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Topology of closed hypersurfaces of small entropy

JACOB BERNSTEIN

LU WANG

We use a weak mean curvature flow together with a surgery procedure to show that
all closed hypersurfaces in R4 with entropy less than or equal to that of S2 �R , the
round cylinder in R4, are diffeomorphic to S3.

53C44; 35K55, 57R65

1 Introduction

If † is a hypersurface, that is, a smooth properly embedded codimension-one subman-
ifold of RnC1 , then the Gaussian surface area of † is

(1-1) F Œ†�D

Z
†

ˆdHn D .4�/�
n
2

Z
†

e�
jxj2

4 dHn;

where Hn is n–dimensional Hausdorff measure. Following Colding–Minicozzi [9],
define the entropy of † to be

�Œ†�D sup
y2RnC1

�2RC

F Œ�†Cy�:

That is, the entropy of † is the supremum of the Gaussian surface area over all
translations and dilations of †. Observe that the entropy of a hyperplane is 1. In [2],
we show that for 2� n� 6, the entropy of a closed (ie compact and without boundary)
hypersurface in RnC1 is uniquely (modulo translations and dilations) minimized by Sn,
the unit sphere centered at the origin. This verifies a conjecture of Colding–Ilmanen–
Minicozzi–White [8, Conjecture 0.9] (compare Ketover–Zhou [24]). We further show,
in [3, Corollary 1.3], that surfaces in R3 of small entropy are topologically rigid. That
is, if † is a closed surface in R3 and �Œ†���ŒS1�R�, then † is diffeomorphic to S2.

In this article, we use a weak mean curvature flow (see Evans–Spruck [10; 11; 12; 13]
and Chen–Giga–Goto [6]) to obtain new topological rigidity for closed hypersurfaces
in R4 of small entropy. This generalizes a result in [8] for closed self-shrinkers to
arbitrary closed hypersurfaces and contrasts with the methods of both [8] and [3,
Corollary 1.3], which both use only the classical mean curvature flow.
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1110 Jacob Bernstein and Lu Wang

Theorem 1.1 If †�R4 is a closed hypersurface with �Œ†�� �ŒS2 �R�, then † is
diffeomorphic to S3.

A key ingredient in the proof of Theorem 1.1 is a refinement of [3, Theorem 1.1]
about the topology of asymptotically conical self-shrinkers of small entropy. Recall,
a hypersurface † is said to be asymptotically conical if it is smoothly asymptotic to
a regular cone; ie lim�!0 �†D C.†/ in C1loc .R

nC1 n f0g/ for C.†/ a regular cone.
A self-shrinker is a hypersurface † that satisfies

(1-2) H†C
1
2
x? D 0;

where H†D�H†n†D�†x is the mean curvature vector of †, and x? is the normal
component of the position vector. Let us denote the set of self-shrinkers in RnC1 by Sn
and the set of asymptotically conical self-shrinkers by ACSn . Self-shrinkers generate
solutions to the mean curvature flow that move self-similarly by scaling. That is, if
† 2 Sn , then

f†tgt2.�1;0/ D
˚p
�t †

	
t2.�1;0/

moves by mean curvature. Important examples are the maximally symmetric self-
shrinking cylinders with k–dimensional spine,

Sn�k� �Rk D
˚
.x;y/ 2Rn�kC1 �Rk DRnC1 W jxj2 D 2.n� k/

	
;

where 0 � k � n. As Sn�k� �Rk are self-shrinkers, their Gaussian surface area and
entropy agree (compare [9, Lemma 7.20]). That is,

�n D �ŒS
n�D F ŒSn��D F ŒS

n
� �Rl �D �ŒSn �Rl �:

Hence, a computation of Stone [31] gives that

2 > �1 >
3
2
> �2 > � � �> �n > � � � !

p
2:

Theorem 1.2 Let † 2ACSn for n� 2. If �Œ†�� �n�1 , then † is contractible and
L.†/, the link of the asymptotic cone C.†/, is a homology .n�1/–sphere.

Remark 1.3 We always consider homology with integer coefficients.

For nD 3, the classification of surfaces and Alexander’s theorem [1] gives:

Corollary 1.4 Let † 2ACS3 . If �Œ†�� �2 , then † is diffeomorphic to R3.
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To prove Theorem 1.1, we first establish a topological decomposition, ie Theorem 4.5,
constructed from the weak mean curvature flow associated to †. Together with
Corollary 1.4, this allows one to perform a surgery procedure which immediately gives
the result. Both these steps require nD 3. For n� 4, one can use Theorem 1.2 and this
surgery procedure to show a (strictly weaker) extension of Theorem 1.1 valid in any
dimension where the two hypotheses below are satisfied. These hypotheses ensure the
existence of the topological decomposition. Specifically, they ensure that if the entropy
of an initial hypersurface is small enough, then tangent flows at all singularities are
modeled by self-shrinkers that are either closed or asymptotically conical.

In order to state these hypotheses, first let S�n denote the set of nonflat elements of Sn ,
and for any ƒ> 0, let

Sn.ƒ/D f† 2 Sn W �Œ†� < ƒg and S�n .ƒ/D S�n \Sn.ƒ/:

Next let RMCn denote the space of regular minimal cones in RnC1; that is, C2RMCn
if and only if it is a proper subset of RnC1 and Cn f0g is a hypersurface in RnC1n f0g
that is invariant under dilation about 0 and with vanishing mean curvature. Let RMC�n
denote the set of nonflat elements of RMCn, ie cones whose second fundamental
forms do not identically vanish. For any ƒ> 0, let

RMCn.ƒ/D fC 2RMCn W �ŒC� < ƒg and RMC�n.ƒ/DRMC�n\RMCn.ƒ/:

Let us now fix a dimension n� 3 and a value ƒ> 1. The first hypothesis is that

(?n;ƒ) RMC�k.ƒ/D∅ for all 3� k � n:

Observe that all regular minimal cones in R2 consist of unions of rays, and so
RMC�1 D∅. Likewise, RMC�2 D ∅, since great circles are the only geodesics
in S2. The second hypothesis is that

(??n;ƒ) S�n�1.ƒ/D∅:

Obviously this holds only if ƒ� �n�1 . We then show the following conditional result.

Theorem 1.5 Fix n� 4 and ƒ2 .�n; �n�1�. If (?n;ƒ ) and (??n;ƒ ) both hold and †
is a closed hypersurface in RnC1 with �Œ†��ƒ, then † is a homology n–sphere.

Remark 1.6 By the results of [2] and Zhu [34], there does not exist a closed hyper-
surface † such that �Œ†�� �n unless † is a round sphere. Thus, we require ƒ> �n
in order to make Theorem 1.5 nontrivial.

For general n and ƒ2 .�n; �n�1�, neither the validity of (?n;ƒ ) nor that of (??n;ƒ ) is
known. However, both can be established for nD 3 and ƒD �2 . First, as part of their
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proof of the Willmore conjecture, Marques–Neves gave a lower bound on the density
of nontrivial regular minimal cones in R4. In particular, it follows from their [25,
Theorem B] that if C 2RMC�3 , then �ŒC� > �2 , and so .?3;�2/ holds. Furthermore, it
follows from [3, Corollary 1.2] that S�2 .�2/D∅, and so .??3;�2/ holds.

For n� 4, some partial results suggest that (?n;ƒ ) and (??n;ƒ ) hold for ƒD �n�1 .
For instance, Ilmanen–White [23, Theorem 1*] have shown that if C 2 RMC�n is
area-minimizing and topologically nontrivial, then �ŒC� � �n�1 . Additionally, [8,
Theorem 0.1] says that the self-shrinking sphere has the lowest entropy among all
compact self-shrinkers, and [8, Conjecture 0.10] posits that .??n;�n�1/ holds for n� 7.
It is important to note that there exist many topologically trivial elements of RMC�n .
Indeed, the work of Hsiang [15; 16] and Hsiang–Sterling [17] shows that there exist
topologically trivial elements of RMC�n for nD 5; 7 and for all even n� 4.

The paper is organized as follows. In Section 2, we introduce notation and recall
some basic facts about the mean curvature flow. In Section 3, we show regularity of
self-shrinking measures of low entropy. In Section 4, we study the structure of the
singular set for weak mean curvature flows of small entropy. Importantly, we give a
topological decomposition, Theorem 4.5, of the regular part of the flow which is the
basis of the surgery procedure. In Section 5, we prove Theorem 1.2 and Corollary 1.4.
Finally, in Section 6, we carry out the surgery procedure and prove Theorems 1.1
and 1.5.

Acknowledgements Bernstein was partially supported by the NSF Grants DMS-
1307953 and DMS-1609340. Wang was partially supported by the Chapman Fellowship
of Imperial College London, an Alfred P. Sloan Research Fellowship, and the NSF Grant
DMS-1406240. Support for Wang’s research was also provided by the Vice Chancellor
for the Research and Graduation Education at the University of Wisconsin–Madison
with funding from the Wisconsin Alumni Research Foundation.

2 Notation and background

In this section, we fix notation for the rest of the paper and recall some background on
mean curvature flow. Experts should feel free to consult this section only as needed.

2.1 Singular hypersurfaces

We will use results from [20] on weak mean curvature flows. For this reason, we follow
the notation of [20] as closely as possible.

We use the notation:
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� M.RnC1/D f� W � is a Radon measure on RnC1g (see [29, Section 4]);
� IMk.R

nC1/Df� W� is an integer k–rectifiable Radon measure on RnC1g (see
[20, Section 1]);

� IVk.RnC1/ D fV W V is an integer rectifiable k–varifold on RnC1g (see [20,
Section 1] or [29, Chapter 8]).

The space M.RnC1/ is given the weak* topology. That is,

�i ! � ()

Z
f d�i !

Z
f d� for all f 2 C 0c .R

nC1/:

And the topology on IMk.R
nC1/ is the subspace topology induced by the natural

inclusion into M.RnC1/. For the details of the topologies considered on IVk.RnC1/,
we refer to [20, Section 1] or [29, Chapter 8]. There are natural bijective maps

V W IMk.R
nC1/! IVk.RnC1/ and �W IVk.RnC1/! IMk.R

nC1/:

The second map is continuous, but the first is not. Henceforth, we write V.�/D V�
and �.V /D �V .

If † � RnC1 is a k–dimensional smooth properly embedded submanifold, we set
�† DHkb† 2 IMk.R

nC1/. Given .y; �/ 2RnC1�RC and � 2 IMk.R
nC1/, we

define the rescaled measure �y;� 2 IMk.R
nC1/ by

�y;�.�/D �k�.��1�Cy/:

This is defined so that if † is a k–dimensional smooth properly embedded submanifold,

�
y;�
† D ��.†�y/:

One of the defining properties of � 2 IMk.R
nC1/ is that for �–ae x 2RnC1 , there

is an integer ��.x/ such that

lim
�!1

�x;�
D ��.x/�P ;

where P is a k–dimensional plane through the origin. When such P exists, we denote
it by Tx� and call it the approximate tangent plane at x. The value ��.x/ is the
multiplicity of � at x, and by definition, ��.x/2N for �–ae x. Notice that if �D�† ,
then Tx�D Tx† and ��.x/D 1. Given a � 2 IMn.RnC1/, set

reg.spt.�//D fx 2 spt.�/ W B�.x/\ spt.�/ is a hypersurface for some � > 0g;

and sing.spt.�//D spt.�/nreg.spt.�//. Here B�.x/ is the open ball in RnC1 centered
at x with radius � . Likewise,

reg.�/D fx 2 reg.spt.�// W ��.x/D 1g and sing.�/D spt.�/ n reg.�/:
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For � 2 IMn.RnC1/, we extend the definitions of F and � in the obvious manner:

F Œ��D F ŒV��D

Z
ˆd� and �Œ��D �ŒV��D sup

y2RnC1

�2RC

F Œ�y;��:

2.2 Gaussian densities and tangent flows

Historically, the first weak mean curvature flow was the measure-theoretic flow intro-
duced by Brakke [4]. This flow is called a Brakke flow. Brakke’s original definition
considered the flow of varifolds. We use the (slightly stronger) notion introduced by
Ilmanen [20, Definition 6.3]. For our purposes, the Brakke flow has two important roles.
The first is the fact that Huisken’s monotonicity formula [19] holds also for Brakke flows;
see [21, Lemma 7]. The second is the powerful regularity theory of Brakke [4] for such
flows. In particular, we will often refer to White’s version of Brakke’s local regularity
theorem [33]. We emphasize that White’s argument is valid only for a special class of
Brakke flows, but that all Brakke flows considered in this paper are within this class.

A consequence of Huisken’s monotonicity formula is that if a Brakke flow KDf�tgt�t0
has bounded area ratios, then K has a well-defined Gaussian density at every point
.y; s/ 2RnC1 � .t0;1/ given by

‚.y;s/.K/D lim
t!s�

Z
ˆ.y;s/.x; t / d�t .x/;

where
ˆ.y;s/.x; t /D .4�/

�n
2 e
jx�yj2

4.t�s/ :

Furthermore, the Gaussian density is upper semicontinuous.

Combining the compactness of Brakke flows (compare [20, Theorem 7.1]) with the
monotonicity formula, one establishes the existence of tangent flows. For a Brakke
flow KD f�tgt�t0 and a point .y; s/ 2RnC1 � .t0;1/, define a new Brakke flow

K.y;s/;� D f�.y;s/;�t gt��2.t0�s/;

where
�
.y;s/;�
t D �

y;�

sC��2t
:

Definition 2.1 Let KD f�tgt�t0 be an integral Brakke flow with bounded area ratios.
A nontrivial Brakke flow T Df�tgt2R is a tangent flow to K at .y; s/2RnC1�.t0;1/
if there is a sequence �i !1 such that K.y;s/;�i ! T . Denote by Tan.y;s/K the set
of tangent flows to K at .y; s/.

The monotonicity formula implies that any tangent flow is backwardly self-similar.
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Theorem 2.2 (Ilmanen [21, Lemma 8]) Given an integral Brakke flow KDf�tgt�t0
with bounded area ratios, a point .y; s/ 2 RnC1 � .t0;1/ with ‚.y;s/.K/ � 1, and
a sequence �i !1, there exists a subsequence �ij and a T 2 Tan.y;s/K such that
K.y;s/;�ij ! T .

Furthermore, T Df�tgt2R is backwardly self-similar with respect to parabolic rescaling
about .0; 0/. That is, for all t < 0 and � > 0,

�t D �
.0;0/;�
t :

Moreover, V��1 is a stationary point of the F functional, and

‚.y;s/.K/D F Œ��1�:

2.3 Level set flows and boundary motions

We will also need a set-theoretic weak mean curvature flow called the level-set flow.
This flow was first studied in the context of numerical analysis by Osher and Sethian [27].
The mathematical theory was developed by Evans and Spruck [10; 11; 12; 13] and
Chen, Giga and Goto [6]. For our purposes, it has the important advantages of being
uniquely defined and satisfying a maximum principle.

A technical feature of the level-set flow is that the level sets L.�0/D f�tgt�0 may
develop nonempty interiors for positive times. This phenomena is called fattening
and is unavoidable for certain initial sets �0 and is closely related to nonuniqueness
phenomena of weak solutions of the flow. We say L.�0/ is nonfattening if each �t
has no interior. It is relatively straightforward to see that the nonfattening condition is
generic; see for instance [20, Theorem 11.3].

In [20], Ilmanen synthesized both notions of weak flow. In particular, he showed that
for a large class of initial sets, there is a canonical way to associate a Brakke flow to
the level-set flow, and observed that this allows, among other things, for the application
of Brakke’s partial regularity theorem. For our purposes, it is important that the Brakke
flow constructed does not vanish gratuitously. A similar synthesis may be found in [13].
The result we need is the following.

Theorem 2.3 (Ilmanen [20, Theorem 11.4]) If †0 is a closed hypersurface in RnC1

and the level-set flow L.†0/ is nonfattening, then there is a set E �RnC1 �R and a
Brakke flow KD f�tgt�0 such that:

(1) EDf.x; t / W u.x; t / > 0g, where u solves the level set flow equation with initial
data u0 that satisfies E0 D fx W u0.x/ > 0g and @E0 D fx W u0.x/D 0g D†0 ;

(2) each Et D fx W .x; t / 2Eg is of finite perimeter and �t D Hnb@�Et , where
@�Et is the reduced boundary of Et .
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3 Regularity of self-shrinking measures of small entropy

We establish some regularity properties of self-shrinking measures of small entropy
when n � 3. We restrict to n � 3 in order to avoid certain technical complications
coming from the fact that �1 > 3

2
.

3.1 Self-shrinking measures

We will need a singular analog of Sn . To that end, we define the set of self-shrinking
measures on RnC1 by

SMn D f� 2 IMn.R
nC1/ W V� is stationary for the F functional; spt.�/¤∅g:

Clearly, if † 2 Sn , then �† 2 SMn . There are many examples of singular self-
shrinkers. For instance, any element of C 2RMCn satisfies �C DHnbC 2 SMn . For
� 2 SMn , we define the associated Brakke flow KD f�tgt2R by

�t D

�
0 if t � 0;
�0;
p
�t if t < 0:

One can verify that this is a Brakke flow. Given ƒ> 0, set

SMn.ƒ/D f� 2 SMn W �Œ�� < ƒg and SMnŒƒ�D f� 2 SMn W �Œ���ƒg :

3.2 Regularity and asymptotic properties of self-shrinking measures of
small entropy

A � 2 IMn.RnC1/ is a cone if �0;� D �. Likewise, � 2 IMn.RnC1/ splits off a
line if, up to an ambient rotation of RnC1 , we have �D y���R for y� 2 IMn�1.Rn/.
Observe that if � 2 SMn is a cone, then V� is stationary (for area). Similarly, if
� 2 SMn splits off a line, then y� 2 SMn�1 and �Œ��D �Œy��.

Standard dimension reduction arguments give the following.

Lemma 3.1 Fix n � 3 and ƒ � 3
2

, and suppose that (?n;ƒ ) holds. If � 2 SMn.ƒ/

is a cone, then �D �P for some hyperplane P .

Proof We will prove this by showing that if (?n;ƒ ) holds, then for all 3�m� n, if
� 2 SMm.ƒ/ is a cone, then �D �P for a hyperplane P in RmC1 .

We proceed by induction on m. When mD 3, note that ƒ� 3
2

and so we have that
�D �C for some C 2RMC3 by [2, Proposition 4.2]. Hence, by the assumption that
RMC�3.ƒ/D∅, we must have that C is a hyperplane through the origin. To complete
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the induction argument, we observe that it suffices to show that if � 2 SMm.ƒ/ is a
cone, then �D �C for some C 2RMCm.ƒ/. Indeed, such a C must be a hyperplane
because (?n;ƒ ) holds and so, by definition, RMC�m.ƒ/D∅ for 3�m� n.

To complete the proof, we argue by contradiction. Suppose that spt.�/ is not a regular
cone. Then there is a point y 2 sing.�/nf0g. As V� is stationary, and �2 IMm with
�Œ��<ƒ, we may apply Allard’s integral compactness theorem (see [29, Theorem 42.7
and Remark 42.8]) to conclude that there exists a sequence �i!1 such that �y;�i!�

and V� is a stationary integral varifold. Moreover, it follows from the monotonicity
formula [29, Theorem 17.6] that � is a cone; see also [29, Theorem 19.3].

As � is a cone, � splits off a line. That is, � D y���R , where y� 2 IMm�1 and Vy� is
a stationary cone, and so y� 2 SMm�1 . Also, by the lower semicontinuity of entropy,

�Œy��D �Œy� ��R�� �Œ�� < ƒ:

Thus, it follows from the induction hypotheses that y� D � yP , where yP is a hyperplane
in Rm and so V� is a multiplicity-one hyperplane. Hence, by Allard’s regularity
theorem (see [29, Theorem 24.2]), y 2 reg.�/, giving a contradiction. Therefore,
�D �C for a C 2RMCm.ƒ/.

As a consequence, we obtain regularity for elements of SMn.ƒ/ under the hypothesis
that (?n;ƒ ) holds.

Proposition 3.2 Fix n�3 and ƒ� 3
2

and suppose that (?n;ƒ ) holds. If �2SMn.ƒ/,
then �D �† for some † 2 Sn.ƒ/.

Proof Observe that for � 2 SMn.ƒ/, the mean curvature of V� is locally bounded
by (1-2). Following the same reasoning in the proof of Lemma 3.1, given y 2 sing.�/,
there exists a sequence �i !1 such that �y;�i ! � and V� is a stationary cone
and so � 2 SMn . By the lower semicontinuity of entropy, �Œ��� �Œ�� < ƒ. Hence,
together with Lemma 3.1, it follows that sing.�/ D ∅. That is, spt.�/ is a smooth
submanifold of RnC1 that, moreover, satisfies (1-2). Finally, the entropy bound on �
implies that �.BR/�CRn for some C >0, (where BR denotes the open ball in RnC1

centered at the origin with radius R) and so, by [7, Theorem 1.3], spt.�/ is proper.
That is, �D �† for some † 2 Sn .

If, in addition, (??n;ƒ ) holds, then we have the following.

Proposition 3.3 Fix n� 3 and ƒ�ƒn�1 and suppose that both (?n;ƒ ) and (??n;ƒ )
hold. If �2SMn.ƒ/, then �D�† for some †2Sn.ƒ/, and either † is diffeomorphic
to Sn or † 2ACSn .
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Proof First observe that, by Proposition 3.2, �D �† for some † 2 Sn.ƒ/. If † is
closed, then it follows from [8, Theorem 0.7] that † is diffeomorphic to Sn. On the
other hand, if † is not closed, then it is noncompact.

Let K D f�tgt2R be the Brakke flow associated to �. Note that �t D �p�t † for
t < 0. Let X D fy W y ¤ 0; ‚.y;0/.K/� 1g � RnC1 n f0g. As † is noncompact,
X is nonempty. Indeed, pick any sequence of points yi 2 † with jyi j ! 1. The
points yyi D jyi j�1yi 2 jyi j�1†. Hence, ‚.yyi ;�jyi j�2/.K/ � 1. As the yyi are in a
compact subset, up to passing to a subsequence and relabeling, yyi ! yy , and so the
upper semicontinuity of Gaussian density implies that ‚.yy;0/.K/� 1.

We next show that X is a regular cone. The fact that X is a cone readily follows from
the fact that K is invariant under parabolic scalings. To see that sing.X / � f0g, we
note that, by [2, Lemma 4.4], for any y 2 X and T 2 Tan.y;0/K , T D f�tgt2R splits
off a line. That is, up to an ambient rotation, �t D y�t ��R with fy�tgt2R the Brakke
flow associated to y��1 2 SMn�1.ƒ/. Here we use the lower semicontinuity of entropy.
Note that ƒ � �n�1 < 3

2
. Thus, by Proposition 3.2 and the hypothesis that (?n;ƒ )

holds, y��1 D �� for � 2 Sn�1.ƒ/. Hence, as we assume that (??n;ƒ ) holds, � is a
hyperplane through the origin. Therefore, it follows from Brakke’s regularity theorem
that, for t < 0 close to 0, spt.�t / has uniformly bounded curvature near y and so
p
�t †! X in C1loc .R

nC1n f0g/, concluding the proof.

As a consequence, we establish the following compactness theorem for asymptotically
conical self-shrinkers of small entropy.

Corollary 3.4 Fix n� 3, ƒ�ƒn�1 , and �0 > 0. If both (?n;ƒ ) and (??n;ƒ ) hold,
then the set

ACSnŒƒ� �0�D f† W† 2ACSn; �Œ†��ƒ� �0g

is compact in the C1loc .R
nC1/ topology.

Proof Consider a sequence †i 2 ACSnŒƒ� �0� and let �i D �†i 2 SMnŒƒ� �0�.
By the integral compactness theorem for F –stationary varifolds, up to passing to
a subsequence, �i ! � in the sense of Radon measures. Moreover, by the lower
semicontinuity of the entropy, � 2 SMnŒƒ� �0�. Hence, by Proposition 3.2, �D �†
for † 2 SnŒƒ� �0� and so, by Allard’s regularity theorem, †i !† in C1loc .R

nC1/.
Finally, as each †i is noncompact and connected, so is † and so, by Proposition 3.3,
† 2ACSnŒƒ� �0�, proving the claim.

Recall that C.†/ denotes the asymptotic cone of any † 2ACSn . Denote the link of
the asymptotic cone by L.†/D C.†/\Sn.
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Proposition 3.5 Fix n� 3, ƒ� �n�1 , and �0 > 0. If both (?n;ƒ ) and (??n;ƒ ) hold,
then the set

LnŒƒ� �0�D fL.†/ W† 2ACSnŒƒ� �0�g

is compact in the C1.Sn/ topology.

Proof Consider a sequence Li 2LnŒƒ��0� and let †i 2ACSnŒƒ��0� be chosen so
that L.†i /D Li (observe that the †i are uniquely determined by [32, Theorem 1.3]).
By Corollary 3.4, up to passing to a subsequence, †i !† 2ACSnŒƒ� �0�. We claim
that Li ! LD L.†/ in C1.Sn/.

To see this, let �i D�†i and �D�† be the corresponding elements of SMnŒƒ��0�,
and let Ki and K be the associated Brakke flows. Clearly, �i ! � in the sense of
measures. Hence, by construction, the Ki converge in the sense of Brakke flows to K .
Since

C.†/D fx 2RnC1 W‚.x;0/.K/� 1g

and likewise for C.†i /, we have by Brakke’s regularity theorem that C.†i /! C.†/
in C1loc .R

nC1n f0g/; that is, L.†i /! L.†/ in C1.Sn/ as claimed.

Let BR denote the open ball in RnC1 centered at the origin with radius R . Combining
Corollary 3.4 and Proposition 3.5 gives the following.

Corollary 3.6 Fix n� 3, ƒ� �n�1 , and �0 > 0. Suppose that (?n;ƒ ) and (??n;ƒ )
hold. If † 2ACSnŒƒ� �0�, then

(1) given ı > 0, there is a � 2 .0; 1/ and R> 1 depending only on n;ƒ; �0 and ı
such that if p 2† nBR and r D �jx.p/j, then †\Br.p/ can be written as a
connected graph of a function v over a subset of Tp† with jDvj � ı ;

(2) there are R0 DR0.n;ƒ; �0/ and C0 D C0.n;ƒ; �0/ such that †n xBR0 is given
by the normal graph of a smooth function u over C.†/ n �, where � is a
compact set, satisfying that for p 2 C.†/ n�,

jx.p/jju.p/jC jx.p/j2jrC.†/u.p/jC jx.p/j
3
jr
2
C.†/u.p/j � C0:

Hence, †nBR is diffeomorphic to L.†/� Œ0;1/ for any R �R0 .

Proof For any sequence †i 2ACSnŒƒ� �0�, by Corollary 3.4 and Proposition 3.5,
up to passing to a subsequence, †i !† in C1loc .R

nC1/ for some † 2ACSnŒƒ� �0�,
and L.†i /! L.†/ in C1.Sn/. Let Ki and K be the associated Brakke flows to †i
and †, respectively. As † 2ACSn , we have that Kb.B2 n xB1/� Œ�1; 0� is a smooth
mean curvature flow. Furthermore, since Ki ! K , it follows from Brakke’s local
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regularity theorem that †i have uniform curvature decay, more precisely, there exist
R;C > 0 such that for all i and p 2†i nBR ,

2X
kD0

jx.p/jkC1jrk†iA†i .p/j � C;

where A†i is the second fundamental form of †i . As the C.†i /! C.†/, by [32,
Lemma 2.2] and [3, Proposition 4.2], there exist R0; C 0 > 0 such that items (1) and (2)
in the statement hold for all †i . This establishes the corollary by the arbitrariness of
the †i .

Finally, we need the fact that closed self-shrinkers of small entropy have an upper
bound on their extrinsic diameter.

Proposition 3.7 Fix n � 3, ƒ � �n�1 , and �0 > 0. Suppose that both (?n;ƒ ) and
(??n;ƒ ) hold. Then there is an RD D RD.n;ƒ; �0/ such that if † 2 SnŒƒ� �0� is
closed, then †� xBRD .

Proof We argue by contradiction. If this was not true, then there would be a sequence
of †i 2 SnŒƒ � �0� with the property that the †i are closed and there are points
pi 2 †i with jpi j ! 1. In particular, for each R >

p
2n, there is an i0 D i0.R/

such that if i > i0.R/, then †i \ @BR ¤∅. Indeed, if this was not the case, then the
mean curvature flows f

p
�t †gt2Œ�1;0/ and

˚
@Bp

R2�2n.tC1/

	
t2Œ�1;0/

would violate
the avoidance principle.

Let �i D �†i 2 SMnŒƒ� �0�. By the integral compactness theorem for F –stationary
varifolds, up to passing to a subsequence the �i converge to a � 2 SMnŒƒ � �0�.
By Proposition 3.2, �D �† for some † 2 SnŒƒ� �0�. Furthermore, up to passing
to a further subspace, †i !† in C1loc .R

nC1/. It follows that †\ @BR ¤ ∅ for all
R >
p
2n. In other words, † is noncompact and so, by Proposition 3.3, † 2ACSn .

However, this implies that † is noncollapsed (see [2, Definition 4.6]), while the †i
are closed and thus collapsed by [2, Lemma 4.8]. This contradicts [2, Proposition 4.10]
and completes the proof.

4 Singularities of flows with small entropy

Given a Brakke flow K D f�tgt2I and a point .x0; t0/ 2 sing.K/ with t0 2 VI , a
tangent flow T 2 Tan.x0;t0/K is of compact type if T D f�tgt2.�1;1/ and spt.��1/
is compact. Otherwise, the tangent flow is of noncompact type. If every element of
Tan.x0;t0/K is of compact type, then .x0; t0/ is a compact singularity. Likewise, if
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every element of Tan.x0;t0/K is of noncompact type, then .x0; t0/ is a noncompact
singularity.

For the remainder of this section, we fix a dimension n � 3 and constants ƒ 2
.�n; �n�1�

1 and �0 > 0, and suppose that both (?n;ƒ ) and (??n;ƒ ) hold. We further
assume that †0 �RnC1 is a closed connected hypersurface with �Œ†0��ƒ� �0 and
with the property that the level set flow L.†0/ is nonfattening and that .E;K/ is the
pair given by Theorem 2.3.

Proposition 4.1 Let .x0; t0/ 2 sing.K/ and T 2 Tan.x0;t0/K . If T D f�tgt2.�1;1/
is of noncompact type, then ��1 D �† for some † 2 ACSn . Moreover, there is a
constant R1 DR1.n;ƒ; �0/ such that for all R �R1 ,

T b.B16R n xBR/� .�1; 1/

is a smooth mean curvature flow. Moreover, for all � 2 .R; 16R/ and t 2 .�1; 1/,
@B� meets spt.�t / transversally and @B� \ spt.�t / is connected.

Proof First, invoking Theorem 2.2 and the monotonicity formula, T is backwardly
self-similar with respect to parabolic scalings about .0; 0/ and ��1 2 SMnŒƒ� �0�.
Furthermore, by Proposition 3.3, we have ��1 D �† for some † 2 ACSnŒƒ� �0�.
Finally, by Corollary 3.6, the pseudolocality property of mean curvature flow [22,
Theorem 1.5]2 and Brakke’s local regularity theorem, there is an R1 > 0 depending
only on n, ƒ, and �0 such that for R >R1 ,

T b.B16R n xBR/� .�1; 1/

is a smooth mean curvature flow. Indeed, for all t 2 .�1; 1/, the intersection spt.�t /\
.B16Rn xBR/ is the graph of a function over a subset of C.†/, the asymptotic cone of †
with small C 2 norm. As such, for all � 2 .R; 16R/ and t 2 .�1; 1/, the boundary @B�
meets spt.�t / transversally. As �Œ†���Œ†0� <�n�1 , it follows from [3, Theorem 1.1]
that L.†/, the link of C.†/, is connected, and hence so is @B� \ spt.�t /.

Lemma 4.2 Each .x0; t0/ 2 sing.K/ is either a compact or a noncompact singularity.

Proof Suppose that .x0; t0/ is not a noncompact singularity. Then there is a T D
f�tgt2R 2Tan.x0;t0/K of compact type. By the monotonicity formula and Theorem 2.2,
��1 2 SMnŒƒ� �0�. It follows from Proposition 3.3 that ��1 D �† for some † 2
SnŒƒ� �0� and † is closed. Hence, by [28, Corollary 1.2], T is the only element of
Tan.x0;t0/K and so .x0; t0/ is a compact singularity, proving the claim.

1The reader may refer to Remark 1.6 for the reason that we restrict to ƒ> �n .
2The proof of [22, Theorem 1.5] uses the local regularity theorem of White, which is also applicable to

the Brakke flows in Theorem 2.3 and their tangent flows; see [33, pages 1487–1488].
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Theorem 4.3 Given .x0; t0/ 2 sing.K/, there exist �0 D �0.x0; t0;K/ > 0 and ˛ D
˛.n;ƒ; �0/ > 1 such that the following hold:

(1) If .x0; t0/ is a compact singularity and � < �0 , then

Kb
�
B2˛�.x0/� .t0� 4˛

2�2; t0C 4˛
2�2/n f.x0; t0/g

�
is a smooth mean curvature flow. Furthermore, spt.�t /\ @BR.x0/D∅ for all
R 2

�
1
2
˛�; 2˛�

�
and t 2 .t0� �2; t0C �2/.

(2) If .x0; t0/ is a noncompact singularity and � < �0 , then

Kb
�
B2˛�.x0/� .t0� 4˛

2�2; t0�n f.x0; t0/g
�

and
Kb
�
B2˛�.x0/n xB 1

2
˛�.x0/

�
� .t0� �

2; t0C �
2/

are both smooth mean curvature flows. Furthermore, for all R 2
�
1
2
˛�; 2˛�

�
and

t 2 .t0� �
2; t0C �

2/, the boundary @BR.x0/ meets spt.�t / transversally, and
the intersection is connected.

Finally, for all t 2 .t0 � �2; t0/, we have that spt.�t / \ xB˛�.x0/ is diffeomorphic
(possibly as a manifold with boundary) to � \ xB˛ , where � 2 S�n Œƒ � �0�, and if
� 2ACSn , then �nB˛ is diffeomorphic to L.�/� Œ0;1/.

Proof Set ˛ D 4max fR1; RD; 1g, where R1 is given by Proposition 4.1 and RD is
given by Proposition 3.7. Without loss of generality, we may assume that .x0; t0/D
.0; 0/.

We establish the regularity near (but not at) .0; 0/ by contradiction. To that end,
suppose that there was a sequence of points .xi ; ti / 2 sing.K/n f.0; 0/g such that
.xi ; ti /! .0; 0/. If .0; 0/ is a noncompact singularity, we further assume ti � 0. Let
r2i D jxi j

2Cjti j. Then up to passing to a subsequence, it follows from Theorem 2.2
that K.0;0/;ri ! T in the sense of Brakke flows and T D f�tgt2R 2 Tan.0;0/K . Let
zxi D r

�1
i xi and zti D r�2i ti . Then jzxi j2C jzti j D 1; that is, .zxi ; zti / lies on the unit

parabolic sphere in spacetime. Thus, up to passing to a subsequence, .zxi ; zti /! .zx0; zt0/,
where jzx0j2Cjzt0jD 1. Moreover, the upper semicontinuity of Gaussian density implies
that ‚.zx0;zt0/.T /� 1.

As ��1 2 SMnŒƒ� �0�, Proposition 3.3 implies that sing.�t /D∅ for t < 0. That is,
.zx0; zt0/ is a regular point of T if zt0 < 0 . If .0; 0/ is a noncompact singularity, then T
is of noncompact type and zt0 � 0. Hence, either .zx0; zt0/ is a regular point or zt0 D 0
and jzx0jD 1. However in the later case, Proposition 4.1 applied to T .0;0/;˛ 2Tan.0;0/K
implies that .zx0; zt0/ is also a regular point of T . If .0; 0/ is a compact singularity, then
T is of compact type and ��1 D �� for some � 2 Sn.ƒ/ by Proposition 3.3. This
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implies that T is extinct at time 0 and sing.T /D f.0; 0/g, again implying that zt0 � 0
and .zx0; zt0/ is a regular point of T . Hence, it follows from Brakke’s local regularity
theorem that for all i sufficiently large, .zxi ; zti / … sing.K.0;0/;ri /, or equivalently,
.xi ; ti / … sing.K/. This is the desired contradiction. Therefore, for �00 > 0 sufficiently
small, if � < �00 and .0; 0/ is a noncompact singularity, then

Kb
�
B2˛� � .�4˛

2�2; 0� n f.0; 0/g
�

is a smooth mean curvature flow, while if � < �00 and .0; 0/ is a compact singularity,

Kb
�
B2˛� � .�4˛

2�2; 4˛2�2/ n f.0; 0/g
�

is a smooth mean curvature flow.

We continue arguing by contradiction and again consider a sequence �i of positive
numbers with �i! 0 and �i <�00 . Up to passing to a subsequence, K.0;0/;�i converges,
in the sense of Brakke flows, to some T D f�tgt2R 2 Tan.0;0/K . If .0; 0/ is a compact
singularity, then as ˛� 4RD , we have @BR\spt.�t /D∅ for R� 1

2
˛ and t 2 .�1; 1/

by Proposition 3.7 and the avoidance principle. Hence, the nature of the convergence
implies that, for �i sufficiently large, @BR \ spt.�t /D∅ for t 2 .��2i ; �

2
i / and R 2�

1
2
˛�i ; 2˛�i

�
. If .0; 0/ is a noncompact singularity, then Proposition 4.1 implies that

T b
�
B4˛ n xB 1

4
˛

�
� .�1; 1/

is a smooth mean curvature flow and that @BR meets spt.�t / transversally and as a
connected set for all R 2

�
1
4
˛; 4˛

�
and t 2 .�1; 1/. Thus, by Brakke’s local regularity

theorem, for all i sufficiently large,

K.0;0/;�i b
�
B2˛ n xB 1

2
˛

�
� .�1; 1/

is a smooth mean curvature flow, and hence so is

Kb
�
B2˛�i n

xB 1
2
˛�i

�
� .��2i ; �

2
i /:

Moreover, for all R 2
�
1
2
˛�i ; 2˛�i

�
and t 2 .��2i ; �

2
i /, the boundary @BR meets �t

transversally and as a connected set. Hence, as the sequence �i was arbitrary, there
is a �000 < �

0
0 such that items (1) and (2) hold for � < �000 .

To complete the proof, we observe that again arguing by contradiction, there is a
�0 < �000 such that if � < �0 , then B2˛ \ ��1 spt.���2/ is a normal graph over a
smooth domain3 � in � with small C 2 norm for some � 2 SnŒƒ� �0�. In particular,
as ˛ � 4R1 � 4R0 , by Corollary 3.6, @� is a small normal graph over @B2˛ \ � ,

3Given a manifold M we say a subset U �M is a smooth domain if U is open and @U is a smooth
submanifold.
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so xB˛�\ spt.���2/ is diffeomorphic to xB˛\� . Furthermore, the choice of ˛ ensures
that if � 2ACSn , then �nB˛ is diffeomorphic to L.†/� Œ0;1/. It remains only to
show that xB˛� \ spt.�t / is diffeomorphic to xB˛ \� for t 2 .��2; 0/. This follows
from the fact that, as already established, the flow is smooth in xB2˛� � Œ�2�2; 0/, and
for all t 2 Œ��2; 0/, either @B˛� \ spt.�t /D∅ (if the singularity is compact) or the
intersection is transverse (if the singularity is noncompact). As such, the flow provides
a diffeomorphism between xB˛� \ spt.�t / and xB˛� \ spt.���2/; see the appendix.

Corollary 4.4 For each t0 > 0, the set singt0.K/D fx W .x; t0/ 2 sing.K/g is finite.

Theorem 4.5 There is an N D N.†0/ 2 N and a sequence of closed connected
hypersurfaces †1; : : : ; †N such that the following hold:

(1) †1 D†0 .

(2) †N is diffeomorphic to Sn.

(3) For each i with 1� i �N � 1, there is an mDm.i/ 2N and open connected
pairwise disjoint smooth domains U i1 ; : : : ; U

i
m.i/
� †i and V i1 ; : : : ; V

i
m.i/
�

†iC1 such that
� there are orientation-preserving diffeomorphisms

ŷ i W †iC1n
Sm.i/
jD1 V

i
j !†in

Sm.i/
jD1 U

i
j I

� each xU ij is diffeomorphic to xBRij \�
i
j, where � ij 2ACS�n.ƒ/ and � ij nBRij

is diffeomorphic to L.� ij /� Œ0;1/.

Proof Let us denote the set of compact singularities of K by singC.K/ and the set
of noncompact singularities by singNC.K/. By Lemma 4.2, sing.K/D singNC.K/[
singC.K/. We note that if X 2 singNC.K/, then by Proposition 3.3, every element of
TanXK is the flow of an element of ACSn and so the tangent flows are noncollapsed
at time 0 in the sense of [2, Definition 4.9]. Hence, by [2, Lemma 5.1], singC.K/¤∅.
In fact, if we define the extinction time of K to be

T .K/D sup ft W spt.�t /¤∅g ;
then

∅¤
˚
x 2RnC1 W‚.x0;T .K//.K/� 1

	
D
˚
x 2RnC1 W .x; T .K// 2 singC.K/

	
:

It follows from Theorem 4.3 that singC.K/ consists of at most a finite number of points.

Observe that if sing.K/ consists of exactly one point X0 , then we can take N D 1.
Indeed, by the above discussion, this singularity must be compact and hence, by
Proposition 3.3, there is a � 2 Sn.ƒ/ diffeomorphic to Sn such that one of the tangent
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flows at X0 is the flow associated to �� . In this case we may write KDf�†t gt2Œ0;T .K//
where f†tgt2Œ0;T .K// is a smooth mean curvature flow. By Brakke’s regularity theorem,
there is a t near T .K/ such that †t is a small normal graph over � and hence †1D†0
is diffeomorphic to � , verifying the claim.

Now let ST.K/D ft 2R W .x; t / 2 sing.K/g be the set of singular times. Notice that
by Corollary 4.4 there are at most a finite number of singular points associated to each
singular time. We observe that as †1 D †0 is smooth, there is a ı > 0 such that
ST.K/� Œı; T .K/�. Furthermore, as sing.K/ is a closed set, so is ST.K/.

For each t 2 ST.K/, let

�.t/Dmin f�0.x; t;K/ W x 2 singt .K/g> 0;

where �0.x; t;K/ is the constant given by Theorem 4.3. This minimum is positive as
singt .K/ is a finite set. Observe that by Theorem 4.3,

(4-1) B˛�.t/.x/\B˛�.t/.x
0/D∅

when x and x0 are distinct elements of singt .K/, and ˛ D ˛.n;ƒ; �0/ is given by
Theorem 4.3. Next, choose �.t/ 2 .0; �2.t// so that

Kb
�

RnC1 n
[

x2singt .K/

xB˛�.t/.x/

�
� .t � �.t/; t C �.t//

is a smooth mean curvature flow. Such a � exists as sing.K/ is a closed set.

As ST.K/ is a closed subset of Œ0; T .K/�, it is a compact set and so the open cover

f.t � �.t/; t C �.t// W t 2 ST.K/g

of ST.K/ has a finite subcover. That is, there are a finite number of times t1; : : : ; tN 0 2
ST.K/, labeled so that ti < tiC1 and chosen so that

ST.K/�
N 0[
iD1

.ti � �.ti /; ti C �.ti //:

Furthermore, we can assume that for each i ,

(1) ti � �.ti / < tj � �.tj / for all j > i ,

(2) ti C �.ti / > tj C �.tj / for all j < i , and

(3) tj C �.tj / < tj 0 � �.tj 0/ for all j < i < j 0 ,

as otherwise we could delete .ti � �.ti /; ti C �.ti // and still have an open cover. Note
that, by the definition of �.t/, one must have tN 0 D T .K/.
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By Theorem 4.3 we may choose a sequence of points s˙1 ; : : : ; s
˙
N 0 with ti 2 .s�i ; s

C
i /

js˙i � ti j< �.ti /, s
C
i � s

�
iC1 and so that�
Œ0; s�1 �[

N 0�1[
iD1

ŒsCi ; s
�
iC1�

�
\ST.K/D∅:

More concretely, first take s�1 2 .t1� �.t1/; t1/ with s�1 > 0 and sCN 0 D tN 0C
1
2
�.tN 0/.

For 1� i �N 0� 1, let

zsCi D sup
�
ST.K/\ .ti � �.ti /; ti C �.ti //

�
;

and for 2� i �N 0 , let

zs�i D inf
�
ST.K/\ .ti � �.ti /; ti C �.ti //

�
:

The definition of �.ti / and Theorem 4.3 imply that zs�i D ti . As the set of singular
times is closed and ti 2 ST.K/, we have zsCi 2 ST.K/ and ti � zsCi . We treat two cases.
In the first case we suppose that tiC1��.tiC1/ < tiC�.ti /. As zs�iC1D tiC1 , there are
then no singular times in the interval .tiC1� �.tiC1/; ti C �.ti // and so we may take
sCi D s

�
iC1 to be the same point in this interval. In the second case, we suppose that

ti C �.ti /� tiC1� �.tiC1/ and observe that zsCi � ti C �.ti /� tiC1� �.tiC1/. In fact,
zsCi < ti C �.ti /, as otherwise, in order to cover ST.K/, assumption (3) from above
would not hold. Pick sCi as some point in .zsCi ; ti C �.ti // and s�iC1 as some point
in .tiC1 � �.tiC1/; ti /. The lack of singular times in Œ0; s�1 � and in each ŒsCi ; s

�
iC1�

follows by our choices and assumptions (1) and (3) above.

For 1 � i � N 0 , set †i
˙
D spt.�s˙i /. By the choice of s˙i , each †i

˙
is a closed

hypersurface, and as there are no singular times between sCi and s�iC1 , we have for
1� i �N 0� 1 diffeomorphisms ˆi W †i

C
!†iC1� coming from the flow, and for the

same reason, a diffeomorphism ˆ0 W†1!†1� . Observe that, a priori, the †i
˙

need
not consist of one component (indeed, †N

0

C
is empty). By Corollary 4.4, singti .K/ is

finite for each 1� i �N 0 and we write

fx1i ; : : : ;x
M.i/
i g D singti .K/I

ie the .xji ; ti / are the singular points of the flow at time ti . Up to relabeling, there
is an 0 � m.i/ � M.i/ such that .xji ; ti / 2 singNC.K/ for 1 � j � m.i/, while
.x
j
i ; ti / 2 singC.K/ for m.i/ < j � M.i/. Set Ri D ˛�.ti /, and for each x

j
i , let

U ij;˙�†
i
˙

be the sets BRi .x
j
i /\†

i
˙

. By (4-1) for fixed j , these are pairwise disjoint
sets, and by Theorem 4.3, these intersections are transverse and so the � ij;˙ D @U

i
j;˙

are submanifolds of †i
˙

. Hence, the U ij;˙ are smooth pairwise disjoint domains.
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Furthermore, by Theorem 4.3 and fact that �.t/ < �.t/, each xU ij;� is diffeomorphic to
xB˛ \�

i
j for some � ij 2 Sn . In particular, for j > m.i/ we have that xU ij;� is a closed

connected hypersurface, while for 1� j �m.i/, we have that @ xU ij;� is nonempty and
connected. Hence xU ij;C D∅ for j > m.i/, while @ xU ij;C is nonempty and connected
for 1� j �m.i/. Furthermore, Theorem 4.3 implies that there are diffeomorphisms
(see the appendix)

‰i W †i�n
SM.i/
jD1 U

i
j;�!†i

C
n
SM.i/
jD1 U

i
j;C:

As †1 is connected and ˆ0.†1/ D †1� , †1� is also connected. As each �1j;� is
connected, we obtain that

y†1� D†
1
�n
SM.1/
jD1 U

1
j;�

is connected. Let z†1
C

be the connected component of †1
C

that contains ‰1.y†1�/.
Inductively, let z†iC1� Dˆi .z†i

C
/ and

y†iC1� D z†iC1� n
SM.iC1/
jD1 U iC1j;�

and define z†iC1C to be the connected component of †iC1C that contains ‰iC1.y†iC1� /.
Here we adopt the convention that if y†iC1� D∅, then z†iC1

C
D∅. It follows inductively

that each z†i
˙

is connected. Let ẑ i W z†i
C
! z†iC1� be the diffeomorphisms given by

restricting the ˆi. To be consistent, we also set z†1� D†
1
� and ẑ 0 Dˆ0.

Finally let
N Dmaxf1� i �N 0 W z†k� ¤∅ for all 1� k � i g:

If N <N 0 , then by constructions, y†N� D∅ and z†N� D U
N
j;� for some j > m.N/. If

N DN 0 , then tN D T .K/ at which all singularities are compact. Thus it follows from
[8, Theorem 0.7] that z†N� is diffeomorphic to Sn. The theorem now follows by taking
†i D z†i� for 2� i �N and ŷ i are the diffeomorphisms given by . ẑ i ı‰i /�1 .

5 A sharpening of [3, Theorem 1.1]

In order to prove Theorem 1.2, we begin with an elementary lemma.

Lemma 5.1 If x1; : : : ;xmC1 2RnC1 is a sequence of points such that

(5-1) jxi �xiC1j � yK.1Cjxi j/
�1

for 1� i �m and some yK � 0, then

(5-2) jx1�xmC1j �K.m/.1Cjx1j/
�1;

where K.m/D . yKC 1/m� 1.
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Proof We proceed by induction on m. The lemma is obviously true when m D 1.
Suppose (5-2) holds for mDm0 . Using this induction hypothesis with (5-1) implies that

jx1�xm0C2j � jx1�xm0C1jC jxm0C1�xm0C2j

�K.m0/.1Cjx1j/
�1
C yK.1Cjxm0C1j/

�1:

Furthermore, by the induction hypothesis and triangle inequality,

jx1j �K.m
0/.1Cjx1j/

�1
Cjxm0C1j:

As K.m0/� 0 and .1Cjx1j/�1 � 1, this implies that

1Cjx1j � 1CK.m
0/Cjxm0C1j � .1CK.m

0//.1Cjxm0C1j/:

That is,
.1Cjxm0C1j/

�1
� .1CK.m0//.1Cjx1j/

�1:

Hence,
jx1�xm0C2j � .K.m

0/C yK.1CK.m0///.1Cjx1j/
�1;

and by the induction hypothesis, K.m0/D . yKC 1/m
0

� 1, so setting

K.m0C 1/DK.m0/C yK.1CK.m0//D . yKC 1/m
0C1
� 1

verifies that (5-2) holds for mDm0C 1 and finishes the proof.

In [3, Theorem 1.1] we showed that for any asymptotically conical self-shrinker with
entropy less than or equal to that of a round cylinder, the link of the asymptotic cone
separates the unit sphere into exactly two connected components, both diffeomorphic
to the self-shrinker. We next observe that the proof of [3, Theorem 1.1] actually allows
us to make the following more refined conclusion.

Proposition 5.2 Fix n � 2. If † 2 ACSnŒ�n�1�, then there is a homeomorphic
involution � W Sn! Sn which fixes L.†/, the link of the asymptotic cone C.†/ of †,
and swaps the two components of SnnL.†/.

Proof By [3, Theorem 1.1], the link L.†/ is connected and separates Sn into two
components �C and �� . In particular, L.†/D @x�CD @x�� . In order to construct � ,
it is enough to show the existence of a homeomorphism  W x�C ! x�� such that
 jL.†/W L.†/!L.†/ is the identity map. Indeed, if such a  exists, one defines � by

�.p/D

�
 .p/ if p 2 x�C;
 �1.p/ if p 2��:
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To explain the construction of  , let us first summarize the main objects used in the
proof of [3, Theorem 1.1]. First, recall that it is shown there that associated to † are two
smooth mean curvature flows f�˙t gt2Œ�1;0� with �C

�1 the normal exponential graph
over † of a small positive multiple of the lowest eigenfunction of the self-shrinker sta-
bility operator of † (normalized to be positive) and ��

�1 to be a small negative multiple
of this function. In particular, by choosing the multiple small enough, one can ensure
both that �C

�1 is the exponential normal graph of some function on ��
�1 and that ��

�1 is
the exponential normal graph of some function on �C

�1 . Furthermore, up to relabeling,
each �˙D�˙0 is diffeomorphic to �˙ the components of SnnL.†/. Moreover, these
diffeomorphisms, which we denote by …˙ , are given by restricting, to �˙ , the map

….p/D
x.p/

jx.p/j
:

We next use the flow f�˙t gt2Œ�1;0� to construct a natural diffeomorphism ‰W �C!��

which has the property that there is a constant K > 0 such that

(5-3)
ˇ̌
x.p/�x.‰.p//

ˇ̌
�

K

1Cjx.p/j
:

We do so iteratively. Specifically, by [3, Proposition 4.4(1) and Proposition 4.5] there
is a constant zC0 > 0 such that

(5-4) sup
t2Œ�1;0�

sup
�˙t

�
jA
�˙t
jC jr

�˙t
A
�˙t
j
�
< zC0:

This, together with [3, Proposition 4.4(3)], implies that there is a � > 0 such that
T�.�˙t / is a regular tubular neighborhood of �˙t for each t 2 Œ�1; 0�. It follows from
this and (5-4) that there is a ı >04 such that if t1; t2 2 Œ�1; 0� and jt1�t2j<ı , then �˙t1
is a normal exponential graph over �˙t2 and vice versa. As such, for all t1; t2 2 Œ�1; 0�
with jt1� t2j< ı , there is a diffeomorphism

‰˙t2;t1 W �
˙
t1
! �˙t2

defined by nearest-point projection from �˙t1 to �˙t2 . Pick M 2N so Mı > 1, choose
0 D s0 > s1 > � � � > sM D �1 so that jsi � siC1j < ı , and define a diffeomorphism
‰�W ��

�1! �� by

‰� D‰�s0;s1 ı‰
�
s1;s2
ı � � � ı‰�sM�1;sM :

4By the mean curvature flow equation, [18, Lemma 3.3], and (5-4), the velocity of a point moving
along the flow and the rate of change of the unit normal are bounded by 10 zC0 . Thus one may choose
ıD 10�3 zC�10 min f�; 1g for instance. In particular, this ensures that if jt1� t2j< ı , then �˙t1 is contained
in T�.�˙t2 / and vice versa.
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Likewise, define a diffeomorphism ‰CW �C! �C
�1 by

‰C D‰CsM ;sM�1 ı‰
C
sM�1;sM�2

ı � � � ı‰Cs1;s0 ;

and let ‰C;�W �C
�1! ��

�1 be given by nearest-point projection. By construction, this
is also a diffeomorphism and so the map

‰ D‰� ı‰C;� ı‰C

is a diffeomorphism ‰W �C! �� .

By construction, if t1; t2 2 Œ�1; 0� and jt1� t2j< ı , then for all p 2 �˙t1 ,

(5-5) jx.p/�x.‰˙t2;t1.p//j< �:

Furthermore, [3, Proposition 4.4(1)] implies that for t 2 Œ�1; 0� each �˙t is smoothly
asymptotic to C.†/. In particular, there is a R > 0 and functions u˙t on C.†/nBR
whose normal exponential graph over C.†/ sits inside of �˙t and contains �˙t nB2R .
Moreover, by [3, Proposition 4.2(2)] and [3, Lemma 4.3] there is a constant K 0 > 0
such that for p 2 C.†/nBR ,

ju˙t .p/j �K
0.1Cjx.p/j/�1:

Hence, for any t1; t2 2 Œ�1; 0�, if p 2 �˙t1nB2R , then there is a point p0 2 C.†/nBR
such that

(5-6) jx.p/�x.p0/j �K 0.1Cjx.p0/j/�1

and also a point p00 2 �˙t2 such that

(5-7) jx.p0/�x.p00/j �K 0.1Cjx.p0/j/�1:

Hence if jt1� t2j< ı , then as ‰˙t2;t1 is given by nearest-point projection,

jx.p/�x.‰˙t2;t1.p//j � jx.p/�x.p00/j

� jx.p/�x.p0/jC jx.p0/�x.p00/j

� 2K 0.1Cjx.p0/j/�1:

As K 0 > 0 and 1Cjx.p0/j � 1, (5-6) implies that

.1Cjx.p0/j/�1 � .1CK 0/.1Cjx.p/j/�1;

and so
jx.p/�x.‰˙t2;t1.p//j � 2K

0.1CK 0/.1Cjx.p/j/�1:
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Combining this with (5-5) one obtains that for all p 2 �˙t1 ,

jx.p/�x.‰˙t2;t1.p//j �
yK.1Cjx.p/j/�1;

where yK D 2K 0.1CK 0/C �.1C 2R/. By the same arguments, for all p 2 �C
�1 ,

jx.p/�x.‰C;�.p//j � yK.1Cjx.p/j/�1:

Hence, it follows from Lemma 5.1, that

jx.p/�x.‰.p//j �K.1Cjx.p/j/�1;

where K D .1C yK/2MC2� 1.

To complete the proof, set

 .p/D

�
…�.‰..…C/�1.p/// if p 2�C;
p if p 2 @�C:

We claim that  is a homeomorphism. First, note that, by [3, Proposition 4.4(3)], there
is an R > 1 and zC1 > 1 such that if p 2 �˙nBR , then

zC�11 jx.p/j
2� < distRnC1.p; C.†// < zC1jx.p/j

�1;

where � < �1. Hence,

(5-8) C�1jx.p/j2��1 < distSn.…˙.p/;L.†// < C jx.p/j�2;

where C � zC1 . Hence, for q 2�C with distSn.q;L.†// sufficiently small, if we set
q0 D .…C/�1.q/ 2 �C , then

jx.q0/j � C
1

2��1 distSn.q;L.†//
1

2��1 :

By (5-3), ˇ̌
jx.‰.q0//j � jx.q0/j

ˇ̌
� jx.‰.q0//�x.q0/j

�KC�
1

2��1 distSn.q;L.†//�
1

2��1 :

Hence, for distSn.q;L.†// sufficiently small,

distSn.q;  .q//� 4KC
� 1
2��1 distSn.q;L.†//�

1
2��1 jx.q0/j�1:

Using (5-8), again gives

distSn.q;  .q//� 4KC
� 2
2��1 distSn.q;L.†//�

2
2��1 :

As � < �1, for any q0 2 L.†/, the right-hand side goes to 0 as q ! q0 . By the
triangle inequality,

distSn.q0;  .q//� distSn.q;  .q//C distSn.q; q0/;
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and so the right-hand side goes to 0 as q ! q0 . Hence,  is continuous. Finally,
as x�C is compact and x�� is Hausdorff,  is a closed map and hence, as  is a
bijection, it is a homeomorphism.

Theorem 1.2 is a standard topological consequence of Proposition 5.2.

Proof of Theorem 1.2 Recall that [3, Theorem 1.1] states that L.†/ separates Sn

into exactly two components, which we denote by U˙ , both diffeomorphic to †. As
a consequence, L.†/ is connected. Let �W Sn! Sn be the homeomorphism given
by Proposition 5.2 so �.U�/ D UC . Pick a regular tubular neighborhood T � Sn

of L.†/. We let V ˙ D U˙[T and observe that xU˙ , the closure of U˙ , is a retract
of V ˙ and that L.†/ is a retraction of T D V �\V C .

As xU˙ is a retraction of V ˙ and L.†/ is a retraction of T , the natural inclusion maps
induce isomorphisms between the reduced homology groups zHk. xU˙/ and zHk.V ˙/
and between zHk.L.†// and zHk.T /. As such, there is a natural map ˆW zHk.V �/!
zHk.V

C/ defined by the diagram

zHk.T /
j��

//

j
C
�

''

zHk.V
�/

ˆ
��

zHk.L.†//
vv

'
66

i��
//

i
C
�

((

zHk. xU
�/

ww '

77

��
��

zHk.V
C/

zHk. xU
C/

ww

'
77

where i˙W L.†/! xU˙ and j˙W T ! V ˙ denote the natural inclusion maps, and we
used that � ı i� D iC . As � is a homeomorphism, both �� and ˆ are isomorphisms.
This implies that the map

J D .j�� ;�j
C
� /W

zHk.T /! zHk.V
�/˚ zHk.V

C/

is surjective if and only if zHk.V �/D zHk.V C/D f0g. Indeed, if the map is surjective,
then for any element ˛ 2 zHk.V �/ there is an element ˇ 2 zHk.T / such that J.ˇ/D
.˛; 0/. That is, j�� .ˇ/D ˛ and jC� .ˇ/D 0. Hence, 0D jC� .ˇ/Dˆ.j

�
� .ˇ//Dˆ.˛/.

In other words, as ˆ is an isomorphism, ˛ 2 ker.ˆ/ D f0g and so zHk.V �/ D f0g.
The proof that zHk.V C/D f0g is the same. The converse is immediate.

We next recall several standard facts about the reduced homology of manifolds and of
manifolds with boundary. First, as L.†/ is a connected, oriented .n�1/–dimensional
manifold, zHk.L.†// D zHk.T / D f0g for k D 0 and k � n, and zHn�1.L.†// D
zHn�1.T / D Z. Likewise, as the xU˙ are connected, oriented n–manifolds with

boundary, zHk. xU˙/D zHk.V ˙/D 0 for k D 0 and k � n.
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In order to compute the remaining reduced homology groups, we use the Mayer–
Vietoris long exact sequence for the reduced homology of .V �; V C;Sn/. This gives
the following exact sequences for k � 0:

(5-9) zHkC1.S
n/! zHk.T /

J
�! zHk.V

�/˚ zHk.V
C/! zHk.S

n/:

As zHk.Sn/D Z for k D n and is otherwise f0g, (5-9) implies that J is surjective for
0� k � n� 1. Hence zHk. xU˙/D zHk.V ˙/D f0g for these k . As such, (5-9) further
implies that zHk.L.†//D zHk.T /D f0g for 0� k � n�2, completing the verification
that L.†/ is a homology .n�1/–sphere.

To conclude the proof, it is enough, by the Hurewicz theorem and the Whitehead
theorem, to show that �1.U˙/D �1. xU˙/D f1g. To that end, first observe that the
maps F˙W Sn! xU˙ defined by

F˙.p/D

�
p if p 2 xU˙;
�.p/ if p 2 U�

are continuous. Now suppose  is a closed loop in xU˙ . As �1.Sn/D f1g, there is a
homotopy H W S1�Œ0; 1�!Sn taking  to a point. Clearly, F˙ıH W S1�Œ0; 1�! xU˙

is also a homotopy taking  to a point. That is, �1. xU˙/D f1g.

Proof of Corollary 1.4 By Theorem 1.2, L.†/ is a homology 2–sphere. By the clas-
sification of surfaces this means that L.†/ is diffeomorphic to S2 and so Alexander’s
theorem [1] implies that both components of S3nL.†/ are diffeomorphic to R3. This
together with [3, Theorem 1.1] proves the claim.

6 Surgery procedure

We prove Theorem 1.1 using Corollary 1.4 and Theorem 4.5.

Proof of Theorem 1.1 We first observe that .?3;�2/ holds by [25, Theorem B] and
that .??3;�2/ holds by [3, Corollary 1.2]. If † is (after a translation and dilation) a
self-shrinker, then by [8, Theorem 0.7], † is diffeomorphic to S3, proving the theorem.
Otherwise, flow † for a small amount of time by the mean curvature flow (using short
time existence of for smooth closed initial hypersurfaces) to obtain a hypersurface †0

diffeomorphic to † and, by Huisken’s monotonicity formula, with �Œ†0� < �Œ†�. On
the one hand, if the level set flow of †0 is nonfattening, then we set †0 D†0 . On the
other hand, if the level set flow of †0 is fattening, then we can take †0 to be a small
normal graph over †0 so that �Œ†0� < �Œ†�, and because the nonfattening condition is
generic, the level set flow of †0 is nonfattening.
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Hence, the hypotheses of Section 4 hold, and we may apply Theorem 4.5 unconditionally
to obtain a family of hypersurfaces †1; : : : ; †N in R4. As †N is diffeomorphic to S3,
if N D 1, then there is nothing more to show and so we may assume that N > 1. We
will now show that †N�1 is diffeomorphic to †N and hence to S3.

Let V D
Sm.N�1/
jD1 V N�1j and y†N D †N nV , and let U D

Sm.N�1/
jD1 UN�1j and

y†N�1 D †N�1nU , so ŷN�1W y†N ! y†N�1 is the orientation-preserving diffeo-
morphism given by Theorem 4.5. By Corollary 1.4 and [3, Theorem 1.1], each
component of xU is diffeomorphic to a closed 3–ball xB3. Hence, each component of
@y†N�1 and @y†N is diffeomorphic to S2. That is, @V N�1j is diffeomorphic to S2

for 1� j �m.N � 1/, and so, as †N is diffeomorphic to the 3–sphere, Alexander’s
theorem [1] implies that each xV N�1j is diffeomorphic to the closed 3–ball. Hence,
there are orientation-preserving diffeomorphisms ‰N�1j W xV N�1j ! xUN�1j .

Denote by

y�N�1j W @V N�1j ! @UN�1j and  N�1j W @V N�1j ! @UN�1j

the diffeomorphisms given by restricting ŷN�1 and ‰N�1j , respectively. Observe,
that the orientation of y†N and the orientation on xV induce opposite orientations on
@ xV . Likewise, the orientation of y†N�1 and that of xU induce opposite orientations
on @ xU . By construction, the y�N�1j preserve the orientations induced from y†N and
y†N�1 . Hence, as the orientations induced by xV N�1j and xUN�1j are opposite to those
induced by y†N and y†N�1 , the y�N�1j also preserve these orientations. The same is
true of the  N�1j . As such,

�N�1j D . N�1j /�1 ı y�N�1j 2 DiffC.@V N�1j /;

where DiffC.M/ is the space of orientation-preserving self-diffeomorphisms of an
oriented manifold M (here we may use the orientation on @V N�1j induced by either xV
or y†N ). By [26] — see also [30] and [5] — the space DiffC.S2/ is path-connected
and so any element of DiffC.S2/ extends to an element of DiffC. xB3/. That is, there
are diffeomorphism „N�1j 2 DiffC. xV N�1j / that restrict to �N�1j on @V N�1j . Thus,
the maps y‰N�1j D‰N�1j ı„N�1j W xV N�1j ! xUN�1j are diffeomorphisms that agree
with ŷN�1 on the common boundary.

Define ˆN�1W †N !†N�1 by

ˆN�1.p/D

�
ŷN�1.p/ if p 2 y†N ;
y‰N�1j .p/ if p 2 V N�1j :

By construction, this map is a homeomorphism. However, it is a standard procedure to
construct a diffeomorphism between †N and †N�1 by smoothing this map out (see
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for instance [14, Theorem 8.1.9]). Hence, †N�1 is diffeomorphic to S3 and iterating
this argument shows that †D†1 is diffeomorphic to S3 as claimed.

Theorem 1.5 follows from Theorem 1.2, Theorem 4.5 and the Mayer–Vietoris long
exact sequence for reduced homology. For completeness, we include a proof of the
following standard topological fact which we will need to use.

Lemma 6.1 Let M be a closed n–dimensional manifold and †�M a closed hyper-
surface. If M is a homology n–sphere and † is a homology .n�1/–sphere, then each
component of Mn† is a homology n–ball.

Proof Our hypotheses ensure that both M and † are connected and oriented. Hence,
† is two-sided and there is an open UC�M such that †D @UC . Let U�DMn xUC .
To prove the lemma, we will need to compute the Mayer–Vietoris long exact sequence
for . xU�; xUC;M/. Strictly speaking, we should “thicken” xUC and xU� up with a
regular tubular neighborhood of † D @ xU˙ as in the proof of Theorem 1.2, but we
leave the details of this to the reader.

The Mayer–Vietoris long exact sequence and the fact that M is a homology n–sphere
and † is a homology .n�1/–sphere gives the sequences:

zHkC1.M/
@

//

OO

D

��

zHk.†/ //

OO

D

��

zHk. xU
�/˚ zHk. xU

C/ //

OO

D

��

zHk.M/
OO

D

��

zHkC1.S
n/

@
// zHk.S

n�1/ // zHk. xU
�/˚ zHk. xU

C/ // zHk.S
n/

For 0� k � n� 2 and k � nC 1, this immediately gives that zHk. xU˙/D f0g. When
k D n� 1, the map @ is necessarily generated by ŒM � 7! Œ†� where ŒM � is the
fundamental class of M and Œ†� is the fundamental class of †. In particular, this map
is an isomorphism and so we conclude that zHn�1. xU˙/D f0g. For the same reason,
zHn. xU

˙/D f0g, which verifies the claim.

Proof of Theorem 1.5 Arguing as in the first paragraph of the proof of Theorem 1.1,
we obtain †1; : : : ; †N the hypersurfaces given by Theorem 4.5. As †N is diffeomor-
phic to Sn, it is a homology n–sphere. In particular, if N D 1, then there is nothing
further to show. As such, we may assume that N > 1.

Let us show that †N�1 is a homology n–sphere. First, set V D
Sm.N�1/
jD1 V N�1j and

y†ND †N nV , and let UD
Sm.N�1/
jD1 UN�1j and y†N�1 D †N�1nU. Next observe

that, as @UN�1j D L.�N�1j / for some �N�1j 2ACS�n.ƒ/, Theorem 1.2 implies that
each component of @y†N�1 is a homology .n�1/–sphere. Hence, as @U D @y†N�1 is
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diffeomorphic to @y†N D @V , we see that each component of @V D @y†N is a homology
.n�1/–sphere and so Lemma 6.1 implies that each component of xV is a homology
n–ball.

We may now use the Mayer–Vietoris long exact sequence to show zHk.y†
N /D f0g for

k ¤ n� 1 and zHn�1.y†N /D Zm.N�1/�1 . To see this, consider the Mayer–Vietoris
long exact sequence of . xV; y†N; †N /. This long exact sequence and the fact that xV is
the union of homology n–balls gives, for k > 0, the exact sequences:

zHkC1.†
N /

@
//

OO

D

��

zHk.@V / //

OO

D

��

zHk. xV /˚ zHk.y†
N / //

OO

D

��

zHk.†
N /
OO

D

��

zHkC1.S
n/

@
//
m.N�1/L
jD1

zHk.S
n�1/ // zHk.y†

N / // zHk.S
n/

Hence zHk.y†N /D f0g for 1� k � n� 2 and k � nC 1. When k D n� 1, the map @
is generated by Œ†N � 7!

�
Œ@V N�11 �; : : : ; Œ@V N�1

m.N�1/
�
�

where Œ†N � is the fundamen-
tal class of †N and Œ@V N�1j � is the fundamental class of @V N�1j . It follows that
zHn�1.y†

N /D Zm.N�1/�1 and, as this map is injective, that zHn.y†N /D f0g. Finally,
as y†N is connected, zH0.y†N /D f0g, which completes the computation.

By Theorem 4.5, y†N is diffeomorphic to y†N�1 , and so zHk.y†N�1/ D 0 for k ¤
n� 1 and zHn�1.y†N�1/D Zm.N�1/�1 . Furthermore, Theorem 1.2 implies that each
component of xU is contractible. Hence, applying the Mayer–Vietoris long exact
sequence to .y†N�1; xU ;†N�1/ gives the following diagram for k > 0:

zHk.@ xU/ //

OO

D

��

zHk. xU/˚ zHk.y†
N�1/ //

OO

D

��

zHk.†
N�1/ //

OO

D

��

zHk�1.@ xU/
OO

D

��

m.N�1/L
jD1

zHk.S
n�1/ // zHk.y†

N�1/ // zHk.†
N�1/ //

m.N�1/L
jD1

zHk�1.S
n�1/

In particular, for 1� k � n� 2 and k � nC 1, we obtain that zHk.†N�1/D f0g. The
Mayer–Vietoris long exact sequence further gives the exact sequences:

zHn�1.@ xU/
ı
//

OO

D

��

zHn�1. xU/˚ zHn�1.y†
N�1/ //

OO

D

��

zHn�1.†
N�1/ //

OO

D

��

zHn�2.@ xU/
OO

D

��

Zm.N�1/
ı

// Zm.N�1/�1 // zHn�1.†
N�1/ // f0g
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Here ı is given by .l1; : : : ; lm.N�1// 7! .l1� lm.N�1/; : : : ; lm.N�1/�1� lm.N�1//. As
ı is surjective, it follows that zHn�1.†N�1/D f0g. Finally, as †N�1 is an oriented,
connected n–dimensional manifold zHn.†N�1/D Z and zH0.†N�1/D f0g. Hence,
†N�1 is a homology n–sphere.

As our argument only used that †N was a homology n–sphere, we may repeat it to see
that each of the †i is a homology n–sphere and so conclude that † is one as well.

Appendix

Fix an open subset U � RnC1 . A hypersurface † in U is a proper, codimension-
one submanifold of U . A smooth mean curvature flow S in U is a collection of
hypersurfaces f†tgt2I in U , for I an interval, such that

(1) for all t0 2 I and p0 2 †t0 , there is a r0 D r0.p0; t0/ and an interval I0 D
I0.p0; t0/ with .p0; t0/ 2 BnC1r0

.p0/� I0 � U � I ;

(2) there is a smooth map F W Bn1 � I0!RnC1 such that Ft .p/D F.p; t/W Bn1 !
RnC1 is a parametrization of BnC1r0

.p0/\†t ; and

(3)
�
@
@t
F.p; t/

�?
DH†t .F.p; t//.

It is convenient to consider the spacetime track of S (also denoted by S ):

(A-1) S D
˚
.x.p/; t/ 2RnC1 �R W p 2†t

	
� U � I:

This is a smooth submanifold of spacetime and is transverse to each constant time
hyperplane RnC1 � ft0g. Along the spacetime track S, let d=dt be the smooth
vector field

(A-2) d

dt

ˇ̌̌
.p;t/
D

@

@t
CH†t .p/:

It is not hard to see that this vector field is tangent to S and the position vector satisfies

(A-3) d

dt
x.p; t/DH†t .p/:

It is a standard fact that if each †t in S is closed, ie is compact and without boundary,
then there is a smooth map

F W M � I !RnC1

such that each Ft D F. � ; t /W M ! RnC1 is a parametrization of †t a closed n–
dimensional manifold M . As a consequence, each †t is diffeomorphic to M .

We will need the following generalization of this last fact to manifolds with boundary.
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Proposition A.1 Fix R 2 .0;1� and let f xB2r1.x1/; : : : ; xB2rm.xm/g be a collec-
tion of pairwise disjoint balls in BR � RnC1 and let U D B2Rn

Sm
iD1
xBri .xi /. If

f†tgt2.��;�/ is a smooth mean curvature flow in U with the property that

(1) each y†t D†t \
�
xBRn

Sm
iD1B2ri .xi /

�
is compact,

(2) each @B2ri .xi /, for 1� i �m, intersects †t transversally and nontrivially for
all t 2 .��; �/,

(3) if R < 1, then @BR intersects †t transversally and nontrivially for all t 2
.��; �/,

then y†t1 and y†t2 are diffeomorphic as compact manifolds with boundary for any
t1; t2 2 .��; �/.

Proof For simplicity, we consider only R D1, mD 1, x1 D 0 and r1 D 1
2

. It is
straightforward to extend the argument to the general case. Let S be the spacetime
track of the flow, so S is a smooth hypersurface in .RnC1n xB1=2/ � .��; �/. As
each †t intersects @B1 transversally, it is clear that S meets @B1�.��; �/ transversally.
In particular, zS D Sn .B1 � .��; �// is a smooth hypersurface with boundary. Let
zB D @ zS D f.p; t/ W p 2 @B1\†t ; t 2 .��; �/g.

Without loss of generality we may assume that the given t1; t2 satisfy t1 < t2 . Let
yS D zS\ .RnC1� Œt1; t2�/ and yB D zB\ .RnC1� Œt1; t2�/. Observe that yS is a compact
manifold with corners and yB is one of its boundary strata. The other two boundary
strata are y†t1 � ft1g and y†t2 � ft2g.

As @B1 meets each †t transversally and yB is compact, there is an � > 0 such
that jx>.p; t/j � 2� for .p; t/ 2 yB , where x> is the tangential component of the
position vector. By continuity there is a 1

2
> ı > 0 such that, for any t 2 Œt1; t2� and

p 2 . xB1CınB1�ı/\†t , we have jx>.p; t/j � � . Now let �2C10 .R
nC1/ be a smooth

function with 0 � � � 1, � D 1 on @B1 and spt.�/ � xB1CınB1�ı . For .p; t/ 2 yS ,
consider the vector

V .p; t/D��.x.p; t//
.x.p; t/ �H†t .p//

jx>.p; t/j2
x>.p; t/;

and observe this gives a smooth vector field on S that restricts to a smooth compactly
supported vector field on each †t . Let W D d=dtCV which is a smooth vector field
on S .

We claim that W is tangent to yB and transverse to y†t1 � ft1g [ y†t2 � ft2g. As V

is tangent to †t � ftg, the transversality of W follows from the transversality of
d=dt . This transversality follows immediately from the definition of d=dt . To see the
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tangency, note that by construction, yB D
˚
.p; t/ 2 yS W jx.p; t/j2 D 1

	
. For .p; t/ 2 yB ,

one computes

@W jx.p; t/j
2
D 2x.p; t/ � rW x.p; t/

D 2x.p; t/ �H†t .p/� 2�.x.p; t//
.x.p; t/ �H†t .p//

jx>.p; t/j2
x.p; t/ �x>.p; t/

D 0;

where the last equality used that .p; t/ 2 yB so �.x.p; t//D 1. This verifies the claim.

To conclude the proof, observe that as yS is compact and W is tangent to yB and
transverse to y†t1 � ft1g [ y†t2 � ft2g, standard ODE theory gives that for any P0 D
.p0; t0/ 2 yS the initial value problem�

PP0.s/DW .P0.s//;

P0.0/D P0

has a unique smooth solution P0 W Œt1 � t0; t2 � t0� ! yS which depends smoothly
on P0 . These solutions satisfy t .P0.s//D sC t0 and so there is a diffeomorphism
�W †t1 !†t2 given by .�.p/; t2/D .p;t1/.t2� t1/.
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