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Brown’s moduli spaces of curves and the gravity operad

CLEMENT DUPONT
BRUNO VALLETTE

This paper is built on the following observation: the purity of the mixed Hodge
structure on the cohomology of Brown’s moduli spaces is essentially equivalent to
the freeness of the dihedral operad underlying the gravity operad. We prove these two
facts by relying on both the geometric and the algebraic aspects of the problem: the
complete geometric description of the cohomology of Brown’s moduli spaces and the
coradical filtration of cofree cooperads. This gives a conceptual proof of an identity of
Bergstrom and Brown which expresses the Betti numbers of Brown’s moduli spaces
via the inversion of a generating series. This also generalizes the Salvatore—Tauraso
theorem on the nonsymmetric Lie operad.

14H10; 14C30, 18D50

Introduction

The moduli space of genus zero smooth curves with 7 marked points, denoted by My ;,,
is a classical object in algebraic geometry, as well as its Deligne-Mumford—Knudsen
compactification /\710,,,, which parametrizes stable genus zero curves with n marked
points. In [5], Brown introduced a “partial compactification”

§ —
Mo,n C MO,n C MO’n

in order to prove a conjecture of Goncharov and Manin [17] on the relation between
certain period integrals on M, , and multiple zeta values.

The homology groups of the moduli spaces M, ,, as well as those of the compactified
moduli spaces /\710,,, , assemble to form two operads, respectively called the gravity and
hypercommutative operads by Getzler. These two operads are Koszul dual in the sense
of the Koszul duality of operads; see Getzler [14] and Ginzburg and Kapranov [16].
As pointed out by Getzler, this is very much related to the purity of the mixed Hodge
structures on the cohomology groups under consideration. This implies that the expo-
nential generating series encoding the Betti numbers of My , and /Wo,n are inverse to
one another.

A similar identity was conjectured by Bergstrom and Brown in [4]: the ordinary
generating series encoding the Betti numbers of the moduli spaces M, , and MSO,,,
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should be inverse to one another. More precisely, it is showed how such a relation
can be derived from a more conceptual fact: the purity of the mixed Hodge structure
on the cohomology groups of Brown’s moduli spaces. This is the first result of the
present paper.

Theorem A For every integers k and n, the mixed Hodge structure on the cohomology
group H¥ (Mg,n) is pure Tate of weight 2k .

This theorem has the following straightforward consequences:

e the cohomology algebra of Brown’s moduli space ./\/l%’,, embeds into that of the
moduli space My, (Corollary 4.18);

e there is a recursive formula for the Betti numbers of Mg,n, conjectured in
Bergstrom and Brown [4] (Corollary 4.19);

e Brown’s moduli spaces /\/lg,n are formal topological spaces in the sense of
rational homotopy theory (Corollary 4.20).

It turns out that the purity of the mixed Hodge structure of Theorem A can be equiva-
lently interpreted in the following operadic terms.

Theorem B The dihedral gravity operad is free. Its space of generators in arity n and
degree k is (noncanonically) isomorphic to the homology group Hk+,,_3(/\/lg,,,).

We introduce here the new notion of a dihedral operad, which faithfully takes into
account the dihedral symmetry of Brown’s moduli spaces. Such a notion forgets
almost all the symmetry properties of a cyclic operad, except for the dihedral structure.
Theorem B can also be viewed as a kind of nonsymmetric analog of the Koszul duality
between the gravity and the hypercommutative operad, since a free operad is Koszul,
its dual being a nilpotent operad. We prove it by introducing a combinatorial filtration
on the cohomology groups of the spaces My ,, and identifying it with the coradical
filtration of the dihedral gravity cooperad.

The problem of studying whether the nonsymmetric operad underlying a given operad is
free is not new. In [26], Salvatore and Tauraso proved that the nonsymmetric operad un-
derlying the operad of Lie algebras is free. This result is actually the top dimensional part
of Theorem B. Thus, the geometric methods developed throughout this paper provide us
with a new proof of (a dihedral enhancement of) the theorem of Salvatore and Tauraso.

Note that in the preprint [2] (which appeared on the arXiv one day after the present
article), Alm and Petersen give independent proofs of Theorem A and Theorem B. Their
proofs rely on an explicit basis for the gravity cooperad, and a construction of Brown’s
moduli spaces in terms of blow-ups and deletions. The freeness of the (nonsymmetric)
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gravity operad has been used by Alm in [1] to study an exotic As,—Structure on
Batalin—Vilkovisky algebras.

Layout The first section deals with the various combinatorial objects and notions of
operads used in this text. In the second section, we introduce the moduli spaces of
curves My , and /\710,,,, as well as the notion of mixed Hodge structure. The study of
Brown’s moduli spaces Mg,n and the dihedral gravity cooperad fills the third section.
The fourth section contains the proofs of Theorems A and B and their corollaries.

Conventions Throughout the paper, the field of coefficients is the field Q of rational
numbers. For a topological space X, we simply denote by H,(X) and H*(X) the
(co)homology groups of X with rational coefficients. We work with graded vector
spaces and switch between the homological convention (with degrees as subscripts)
and the cohomological convention (with degrees as superscripts), the two conventions
being linear dual to one another.
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and where Vallette came during several visits) and the University Nice Sophia Antipolis
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1 Freeness criteria for dihedral cooperads

The purpose of this first section is to recall the various notions of operads (classical,
cyclic, nonsymmetric, cyclic nonsymmetric) and to introduce a new one (dihedral
operad) which suits the geometry of Brown’s moduli spaces. We first describe the
combinatorial objects (trees and polygon dissections) involved in the proof of the
results of the paper. In the end of this section, we prove two freeness criteria for
dihedral cooperads: one based on their cobar construction and the other based on their
coradical filtration.

1.1 Dissections of polygons and trees

Definition 1.1 (structured sets) Let .S be a finite set of cardinality #.
e A basepoint p on S isamap p: {*} — S. A pair (S, p) is called a pointed set.

e A total order w on S is a bijection between S and the set {1,...,n}. There
are n! total orders on S. A pair (S,w) is called a totally ordered set. By
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convention, we view a totally ordered set as a pointed set, the basepoint being
the maximal element.

A cyclic structure y on S is an identification of S with the edges of an oriented
n—gon, modulo rotations. There are n!/n = (n — 1)! cyclic structures on S.
A pair (S, y) is called a cyclic set.

A dihedral structure § on S is an identification of S with the edges of an

unoriented n—gon, modulo dihedral symmetries. There are n!/(2n) = %(n -1
dihedral structures on S. A pair (S, §) is called a dihedral set.

In the sequel, we will identify a dihedral set (S, §) with an unoriented polygon with
its edges decorated by S in the dihedral order prescribed by §.

Definition 1.2 (chords and dissections) Let (S, §) be a dihedral set.

A chord of (S, §) is an unordered pair of nonconsecutive vertices of the under-
lying unoriented polygon.

A dissection 0 of (S, §) is a (possibly empty) set of noncrossing chords. The
refinement of dissections endows them with a poset structure:
< ifocCd,

in which the smallest element is the empty dissection. We denote by Diss(S, §)
the poset of dissections of (S, §), and by Diss (S, §) the subset consisting of
dissections with k& chords.

For a dissection 0 € Diss(S, §), we denote by P () the set of subpolygons that it defines;
see Figure 1. If 0 is in Dissg(S,d), then P(?) has cardinality k + 1. A subpolygon
p € P(0) corresponds to a dihedral set that we denote by (£(p),d(p)), where E(p)
consists of edges and chords of the polygon (S, §).

Definition 1.3 (trees) A tree is a finite graph with no cycle. The contraction of
internal edges endows trees with a poset structure: we set t < t’ if the tree t can be
obtained from the tree t' by contracting some internal edges. If the number of external
vertices is fixed, the minimal element of this poset is the only tree with zero internal
edge, called a corolla. By looking at the possible structures on the set of external
vertices of a tree, we get different posets:

the poset Tree(S) of trees with external vertices labeled by §';

the poset RTree(S, p) of rooted trees with external vertices labeled by S, the
root being labeled by the basepoint p;

the poset PRTree(S, @) of planar rooted trees with external vertices labeled by
S in the total order w, the root being labeled by the maximal element;
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P1
P2 P3

| —

Figure 1: A dissection 0 = {cy, ¢2, ¢3}, with the set of subpolygons P () = {po, p1, P2, P3}

e the poset PTree(S, ) of planar trees with external vertices labeled by S in the
cyclic order y;

e the poset DTree(S, §) of dihedral trees (trees embedded in an unoriented plane)
with external vertices labeled by S in the dihedral order §.

All these posets are graded by the number of internal edges of the trees.

For a tree t, we denote its set of vertices by V(t). For each vertex v € V(t), we
denote its set of adjacent edges by E(v). Notice that if t is a rooted tree then we get
a pointed set (E(v), p(v)); if t is a planar rooted tree then we get a totally ordered
set (E(v),w(v)); if t is a planar tree then we get a cyclic set (E(v), y(v)); if t is
a dihedral tree then we get a dihedral set (E(v),5(v)). We refer the reader to [22,
Section C.4] for more details on the notions related to trees.

Lemma 1.4 The graded poset Diss(S,d) of dissections of a polygon (S,§) and
the graded poset DTree(S, §) of dihedral trees labeled by the dihedral set (S, §) are
isomorphic.

Proof Let us describe the isomorphism Diss(S, §) — DTree(S, §). Given a dissection
0 €Diss(S, 6), one considers its “dual graph” t: each subpolygon p € P(d) gives rise to
a vertex v € V() of the tree t and each edge of this polygon gives rise to an edge of the
tree; see Figure 2. The tree t is naturally a dihedral tree, and it is straightforward to check
that this defines a bijection between Diss(.S, §) and DTree(S, ). Under this bijection,
removing a chord from the dissection corresponds to contracting internal edges of trees;
hence we get an isomorphism of posets, which respects the grading by construction. O

1.2 Dihedral operads

In this section, we recall the classical notions of operads, and we introduce a new one,
the notion of dihedral operad, which suits the geometrical problem studied here. We
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Figure 2: The isomorphism between polygon dissections and dihedral trees

work in the general setting of an abelian symmetric monoidal category (A, ®) such
that the monoidal product preserves coproducts. In the next section and later on, we
will specify the category A to be the category of graded mixed Hodge structures.

Definition 1.5 (categories of structured sets) We consider the following categories
of structured sets:

e The category Bij of finite sets S and bijections.

e The category Bij, of pointed sets (S, p) and bijections respecting the basepoint.

e The category Ordy of totally ordered sets (.S, w) and bijections respecting the
total order.

e The category Cyc of cyclic sets (S, y) and bijections respecting the cyclic order.

e The category Dih of dihedral sets (.S, §) and bijections respecting the dihedral
structure.

The forgetful functors between the various categories of structured sets assemble as a
commutative diagram

Dih ¢+—— Cyc +—— Ordx

| l

Bij Bij,

where the functor Ords — Bij, picks the maximal element as basepoint.

In each case, we consider the category of functors from these categories to the cate-
gory A, for instance M: Bij— A, that we respectively call the category of Bij—modules,
Bij,—modules, Ordx—modules, Cyc—modules and Dih—modules. We denote them
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respectively by Bij-Mod, Bijx-Mod, Ord«-Mod, Cyc-Mod and Dih-Mod. We then get
a commutative diagram of forgetful functors:

Dih-Mod —— Cyc-Mod —— Ord«-Mod

T |

Bij-Mod Bij«-Mod

In the next definition we are using tensor products labeled by sets; see [22, Sec-
tion 5.1.14] for more details on this notion.

Definition 1.6 (monads of trees) We consider the following monads of trees.
e The monad T: Bij-Mod — Bij-Mod is defined via trees:
TM(S):= P ( (0 M(E(v))).
t€Tree(S) “veV(Y)

e The monad RT: Bijx-Mod — Bijx-Mod is defined via rooted trees:

REME = @ (@ MEW.pw),

teERTree(S,p) “velV(t)

e The monad PRT: Ord4«-Mod — Ord«-Mod is defined via planar rooted trees:

PRTM(S.0):= P (®M(E(v),a)(v))).

tePRTree(S,w) “veV(t)

e The monad PT: Cyc-Mod — Cyc-Mod is defined via planar trees:

PTM(S.y):= P (®M(E(v),y(v))).

tePTree(S,y) “veV(v)
e The monad DT: Dih-Mod — Dih-Mod is defined via dihedral trees:
DTM(S.8):= B ( &) M(E®). 5(v))).
teDTree(S,8) “veV(b)

The composition law of these monads, eg T oT — T, is given by substitution of trees,
and the unit, eg 1 — T, is given by the inclusion into the direct summand indexed by
corollas. See [22, Section 5.6.1] for more details.

Remark 1.7 In the above commutative diagram, the horizontal forgetful functors

commute with the respective monads: the forgetful functor Dih-Mod — Cyc-Mod
commutes with DT and PT ; the forgetful functor Cyc-Mod — Ords-Mod commutes
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with PT and PRT ; the forgetful functor Bij-Mod — Bijx-Mod commutes with T
and RT . There is no corresponding statement for the vertical forgetful functors.

Definition 1.8 (types of operads) An operad (resp. a cyclic operad, a nonsymmetric
operad, a nonsymmetric cyclic operad and a dihedral operad) is an algebra over the
monad RT of rooted trees (resp. the monad T of trees, the monad PRT of planar
rooted trees, the monad PT of planar trees and the monad DT of dihedral trees).

Remark 1.9 In the rest of this article, we will always assume that all finite sets S have
cardinality n = 3. This is more convenient for our geometric purposes, since the moduli
spaces My s and ./\710, s are only defined for those sets, and also to avoid speaking of
polygons with two sides. The operads that we manipulate are then nonunital operads.

The aforementioned diagram of categories gives rise to the following forgetful functors
between the categories of operads:

Dih-Op —— ns-Cyc-Op —— ns-Op

T |

Cyc-Op Op

Remark 1.10 In view of Remark 1.7, the free dihedral operad, the free nonsymmetric
cyclic operad and the free nonsymmetric operad on a given Dih—module have the same
underlying nonsymmetric operad.

1.3 Dihedral cooperads

By dualizing Definitions 1.6 and 1.8, one defines comonads of trees and the correspond-
ing notions of cooperads. For more details, we refer the reader to [22, Section 5.8.8]. For
instance, the comonad of trees is defined by the endofunctor T¢: Bij-Mod — Bij-Mod
defined by

TM(S):= P M.
t€Tree(S)
where we have set

M®) = Q) M(E@)).

veV(b)

A cyclic cooperad consists of a Bij—module C along with decomposition morphisms

A¢ C(S) — C(1),
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for any tree t € Tree(.S), satisfying some coassociativity conditions. For the convenience
of the reader, we make the definition explicit in the case of dihedral cooperads, switching
from dihedral trees to polygon dissections; see Lemma 1.4.

A Dih—module M assigns to every dihedral set (S,§) an object M(S,d), and to
every dihedral bijection (S, §) ~ (S’,§") an isomorphism M(S,§) ~ M(S’,§’). We
introduce the notation, for a dissection 0 € Diss(S, §),

M@) = Q) M(E(p).8(p)).

PEP(®)

Definition 1.11 (comonad of dissections) The comonad of dissections, denoted
by DT, consists of the endofunctor DT ¢: Dih-Mod — Dih-Mod defined by

DTM(S.8):= P ME).
0€Diss(S,68)

Its law DT¢ — DT o DT sends the direct summand indexed by a dissection 0 to
the direct summands indexed by all subdissections of 9. The counit DT¢ — 1 is the
projection on the direct summand indexed by empty dissections.

Definition 1.12 (dihedral cooperad) A dihedral cooperad is a coalgebra over the
comonad of dissections.

The data of a dihedral cooperad is equivalent to a collection of decomposition morphisms
Ay C(S,68) — C(0),

for any dihedral tree 0 € Diss(S, 8), satisfying some coassociativity conditions. The
first nontrivial decomposition morphisms correspond to dissections with one chord;
such decomposition morphisms are called infinitesimal and their iterations can generate
any decomposition morphism.

1.4 Cobar construction and cofree dihedral cooperads

In this subsection and in the next one, we assume that the underlying symmetric
monoidal category A consists of graded objects, like chain complexes for instance. We
use the cohomological convention for cooperads. In this case, one can consider the
desuspension s~'C of any dihedral module C defined by the formula s~!C(S, §)* :=
C(S,8)* 1. (Alternatively, one can view the element s~! as a dimension-one element of
the category A concentrated in cohomological degree —1. In this case, the desuspension
coincide with the tensor product with the element s~1.)

Definition 1.13 (cobar construction) The cobar construction QC := (DT (s~1C), d)
of a dihedral cooperad C is the free dihedral operad generated by s~!C equipped with
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the unique derivation d which extends the infinitesimal decomposition morphisms of C.
The signs induced by the desuspension force the derivation d to square to zero, which
makes the cobar construction into a differential graded dihedral operad.

Remark 1.14 As usual [22, Section 6.5.2], if the underlying dihedral module C
carries an internal differential, one takes it into account in the definition of the cobar
construction. This will not be the case in the sequel.

The underlying cochain complex of the cobar construction looks like

0—s1C(S,8) — @ s~lec(@) — @ sTlc@) — - .

0€Diss (S,6) 0€Diss> (S,6)
One can read whether a dihedral cooperad is cofree on its cobar construction as follows.

Proposition 1.15 Let C be a dihedral cooperad. The following are equivalent:
(i) the dihedral cooperad C is cofree;

(ii) for every dihedral set (S, §), the cobar construction of C induces a long exact
sequence

(D) S_IC(S,S)—> @ s_lc(b)—> @ sTlc@) —> - .

0€Diss (S,6) 0€Diss» (S,6)

In such a situation, the space of cogenerators of C is (noncanonically) isomorphic to
the space of indecomposables

X(S,(S):ker(C(S,(S)e @ C(D)).

0€Diss (S,5)
More precisely, any choice of splitting for the inclusion of Dih—modules X < C leads
to an isomorphism
C = DT(X).

Proof The long sequence (1) is exact if and only if the long sequence

(2) 0—>s71X(S,8)—>s1C(S.8)— @ s~lc(@) — @ sTlc@) —---
0€Diss; (S,8) 0€Diss» (S,8)

is exact.

(i) = (ii) Suppose that the dihedral cooperad C =~ DT “(X) is cofree on a dihedral

module X. Since the sequence (2) is the analog of the bar-cobar resolution [22,

Theorem 6.6.5] for the nilpotent dihedral operad s~! X', one proves that this sequence

is exact by the same kind of arguments.
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(il)) = (1) Let us assume that the long sequence (2) is exact. We choose a splitting
C — X for the inclusions X < C in the category of Dih—-modules. This defines a
morphism of dihedral cooperads C — DT¢(X). Let us prove, by induction on the
arity n = 3 of a dihedral set (S, §), that the morphism C(S, §) — DT (X)(S, d) is an
isomorphism. The case n = 3 is obvious and initiates the induction. Suppose that the
property holds up to n — 1. We prove that it holds for n as follows. The preceding
point shows that the long sequence (2) associated to the dihedral cooperad DT €(X) is
exact. The induction hypothesis provides us with the commutative diagram

0 0

sT1X(S,8) = s1X(S,8)

s710(8,8) ——— s7IDT(X)(S, )

@B slce)—=— P sIDTUX) Q)
0€Diss; (S,6) 0€Diss1 (S,8)

| !

B slce)—=— P sIDTUX) ()
0€Diss> (S,6) 0€Diss» (S,8)

1 1

where the columns are exact and nearly all the horizontal maps are isomorphisms.
A diagram chase (the 5-lemma) completes the proof. a

Proposition 1.16 Let C be a dihedral cooperad. Then the following statements are
equivalent:

(i) The dihedral cooperad C is cofree.

(i) The nonsymmetric cyclic cooperad underlying C is cofree.

(iii) The nonsymmetric cooperad underlying C is cofree.

Proof The same proof shows that Proposition 1.15 is valid in the category of nonsym-
metric cyclic cooperads (resp. nonsymmetric cooperads), replacing the dihedral cobar
construction by the nonsymmetric cyclic cobar construction (resp. the nonsymmetric
cobar construction). By Remark 1.10, these three cobar constructions have the same
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underlying nonsymmetric operad, which is the nonsymmetric cobar construction of the
nonsymmetric cooperad underlying C. In particular, they have the same underlying
chain complex, and the claim follows. O

1.5 The coradical filtration and a freeness criterion

To understand the behavior of a dihedral cooperad with respect to the freeness property,
one can consider its coradical filtration. This is the direct generalization of the same
notion on the level of coalgebras [24, Appendix B] and on the level of cooperads [22,
Section 5.8.4].

Definition 1.17 (coradical filtration) Let C be a dihedral cooperad. The coradical
filtration, defined by

FC(S.8) =[] ker(Ay).
0€Dissg 41 (S,8)

for k = 0, is an increasing filtration of the Dih—module C:

0=F_ CCFCcCFCc--CC.

The next proposition gives a way to recognize coradical filtrations of cofree dihedral
cooperads. Let us make the following convention: if we are given an increasing filtration
.-+ C Rp_1C C RyC C--- of a Dih—module C, then we extend this filtration, in the
natural way, to all objects C(0) for a dissection 0 as follows. If the dissection 0 dissects
(S, 8) into polygons pg, p1,---, Pk, then we set

R.CO) = > RiyC(po) ®:® Ry Cpr).
io+-+ig=r

Proposition 1.18 Let C be a dihedral cooperad. Assume that the underlying Dih—
module is equipped with an increasing filtration

O=R_ICCR()CCR10CCC

which is finite in every arity n and such that the following properties are satisfied:

(a) for every dissection 0 € Diss; (S, §) of cardinality k and every integer r, the
decomposition map Ay sends R,C(S,8) to R,_;C(S,§);

(b) for every integer r, the iterated decomposition map

A
3) akes o2 @ Recw)
0€Diss, (S,6)
is an isomorphism.
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Then the dihedral cooperad C is cofree and the filtration R is its coradical filtra-
tion. More precisely, any choice of splitting of the inclusion RyC < C induces an
isomorphism

¢ S DTC(RHC).

Proof Let us choose a splitting 6: C — RyC for the inclusions RyC < C in the
category of Dih—modules. By the universal property of the cofree dihedral cooperads,
this induces a morphism of dihedral cooperads ®: C — DT ¢(R(C). The coradical
filtration on the cofree dihedral cooperad DT ¢(R(C) is given by

FDTC(RoC)(S.8) = @B  RoC().

r<k
0€Dissy (S,8)

For any dissection 0 € Diss (S, §) and k > r, the first assumption implies that we have
Ay(R,C(S,8)) = 0. Therefore, the morphism © is compatible with the filtrations R
and it induces a morphism of graded dihedral modules

af0: gfe(8.8) > af DT (RoC)= P RoC).
0€Dissy (S,6)

which is nothing but the iterated decomposition map (3). So it is an isomorphism by the
second assumption. Finally, the morphism of dihedral cooperads ® is an isomorphism
and the proposition is proved. a

2 Moduli spaces of genus zero curves and
the cyclic gravity operad

In this section, we begin by recalling the definitions of the moduli space of genus zero
curves with marked points and its Deligne—Mumford—Knudsen compactification. We
recall the definition of residues along normal crossing divisors in the context of mixed
Hodge theory. This produces the cyclic gravity operad structure on the cohomology of
the moduli spaces of curves.

2.1 Normal crossing divisors and stratifications

We introduce some vocabulary and notations on normal crossing divisors and the
stratifications that they induce on complex algebraic varieties.

2.1.1 Thelocal setting Let X be a small neighborhood of 0 in C " and let us define a
divisor dX ={zy ---z, =0} in X for some fixed integer r. Its irreducible components
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are the (intersections with X of the) coordinate hyperplanes {z; =0} fori =1,...,r.
This induces a stratification
) Y= 1] xw,

1c{1,...,r}

where X (1) is the locally closed subset of X defined by the conditions: z; = 0 for
i€l and z; #0 fori € {1,...,r}\ I. Notice that

Icl < X(I)>Xx{).

The codimension of X () is equal to the cardinality of I, and its closure X (1) is
defined by the vanishing of the coordinates z;, i € I. In other words, the closure X (/)
is the union of the strata X (I’) for I’ D I :

fm;LJxW)
1'D1
For a given set 7 C {1,...,r}, the complement dX (1) := X (I)\ X(I) is defined by
the equation [];eq; s 2 =0.

2.1.2 The global setting Let X be a smooth (not necessarily compact) complex
algebraic variety and let 3X be a normal crossing divisor inside X . This means that
around every point of X, there is a system of coordinates (zi,...,z,), where n is
the complex dimension of X, such that 9.X is defined by an equation of the form
zq -+ zp = 0 for some integer r that depends on the point.

This induces a global stratification
5) X=|] x@
5€Strat

that is constructed as (4) in every local chart. For every s in the indexing set Strat, the
stratum X (s) is a connected locally closed subset of X'. Let X (s) denote its closure.
The indexing set Strat for the strata is actually endowed with a poset structure defined by

s<s§ < X(s)D X(5).
In other words, the closure X (s) of X(s) is the union of the strata X (s') for s’ > s:
X =] | x6).
s'=s
For an integer k, we write Straty for the indexing set of strata of codimension &,
making Strat into a graded poset. The set Straty only has one element corresponding

to the open stratum X = X \ 90X . The Closures_f (s), for s € Straty, are the irreducible
components of the normal crossing divisor d.X .
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For a given stratum X (s), the complement dX (s) := X (s)\ X(s) is a normal crossing
divisor inside X (s).

2.2 The moduli spaces My s and ./\710,5

We introduce the moduli spaces of genus zero curves Mg s and ./\710! s . We refer the
reader to [20; 18; 14; 17] for more details.

2.2.1 The open moduli spaces Mg s Let S be a finite set of cardinality n > 3.
The moduli space of genus zero curves with S—marked points is the quotient of the
configuration space of points labeled by S on the Riemann sphere P!(C) by the
automorphisms of P!(C). It is denoted by

Mo,s = {(z5)ses € P1(C)® | z5 # zy for all 5 # 5’} /PGL,(C),
where an element g € PGL,(C) acts diagonally by g.(zs)ses = (g.25)ses -

Every bijection S ~ S’ induces an isomorphism Mgy g >~ Mg /. If S ={1,...,n}
then My g is simply denoted by My .

The action of PGL,(C) on P!(C) is strictly tritransitive: for every triple (a, b, c) of
pairwise distinct points on P! (C), there exists a unique element g € PGL,(C) such
that (g.a, g.b, g.c) = (00,0, 1). By fixing an identification

(ziyoooyzn) = (00,0,t1,...,t5—3,1),
we can thus get rid of the quotient by PGL,(C) and obtain an isomorphism
6) Mon={(t1,....ta=3) €C" | 4; #£0,1 forall i, and t; # t; forall i # j}.
This description makes it clear that Mg g is a smooth and affine complex algebraic

variety of dimension n — 3.

2.2.2 The compactified moduli spaces ./\710,3 Let S be a finite set of cardinality
n =3, and let

Mo.s C Mos

be the Deligne-Mumford—Knudsen compactification of M, g. Every bijection S ~ S’
induces an isomorphism Mg g ~ Mg s/. If S = {1,...,n}, then M g is simply
denoted by Mo,

The compactified moduli space /\710, s is a smooth projective complex algebraic variety,
and the complement 8/\710, S = Mo, s \ My, s is a simple normal crossing divisor. The
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corresponding stratification (5) is indexed by the graded poset of S —trees:
(7) Mos= | ] M@.
teTree(S)

The codimension of a stratum M(t) is equal to the number of internal edges of the
tree t. If we denote by M (t) the closure of a stratum M(t) in /ﬁo,s , then we have

M@ D ME) < t<¥t,

where the order < on trees is the one defined in Definition 1.3. The closure M (%) is
thus the union of the strata M (') for t' > t.

For a tree t € Tree(S), we have compatible product decompositions
®) MO = [] Mopw and MO = [] Mo rw-
VeV (t) vel ()
The stratum corresponding to the corolla is the open stratum Mg s . For t € Tree;(S)
a tree with only one internal edge, we get a divisor

M(t) x~ MQ’EO X ./\710551

inside /\710, s - These divisors are the irreducible components of 8/\710,3.

Example 2.1 (1) We have M3 = Mg 3 = {*}.

(2) If wewrite Mg 4=P!(C)\{oo,0, 1} asin (6), then we have Mg 4 = PI(C). The
divisor at infinity 8/\/10 4 = {00, 0, 1} has three irreducible components, all isomorphic
to a product MO 3 X ./\/lo 3, indexed by the three 4—trees with one internal edge.

(3) If we write Mg s = (P1(C)\ {00,0, 1})2\ {t; = 1o} as in (6), then My 5 can be
realized as the blow-up of P!(C)? along the three points (0, 0), (1, 1) and (0o, 00);
see Figure 3. The divisor at infinity 3/\710 5 has ten irreducible components: the three
exceptional divisors and the strict transforms of the lines #{ =0,1,00, £, =0, 1,00
and t; = #,. They are all isomorphic to a product Mo 3 X Mo 4 and are indexed by
the ten 5—trees with one internal edge. The fifteen different intersection points of these
components are indexed by the fifteen 5—trees with two internal edges.

2.3 The category of mixed Hodge structures

We recall some useful facts on the category of mixed Hodge structures. The main
references are the original articles by Deligne [6; 7; 8] and the book [23].
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/

Figure 3: The combinatorial structure of /\710,5

Definition 2.2 (pure Hodge structures) A pure Hodge structure of weight w is the
data of

e a finite-dimensional Q—vector space H ;
» afinite decreasing filtration, the Hodge filtration, F'®* Hc of the complexification
H(C =H ®Q C,

such that for every integer p, we have
Hc = FPHe @ FW—PH1He.

A morphism of pure Hodge structures is a morphism of (Q—vector spaces that is
compatible with the Hodge filtration.

Definition 2.3 (mixed Hodge structures) A mixed Hodge structure is the data of
e a finite-dimensional Q—vector space H;
e a finite increasing filtration, the weight filtration, W H of H;
e a finite decreasing filtration, the Hodge filtration, F'* Hc of the complexifica-
tion Hc,

such that for every integer w, the Hodge filtration induces a pure Hodge structure of
weight w on grg/ H:=Wy,H/Wy,_1 H. A morphism of mixed Hodge structures is a
morphism of Q—vector spaces that is compatible with the weight and Hodge filtrations.

A pure Hodge structure of weight w is thus nothing but a mixed Hodge structure whose
weight filtration is concentrated in weight w.

A very important remark is that morphisms of mixed Hodge structures are strictly
compatible with the weight and Hodge filtrations. This implies that mixed Hodge
structures form an abelian category. One easily defines on it a compatible structure of
a symmetric monoidal category.
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Another consequence of this strictness property is the following lemma, used in practice
to prove degeneration of spectral sequences, like in Proposition 3.10.

Lemma 2.4 Let f: H— H' be a morphism of mixed Hodge structures. If H is pure
of weight w and H' is pure of weight w’ with w # w’, then f = 0.

The pure Tate structure of weight 2k, denoted by Q(—k), is the only pure Hodge
structure of weight 2k and dimension 1; its Hodge filtration is concentrated in degree k .
They satisfy Q(—k) ® Q(—/) = Q(—k — 1) and Q(—k)" = Q(k). A mixed Hodge
structure is said to be pure Tate of weight 2k if it is isomorphic to a direct sum
Q(—k)®4 for a certain integer d.

If H is a mixed Hodge structure and k is an integer, we denote by H(—k) the Tate
twist of H consisting in shifting the weight filtration by 2k and the Hodge filtration
by k. It is equal to the tensor product of H by Q(—k).

The importance of mixed Hodge structures in the study of the topology of complex
algebraic varieties is explained by the following fundamental theorem of Deligne.

Theorem 2.5 [8, Proposition 8.2.2] Let X be a complex algebraic variety. For every
integer k , the cohomology group H* (X) is endowed with a functorial mixed Hodge
structure.

2.4 Logarithmic forms and residues

We recall the notion of logarithmic form along a normal crossing divisor and that of a
residue. We refer the reader to [7, 3.1] for more details.

2.4.1 The local setting We work in the local setting of Section 2.1.1. We say that a
meromorphic differential form on X has logarithmic poles along d.X , or that it is a
logarithmic form on (X, dX), if it can be written as a linear combination of forms of
the type

with 1 <iy <--- <ig <r and where 1 a holomorphic form on X . Logarithmic forms
are closed under the exterior derivative on forms.
Any logarithmic form on (X, d.X) can be written as

dz 1

w=—Aa+8,
Z1
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where « and 8 are forms with logarithmic poles along {z5 ---z, = 0}. We define the
residue of w on X (1) = {z; = 0} to be the restriction

©) Res(w) := 2mia) gy

It is a well-defined logarithmic form on (X (1), 39X (1)). The residue operation lowers
the degree of the forms by 1 and anticommutes with the exterior derivative: d o Res +
Resod =0.

More generally, for sets 1 C I’ C {1,.. .,r}_with |I_/| = |I| 4+ 1, we get residue
op_erations_Resf/ from logarithmic forms on (X (), dX (1)) to logarithmic forms on
(X(I"), 90X (1").

2.4.2 The global setting We work in the global setting of Section 2.1.2. By gluing
together the local definitions of the previous paragraph, one defines on each closure X (s)
a complex of sheaves of logarithmic forms on (X (s), X (s)):

Q% log X (5)).

If js: X(s) < X (s) denotes  the natural open immersion, we have a quasi-isomorphism
(Js)+Cx() =~ Q}?(ﬁ) (log 0X (s)), which induces isomorphisms between cohomol-
ogy groups:

(10) H¥(X(s),C) = H* (X (s), Q% (log X (5))).

For elements s < s’ in Strat with |s'| = |s| + 1, we denote the corresponding closed
immersion by i,: X (s') < X (s). By applying the local construction of the previous
paragraph in every local chart, we get a residue morphism

(log dX (5)) — (i5)+Q2% !, (log 01X (s)),

(11) Res?: Ton

¥
which anticommutes with the exterior derivative on forms. In view of (10), this induces
a residue morphism between cohomology groups:

Resy: H*(X(s),C) — H*'(X(5'),C).

This residue morphism is actually defined over Q and it is compatible with the mixed
Hodge structures if we add the right Tate twist, giving rise to residue morphisms

(12) Resl: H*(X(s)) — H* ' (X(s)(—1).

2.5 The cyclic gravity cooperad

Following Getzler, we use the residue morphisms of the previous paragraph to define
the cyclic gravity cooperad in the category of graded mixed Hodge structures. Let .S
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be a finite set of cardinality n = 3, and let us choose an S —tree t € Tree; (S) with one
internal edge. Let us denote by vy and v; its two vertices, and by Eq := E(vg) and
E{ := E(vy) the corresponding sets of adjacent edges. The stratum indexed by t in
the moduli space M s is

M) = Mo, gy x Mo,E, -
For integers a and b, we thus get residue morphisms
(13) A HFP 7 (Mo,5)(=1) — HO™H(Mo,g,) (—1) @ H™H(Mo,g,) (=)

They are obtained from (12) by using the Kiinneth formula, adding a Tate twist (—1) and
multiplying by the Koszul sign (—1)4~1, which reflects the cohomological degree shift.
Let us define the Bij—module C in the category of graded mixed Hodge structures by

C(S) := H ' (Mo, 5)(—1).

Associated to any set V', one considers the one-dimensional vector space det(V) :=
Aver Qu. The signed residue morphisms (13) are not quite the decomposition mor-
phisms of a cyclic cooperad. Instead, they give rise to decomposition morphisms

(14) A¢: C(S) = det(V(}) ®C(1)

for any S—tree t € Tree(S), that satisfy analogs of the axioms a cyclic cooperad, but
with different signs. Such an algebraic structure on C is actually called an anticyclic
cooperad;, see [15, 2.10]. Note that in (13) the choice of an ordering V(t) = {vg, v}
gives a trivialization det(V (t)) ~ Q of the determinant. The following definition was
introduced by Getzler [13; 14].

Definition 2.6 (cyclic gravity cooperad) The cyclic gravity cooperad is the cyclic
suspension [15, 2.10] of the anticyclic cooperad C:

Grav(S) 1= det(S) ® H* ™" 3 (Mo s)(—1)

for any finite set S of cardinality n > 3. It forms a cyclic cooperad in the category of
graded mixed Hodge structures, which is concentrated in nonpositive cohomological
degree —(n —3) < ¢ < 0. The decomposition morphisms

A¢: Grav(S) — Grav(t)
for the cyclic gravity cooperad are given by signed residues.

Getzler showed [13, Theorem 4.5] that the cyclic gravity operad, linear dual to the
cyclic gravity cooperad, is generated by one element in each cyclic arity n = 3, and
he also gave a presentation for the operadic ideal of relations. More specifically, the
generator in cyclic arity n is the natural generator of the space Hy(My ,)(1), which
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lies in homological degree —(n — 3), and the relations are generalizations of the Jacobi
identity for Lie algebras. In particular, the generator of cyclic arity 3 satisfies the Jacobi
identity, and one gets the following theorem.

Theorem 2.7 [14, 3.8] The degree-zero suboperad of the cyclic gravity operad is iso-
morphic to the cyclic Lie operad. In particular, we get an isomorphism of Bij—modules

Lie(S) = det(S) ® Hy_3(Mg.s)(1).

3 Brown’s moduli spaces and the dihedral gravity cooperad

In this section, we introduce Brown’s moduli spaces as a partial compactification of the
moduli spaces of genus zero curves. Forgetting many of the symmetries of the gravity
operad, one obtains the dihedral gravity operad. We conclude with the proof of the
equivalence between the purity of the mixed Hodge structure on the cohomology of
Brown’s moduli spaces and the cofreeness of the dihedral gravity cooperad.

3.1 Brown’s moduli spaces M) ¢

Let S be a finite set of cardinality » = 3 and let § be a dihedral structure on S'. Brown
defined [5, Section 2] a space M%, s that fits between the moduli space My s and its
compactification /\710, s with open immersions:

5 _
Mop,s CMj s C Mo,s.

Recall that DTree(S, §) C Tree(S) denotes the set of S—trees that have a dihedral
embedding compatible with §.

Definition 3.1 (Brown’s moduli space ./\/lg’ s) Brown’s moduli space Mg, s is the
subspace of My s defined as the union of strata indexed by the trees underlying
dihedral trees:
Mys= || M.
teDTree(S,6)

For t and t’ two S —trees such that t <t’, we have t' € DTree(S, ) = t € DTree(S, §);
thus, Brown’s moduli space M‘(S)’ s 1s an open subvariety of /\71075. In other words,
it is the complement in /\710,S of the union of the closed subvarieties M(t) for t €
Tree(S) \ DTree(S, §); in this description, it is actually enough to delete the divisors
M (%) for trees t with one internal edge.

Every dihedral bijection (S, 8) ~ (S’,8’) induces an isomorphism ./\/lg,s o~ Méﬁs/.
If we consider S = {1,...,n} with its standard dihedral structure &, then Mg, s is
simply denoted by Mg’n.
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Theorem 3.2 [5, Theorem 2.21] Brown’s moduli space M‘g’ s is a smooth and affine
complex algebraic variety, and the complement aMﬁ,S = ngs \ My,s is a normal
crossing divisor.

With our definition of Brown’s moduli spaces, the only nontrivial statement in the
above theorem is the fact that M‘(S)’ s is affine. Brown’s original definition is via an
explicit presentation of the ring of functions of Mg’ s - The equivalence of the two
definitions can be found in [5, Section 2.6].

3.2 The dihedral gravity cooperad

Definition 3.3 (the dihedral gravity operad) The dihedral gravity cooperad, still
denoted by Grav, is the dihedral cooperad in the category of graded mixed Hodge
structures underlying the cyclic gravity cooperad. In other words, it is obtained by
applying the forgetful functor Cyc-Op — Dih-Op of Section 1.2 to the cyclic gravity
operad. Recall that its underling dihedral module is given by

Grav (S, 8) := det(S) ® H* "3 (My s)(—1).
For the convenience of the reader and for future use, we restate its definition in the
dihedral setting by using the bijection between graded posets of Lemma 1.4:
DTree(S, §) =~ Diss(S,6§), t< 0.

We may then write

(15) Mos= || M.
0€Diss(S,8)

The codimension of a stratum M (0) is the number of chords in the dissection 0. If we
denote by M5 (9) the closure of a stratum M(?) in Mg, s, then we have

M@ > M) = b <,

where the order < on dissections is the one defined in Section 1.1. The closure M‘g(b)
is thus the union of the strata M (') for o’ > .

For a dissection 0 € Diss(.S, 6), we have the product decompositions

M@ = [] Mogp and M@= [T MB,)
peP®) pEP®)

which are compatible with the product decompositions (8).
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Figure 4: The combinatorial structure of M‘(S),S

The stratum corresponding to the corolla is the open stratum M, g. For 0 = {c} €
Diss1 (S, §) a dissection consisting of only one chord, we get a divisor

8 ~ AAS 8
MO({c}) = Mg, x Mo,
inside /\/la s - These divisors are the irreducible components of BM‘P), S-

Example 3.4 (1) We have M§ 5 = {*}.

(2) If we write Mg 4 = P1(C)\{o0,0,1} and Mo.4 =P1(C), then we have Mg,4 =
P1(C)\ {oc}. The divisor at infinity 8/\/150,4 = {0, 1} has two irreducible components,
all isomorphic to a product /\/l‘(s),3 X M{S)J, indexed by the two dissection of a 4—gon
with one chord.

(3) Figure 4 shows the combinatorial structure of /\/lg,5 inside Mg s. The curves
in dashed lines are the complement /ﬁo, 5 \/\/l‘(s), 5. The five curves in straight lines
are the five irreducible components of the divisor at infinity 8/\/1%’ 5, indexed by the
five dissection of a 5—gon with one chord. They bound a pentagon (shaded). The five
different intersection points of these components are indexed by the five dissections of
a 5—gon with two chords.

Remark 3.5 The stratification of M%,n has the same combinatorial structure as the
natural stratification of an associahedron Kj of dimension n — 3. More precisely,
there is a natural smooth embedding of K, inside Mg,n which is compatible with
these stratifications (the shaded pentagon in Figure 4). This is the same as Devadoss’s
realization of the associahedron [9, Definition 3.2.1]. In that sense, Brown’s moduli
spaces Mg,n are algebro-geometric analogs of associahedra.

The dihedral decomposition morphisms

Ay: Grav(S, §) — Grav (D)
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may be computed as (signed) residues of logarithmic forms on (Mg, S5 8/\/1‘3, s). Thisis
particularly interesting since Mg, s is affine (Theorem 3.2) and we can thus use global
logarithmic forms. We will give explicit formulas for these dihedral decomposition
morphisms in Proposition 4.4.

3.3 The residue spectral sequence

In the global setting of Section 2.1.2, we prove the existence of a residue spectral
sequence which computes the cohomology of the ambient space X in terms of the
cohomology of the strata X (s) and the residue morphisms. In the next paragraph, we
will apply this spectral sequence to the dihedral gravity cooperad.

Proposition 3.6 Let X be a smooth (not necessarily _compact) complex algebraic
variety and let X be a normal crossing divisor inside X , inducing a stratification

X = |_| X(s).

s€Strat

There exists a first quadrant spectral sequence in the category of mixed Hodge structures:

EMT = @ HTP(X(s)(—p) = HPTI(X),

5€Straty
where the differential d,: ET"? — Ef’“’q is the sum of the residue morphisms (12)
Resy: HTP(X(s)(=p) = HT P71 (X () (—p—1)
for s € Strat, and s’ € Strat, 4 such thats <s'.
Proof We first forget about mixed Hodge structures and prove the existence of the

spectral sequence for the cohomology over C. Let us denote by is: X (s) <> X the
natural closed immersions. Let us write

k= (ie): Q% (1’)(10g dX (s)).

5€Straty

We give the collection of the KP4 the structure of a double complex of sheaves on X .
The horizontal differential d’: K9 — KP+14 is induced by the residues

(ie)+ Q% (1’) (log 01X (5)) — (i)« Q% (P,) "log dX (s))

for s € Strat, and s’ € Strat, 4 such that s < s’. The vertical differential d": 79 —
JCP4+1 is induced by the exterior derivative on differential forms. One checks that we
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have d’od’ =0, d"od” =0 and d’od” +d"” od’ = 0. We denote the corresponding
total complex by
® x

ptq=n
Using local coordinates on X, it is easy to check that we have a long exact sequence
(16) 0—>§23?—>/c°’°—>/c1"—>/c2"—>-.-,

which induces a quasi-isomorphism Q% =~ K*. The holomorphic Poincaré lemma
implies that we have a quasi-isomorphism C y ~ Q% hence we get an isomorphism

HI(X,C)=HI(X,K").

Now, the hypercohomology spectral sequence for the double complex K**° filtered by
the columns is exactly

P H(XG). sz"l’ (log X (s))) = HPTI(X,C).

s€Straty

Taking into account the isomorphisms IH[‘I(A7 (s), Q}(_(p ) (log 0.X (5))) ~HI7P(X(s),C),
one gets the desired spectral sequence.

In order to prove that this spectral sequence is defined over Q, it is convenient to
work in the category of perverse sheaves. We let u,: X(s) < X denote the natural
locally closed immersions. We replace (16) by the following long exact sequence in the
category of perverse sheaves on X, where d denotes the complex dimension of X :

0> Qgld]—> uxQx[d] > B U)sQxeld—11— B (Us)sQx()ld—2]—

s€Straty s€Straty

Taking the hypercohomology spectral sequence and shifting all the degrees by d gives
the result.

The proof via perverse sheaves can be copied in the category of mixed Hodge mod-
ules [25] (see [23, Section 14]), which proves the compatibility with mixed Hodge
structures. O

3.4 Purity and freeness

We start with a classical theorem on the cohomology of the moduli spaces M s .

Theorem 3.7 For every integer k and every set S, the cohomology group H k (Mo,s)
is pure Tate of weight 2k .
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Proof Since the moduli space M s is a complement of a union of hyperplanes in
the affine space C"~3 by (6), this is a consequence of a general result on complements
of hyperplane arrangements [21; 27; 19]. See also Getzler’s proof [14, Lemma 3.12]
which only uses Arnol’d’s result [3]. m|

The residue spectral sequence of the previous paragraph now allows us to compute
the cohomology of Brown’s moduli spaces M{S), s in term of the cohomology of the
spaces Mo s .

Proposition 3.8 There exists a first quadrant spectral sequence in the category of
mixed Hodge structures:

(17) EM= @ HITP(ME)(—p) = HPTI(MGs).
0€Dissp (S,6)

where the differential dy: E{? — E¥ 14 ig the sum of the residue morphisms
Resy: HI™P(M(0))(—p) > HI P (M@)(-p—1)
for d € Diss, (S, 8) and 0’ € Dissp41(S, 8) such that 9 <0'.

Proof This is a direct application of Proposition 3.6 to the case X = Mg, s with the
stratification (15). O

The ¢ row of the first page E; of the spectral sequence (17) looks like
(18) 0> HIMos)—> P HIT'(ME)(-1)
0€Diss (S,6)
- P HITEME)=2) >
0€Diss> (S,0)

Proposition 3.9 The direct sum of the rows E I’q of the first page of the spectral
sequence (17) is, up to a Tate twist (—1), the dihedral cobar construction of the
(desuspension of the) dihedral gravity cooperad.

Proof After twisting by (—1), the direct sum of the complexes (18) can be written as

0>s7'C(S.6) > P s'c@w-> P s'cE -,

0€Diss (S,6) 0€Diss> (S,6)

where the arrows are (signed) infinitesimal decomposition morphisms. We leave it to
the reader to check that the sign conventions are consistent. a

We now turn to the degeneration of this spectral sequence.
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Proposition 3.10 The spectral sequence (17) degenerates at the second page E ; that
is, Eco = E,.

Proof As a consequence of Theorem 3.7 and the Kiinneth formula, H9~? (M (0))
is pure Tate of weight 2(¢ — p) for every dissection 0 € Diss,(S,§), and hence
HT7P(M(0))(—p) is pure Tate of weight 2(¢ — p) + 2p = 2q. The differential
d: EP? — Ef+r’q_r+1 thus maps a pure Hodge structure of weight 2¢ to a pure
Hodge structure of weight 2(¢ —r + 1), and is zero for r = 2 by Lemma 2.4. a

In the next proposition, we prove the equivalence between two statements: a geometric
statement (i), namely the purity of the Hodge structure on the cohomology of Brown’s
moduli spaces, and an algebraic statement (ii), namely the freeness of the dihedral grav-
ity cooperad. In the next section, we will prove the algebraic statement (ii) and derive
the geometric statement (i). We nevertheless state this proposition as an equivalence to
convince the reader that the mathematical content of the two statements is essentially
the same.

Theorem 3.11 The following statements are equivalent:

(i) for every integer k and every dihedral set (S,§), the cohomology group
Hk (Mg,s) is pure Tate of weight 2k ;

(ii) the dihedral gravity cooperad is cofree.

When they are true, there is a (noncanonical ) isomorphism between the dihedral gravity
cooperad and the cofree dihedral cooperad on the dihedral module:

(S,8) > det(S) @ H* " 3(M3 ¢)(—1).

Proof Let us denote by A the filtration on the cohomology of ./\/l‘(s,, s that is induced
by the spectral sequence (17). It is a filtration by mixed Hodge substructures. By
Proposition 3.10, we get at the second page:

> 8
EPY = grf HP (Mg g).

By the proof of Proposition 3.10, the space E f 1 is pure Tate of weight 2¢. Thus,
(i) is equivalent to the fact that for every (S, §), the spectral sequence (17) satisfies
E 5 4 =0 for p > 0. This is the same as requesting that each row E ;’q is exact except
possibly at « = 0. According to Proposition 3.9 and Proposition 1.15, this is equivalent
to (ii), and we have proved the equivalence between statements (i) and (ii). Assuming

them, we see that H* (Mg, s)=F g K is the kernel of the map

@D As _
H*Mos) —> P  H ' (ME@) (D),
0€Diss; (.S,6)
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hence the result about the cogenerators of the dihedral gravity cooperad, after a degree
shift and an operadic suspension. a

Remark 3.12 We can also apply the residue spectral sequence to the case X = J\710, S
with the stratification (7). We then get a spectral sequence in the category of mixed
Hodge structures:

EPI= B HIPM@®)(—p) = HPTI(Mo,s).
t€Treep (S)

which degenerates at the second page E,. Itis a classical fact that the odd cohomology
groups of Mg g are zero, and that for every k, H 2k (My,s) is pure Tate of weight 2k .
Thus, the degeneration of the spectral sequence gives rise to a long exact sequence

0> H"Mo ) > B H'M@)(=1) -
ETreeq (
O L @ HWM©) k) > B (Mo s) — 0.
teTreey (S)

After dualizing and performing an operadic suspension, this long exact sequence gives
a quasi-isomorphism from the cyclic hypercommutative operad S +— H, (./\710,3) to the
cyclic bar construction of the cyclic gravity operad. Under the bar-cobar adjunction, this
corresponds to Getzler’s quasi-isomorphism [ 14, Theorem 4.6], which proves the Koszul
duality between the cyclic hypercommutative operad and the cyclic gravity operad.

4 The dihedral gravity cooperad is cofree

We prove that the dihedral gravity cooperad is cofree by using explicit formulas
describing the cohomology of the moduli spaces Mg _g. The main point consist in
showing that the filtration given by residual chords is the coradical filtration of the
dihedral gravity cooperad. We then derive geometric consequences for Brown’s moduli
spaces M{S), s and a new proof of a theorem of Salvatore—Tauraso.

4.1 Conventions

In this section, we will work with explicit formulas for the decomposition morphisms
in the dihedral gravity cooperad. For reasons of signs, it is easier to work with its
desuspension C, whose underlying Dih—module is given by

C(S.8) = H* ' (Mo, s)(-1).

We use the notation C(S, §) instead of C(.S) because we will use a spanning set and a
filtration for this space that depend on the choice of a dihedral structure.
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For 0 € Dissg (S, §) a dissection of cardinality r, we will always choose an ordering
P(®@)={po,..., pr} and write E; := E(p;) for the set of edges of the subpolygons p;,
8; := 8(p;) for the induced dihedral orders. The ordering of P () gives a trivialization
det(P(0)) >~ Q and hence we can simply write

AD: C(S’ 8) - C(D) = C(EO?SO) & ®C(Ekv 8k)

for the dihedral decompositions (14).

4.2 Cohomology of the moduli spaces My g

Let S be a finite set of cardinality n = 3 and let § be a dihedral structure on S. We
first recall Brown’s presentation of the cohomology algebra of the moduli space M s,
which is well suited for computing residues on ./\/lg’ s - For any chord ¢ of (S, d), there
exists a global holomorphic function u, € (9(./\/123), ) such that the divisor M?({c}) is
defined by the vanishing of u.:

M ({e}) = {ue = 0}.
We then define the following closed logarithmic differential 1-form on Mg g:

1 duc
T 2w oup

We denote by the same symbol @ its class in H! (M g).

Proposition 4.1 [5, Proposition 6.2] The cohomology algebra H*®*(M, s) is gener-
ated by the classes w, . In other words, C(S, §) is spanned by monomials w¢, A+ -+ Awe,,
for some chords cy,...,c, of (S,4).

Note that every differential form we, A- - -Awc, is alogarithmic form on (/\/lg, s> 8/\/(8, s).

Remark 4.2 It is convenient to represent a monomial w¢, A--- A @, , up to a sign,
by the picture of the set of chords {cy,...,ck}, as in Figure 5, where the chords are
pictured in dashed lines.

Remark 4.3 The ideal of relations between the classes w, in H*(M,j,s) can be
described in pure combinatorial terms with sets of chords that cross completely; see [5,
Proposition 6.2]. Surprisingly enough, this will not play any role in the sequel.

The decomposition morphisms of the dihedral gravity cooperad are easily computed in
terms of the symbols w,. They are completely determined by the infinitesimal ones
which correspond to dissections made up of one chord.
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Figure 5: A monomial (up to a sign) in H°(My_10)

Proposition 4.4 Let ¢ be a chord which dissects (S, 8) into two polygons pg and p;.
The corresponding dihedral decomposition morphism

Agey: C(S,8) > C(Eg,80) ®C(E1,681)

is given by
(D) A{c}(a)cl/\--~/\a)ck)=01'fc¢{cl,...,ck};
(@) Ayy(we Awey Av+- Awe, ) = 0 if ¢ crosses some chord ¢; fori =1,...,k;

(3) Ayy(XoAwe A Xy) = Xo ® Xy if X; is a monomial formed with chords in p;,
i=0,1.

Proof (1) This is because the differential form w¢, A--- A w¢, has no pole along
MOy if ¢ E{cy,. .. cx)

(2) By definition of the residue morphisms, Agy(we A we; A-++ Awe,) is, up to a
sign, the restriction of the differential form w¢, A -+ A @, on M‘S({c}). If ¢ crosses
some chord ¢; fori =1,...,k, then the proof of [5, Lemma 2.6] implies that e, is
zero when restricted to M8 ({c}), hence the result.

(3) Let us denote by ¢ — 1 and b — 1 the respective degrees of Xy and Xy, so
that they respectively live in degree a and b in C. Then we get Xo A w, A X1 =
(=1 Twe. A XgA X7, whose residue on M? ({c}) is the restriction of (—1)4~! XA X,
on M3 ({c}). Note that the sign (—1)@~! is canceled by the Koszul sign in the definition
(13) of Ay . By the proof of [5, Lemma 2.6], the pullback morphism (’)(M‘E)’S) —
O(Mg?EO) ® O(MgiEl) is given by u¢, > e, ® 1 and ue, — 1 ® ue, for ¢; achord
in p; for i =0, 1. The result follows. O

Remark 4.5 The formula of Proposition 4.4 (3), is easy to represent pictorially: if ¢
is a chord that is not crossed by any other, applying Ay, has the effect of cutting the
polygon along ¢ into two parts; see Figure 6.
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Figure 6: The dihedral decomposition Ay: C(10,8) — C(6,8) ® C(6,6)
applied to a monomial

4.3 The residual filtration

Definition 4.6 (residual chord) Let {cy,...,ci} be a set of chords of a polygon
(S,8). We say that ¢; is a residual chord in {cy, ..., ¢y} if ¢; is not crossed by any c;

for j #£1i.
Definition 4.7 (residual filtration) For every integer r, we denote by
R,C(S,8) CC(S,9)

the subspace spanned by monomials w¢, A--+ A w, with at most r residual chords in
{c1,...,ci}. This gives a finite filtration

0= R_1C(S,8) C RoC(S,8) C R1C(S,8) C---CC(S,9)
called the residual filtration.

Lemma 4.8 For a dissection 0 € Diss (S, §) of (S, 8) of cardinality k, the dihedral
decomposition

Ay: C(S,8) > C(0) =C(Ep,80) ®@---QC(Eg, k)
sends R,C(S,8) to R,_;C(D).

Proof Since any decomposition map can be obtained by iterating infinitesimal decom-
position maps, it is enough to do the case k = 1, which follows from Proposition 4.4:
applying Ay, to a monomial either gives zero or erases a residual chord from the
monomial. a

Example 4.9 In Figure 6, the left-hand side lives in R,C(10, §) and the right-hand
side lives in RoC(6,6) ® R1C(6,6).
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Theorem 4.10 For every integer r and every dihedral set (S, §), the morphism

A
o gRes,0 22 @ R
0€Diss, (S,68)
is an isomorphism.

We postpone the proof of this theorem to Section 4.6, after we have introduced a
technical tool.

4.4 The forgetful maps

Let S be a finite set and S’ C S be a subset. This inclusion gives rises to a forgetful
morphism
Ji Mo, s = Mo,s/

and hence a pullback in cohomology
(19) ST H(Mo,s7) > H*(Mo,s).

which is a map of graded algebras. Now suppose that we are given a dihedral structure §
on S and let §’ be the induced dihedral structure on S’. We view (S’,8’) as the
decorated polygon obtained by contracting the sides of (S, ) that are not in S”. For
a chord ¢ of (S,8) and a chord ¢’ of (S’,§"), we write ¢ » ¢’ if this contraction
transforms ¢ into ¢’.

Lemma4.11 (1) The pullback morphism f* is given, for ¢’ a chord of (S’,§'), by
f*(wc/) = Z We.

cv>c!

(2) The pullback morphism f™* is compatible with the residual filtration R.

Proof (1) At the level of global functions, the pullback O(Mg, s/) = O(My,s) is
computed in [5, Lemma 2.9], and is given by

The result then follows from taking the logarithmic derivative.

(2) According to (1), the pullback of a monomial is given by

S @ A Aoy ) = Z Wey N AWy .

{civcl}

By construction, every set {cq,..., ¢y} contains at most as many residual chords as
{cl.... ,c,’(}, hence the result. |
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1 2
Sc

C1

3

Ses

Figure 7: An inscribed polygon and a possible choice of matching sides

4.5 A technical lemma

Let us fix a polygon (S, 8). Let (E, §g) be an inscribed polygon inside (S, §), that is, a
polygon whose sides are either sides of (S, §) or chords of (S, §); see Figure 7. We let
Egqes C E and Ecporgs C E denote the set of sides of (E, §g) which are respectively
sides of (S, 8) and chords of (S, §). In such a situation, we have a partition

S \ Eiges = |_| Se
ceEchords

into components S, delimited by ¢, that are outside of the inscribed polygon (E,$E),
and connected with respect to the dihedral order §.

For every chord ¢ € Echords, let us choose a matching side s. € S, and write
S = Egides Uisc, ¢ € Echordsy C S.
We let §’ be the dihedral structure on S’ induced by §. Identifying a chord ¢ and the

matching side s, gives rise to natural dihedral isomorphism (E,§g) = (S’,6').

Example 4.12 1n Figure 7, the inscribed polygon is shaded with Ecporas = {¢1, 2,3}
and a possible choice of matching sides s¢, , ¢y, Sy -

The construction of the previous paragraph gives rise to a pullback morphism (19) that
we denote by

(20) Vv: C(E,8g) =C(S',8") —C(S,6).

Lemma 4.13 Let X € C(E,§g) be a monomial formed with chords of (E,8g), and
let us denote by the same letter X the corresponding monomial viewed in C(S, §).

Then ¥ (X)) — X can be written as a sum of monomials w¢, A--- A, for which some
chord c; crosses a chord in Ehords -
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Figure 8: Illustration of the proof of Lemma 4.13

Proof It is enough to do the proof for a monomial X = w.. We do the proof in the case
where Echords Only contains one element ¢ corresponding to a side s¢, € S, the general
case being similar. The formula for ¥ (@) is given in Lemma 4.11. If ¢ and ¢; do not
have a vertex in common, then ¥ (w.) = w.. Else, let us denote by v; the common
vertex of ¢ and w the other vertex. We use the notation ¢ = v;w. We then have

V(we) = Zwvw,

where the sum ranges over the vertices v € S¢, that are between v; and the first vertex
of s¢,. For such vertices v, the chord vw crosses ¢; except if v = vy. The claim
follows. i

Example 4.14 Figure 8 illustrates the proof of Lemma 4.13: the inscribed polygon
(E,$E) is shaded. We have ¥ (wy,w) = @y, w + Ovyw + Ovsw -

4.6 Proof of the main result
We now have all the tools to prove Theorem 4.10.

Proof of Theorem 4.10 To prove this theorem, we will construct the inverse mor-
phism W. To this aim, let us make some ordering conventions to make the signs explicit.
For a dissection d € Diss, (S, §), we will choose compatible orderings

21 o={c1,...,¢,} and PQ@)={po,...,pr}

that obey the following constraint. Let f be the tree obtained by removing the leaves
(external vertices) of the tree t corresponding to 9. The chords ¢; label the edges of €,
and the polygons p; label the vertices of t. We choose the orderings (21) such that
for every j = 1,...,r — 1, deleting the edges labeled by ¢; for i = 1,...,j only
disconnects the vertices p; fori =0,...,j —1.
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An element of grfe C(S,§) can be represented as a sum of elements
XoANwe, NXT AwWey A+ Awe, AN X,

for some dissection 0 = {cy, ..., ¢, } € Diss, (S, 8), with X; € RoC(Ej;, §;). According
to the constraint we put on the orderings (21), the image of such an element by ® is

22) Ay (XoAwey, NXf Awey Ao Awe, NXp) =Xo® - @ X,
by repeated applications of Proposition 4.4.
Forevery i =0,...,r, we let

Vi: C(E;,8;) — C(S,0)

denote the pullback map (20) defined in the previous paragraph, corresponding to the
inscribed polygon p; = (Ej, §;) and any choice of matching sides s. for ¢ € (E;)chords-

Let us recall that we have
RoC(®) = RoC(Ep.d0) ® - ® RoC(Ey,br).

‘We then define
Uy RoC(0d) — grXc(s.6)
by the formula
Yo (Xo ® - ® Xp) i=Yo(Xo) Awey AY1(X1) Awey Ao Awe, AYr(Xy).

Let us first prove that W, is well defined. According to Lemma 4.11, each map ; sends
RoC(E;,8;) to RoC(S,8); hence the term ¥o(Xg) A--- AV (Xp) isin RyC(S,d).
Since the cardinality of 9 is r, multiplying by w¢, A -+ A w¢, gives an element of
R,C(S,0).

With the same abuse of notation as in Lemma 4.13, we claim that we have
(23) Yo(Xo®---®X;) = XoAwe, AX1 Awey A+ Awe, ANXy mod R,_1C(S,6).

We do the proof of this equality in the case r = 1 and ? = {c} a chord, the general
case being similar and left to the reader. Let us choose monomials Xy € RoC(Ey, §o)
and X7 € RoC(E, §1) with zero residual chord. We want to prove the equality

\IJ{C}(X()®X1)=X0 Awe A X7 mod R()C(S,(S)
According to Lemma 4.13, we may write

V1(Xo) = Xo+ ZXéiO) and ¥ (Xy) =X + ZXl(il),

io i
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where each monomial X, éi‘)) and X 1(i1) has zero residual chord and contains a symbol w,’
with ¢’ crossing ¢. We can then write the difference Wi (Xo® X1) —XoAwe A Xy as

ZXéi") Awe A X +ZX0/\0)C /\Xl(”) + Z XéiO) A W /\Xl(il).

io i lo,i1
All the monomials appearing in the above expression have zero residual chord, hence
the result. Equations (22) and (23) imply that W is the inverse for ®. a

Theorem 4.15 The dihedral gravity cooperad is cofree. More precisely, it is (non-
canonically) isomorphic to the cofree dihedral cooperad on the dihedral module:

(S,8) > det(S) ® H*T"=3 (M 5)(—1).

Proof It is a consequence of Proposition 1.18, using Lemma 4.8 and Theorem 4.10,
which imply, after operadic suspension, the corresponding statements for the dihedral
gravity cooperad. The last statement follows from the last statement of Theorem 3.11. O

Remark 4.16 In [10], Dotsenko built a general a criterion to prove the freeness of the
nonsymmetric operad underlying an operad in terms of Grobner bases [11]. It would be
interesting to know whether this criterion can give an alternate proof of Theorem 4.15.

4.7 Consequences for Brown’s moduli spaces

We gather here some consequences of Theorem 4.15 on the geometry of the moduli
spaces Mg, S-

Corollary 4.17 For every integer k and every dihedral set (S, §), the cohomology
group H¥ (Mg,s) is pure Tate of weight 2k .

Proof This follows from Theorem 4.15 and Theorem 3.11. O

Corollary 4.18 For every integer k and every dihedral set (S,§), the natural map
Hk (/\/l‘(s),s) — H* (Mo,s) is injective and fits into a long exact sequence

24) 0— HYM g) = H*(Mo.s)
- P H'MENEED—> P HTME)YD >

0€Diss (S,6) 0€Diss» (.S,6)

Proof By Theorem 4.15 and the proof of Theorem 3.11, we get an injective map
Hk(./\/lg,s) — E?’k = Hk(/\/lo,s). By the construction of the residue spectral
sequence, this map is indeed the one induced in cohomology by the inclusion
Mo’ S — M%’ S - |
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We note that the image of the natural map H*~! (./\/l‘g, s)(=1) = C(S,§) is exactly the
subspace RoC(S,§).

Let us recall that the Betti numbers of the spaces M, , are given by the Poincaré
polynomials

n—3 n—2
> Mo xF =T x— ).
k=0 j=2

By taking the Euler characteristic of the exact sequence (24), one may thus derive a
formula for the Betti numbers of the spaces M(S),,, as follows.

Corollary 4.19 [4] The generating series

n—3

£ =x= ¥ (L bMa )
n=3 “k=0
n—3

Fien=x+ Z(Z(—l)kbk (Mé,n)r"—3—k)x”—1
n=3 “k=0

are inverse one to another: f(f%(x.,t).t) = f3(f(x,1),1) = x.

We note that in [4, Section 3], the injectivity statement of Corollary 4.18 is used but
not proved.

Corollary 4.20 For every dihedral set (S, §), Brown’s moduli space Mg, s is a formal
topological space.

Proof It is a consequence of Corollary 4.17 and [12, Theorem 2.5]. A more di-
rect proof goes as follows. Recall that M?), s is a smooth affine complex vari-
ety. We denote by Q'(M‘g, ) the complex of global holomorphic differential forms
on Mg,s, and by Q'(M‘g’ s, log 8/\/18, s) the complex of global holomorphic loga-
rithmic differential forms on /\/l‘(s), s along aMg’ s - Let us recall that the morphism
H*(Mo,s) —>Q'(M%,S, log BM?)’S) which maps the class of @, to w, is well defined
and is a quasi-isomorphism. We consider the commutative diagram

0— H* M} ) —— H* Mo 5) ——— @ H'M©@)(-1)

l 0€Diss(S,8) l

0— QM g) — QM s, logdMs) — @D Q' (M), logdMi (D))
0€Diss(S,0)

where all arrows are morphisms of cochain complexes and where the vertical arrows
are quasi-isomorphisms. The first row is exact by Corollary 4.18; the exactness of
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the second row follows from the fact that a logarithmic differential form on /\/l?;, S
along 8/\/1{3), ¢ is regular on ./\/l‘(s)’ s if and only if its residue along each M8 (2) is zero.
Completing the diagram gives the following quasi-isomorphism, hence the result:

H* (M g) = Q" (M g). O

4.8 The dihedral Lie operad is free

As a corollary of Theorem 4.15 and in view of Theorem 2.7, we get a geometric
proof of a dihedral enhancement of the theorem of Salvatore and Tauraso about the
nonsymmetric Lie operad [26].

Corollary 4.21 The dihedral Lie operad is free. More precisely, it is (noncanonically)
isomorphic to the free dihedral operad on the dihedral module:

(S,8) = det(S) ® Hy—3(MJ )(1).

Remark 4.22 The equality between the top Betti number of /\/l‘(s)’ » and the number of
generators of the nonsymmetric Lie operad in arity n in [26] was already noticed in [4].
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