yields
the so-called equivariant cohomology; see Krasner [10]. The equivariant sln complex
associated to a basepointed link diagram D is a finitely generated complex CU.n/.D/

of free Rn –modules, where Rn is the graded C–algebra

Rn DCŒx; a0; : : : ; an�1�=.a0C a1xC � � �C an�1xn�1
Cxn/

with grading deg x D 2 and deg ai D 2.n� i/. Note that there is a graded isomor-
phism gnW Rn!CŒx; a1; : : : ; an�1�. Two diagrams of the same basepointed link (in
particular, two diagrams differing just by choice of basepoint on the same component)
have homotopy equivalent equivariant complexes.

One may evaluate at some � 2Cn , ie apply the homomorphism ev� W Rn!CŒx�=@w

that sends ai 7! �iC1 for i 2 f0; : : : ; n� 1g. Applying ev� to CU.n/.D/ recovers the
filtered complex C@w.D/ with @w D �0C �1xC � � � C xn . It will also prove useful
to evaluate partially at some � 2Cn�1 , ie apply the homomorphism ev0

�
W Rn!CŒx�
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that is the composition of gn and the map sending ai 7! �i for i 2 f1; : : : ; n�1g. This
yields a complex of free filtered CŒx�–modules.

Let us introduce some further notation. Let Rn–Mod be the category of finitely gener-
ated graded Rn –modules and grading-preserving homomorphisms. Let C.Rn–Mod/ be
the category of finitely generated cochain complexes over Rn–Mod, and Cf .Rn–Mod/
its full subcategory of cochain complexes of shifted free modules (a shifted free mod-
ule is a sum of copies of Rn with various grading shifts). Note that CU.n/.D/ 2

Cf .Rn–Mod/. Krasner proved the homotopy type of CU.n/.D/ to be invariant under
Reidemeister moves. However, inspection of his proof reveals that indeed the following
form of invariance is shown:

Lemma 5.1 Let D and D0 be two link diagrams of a link L. Then there exist
two acyclic cochain complexes A;A0 2 Cf .Rn–Mod/ such that CU.n/.D/ ˚ A Š

CU.n/.D
0/˚A0.

We call an object of an additive category indecomposable if it is not isomorphic to the
sum of two nonzero objects. Let us now consider how equivariant Khovanov–Rozansky
cohomology decomposes.

Proposition 5.2 Let L be a link with a diagram D.

(i) The equivariant Khovanov–Rozansky complex CU.n/.D/ is isomorphic to a
direct sum of an acyclic complex in Cf .Rn–Mod/ and finitely many indecom-
posable nonacyclic complexes in Cf .Rn–Mod/.

(ii) The isomorphism types of the nonacyclic summands do not depend on the choice
of D, ie they are link invariants.

(iii) If L is a knot, then there is precisely one nonacyclic summand with Euler
characteristic 1. All other summands have Euler characteristic 0.

Proof (i) The category Rn–Mod is abelian, and so C.Rn–Mod/ is, too. Moreover,
C.Rn–Mod/ is C–linear (ie its Hom–spaces are C–vector spaces), and has finite-
dimensional Hom–spaces. By Atiyah [1], C.Rn–Mod/ is thus Krull–Schmidt, meaning
that its objects can be written in an essentially unique way as the sum of finitely many
indecomposable objects. So CU.n/.D/ decomposes as a sum of complexes whose
isomorphism types are uniquely determined.
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Since the chain modules of CU.n/.D/ are free, the chain modules of those summands
are summands of free modules, which means they are projective modules. But it is a
well-known theorem (not to be confused with the harder Quillen–Suslin theorem) that
graded projective modules over a graded polynomial ring are in fact graded free (see
eg Jacobson [6, Section 6.13]).

(ii) This follows immediately from Lemma 5.1.

(iii) Denote by e the partial evaluation ev0
.0;:::;0/

(in fact, evaluating at any other
� 2 Cn�1 would work just as well). Applying e to CU.n/.D/ yields a complex
e.CU.n/.D// of free filtered CŒx�–modules. Since CŒx� is a PID, the indecomposable
summands of e.CU.n/.D// are all isomorphic to either a rank-1 complex, or a shift of
CŒx� xk

�!CŒx� for k � 0. This is discussed in detail in Khovanov [8] for nD 2 and in
Krasner [10] for greater n. Since H

�
e.CU.n/.D//

�
has rank 1, there is exactly one

summand of the first type. All summands of the second type have Euler characteristic 0.
Now let X be an indecomposable summand of CU.n/.D/. Then the cochain modules
of X have the same ranks as those of e.X /, and e.X / is a sum of some of the
indecomposable summands of e.CU.n/.D//. This implies the statement.

Definition 5.3 Let K be a knot. We call the single summand of Euler characteristic 1

in the decomposition of Proposition 5.2 the equivariant Rasmussen invariant and denote
it by Sn.K/.

As a consequence of Proposition 5.2, the equivariant Rasmussen invariant is a knot
invariant, well defined up to isomorphism. All previously defined concordance invariants
from sln cohomology may be computed from Sn.K/, as the following proposition
shows:

Proposition 5.4 We have the following:

(i) There is a cocycle  0 2 xn�1 ev.0;:::;0;�1/ Sn.K/ that is not a coboundary. Let
 be the Gornik cocycle for the potential @w D xn�xn�1 (see Definition 4.2).
Then Œ � 2Hxn�xn�1.D/ and Œ 0� 2H.ev.0;:::;0;�1/ Sn.K// have the same Gt

grading for all t . This allows Çn to be computed from Sn .

(ii) Let @wD xnC �n�1xn�1C� � �C �0 be a polynomial with complex coefficients.
Suppose @w is a product of distinct linear factors and fix a root ˛ of @w .
Then H@w.K/ is isomorphic to H

�
ev.�0;:::;�n�1/.Sn.K//

�
, and zH@w;˛.K/ is
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isomorphic to the cohomology of

@w

x�˛
ev.�0;:::;�n�1/.Sn.K//Œ1� n�:

Both isomorphisms preserve the cohomological and the quantum grading.

Proof (i) This follows immediately from the fact that the decomposition of CU.n/.D/

into indecomposable summands respects both the quantum and the x–filtration, and
thus the Gt –filtrations as well.

(ii) Taking cohomology of the decomposition of CU.n/.D/ into indecomposable sum-
mands, one finds H

�
ev.�0;:::;�n�1/.Sn.K//

�
isomorphic to a subspace of Hxn�xn�1.K/.

Because their dimensions agree, that subspace is actually the whole space. The analo-
gous argument may be applied to the reduced case.

Theorem 5.5 Let K and K0 be knots.

(i) A smooth connected cobordism † of genus g from K0 to K with a fixed movie
presentation induces a nonzero map †�W Sn.K/! Sn.K

0/ of degree ng .

(ii) If g D 0, then †� is a grading-preserving isomorphism.

(iii) Sn.K # K0/ is an indecomposable summand of Sn.K/˝Sn.K
0/.

Note that Sn gives a lower bound to the slice genus by (i), and is a smooth concordance
invariant by (ii). In particular, if K is slice, then Sn.K/ is free of rank 1 without
grading shifts.

Proof Let D and D0 be the diagrams of K and K0, respectively, occurring at the
ends of the movie presentation of †.

(i) The movie presentation of † is a sequence of Reidemeister moves and handle
attachments. To define †� , one composes the maps associated to each of these moves.
To Reidemeister moves, associate the isomorphisms given in [10]. To 0–, 1– and
2–handle attachments, associate the maps given by unit, saddle and trace (one may use
tangles). This is exactly the same way that † induces a map of C@w , and so evaluation
of †� gives the corresponding map C@w.D/! C@w.D

0/. Since that map is nonzero,
so must be †� .

(ii) Denote by † the cobordism obtained by turning † upside down, so that

†�W Sn.K
0/! Sn.K/:
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Now †� ı†� is a map Sn.K/! Sn.K/, which is equal to .† ı†/� . For k � 0, the
k th power of this map is induced by the k –fold composition of † ı† with itself, so
by (i), the k th power is nonzero. Since every endomorphism of an indecomposable
module is either nilpotent or an isomorphism [1, Lemma 6], †�ı†� is an isomorphism
in Cf .Rn–Mod/. The map †� ı†� is an isomorphism by the same argument, which
implies that †� and †� are isomorphisms.

(iii) Since CU.n/.D # D0/Š CU.n/.D/˝CU.n/.D
0/, one finds Sn.K/˝Sn.K

0/ as
a direct summand of Sn.K # K0/. It is not necessarily indecomposable, but has Euler
characteristic 1, and so one of its indecomposable summands must have odd Euler
characteristic. By Proposition 5.2(iii), that summand must be Sn.K # K0/.

Remark 5.6 It is also of interest to consider the sum of all nonacyclic summands
of CU.n/.D/. By the same argument as above, this is a link invariant (up to grading-
preserving isomorphism); let us denote it by LCU.n/.D/. The graded dimension of
this cochain complex equals the graded dimension of reduced sln cohomology. So it
follows from Rasmussen’s work [28] that the graded dimension of LCU.n/ stabilizes
for large n, in a certain sense: the exponents of q are of the form a C bn with
a; b 2 Z. Experimentally, one observes a similar stabilization of the differentials
of LCU.n/ . Indeed, this appears to be the case for all examples considered in this paper.
This observation supports the idea that there should exist an equivariant HOMFLYPT

cohomology unifying all of the LCU.n/ .

6 A second example

Let us calculate Ç3 of one more example knot, K D P .7;�5; 4/ # P .�9; 7;�6/ (see
Figure 1). We start by computing the equivariant Rasmussen invariant of P .7;�5; 4/

and P .�9; 7;�6/ using khoca [15]:

S3.P .7;�5; 4// W S3.P .�9; 7;�6// W

t0q0Rn

˚t�1q4Rn

a2
2
�3a1 33

@w0
++
t0q0Rn

t0q0Rn

˚

.3xCa2/
3

++
t1q�6Rn

t0q�2Rn
@w0

33
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Ç3.K/ 1=3 1

t

�1=2

Figure 5: Ç3.K/ for K D P .7;�5; 4/ # P .�9; 7;�6/

Taking the tensor product of those two complexes and plugging in @wD x3�x2 yields
the following complex over �DCŒx�=.x3�x2/:

t�1q4�

˚

t�1q2�

0BBBBBB@
1 0

3x2 � 2x 0

9x� 1 3x2 � 2x

0 1

0 3x2 � 2x

1CCCCCCA
���������������!

.t0q0�/˚2

˚

.t0q�2�/˚3

0BBBBBB@
9x� 1 0

0 9x� 1

�1 �3x2C 2x

3x2 � 2x 0

0 3x2 � 2x

1CCCCCCA

>

������������������!

t1q�6�

˚

t1q�6�

One may take  D .x2; 0; 0;�8x2; 0/> , since this vector is in the kernel of d0 , not
in the image of d�1 , and in the highest x–filtration level. For t > 1

3
and `D t � 1,

one has
G`t C 0

D h1;xi˚2
˚ .q�2�/˚3:

That space contains a cochain cohomologous to  , namely

 0 D d�1..�x2
Cx; 0/>/C D .x; 0;x2

�x;�8x2; 0/>:

On the other hand, one easily checks that  is not cohomologous to any cochain in
h1i˚2˚ .q�2�/˚3 . This implies that  is “best” for t � 1

3
, and  0 is “best” for t � 3.

Hence, 
 .K/.t/D 4t�2 for t � 1
3

, and 
 .K/.t/D t�1 for t � 1
3

, and Ç3.K/.t/D 0

for t � 1
3

and Ç3.K/.t/D�
3
4
t C 1

4
. A plot is shown in Figure 5.

This is an example of a knot for which all generalized Rasmussen invariants s2; s3; : : :

vanish [13], but Ç3 obstructs its sliceness. Moreover, it is a quasialternating knot [5],
which implies that the concordance invariants coming from knot Floer homology, such
as � and ‡ , contain the same information as the knot signature �.K/D 0. This shows
independence of Ç3 from these sliceness obstructions, and we deduce Proposition 1.11.

With a little care, one can use Ç3 to show Proposition 1.12.
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Proof of Proposition 1.12 We begin the proof by assigning an exercise for the eager
reader (she might start by taking the dual of S3.P .7;�5; 4// ˝ S3.P .�9; 7;�6//

above). The exercise is the computation of Ç3.�K/, where �K is the concordance
group inverse of K . This will be found to be trivial.

The knot K is of infinite order modulo hAi if and only if K#m is not concordant to an
alternating knot for any m� 1. To prove this, it suffices to establish that Ç3.K

#m/ is
nonlinear for all m� 1. Note that Ç3.K/

0.0/D 0 implies

(|) Ç3.K
#m/0.0/D 0

for all m 2 Z, since Ç3 is a homomorphism near 0.

Note moreover that K is concordant to the connected sum of m knots

LD .K#m/ #�K # � � � #�K„ ƒ‚ …
m�1

:

So Ç3.L/.1/ D Ç3.K/.1/ < 0. By superadditivity at 1 (Theorem 1.6), we have
Ç3.L/.1/� Ç3.K

#m/.1/C .m� 1/Ç3.�K/.1/D Ç3.K
#m/.1/, and thus

(}) Ç3.K
#m/.1/ < 0:

Now (|) and (}) combined imply that Ç3.K
#m/ is nonlinear.

On the other hand, we note that K has nonzero Levine–Tristram signature. The
Levine–Tristram signature of a knot L is a function �LT.L/W Œ0; 1�! Z, and is zero
almost everywhere on algebraically slice knots (in other words those knots with Seifert
matrices equal to that of a slice knot).

Proposition 6.1 There exists an algebraically slice knot K0 with Ç3.K
0/ ¤ 0 but

sn.K
0/D �.K0/D 0 and �LT.K

0/D 0.

Proof First, choose two strongly quasipositive knots P and Q with g.P /D g.Q/D

g.K/ such that P and K have S –equivalent Seifert matrices, and Q has Alexander
polynomial 1 (that such choices exist is a consequence of [30]). Then set K0 D

K #�P #Q. This knot is clearly algebraically slice with �LT.K
0/D 0. Moreover, since

P and Q are quasipositive, they have equivariant Rasmussen invariants of rank 1, and
so connected sum with �P and Q merely results in two overall shifts for Ç3 , which
cancel each other.
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