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The nilpotence theorem for the algebraic K –theory
of the sphere spectrum

ANDREW J BLUMBERG

MICHAEL A MANDELL

We prove that in the graded commutative ring K�.S/ , all positive degree elements
are multiplicatively nilpotent. The analogous statements also hold for TC�.S/^p
and K�.Z/ .

19D10

1 Introduction

Much of the most exciting work in algebraic K–theory over the past 15 years has
been aimed at the verification of the Quillen–Lichtenbaum conjecture. The successful
affirmation of this conjecture has led to the identification of the homotopy types of the K–
theory of the integers Z and the K–theory of the sphere spectrum S at regular primes;
see Dwyer and Mitchell [15], Rognes [29; 30] and Rognes and Weibel [31]. Since HZ
and S are E1 ring spectra, K.Z/ and K.S/ are E1 ring spectra and the graded
rings K�.S/D ��K.S/ and K�.Z/D ��K.Z/ are commutative. However, almost
nothing is known about the multiplicative structure. The only work in this direction so
far is the investigation of Bergsaker and Rognes [4] of the Dyer–Lashof operations on
TC�.S/ at the prime 2. In this paper, we begin the study of the multiplicative structure
on the homotopy groups of K.S/ by proving the analogue of Nishida’s nilpotence
theorem.

Theorem 1 Positive degree elements of K�.S/ are nilpotent.

On the way to proving the preceding theorem, we show the corresponding nilpotence
result for K�.Z/. We deduce this by observing that K2n.p�1/.Z/˝Z.p/ D 0 for odd
primes p and n> 0; it can also be deduced from the multiplicative properties of the
Quillen–Lichtenbaum spectral sequence.

Theorem 2 Positive degree elements of K�.Z/ are nilpotent.

Much of the interest in K.S/ comes from its identification as A.�/, Waldhausen’s
algebraic K–theory of the one-point space. Work of Waldhausen and collaborators
shows that A.X / controls high-dimensional manifold theory (eg see Waldhausen,
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Jahren and Rognes [37] and Weiss and Williams [40]) via the connection to the stable
pseudoisotopy spectrum Wh.X /. Rognes shows that the infinite loop space structure
on Wh.�/ that is relevant to the Hatcher–Waldhausen map G=O!�Wh.�/, where
G=O denotes the classifying spectrum for smooth normal invariants, is induced by the
ring structure on A.�/; see Rognes [28]. Moreover, A.X / is a module over A.�/;
more generally, for any ring spectrum (or even any Waldhausen category that admits
factorization; see Blumberg and Mandell [7; 8]), the algebraic K–theory spectrum is a
module over A.�/.

Theorem 1 also has direct implications in the context of Kontsevich’s noncommutative
motives. The work of Blumberg, Gepner and Tabuada [5; 6] produces a candidate
category of spectral motives Motex , which is a symmetric monoidal category with
objects the smooth and proper small stable idempotent-complete 1–categories. The
category of spectral motives is stable, which in particular implies that it has a tensor-
triangulated homotopy category and is enriched over spectra; the mapping spectra are
essentially bivariant algebraic K–theory. The endomorphism spectrum of the unit is
precisely K.S/ (as an E1 ring spectrum).

The Devinatz–Hopkins–Smith nilpotence theorem and the Hopkins–Smith thick subcat-
egory theorem teach us that to understand a triangulated category, we should look to its
thick subcategories, which play the role of prime ideals in derived algebraic geometry;
see Hopkins [21], Neeman [25] and Thomason [35]. More recently, Balmer [1; 2]
proposes a systematic study of this in the setting of “tensor-triangulated geometry”,
defining the triangulated spectrum to be the space of prime proper thick triangulated
tensor ideals (with the Zariski topology). Balmer observes that there is a canonical map
from the triangulated spectrum to the spectrum of the graded ring of endomorphisms
of the unit and that in many known examples, the spectrum of the endomorphism
ring controls the triangulated spectrum of the tensor-triangulated category. Our main
theorem is the first step in realizing this program for spectral motives.

In a different direction, Morava has developed a conjectural program for studying
a homotopy-theoretic analogue of Kontsevich’s Grothendieck–Teichmüller group —
see Kitchloo and Morava [22] and Morava [24] — in terms of homotopical descent
for the category of spectral motives. These ideas revolve around understanding the
structure of S^L

K.S/S , which of course depends on the ring structure of K.S/. Morava
notes that the calculation of this object is straightforward rationally and results in
a concise description as a polynomial algebra on even degree generators: it is the
polynomial algebra on the free Lie coalgebra Lhx6;x10;x14; : : : i on generators in
degrees 6, 10, 14, etc. (It is a Hopf algebra with coalgebra the tensor coalgebra on
��†Wh.�/Q Š ��†6koQ , where Wh.�/ is the fiber of the map K.S/! S .) Our
results give the first progress in the direction of the torsion part of this theory.

Geometry & Topology, Volume 21 (2017)



The nilpotence theorem for the algebraic K–theory of the sphere spectrum 3455

Acknowledgments The authors thank Bill Dwyer, Mike Hopkins, Michael Larsen,
Tyler Lawson, Barry Mazur, Jack Morava and Justin Noel for helpful conversations,
and the IMA and MSRI for their hospitality while some of this work was done. The
authors especially thank Lars Hesselholt; we learned much of what we know in this
area through conversations with him and from his unpublished notes [19] on p–adic
L–functions and the cyclotomic trace. Blumberg was supported in part by NSF grant
DMS-1151577.

2 Reduction of Theorems 1 and 2

Consider the arithmetic square

K.S/ //

��

Q
p

K.S/^p

��

K.S/Q //
�Q

p
K.S/^p

�
Q

where .�/^p denotes p–completion (localization with respect to the mod p Moore
spectrum) and .�/Q denotes rationalization. To prove Theorem 1, it suffices to prove
the analogous nilpotence results for K.S/Q and K.S/^p for each prime p ; this is
easy to see for K.S/ because ��K.S/ is finitely generated in each degree [14, 1.2],
which implies that ��.K.S/^p/�D .��K.S//˝Z^p ; see [12, 2.5]. (Similar observations
apply to K.Z/ for Theorem 2; see [27].). The rational part is well understood: the
natural map K.S/Q!K.Z/Q is an equivalence [36, 2.3.8], and classical results of
Borel [11, 12.2] imply that the positive degree elements of ��K.Z/Q are concentrated
in odd degrees and therefore square to zero. It remains to study the situation after
p–completion.

Our strategy for studying the multiplicative structure on K.S/^p uses the cyclotomic
trace map, which is a map of E1 ring spectra from K.S/ to the topological cyclic
homology TC.S/. The homotopy type of TC.S/^p (as a spectrum) is known by work
of [9].

Theorem 2.1 [9, 5.16] There is an equivalence of p–complete spectra

TC.S/^p ' S^p _ hofib.†.†1CCP1/! S/^p ' S^p _ .CP1
�1/
^
p :

The Devinatz–Hopkins–Smith nilpotence theorems provide a criterion for determining
when elements in the homotopy groups of a ring spectrum R are multiplicatively
nilpotent. Specifically, an element x 2 ��R is nilpotent if and only if the Hurewicz
map takes it to a nilpotent element of K.n/�R for all 0� n�1 (and all primes p ).
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Although the previous theorem only identifies the homotopy type of the underlying
spectrum and says nothing about the multiplication, it is enough to deduce a nilpotence
result for TC.S/^p .

Proposition 2.2 Let p be a prime, let 0� n�1, and let �TC.SIp/ be the homotopy
fiber of the augmentation map TC.S/^p ! S^p (obtained from the canonical map
TC.S/^p ! THH.S/^p ' S^p ). Then K.n/�. �TC.SIp// is concentrated in odd degrees.

Proof As a consequence of Theorem 2.1, �TC.SIp/ ' †.CP1
�1
/^p . The spectrum

CP1
�1

is the Thom spectrum of the virtual bundle �
 , for 
 the tautological line
bundle over CP1 . The spectra K.n/ are all complex oriented; the proposition now
follows from the Thom isomorphism.

Since ��.TC.S/^p/ splits as ��S^p ˚�� �TC.SIp/, with the first factor the image of
the inclusion of the unit, we obtain the following as an immediate corollary of the
previous proposition and the nilpotence theorem.

Theorem 2.3 For any prime p , all the nonzero degree elements of ��TC.S/^p are
nilpotent.

In light of the previous result, Theorem 1 becomes an immediate consequence of the
following lemma. We prove this lemma for odd p in later sections; for p D 2 it is a
special case of [29, 3.16].

Lemma 1 For p D 2, let d D 8, and for p odd, let d D 2.p � 1/. The homotopy
fiber of the cyclotomic trace map trcpW K.S/^p! TC.S/^p has trivial homotopy groups
in degrees kd for k > 0.

Proof of Theorem 1 from Lemma 1 Given x 2 �kK.S/^p , xd 2 �kdK.S/^p . When
k > 0, we then know that for some power n, .xd /n maps to zero in �kdn.TC.S/^p/
under the trace map by Theorem 2.3. By Lemma 1, the kernel of the trace is zero in
degree kdn, and so xkdn D 0.

As we used in the proof, Lemma 1 implies that the cyclotomic trace K.S/! TC.S/
is injective in certain degrees. In fact, for odd regular primes, the cyclotomic trace
is injective in all degrees. This follows from the work of Rognes on Wh.�/ at odd
regular primes, specifically [30, 3.6 and 3.8]. In the case of irregular primes, we expect
that the trace fails to be injective; we hope to return to this question in a future paper.

On the way to proving Lemma 1, we also prove the following lemma. It is well known
that �4kK.Z/˝ Z.p/ D 0 at regular primes, including p D 2 (see [39, 10.1], for
example), and this combined with the following lemma now proves Theorem 2.

Lemma 2 For p an odd prime, �2.p�1/kK.Z/˝Z.p/ D 0 for k > 0.
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3 Reduction of Lemmas 1 and 2

The basic strategy for the proof of Lemmas 1 and 2 is to reduce the study of the
homotopy fiber of the cyclotomic trace K.S/^p ! TC.S/^p to the study of the p–
completion map ZŒ1=p�!Q^p in étale cohomology. (This is now a fairly standard
approach; for instance, see [30, Sections 2–3; 17; 19].) As indicated above, from here
on we assume that p is odd (though all of what we say would also apply in the case
p D 2 until (3.6)). First, we apply Dundas’ theorem [13] about the cyclotomic trace:
the square

K.S/^p //

trcp

��

K.Z/^p

trcZ
p

��

TC.S/^p // TC.Z/^p

is homotopy cocartesian, where the horizontal maps arise from linearization. As a
consequence, we have the following lemma:

Proposition 3.1 (Dundas [13]) The induced map hofib.trcp/! hofib.trcZ
p / is an

equivalence.

To understand hofib.trcZ
p /, consider the commutative diagram

K.Z/^p
cmp

//

trcZ
p

��

K.Z^p/
^
p

trc
Z^

p
p

��

TC.Z/^p
cmpTC

// TC.Z^p/
^
p

where the horizontal maps cmp and cmpTC are induced by the map of rings Z! Z^p .
By work of Hesselholt and Madsen [20], the bottom map is a weak equivalence [20,
Addendum 6.2] and the right-hand map induces a weak equivalence [20, Theorem D]

(3.2) K.Z^p/
^
p ! TC.Z^p/

^
p Œ0;1/

(where Œ0;1/ denotes the connective cover). Thus, up to passing to a connective cover,
we can identify the trace map trcZ

p as the map cmpW K.Z/^p ! K.Z^p/
^
p . We then

have the following relationship between hofib.trcp/' hofib.trcZ
p / and hofib.cmp/.

Proposition 3.3 There is a cofiber sequence

hofib.cmp/! hofib.trcp/!†�2HZ^p !† � � �
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Proof Using the equivalence of hofib.trcp/ and hofib.trcZ
p / above, we get a diagram

of cofiber sequences

hofib.cmp/ //

��

K.Z/^p
cmp
// K.Z^p/

^
p

//

trc
Z^

p
p
��

† hofib.cmp/

��

hofib.trcp/ // K.Z/^p // TC.Z^p/
^
p

// † hofib.trcp/

identifying the right-hand square as homotopy (co)cartesian. Since ��1TC.Z/^p DZ^p
and �nTC.Z/^p D 0 for n<�1, the homotopy cofiber of the map trcZ^

p
p in the diagram

is †�1HZ^p . Desuspending, we see that the homotopy cofiber of

hofib.cmp/! hofib.trcp/

is †�2HZ^p .

For Lemma 1 then, hofib.cmp/ works just as well as hofib.trcp/. Quillen’s localization
sequence [26] gives cofiber sequences

(3.4)

K.Z=p/ //

id
��

K.Z/ //

��

K.ZŒ1=p�/ //

��

† � � �

K.Z=p/ // K.Z^p/ // K.Q^p/ // † � � �

from which we can see that hofib.cmp/ is equivalent to the homotopy fiber of the map

cmp0W K.ZŒ1=p�/^p !K.Q^p/
^
p :

Proposition 3.5 There is a homotopy equivalence hofib.cmp/! hofib.cmp0/.

The advantage of this approach is that étale cohomology methods at the prime p can
be applied in rings where p is a unit. Let R denote either ZŒ1=p� or Q^p ; then R

satisfies the “mild extra hypotheses” of Thomason [34, 0.1], which gives a spectral
sequence

(3.6) E
s;t
2
DH s

ét
�
Spec RIZ=pn

�
1
2
t
��
D) �t�s.Két.R/IZ=p

n/

from étale cohomology to the mod pn homotopy groups of (Dwyer–Friedlander) étale
K–theory. In the formula above

Z=pn
�

1
2
t
�
D

�
�
˝.t=2/
pn if t is even;

0 if t is odd;
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where �pn denotes the .pn/th roots of 1 (ie �pn.A/ D fx 2 A j xpn

D 1g, a sheaf
in the étale topology). In this case the affirmed Quillen–Lichtenbaum conjecture [39,
VI.8.2] identifies

��.K.R/IZ=p
n/D ��.Két.R/IZ=p

n/

for � � 2. Also, because we have assumed that p is odd, H�ét.RIZ=p
n.k// D 0

for �> 2 [32, Section III.1.3], and the spectral sequence collapses to give an isomor-
phism and a short exact sequence

�2k�1.K.R/IZ=p
n/ �DH 1

ét.Spec RIZ=pn.k//;

(3.7) 0!H 2
ét.Spec RIZ=pn.kC 1//! �2k.K.R/IZ=p

n/

!H 0
ét.Spec RIZ=pn.k//! 0

for k > 1. In fact, the calculation of the H 0
ét term is well known:

Proposition 3.8 Let R D ZŒ1=p� or Q^p . Then H 0
ét.Spec RIZ=pn.k// D 0 unless

.p � 1/ j k . If k D m.p � 1/, then H 0
ét.Spec RIZ=pn.k// �D �

˝k

pi . xQ/, where pi D

gcd.jmjp;pn/ (and i D n if m D 0) and xQ is the algebraic closure of the field of
fractions of R.

Proof The inclusion of the generic point Spec Q! Spec ZŒ1=p� induces an isomor-
phism

H 0
ét.Spec ZŒ1=p�;Z=pn.k//!H 0

ét.Spec Q;Z=pn.k//I

see [32, Proposition 1]. This reduces to the case QDQ or Q^p and the étale cohomology
H 0

ét.Spec QIZ=pn.k// becomes the Galois cohomology H 0
Gal.QI�

˝k
pn . xQ//. (We will

now fix xQ and write �pn for �pn. xQ/.) Letting G D Gal.Q.�pn/=Q/, the action
of Gal. xQ=Q/ on �˝k

pn factors through G , and we can identify H 0
Gal.QI�

˝k
pn / as the

G–fixed point subgroup of �˝k
pn . We have a canonical isomorphism G D .Z=pn/�

given by letting r 2 .Z=pn/� act on ˛ 2 �pn by ˛ 7! ˛r ; then r acts on �˝k
pn by the

rk power map (ie multiplication by rk when we write the group operation additively).
Choosing r to be a generator of .Z=pn/� , the G–fixed point subgroup of �˝k

pn is
the subset where r acts by the identity, or equivalently, the subset ˛ 2 �˝k

pn such that
˛rk�1 D 1. If p� 1 does not divide k , then rk � 1 is not congruent to 0 mod p , and
the only fixed point is the identity. On the other hand, rm.p�1/� 1 is divisible by pi

(and for i < n not piC1 ) where pi D gcd.jmjp;pn/ (for m¤ 0 or i D n if mD 0),
and the G –fixed point subgroup is exactly the subgroup �˝k

pi .

Defining H�ét.�IZ
^
p.k// as the inverse limit of H�ét.�IZ=p

n.k//, we see from the
preceding proposition that for RD ZŒ1=p� or Q^p , we have H 0

ét.RIZ
^
p.k//D 0 for
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k ¤ 0. Since in these cases the homotopy groups of K.R/ are finitely generated Z^p –
modules in each degree (see [14, Section 4; 20, Theorem D; 10, 0.7]), ��K.R/^p �D
lim��.K.R/IZ=pn/. Combining these observations and the left exactness of lim, we
then get isomorphisms

(3.9)
�2k�1.K.R/

^
p/
�DH 1

ét.Spec RIZ^p.k//;

�2k.K.R/
^
p/
�DH 2

ét.Spec RIZ^p.kC 1//;

for k > 1. Combining these isomorphisms with the fact that

�2m.p�1/ hofib.trcp/ �D �2m.p�1/ hofib.cmp/ �D �2m.p�1/ hofib.cmp0/

and �2m.p�1/ hofib.cmp0/ fits in an exact sequence

�2m.p�1/C1K.ZŒ1=p�/^p // �2m.p�1/C1K.Q^p/
^
p

..
�2m.p�1/ hofib.cmp0/ // �2m.p�1/K.ZŒ1=p�/

^
p ;

Lemma 1 is now an immediate consequence of the following pair of lemmas, proved
in the next section.

Lemma 3 Let p be an odd prime. The map of rings ZŒ1=p� ! Q^p induces a
surjection

H 1
ét
�
Spec ZŒ1=p�IZ^p.m.p� 1/C 1/

�
!H 1

ét
�
Spec Q^p IZ

^
p.m.p� 1/C 1/

�
for all m> 0.

Lemma 4 Let p be an odd prime. H 2
ét.Spec ZŒ1=p�IZ^p.m.p� 1/C 1//D 0 for all

m> 0.

We can also deduce Lemma 2: Quillen’s computation of the K–theory of finite fields
implies in particular that K.Z=p/^p 'HZ^p . It then follows from Quillen’s localiza-
tion sequence (3.4) that the map K.Z/^p !K.ZŒ1=p�/^p induces an isomorphism in
homotopy groups above degree 1. Lemma 2 now follows from the isomorphisms (3.9)
and Lemma 4.

4 Proof of Lemmas 3 and 4

In this section, we prove Lemmas 3 and 4. Lemma 3 is about the p–completion map
in étale cohomology and the basic tool for studying this is the Tate–Poitou duality
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long exact sequence [33]. (Again, for examples applied to K–theory, see [30, 3.1; 17,
Section 4; 19].)

In our context, the Tate–Poitou sequence takes the following form. Let M be a finite
abelian p–group with an action of the Galois group G of the maximal extension
of Q unramified except at p (eg M D Z=pn.k/) and let .�/� denote the Pontryagin
dual, A� D Hom.A;Q=Z/; then M �.1/ is the G–module Hom.M; �1/, where
�1 denotes the G–module of all roots of 1 in the algebraic closure of Q. The low-
dimensional part of Tate–Poitou duality in the case at hand is then summarized by the
following long exact sequence [33, 3.1]:

(4.1)

0 // H 0
ét.ZŒ1=p�IM / // H 0

ét.Q
^
p IM / //

�
H 2

ét.ZŒ1=p�;M
�.1//

��
// H 1

ét.ZŒ1=p�IM / // H 1
ét.Q

^
p IM / //

�
H 1

ét.ZŒ1=p�;M
�.1//

��
// H 2

ét.ZŒ1=p�IM / // H 2
ét.Q

^
p IM / //

�
H 0

ét.ZŒ1=p�;M
�.1//

��
// 0

When M D Z=pn.k/, the first map in the sequence above,

H 0
ét.ZŒ1=p�IZ=p

n.k//!H 0
ét.Q

^
p IZ=p

n.k//;

is an isomorphism by Proposition 3.8. Likewise, when M D Z=pn.k/ for k > 1, we
see from (3.7) that H i

ét.RIZ=p
n.k// is finite for RD ZŒ1=p� or Q^p , and it follows

that the above is an exact sequence of finite groups. Taking the inverse limit over n is
then exact and we get the following Tate–Poitou sequence:

(4.2)

0 //
�
H 2

ét.ZŒ1=p�;Z=p
1.1� k//

��
// H 1

ét.ZŒ1=p�IZ
^
p.k//

// H 1
ét.Q

^
p IZ

^
p.k//

//
�
H 1

ét.ZŒ1=p�;Z=p
1.1� k//

��
// H 2

ét.ZŒ1=p�IZ
^
p.k//

// H 2
ét.Q

^
p IZ

^
p.k//

//
�
H 0

ét.ZŒ1=p�;Z=p
1.1� k//

�� // 0
For Lemmas 3 and 4, we apply (4.2) with k Dm.p� 1/C 1, combined with the main
theorem of Bayer and Neukirch [3], which relates the values of the Iwasawa p–adic
�–function with the size of étale cohomology groups. In the following theorem, j � jp
denotes the p–adic valuation on Q^p , normalized so that jpnujp D p�n , where u is a
unit in Z^p .

Theorem 4.3 (Bayer and Neukirch [3, 6.1]) Let �I .!0; s/ denote the Iwasawa zeta
function of [3, 5.1] associated to the trivial character !0 and the field Q. Let k D
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m.p�1/C1 for m¤ 0. If �I .!0; k/¤ 0 then the groups H�ét.ZŒ1=p�IZ=p
1.1�k//

are all finite (zero for � � 2) and

j�I .!
0; k/jp D

#
�
H 0

ét.ZŒ1=p�IZ=p
1.1� k//

�
#
�
H 1

ét.ZŒ1=p�IZ=p
1.1� k//

� :
The following computation of j�I .!0;m.p� 1/C 1/jp is well known.

Proposition 4.4 For m¤ 0 and k Dm.p� 1/C 1,

j�I .!
0; k/jp D

ˇ̌̌
1

mp

ˇ̌̌
p
:

Proof The Iwasawa zeta function used by Bayer and Neukirch [3, 5.1] depends on a
choice of q 2 Z^p with q � 1 mod p . For the trivial character, the formula is then

�I .!
0; s/D

p�0g0.q
1�s � 1/

1� q1�s
;

where, for Q (and any abelian extension thereof), �0 D 0 as a case of the Iwasawa
“�D0” conjecture proved by Ferrero and Washington [16] (see [3, 5.3]) and g0.x/ is the
characteristic polynomial of the action of T 2Z^p ŒŒT ��

�Dƒ on a ƒ–module denoted as
e0M in [3]. (Here ƒ is the Iwasawa algebra [38, 7.1] for Z^p

�D� <Gal.Q.�p1/=Q/
with topological generator 
 $ 1CT acting by ˛ 7! ˛q for x 2 �p1 .) Since, for
k Dm.p� 1/C 1 with m¤ 0,

j1� q1�k
jp D j1� q�m.p�1/

jp D j1� qjmj.p�1/
jp D

ˇ̌̌
1

m.p�1/p

ˇ̌̌
p
D

ˇ̌̌
1

mp

ˇ̌̌
p
;

it suffices to show that g0.x/ D 1. This is a special case of the main conjecture
of Iwasawa theory [23, Section 6, Conjecture] for the trivial character. Though the
exposition preceding [23, Section 9, Theorem] makes the statement appear ambiguous
in the case of the trivial character, this case was known at least as far back as [18], as
we now discuss for the benefit of those (like the authors) not expert in this theory.

Washington [38, 15.37] denotes e0M as �0X and �0X1 and shows that

g0.q.1CT /�1
� 1/D f .T /u.T /

in Z^p ŒŒT �� for u.T / a unit power series and f .x/ the characteristic polynomial of �1X ,
where X is the inverse limit of Xn and Xn

�D An is the p–Sylow subgroup of the
class group of Q.�pn/. Greenberg [18] denotes X as XK , �1X as X

Œ1�
K

, and defines
V Œ1�D �1X˝Z^

p
�p where �pDQp is the algebraic closure of Qp . The characteristic

polynomial of �1X and V Œ1� are therefore equal, and Greenberg [18, Corollary 1]
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shows that V Œ1� D 0. Thus, f .x/ D 1 and we conclude that g0.x/ D 1. (In fact,
�1X D 0 and �1XnD 0 for all n as can be seen from [38, 6.16, 13.22] and Nakayama’s
lemma.)

We can also compute H 0
ét.ZŒ1=p�IZ=p

1.1� k// using Proposition 3.8, and for k D

m.p� 1/C 1 we get

H 0
ét.ZŒ1=p�IZ=p

1.1� k//DH 0
ét
�
ZŒ1=p�IZ=p1.�m.p� 1//

�
D �

˝.1�k/

pi .Q/ �D Z^p=.mp/;

where mpDpir for r relatively prime to p , or more concisely, pi D j1=.mp/jp . The
following proposition is now immediate.

Proposition 4.5 H 1
ét.ZŒ1=p�IZ=p

1.1� k//D 0 for m¤ 0 and k Dm.p� 1/C 1.

Combining the previous proposition with the Tate–Poitou sequence (4.2), the proof of
Lemma 3 is now clear. For Lemma 4, we need the following K–theory computation of
Bökstedt and Madsen [10] and Hesselholt and Madsen [20].

Theorem 4.6 (Hesselholt and Madsen [20, Theorem D], Bökstedt and Madsen
[10, 0.7]) For m> 0,

�2m.p�1/.K.Q
^
p/
^
p/
�D Z^p=.mp/:

Proof of Lemma 4 Let k Dm.p � 1/C 1. By the previous theorem and (3.9), we
have

#
�
H 2

ét.Q
^
p IZ

^
p.k//

�
D

ˇ̌̌
1

mp

ˇ̌̌
p

and by Proposition 3.8, we have

#
��

H 0
ét.ZŒ1=p�IZ=p

1.1� k//
���
D #

�
H 0

ét.ZŒ1=p�IZ=p
1.1� k//

�
D

ˇ̌̌
1

mp

ˇ̌̌
p
:

Because the map

H 2
ét.Q

^
p IZ

^
p.k//!

�
H 0

ét.ZŒ1=p�IZ=p
1.1� k//

��
in the Tate–Poitou sequence (4.2) is surjective and the groups are the same finite
cardinality, it must therefore also be injective. The map�

H 1
ét.ZŒ1=p�IZ=p

1.1� k//
��
!H 2

ét.ZŒ1=p�IZ
^
p.k//

is therefore surjective, and Proposition 4.5 then shows that H 2
ét.ZŒ1=p�IZ

^
p.k// is

zero.
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