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The greatest Ricci lower bound,
conical Einstein metrics and

Chern number inequality

JIAN SONG

XIAOWEI WANG

We partially confirm a conjecture of Donaldson relating the greatest Ricci lower
bound R.X / to the existence of conical Kähler–Einstein metrics on a Fano manifold
X . In particular, if D 2 j�KX j is a smooth divisor and the Mabuchi K–energy is
bounded below, then there exists a unique conical Kähler–Einstein metric satisfying
Ric.g/ D ˇg C .1 � ˇ/ŒD� for any ˇ 2 .0; 1/ . We also construct unique conical
toric Kähler–Einstein metrics with ˇ D R.X / and a unique effective Q–divisor
D 2 Œ�KX � for all toric Fano manifolds. Finally we prove a Miyaoka–Yau-type
inequality for Fano manifolds with R.X /D 1 .

32Q20, 53C55

1 Introduction

The existence of Kähler–Einstein metrics has been a central problem in Kähler ge-
ometry since Yau’s celebrated solution [47] to the Calabi conjecture. In [47], Yau
also successfully extended his study of complex Monge–Ampère equations to those
admitting singularities. Constant scalar curvature metrics with conical singularities
have been extensively studied by McOwen [25], Troyanov [43] and Luo and Tian [23]
for Riemann surfaces. In general, we may consider a pair .X;D/ for an n–dimensional
compact Kähler manifold and a smooth complex hypersurface D of X . A conical
Kähler metric g on X with cone angle 2�ˇ along D is locally equivalent to the model
edge metric

g D

n�1X
jD1

dzj ˝ dzj Cjznj
�2.1�ˇ/dzn˝ dzn

if D is defined by zn D 0. Applications of conical Kähler metrics were proposed
by Tian [37] to obtain various Chern number inequalities. Recently, Donaldson [13]
developed a linear theory to study the existence of canonical conical Kähler metrics,
and Brendle [5] solved Yau’s Monge–Ampère equations for conical Kähler metrics
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with cone angle 2�ˇ for ˇ 2 .0; 1
2
/ along a smooth divisor D . The general case was

settled by Jeffres, Mazzeo and Rubinstein [16] for all ˇ 2 .0; 1/. As an immediate
consequence, there always exist conical Kähler–Einstein metrics with negative or zero
constant scalar curvature with cone angle 2�ˇ along a smooth divisor D for ˇ 2 .0; 1/.
When X is a Fano manifold, Donaldson propose to study the conical Kähler–Einstein
equation

(1-1) Ric.!/D ˇ!C .1�ˇ/ŒD�;

where D is smooth divisor in the anticanonical class Œ�KX � and ˇ 2 .0; 1/. One of
the motivations is that one can study the existence problem for smooth Kähler–Einstein
metrics on X by deforming the cone angle. Such an approach can be regarded as a
variant of the standard continuity method.

In particular, since Tian and Yau [41] have already established the existence of a
complete Ricci-flat Kähler metric on the noncompact manifold X nD , one would expect
that (1-1) were solvable for ˇ sufficient small. This was confirmed by Berman [2]. Now
the question is how large ˇ can be. The largest ˇ is closely related to the holomorphic
invariant known as the greatest Ricci lower bound, first introduced by Tian [36].

Definition 1.1 Let X be a Fano manifold. The greatest Ricci lower bound R.X / is
defined by

(1-2) R.X /D supfˇ j Ric.!/� ˇ! for some smooth Kähler metric ! 2 c1.X /g:

Székelyhidi proved [34] that Œ0;R.X // is the maximal interval on which one can use
the continuity method to solve the Kähler–Einstein equation on a Fano manifold X . In
particular, it is independent of the choice of the initial Kähler metric when applying
the continuity method. The invariant R.X / was explicitly calculated for P2 blown
up at one point by Székelyhidi [34], and for all toric Fano manifolds by Li [18]. It is
well-known that if the Mabuchi K–energy is bounded from below then R.X /D 1, and
Munteanu and Székelyhidi proved [27] that R.X /D 1 implies that X is K–semistable.
The following conjecture was proposed by Donaldson [13] to relate R.X / to the
existence of conical Kähler–Einstein metrics.

Conjecture 1.2 There does not exist a conical Kähler–Einstein metric solving (1-1) if
ˇ 2 .R.X /; 1�, while one does exist if ˇ 2 .0;R.X //.

This conjecture can be considered as a geometric interpretation of the invariant R.X /.
The conjecture is also important because it gives a new approach to Yau’s conjecture
[48, Problem 65] of the equivalence of the existence of a Kähler–Einstein metric on
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Fano manifolds and a certain algebro-geometric stability condition, which was refined
and extended by Tian [38] and Donaldson [10]. The algebro-geometric aspect of
Conjecture 1.2 has been studied by Li [20], Sun [33], Odaka-Sun [28] and Berman [3].
In particular, the notion of Log K–stability was introduced in [20] and [33] as the
algebro-geometric obstruction to solving Equation (1-1). In particular, R.X / can be
applied to test the Log K–stability of X when it is toric Fano. In [3], Berman proves
that Log K–stability is a necessary condition for the solution of (1-1). This naturally
leads to the Log version of the Yau–Tian–Donaldson conjecture, that is, to establish
the equivalence of the solvability of (1-1) and the Log K–stability of .X;D/ (cf [20]
and [28]). An interesting observation of Sun [33] is that K–stability implies Log
K–stability.

Now let us fix our conventions.

Definition 1.3 Let .X;D/ be a compact Kähler manifold together with a smooth
divisor D �X . A Kähler current ! on X with bounded local potentials is said to be
a regular conical Kähler metric if ! is smooth on X nD and Hölder continuous in the
sense of [13, Section 4.3] and [6, Section 3.2] (see also [16, Section 2.6.1]) on X .

Now we describe the main results of the present work. The first one is to partially
confirm Conjecture 1.2. We consider a more general class of conical Kähler–Einstein
metrics with smooth divisors in any pluricanonical systems, and remove the assumption
in Donaldson’s [13, Theorem 2] on D by showing there exist no holomorphic vector
fields tangential to D (cf Theorem 2.8).

Theorem 1.4 Let X be a Fano manifold and R.X / be the greatest lower bound of
Ricci curvature of X .

(1) For any ˇ 2 ŒR.X /; 1� and any smooth divisor D 2 j�mKX j for some m2ZC ,
there does not exist a conical Kähler–Einstein metric ! satisfying

(1-3) Ric.!/D ˇ!C
1�ˇ

m
ŒD�

if R.X / < 1.

(2) For any ˇ 2 .0;R.X //, there exist a smooth divisor D 2 j �mKX j for some
m 2 ZC and a regular conical Kähler–Einstein metric ! satisfying (1-3).

The second part of the theorem is not completely satisfactory in the sense that one
would like to have an m that is independent of ˇ 2 .0;R.X //. In the case when the
Mabuchi K–energy is bounded below, or more generally R.X /D 1, we show that D

does not rely on ˇ .
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Theorem 1.5 Let X be a Fano manifold. If the Mabuchi K–energy (cf Definition 2.6)
is bounded below and if D 2 j�KX j is a smooth divisor, then for any ˇ 2 .0; 1/ there
exists a regular conical Kähler–Einstein metric satisfying the conical Kähler–Einstein
equation

Ric.!/D ˇ!C .1�ˇ/ŒD�:

In general, suppose the paired Mabuchi K–energy M!;R.X / (cf (2-7)) for a conical
Kähler metric ! with cone angle 2�.1� .1�R.X //=m/ along D is bounded below
for a smooth divisor D 2 j�mKX j for some m 2 ZC . Then for any ˇ 2 .0;R.X //,
there exists a regular conical Kähler–Einstein metric satisfying Equation (1-3).

We would like to remark that most results of Theorem 1.4 and 1.5 were independently
obtained by Li and Sun [21]. Theorem 1.5 might have many applications. In particular,
if the Mabuchi K–energy is bounded below, there exists a sequence of conical Kähler–
Einstein metrics Ric.g�/ D .1� �/gC �ŒD� as � ! 0. .X;g�/ might converge in
Gromov–Hausdorff topology to a Q–Fano variety X1 coupled with a canonical
Kähler–Einstein metric. Theorem 1.5 also holds if R.X /D 1 and D 2 j�mKX j for
some m� 2 as in the following proposition. By Bertini’s theorem, there always exists
a smooth divisor D 2 j�mKX j for m sufficiently large.

Proposition 1.6 Let X be a Fano manifold and D 2 j�mKX j be a smooth divisor
for some m � 2. Then for any ˇ 2 .0; .m� 1/R.X /=.m�R.X ///, there exists a
regular conical Kähler–Einstein metric ! satisfying (1-3) for D . In particular, when
R.X /D 1, Equation (1-3) with D is solvable for any ˇ 2 .0; 1/.

The invariant R.X / can also be identified as the optimal constant for the nonlinear
Moser–Trudinger inequality. Let X be a Fano manifold and ! 2 c1.X / be a smooth
Kähler metric on X . Let us first recall a version of Ding’s [9] F –functional,

(1-4) F!;ˇ D J!.'/�
1

V

Z
X

'!n
�

1

ˇ
log

1

V

Z
X

e�ˇ'!n;

where

J!.'/D

p
�1

V

n�1X
iD0

i C 1

nC 1

Z
X

@' ^ @' ^!i
^!n�1�i

'

is the Aubin–Yau functional, !'D!C
p
�1@@' >0 and V D

R
X !n . As a corollary of

Theorem 1.4, we can establish a connection between R.X / and the Moser–Trudinger
inequality.
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(1) If ˇ 2 .0;R.X //, F!;ˇ is bounded below and J–proper (see Definition 2.3)
on PSH.X; !/\L1.X /, or equivalently, there exist �;C� > 0 such that the
Moser–Truding inequalityZ

X

e�ˇ'!n
� C�e

.ˇ��/J!.'/�.ˇ=V /
R
X '!n

holds for ' 2 PSH.X; !/\L1.X /.

(2) If ˇ 2 .R.X /; 1/, then

inf
PSH.X ;!/\L1.X /

F!;ˇ. � /D�1:

The properness of the F –functional on Fano Kähler–Einstein manifolds without
holomorphic vector fields was first proved by Tian [38] and Tian and Zhu [42].
The J–properness of F was conjectured in this case in [38] and later proved by
Phong, Song, Sturm and Weinkove [30]. The presence of the smooth divisor D

eliminates the existence of holomorphic vector fields tangent to D , as will be shown in
Theorem 2.8. It is interesting to ask whether or not F!;ˇ is always bounded from below
on PSH.X; !/\L1.X / if ˇ D R.X /. In the case of toric Fano manifolds, F!;ˇ
is indeed bounded from below if ˇ DR.X / as a corollary of the following theorem
(Corollary 3.15). A more interesting problem will be to understand the limiting behavior
of the conical Kähler–Einstein metrics as ˇ!R.X /, since holomorphic vector fields
will appear in the limiting space. The following theorem serves an example for the
above speculation.

Theorem 1.7 Let X be a toric Fano manifold. Then there exist an effective toric
Q–divisor D 2 j�KX j, which is unique when R.X / < 1, and a smooth toric conical
Kähler metric ! (cf Section 3.1) unique up to a holomorphic automorphism of X

satisfying

(1-5) Ric.!/DR.X /!C .1�R.X //ŒD�:

Moreover, R.X / is the largest possible ˇ 2 .0; 1� such that

(1-6) Ric.!/D ˇ!C .1�ˇ/ŒDˇ �

admits a regular conical toric solution !ˇ for an effective toric R–divisor Dˇ 2 j�KX j.

We remark that the divisor D cannot be smooth, instead it is a union of effective
smooth toric Q–divisors with simple normal crossings. Theorem 1.7 is closely related
to the results of Li [19] with a different approach for the limiting behavior of the
continuity method. The proof of Theorem 1.7 relies on the toric setting introduced by
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Donaldson [11; 12] and the estimates in Wang and Zhu [45]. For ˇ >R.X /, there still
exists a regular conical solution for Equation (1-6), however, Dˇ won’t be effective
and so the Ricci current of the conical metric cannot be positive. In Theorem 1.7,
R.X / will be explicitly calculated as by Li [18] and D is determined by Lemma 3.8
and Lemma 3.9. For example, let X be P2 blown up at one point, which admits a
P1 –ruling � W X ! P1 with D1 being the section at the infinity. Then R.X /D 6

7

and D D 2D1C .H1CH2/=2, where H1 and H2 are the two P1 fibers invariant
under the torus action. This seems to suggest that Donaldson’s conjecture might only
hold for smooth divisors lying in the pluri-anticanonical system. In fact, it was shown
by Li and Sun [21] that Theorem 1.7 can be applied to prove Conjecture 1.2 in the
toric case when one is allowed to replace j �KX j by the linear system of a suitable
power of �KX .

Finally, we will give some applications of Theorem 1.5. To do that, let us define the
conical Ricci curvature of a regular conical Kähler metric ! on .X;D/ with angle
2�ˇ along D by restricting Ric.!/ to X nD (ie Ric.!/� .1� ˇ/ŒD�). In general,
the conical Kähler metrics do not have bounded curvature tensors, as they might blow
up near the divisor, particularly when the cone angle is greater than � . However, we
have the following:

Proposition 1.8 Let X be a Kähler manifold and D be a smooth divisor on X .
Let g be a conical Kähler metric on X with cone angle 2�ˇ along D with ˇ 2

.0; 1/ satisfying the poly-homogenous expansion introduced in [16, Proposition 4.3]
(cf Proposition 4.1). If the Ricci curvature of g is bounded, then the L2 –norm of the
curvature tensors of g is also bounded.

Here the Ricci curvature of a conical Kähler metric g being bounded means that
the Ricci curvature of g is uniformly bounded on X nD . Proposition 1.8 enables
us to define Chern characters, and in particular the Chern numbers for those conical
Kähler metrics and derive corresponding Gauss–Bonnet and signature formulas for
Kähler surfaces with conical singularities along a smooth holomorphic curve †. This
is related to recent results of Atiyah and Lebrun [1] for smooth Riemannian 4–folds.
In fact, the bound on the L2 –norm of the curvature tensor only depend on the scalar
curvature bound and topological invariants such as intersection numbers among D

and the first and second Chern classes. In [16, Proposition 4.3], the authors prove
that conical Kähler–Einstein metrics for smooth divisor D 2 j �mKX j admit poly-
homogenous expansions (cf Proposition 4.1). This in particular implies the following
Miyaoka–Yau-type inequality (cf [26; 46]).
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Theorem 1.9 Let X be a Fano manifold. If R.X /D 1, then the Miyaoka–Yau-type
inequality

(1-7) c2.X / � c1.X /
n�2
�

n

2.nC 1/
c1.X /

n

holds. In general, if D 2 j �KX j is a smooth divisor and if the paired Mabuchi
K–energy MD;ˇ is bounded below, then

(1-8) c2.X / � c1.X /
n�2
�

nˇ2

2.nC 1/
c1.X /

n:

Remark 1.10 The above result can be obtained as a consequence of log K–stability as
long as the equivalence between the existence of conical Kähler–Einstein metrics and
log K–stability is established; in particular, the condition RD 1 should be equivalent
to K–semistability.

A parallel argument can be applied to give a complete proof of the Chern number
inequality for smooth minimal models of general type by using conical Kähler–Einstein
metrics. This approach was first proposed by Tsuji [44], while the analytic estimates
seem missing. We remark that the first complete proof for smooth minimal models of
general type is due to Zhang [49], who used the Kähler–Ricci flow.

2 R.X/ and conical Kähler–Einstein metrics

2.1 Paired energy functionals

We recall the paired energy functionals originally introduced in [2].

Definition 2.1 Let X be a Fano manifold and ! 2 c1.X / be a Kähler current with
bounded local potential and �� be an integrable nonnegative real-valued .n; n/–current
(hence a Hermitian metric on K�1

X
) on X whose curvature

� D�
p
�1@@ log�� 2 c1.X /

is a nonnegative .1; 1/–current. Let �! be the integrable nonnegative real-valued
.n; n/–current satisfying

p
�1@@ log�! D !:

Suppose Z
X

.�!/
ˇ.�� /

1�ˇ
D V D c1.X /

n
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for a fixed ˇ 2 .0; 1�. We define the paired F –functional by

(2-1) F!;�;ˇ.'/D J!.'/�
1

V

Z
X

'!n
�

1

ˇ
log

1

V

Z
X

�
e�'�!

�ˇ
.�� /

1�ˇ

for ' 2 PSH.X; !/\L1.X /, where

J!.'/D

p
�1

V

n�1X
iD0

i C 1

nC 1

Z
X

@' ^ @' ^!i
^!n�1�i

'

is the Aubin–Yau J–functional and !' D !C
p
�1@@' � 0.

The Euler–Lagrangian equation for (2-1) is given by

(2-2) .!C
p
�1@@'/n D .e�'�!/

ˇ.�� /
1�ˇ;

and the corresponding curvature equation is

(2-3) Ric.!'/D ˇ!' C .1�ˇ/�:

When ˇ D 1, F!;�;ˇ.'/D F! is the original Ding’s functional [9]. The paired F –
functional also satisfies the cocycle condition by slightly modifying the proof for the
original F –functional.

Lemma 2.2 F!;�;ˇ satisfies the cocycle condition

(2-4) F!;�;ˇ.'/�F! ;�;ˇ.' � /D F!;�;ˇ. /

for any '; 2 PSH.X; !/\L1.X /, where ! D !C
p
�1@@ .

Notice by letting F.!; !'/DF!;�;ˇ.'/ with !' D!C
p
�1@@' , the above equation

can be rewritten as

F.!; !'/CF.!' ; ! /CF.! ; !/D 0:

Definition 2.3 We say a functional G. � / is J–proper on PSH.X; !/\L1.X / if
there exist ı;Cı > 0 such that

G.'/� ıJ!.'/�Cı

for all ' 2 PSH.X; !/\L1.X /.

Let X be a Fano manifold and D be a smooth divisor in j�mKX j. Let s be a defining
section of ŒD�. Since s 2H 0.X;K˝�m

X
/,

�D D jsj
�2=m

D .s˝ s/�1=m
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can be considered as a smooth nonnegative real .n; n/–form with poles along D of
order m�1 . Obviously, Ric.�D/D�

p
�1@@ log�D Dm�1ŒD�. We then define the

following notation for convenience.

Definition 2.4 Let D 2 j�mKX j be a smooth divisor for some m 2 ZC . We define

F!;ˇ.'/D F!;m�1ŒD�;ˇ.'/(2-5)

D J!.'/�
1

V

Z
X

'!n
�

1

ˇ
log

1

V

Z
X

e�ˇ'.�!/
ˇ.�D/

1�ˇ;

F!;ˇ.'/D J!.'/�
1

V

Z
X

'!n
�

1

ˇ
log

1

V

Z
X

e�ˇ'�! :(2-6)

To relate the Moser–Trudinger inequality to R.X /, we introduce the next definition.

Definition 2.5 Let X be a Fano manifold and ! 2 c1.X / be a smooth Kähler metric.
We define the optimal Moser–Trudinger constant by

mt.X /D sup
�
ˇ 2 .0; 1�

ˇ̌̌̌
inf

PSH.X ;!/\L1.X /
F!;ˇ. � / > �1

�
:

It is straightforward to verify that the invariant mt.X / does not depend on the choice
of the Kähler metric ! 2 c1.X /. We also define the paired Mabuchi K–energy for
conical Kähler metrics, first introduced in [2], as follows.

Definition 2.6 Let X be a Fano manifold. Suppose ! and !' are two regular conical
Kähler metrics in c1.X / with cone angle 2�.1� .1�ˇ/=m/ along a smooth divisor
D 2 j�mKX j. The paired Mabuchi K–energy for .X;D/ is defined by

(2-7) M!;ˇ.'/DM!;D;ˇ

WD
1

V

Z
X

log
!n
'

!n
!n
' �ˇ.I! �J!/!.'/C

1

V

Z
X

h!.!
n
�!n

'/;

where h! is the Ricci potential of ! defined by
p
�1@@h! D Ric.!/�! , and

I!.'/D
p
�1

n�1X
iD0

Z
X

@' ^ @' ^!i
^!n�i�1

'

is the Aubin–Yau I–functional. In particular, M!;1 is the original functional introduced
by Mabuchi (cf Tian [38]).

Geometry & Topology, Volume 20 (2016)



58 Jian Song and Xiaowei Wang

It is proved in [2, Theorem 1.1] that if the conical Kähler–Einstein equation is solvable
for the data .D; ˇ/, both F!;ˇ and M!;ˇ are bounded below PSH.X; !/\C1.X /.
Furthermore, if one is bounded below, the other must also be bounded below, and
conversely, if either one of the functionals is J–proper, the Monge–Ampère equation
associated to the conical Kähler–Einstein equation admits a bounded solution [2].
Moreover, it follows from the work of Chen, Donaldson and Sun [6, Section 3] (see also
[16]) that the solution is a regular conical Kähler–Einstein metric as in Definition 1.3.

2.2 Pluri-anticanonical system

In this section, we will remove the assumption on the nonexistence of holomorphic
vector fields tangent to a smooth divisor D in [13, Theorem 2], when a conical Kähler–
Einstein metric is constructed by deforming the angle along the divisor D . First, let us
recall an elementary fact.

Lemma 2.7 Let X be a Fano manifold of dim X � 2. For any sufficiently large
m 2 ZC , there exists a smooth divisor D 2 j�mKX j. Moreover, we have

c1.D/D .1�m/c1.X / jDD
1�m

m
ŒD�
ˇ̌̌
D
:

Theorem 2.8 Let X be a Fano manifold of dim X � 2 and D be a smooth divisor in
j �mKX j for some m 2 ZC . Then there is no holomorphic vector field tangent to D .

Proof First, we claim there that no holomorphic vector field vanishes along D . To
achieve this, it suffices to show that

(2-8) H 0.X;TX ˝K˝m
X

/D 0

thanks to the exact sequence

0 �! TX ˝K˝m
X
�! TX �! TX jD�! 0:

Since TX ˝KX Š�
n�1
X

, we have

H 0.X;TX ˝K˝m
X

/DH 0.X; �n�1
X ˝K

˝.m�1/
X

//:

If m > 1, then the right-hand side is 0 by the Kodaira–Akizuki–Nakano vanishing
theorem and the fact that KX is negative. For m D 1, Equation (2-8) follows from
H 0.X; �n�1

X
/ŠH n�1.X;OX /D 0, which is a consequence of the Kodaira vanishing

theorem and X being Fano.

Second, we claim that any holomorphic vector field tangent to D must vanish along
D . Let us start with dim X D 2; by classification we know that any Fano surface X
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admitting a nontrivial holomorphic vector field must be isomorphic to either P1 �P1

or P2 blown up at 0; 1; 2 or 3 points. If X is isomorphic to P2 blown up at 0; 1; 2

or 3 points, any holomorphic vector field on X is the lifting of a holomorphic vector
field on P2 fixing the blown-up points. So any smooth invariant divisor with nontrivial
restriction of the holomorphic vector field on X must be P1 , hence g.D/D 0. But by
Lemma 2.7, D 2 j�mKX j implies that g.D/ � 1, which is a contradiction. Hence
the holomorphic vector field tangent to D must vanish along D . The same argument
applies to X D P1 �P1 .

So from now on, let us assume that dim X � 3. Since X is Fano, we have �1.X /D 0

and hence �1.D/ D 0 by the Lefschetz hyperplane theorem and our assumption
dim X � 3. Since m> 0, either c1.D/ < 0 or D is a simply connected Calabi–Yau
manifold by Lemma 2.7. In both cases D does not admit any nontrivial holomorphic
vector field. So our proof is completed.

Remark 2.9 Theorem 2.8 was speculated by Donaldson [13] and was first proved
in [2] in the case when the holomorphic vector field is Hamiltonian and mD 1.

Combined with the openness result in [13], we immediately have the following corollary.

Corollary 2.10 Let X be a Fano manifold and D 2 j�mKj be a smooth divisor for
some m 2 ZC . If there exists a regular conical Kähler–Einstein metric satisfying

Ric.g/D ˇgC
1�ˇ

m
ŒD�

for some ˇ 2 .0; 1/, then there exists � > 0 such that for any ˇ0 with jˇ � ˇ0j < � ,
there exists a regular conical Kähler–Einstein metric g0 satisfying

Ric.g0/D ˇ0gC
1�ˇ0

m
ŒD�:

2.3 The ˛–invariant and the Moser–Trudinger inequality

Let X be a Fano manifold and D be a smooth divisor in j�mKX j for some m 2ZC .
Let !0 2 c1.X / be a smooth Kähler form and let �!0 be a smooth volume form on X

such that
Ric.�!0/D�

p
�1@@ log�!0 D !0:

We now apply the continuity method and consider the following family of equations
for ˇ 2 Œ0; 1�:

(2-9) .!0C
p
�1@@'t /

n
D e�t't .�!0/

ˇ.�D/
1�ˇ; t 2 Œ0; ˇ�:
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We let

SDft 2 Œ0; ˇ� j (2-9) is solvable for some t with !t a regular conical Kähler metricg:

By the results in [16], 0 2 S and S is open. Let !t D !C
p
�1@@'t for any t 2 S .

The curvature equation of (2-9) is given by

Ric.!t /D t!t C .ˇ� t/!0C
1�ˇ

m
ŒD�� t!t :

Hence the Green function for !t is uniformly bounded below by t for all t 2 S [16].
Furthermore, let �t be the Laplace operator associated to !t . Then

�t P't D�'t � t P't :

Following the argument for the smooth case with slight modification to the conical
Kähler metrics, one can show the following proposition. It is proved in a more general
setting in [2].

Proposition 2.11 Let X be a Fano manifold and D 2 j�mKX j be a smooth divisor.

(1) If there exists ˇ 2 .0; 1� and a regular conical Kähler–Einstein metric !KE

satisfying

Ric.!KE/D ˇ!KEC
1�ˇ

m
ŒD�;

then the paired F –functional

F!KE;ˇ.'/D J!KE.'/�
1

V

Z
X

'!n
KE�

1

ˇ
log

1

V

Z
X

�
e�'�!KE

�ˇ
.�D/

1�ˇ

is uniformly bounded below for all ' 2 PSH.X; !KE/\L1.X /.

(2) If ! 2 c1.X / is a smooth Kähler metric and the functional F!;ˇ.'/ is J–proper
on PSH.X; !/\L1.X / for some ˇ 2 .0; 1�, then there exists a unique regular
conical Kähler metric !KE solving

Ric.!KE/D ˇ!KEC
1�ˇ

m
ŒD�:

The same argument as in the proof of Proposition 2.11 can be applied to prove the
following lemma if one replaces m�1ŒD� by a smooth Kähler metric � 2 c1.X /.
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Lemma 2.12 Let X be a Fano manifold and � be a smooth Kähler metric in c1.X /.

(1) If there exists a smooth Kähler metric !� on X satisfying

Ric.!� /D ˇ!� C .1�ˇ/�

for some ˇ 2 .0; 1�, then

F!� ;�;ˇ.'/D J!� .'/�
1

V

Z
X

'!n
� �

1

ˇ
log

1

V

Z
X

e�ˇ'.�!� /
ˇ.�� /

1�ˇ

is uniformly bounded below on PSH.X; !/\L1.X /.

(2) If ! 2 c1.X / is a smooth Kähler metric and the functional F!;�;ˇ.'/ is J–proper
on PSH.X; !/\L1.X / for some ˇ 2 .0; 1�, then there exists a unique smooth
Kähler metric !� solving

Ric.!� /D ˇ!� C .1�ˇ/�:

The ˛–invariant was introduced by Tian [35] to obtain a sufficient condition for the
existence of Kähler–Einstein metrics on Fano manifolds. Demailly showed [8] that
the ˛–invariant coincides with the log canonical threshold in birational geometry. It is
natural to relate the log canonical threshold for pairs to the paired ˛–invariant, which
was first introduced in [2] as a generalization of the ˛–invariant.

Definition 2.13 Let X be a Fano manifold and D 2 j�mKX j be a smooth divisor.
Let s be a defining section of ŒD� and h be a smooth Hermitian metric on �mKX .
Let ! 2 c1.X / be a smooth Kähler metric. Then we define the paired ˛–invariant for
ˇ 2 .0; 1� by

(2-10) ˛D;ˇ.X /

D sup
�
˛ > 0

ˇ̌̌̌
sup

'2PSH.X ;!/\L1.X /

Z
X

jsj
�

2.1�ˇ/
m

h
e�˛ˇ.'�sup'/!n <1

�
:

It is straightforward to check that the invariant ˛D;ˇ does not depend on the choice of
smooth Hermitian metric h and Kähler metric ! 2 c1.X /. The following existence
theorem was first proved by Berman in [2, Section 6], where he constructed a unique
Hölder continuous conical Kähler–Einstein metrics via an effective estimate of ˛D;ˇ .
By [6, Section 3] (see also [16, Section 8]), we know that this conical Kähler–Einstein
metric is in fact regular in the sense of Definition 1.3.
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Theorem 2.14 There exists ˇD 2 .0; 1� such that for all ˇ 2 .0; ˇD � we have

(2-11) ˛D;ˇ.X / >
n

nC 1
:

In particular, there exists a regular conical Kähler–Einstein metric ! 2 c1.X / satisfying

Ric.!/D ˇ!C
1�ˇ

m
ŒD�

for ˇ 2 .0; ˇD/.

In [32], the first author proves that if the ˛–invariant on an n–dimensional Fano
manifold is greater n=.nC 1/, then the F –functional is J–proper. The following
theorem is a generalization to the conical case.

Theorem 2.15 Let X be a Fano manifold and ! 2 c1.X / be a smooth Kähler metric.
If D 2 j�mKX j is a smooth divisor and if there exists ˇ 2 .0; 1� such that

˛D;ˇ.X / >
n

nC 1
;

then the functional

F!;ˇ.'/D J!.'/�
1

V

Z
X

'!n
�

1

ˇ
log

1

V

Z
X

�
e�'�!

�ˇ
.�D/

1�ˇ

as in Definition 2.4 is J! –proper on PSH.X; !/\L1.X /.

Proof We break the proof into three steps.

Step 1 Since ˛D;ˇ.X / > n=.nC 1/, by Theorem 2.14 there exists a regular conical
Kähler–Einstein metric !KE satisfying

Ric.!KE/D ˇ!KEC
1�ˇ

m
ŒD�:

Let PSH.X; !KE;K/ be the set of all ' 2 PSH.X; !KE/\L1.X / such that

(2-12) oscX ' D sup
X

' � inf
X
' � .nC 1/J!KE.'/CK:

We claim that F!KE;ˇ is J!KE –proper for all ' 2 PSH.X; !KE;K/. To see that, take ˛
satisfying

nˇ

nC 1
< ˛ < ˇmin.˛D;ˇ; 1/� ˇ
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and let �D D jsD j
2=m with sD 2H 0.K˝�m

X
/ being a section defining D . Then

1

V

Z
X

e�ˇ'.�D/
1�ˇ.!n

KE/
ˇ
D

1

V

Z
X

e�˛.'�sup'/C.˛�ˇ/'�˛ sup'.�D/
1�ˇ.!n

KE/
ˇ

�
C

V
e.˛�ˇ/ inf'�˛ sup'

Z
X

e�˛.'�sup'/.�D/
1�ˇ.!n

KE/
ˇ

�
C

V
e.˛�ˇ/ inf'�˛ sup'

by the definition of ˛D;ˇ . By assumption (2-12), we have

1

V

Z
X

e�ˇ'.�D/
1�ˇ.!n

KE/
ˇ
� Ce.ˇ�˛/.nC1/J!KE .'/�ˇ sup'/

� Ce.nC1/.ˇ�˛/J!KE .'/�.ˇ=V /
R
X '!n

KE

D CeˇJ!KE .'/�..nC1/˛�nˇ/J!KE .'/�.ˇ=V /
R
X '!n

KE :

By taking logarithm of both sides of the above inequality, we obtain

F!KE;ˇ.'/�

�
.nC 1/

˛

ˇ
� n

�
J!KE.'/�C;

hence our claim follows.

Step 2 Now we will remove the assumption (2-12) for ' 2 PSH.X; !/\L1.X /. We
first consider all ' 2 PSH.X; !/ such that !0 D !KEC

p
�1@@' is a regular conical

Kähler metric with cone angle 2�.1� .1�ˇ/=m/ along D .

Following [39, Section 6.2], we consider the following family of Monge–Ampère
equations:

(2-13) .!0C
p
�1@@'t /

n
D
�
e�t't�!0

�ˇ
�

1�ˇ
D

; t 2 Œ0; 1�:

Since Equation (2-13) can be uniquely solved for t D 1 and there exists no nontrivial
holomorphic vector field tangential to D by Theorem 2.8, by the implicit function
theorem in [13, Theorem 2] we deduce that Equation (2-13) is solvable for all t in a
neighborhood of 1. In particular, we have '1D�' . Then, by an argument completely
parallel to [39, Section 6.2], we obtain that (2-13) is actually solvable for all t 2 Œ0; 1�.

Let !t D!
0C
p
�1@@'t . Note that the Ricci curvature of !KEC

p
�1@@.'t�'1/D!t

is no less than ˇ=2 for t � 1
2

. Then the Green functions for both ! and !t are uniformly
bounded from below by �G for some positive number G by [16, Lemma 6.7], and

�!KE.' �'1/D tr!KE.!t �!KE/� �n; �!t
.'t �'1/� n:
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Then by Green’s formula, for t � 1
2

, we have

(2-14)
1

V

Z
X

.'t �'1/!
n
KE� nG � .'t �'1/�

1

V

Z
X

.'t �'1/!
n
t C nG:

Recall from [39, Chapter 6] that for any smooth Kähler form ! on X , one can define

I!. / WD
1

V

Z
X

 .!n
�!n

 / with ! D !C
p
�1@@ ;

and that I! and J! satisfy

(2-15) 0� I!. /�J!. /� nJ!. / for  2 PSH.X; !/:

Plugging them into (2-14) we obtain

oscX .'t �'1/� I!KE.'t �'1/C 2nG � .nC 1/J!KE.'t �'1/C 2nG:

This implies that 't �'1 2 PSH.X; !KE; 2nG/, and then the J!KE –properness holds
for 't �'1 , and there exist C1;C2 > 0 such that

F!KE;ˇ.'t �'1/�

�
.nC 1/

˛

ˇ
� n

�
J!KE.'t �'1/�C1

�

�
˛

ˇ
�

n

nC 1

�
oscX .'t �'1/�C2:

Consequently, there exist C3 > 0 such that

n.1� t/J!KE.'/D n.1� t/J!0.'1/

(using (2-15)) � .1� t/.I!0.'1/�J!0.'1//

�

Z 1

t

.I!0.'s/�J!0.'s// ds

D F!0;ˇ.'t /�F!0;ˇ.'1/

(by Lemma 2.2) D F!KE;ˇ.'t �'1/

�

�
˛

ˇ
�

n

nC 1

�
oscX .'t �'1/�C3;

where the third inequality follows from the fact that .I!0 �J!0/.'t / is monotonically
increasing for t 2 Œ0; 1�. Then by applying the cocycle condition and the same argument
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in the smooth case in [38; 42], we obtain

F!KE;ˇ.'/D�F!0;ˇ.'1/D

Z 1

0

�
I!0.'t /�J!0.'t /

�
dt

� .1� t/
�
I!0.'t /�J!0.'t /

�
�

1� t

n
J!0.'t /

�
1� t

n
J!0.'1/�

2.1� t/

n
oscX .'t �'1/�C4

�
1� t

n2
J!KE.'/�C5.1� t/2J!KE.'/�C6:

Since C5 and C6 are independent of the choice for t � 1
2

, by choosing t sufficiently
close to 1, we can find �0;C�0 > 0, such that

(2-16) F!KE;ˇ.'/� �
0J!KE.'/�C�0

for all ' 2 PSH.X; !KE/ satisfying that !' is a regular conical Kähler metric with
cone angle 2�.1� .1�ˇ/=m/ along D . We claim that the set of such ' is dense in
PSH.X; !KE/\L1.X /, from which we deduce that the J!KE –properness holds for
PSH.X; !KE/\L1.X /.

To see that, notice that for any � 2 PSH.X; !KE/ \ L1.X /, we have � C  2
PSH.X; !/\L1.X / with  defined by !KED!C

p
�1@@ and supX  D 0. Since

PSH.X; !/\C1.X / is dense in PSH.X; !/\L1.X / and for any � 2 PSH.X; !/\
C1.X / we have

�� WD �C �
p
�1@@jsj

2.1�ˇ/=m

h
�! � 2 PSH.X; !/\L1.X / as �! 0;

and !�� is a regular conical Kähler metric for each 0 < � � 1. Hence our claim
follows.

Step 3 Finally, to prove the J! –properness for any smooth ! , all we need is to
replace J!KE by J! for smooth ! in the definition of F!;ˇ . To do that, let us write
!KE D !C

p
�1@@ and recall that

F0
!.'/D J!.'/�

1

V

Z
X

'!n

satisfies the cocycle condition F0
!.'/�F0

!KE
.' � /D F0

!. /; which implies that

(2-17) J!.'/�J!KE.' � /D J!. /C
1

V

Z
X

'!n
�

1

V

Z
X

.'� /!n
KE�

1

V

Z
X

 !n

D J!. /C
1

V

Z
X

.' � /.!n
�!n

KE/;
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since by our choice, ! C
p
�1@@' D !KE C

p
�1@@.' �  / > 0. Again by [16,

Lemma 6.7], the Green function with respect to !KE is bounded from below, so we
obtain

sup.' � /�
1

V

Z
X

.' � /!n
KECC;

and hence

(2-18) sup' �C �
1

V

Z
X

.' � /!n
KE

since  is fixed. So by Lemma 2.2, we obtain

F!;ˇ.'/D F!KE;ˇ.' � /CF!;ˇ. /

(by (2-16)) � �0J!KE.' � /�C�0

(by (2-17)) D �0
�
J!.'/�J!. /C

1

V

Z
X

.' � /.!n
KE�!

n/

�
�C�0

( is fixed) � �0
�
J!.'/C

1

V

Z
X

.' � /!n
KE�

1

V

Z
X

'!n

�
�C

(by (2-18)) � �0
�
J!.'/C sup' �

1

V

Z
X

'!n

�
�C

� �0
�
J!.'/C

1

V

Z
X

.sup' �'/!n

�
�C � �0J!.'/�C;

where the constant C D C.!; !KE;  ;C�0/.

2.4 An interpolation formula

In this section, we will prove the following interpolation formula for the F –functional
to obtain J–properness.

Proposition 2.16 Let X be a Fano manifold and D a smooth divisor in j�mKX j for
some m 2 ZC . Let ! be a smooth Kähler metric in c1.X /. If there exists ˛ 2 .0; 1�
such that

inf
PSH.X ;!/\L1.X /

F!;˛. � / > �1;

then F!;ˇ.'/ is J–proper on PSH.X; !/\L1.X / for all ˇ 2 .0; ˛/.

Proof We want to show that

F!;ˇ.'/D J!.'/�
1

V

Z
X

'!n
�

1

ˇ
log

1

V

Z
X

.e�'�!/
ˇ.�D/

1�ˇ

is J–proper for all ˇ 2 .0; ˛/.
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First for 0< � < ˇ < ˛ , we write ˇD �=pC˛=q for some 1=pC1=q D 1. Then the
Hölder inequality implies the interpolation

F!;ˇ.'/D J!.'/�
1

ˇ
log

1

V

Z
X

.e�'�!/
ˇ�

1�ˇ
D

D

�
�

ˇp
C

˛

ˇq

�
J!.'/�

1

ˇ
log

1

V

Z
X

�
e�'

�!

�D

��=pC˛=q
��D

�
�

ˇp

�
J!.'/�

1

�
log

1

V

Z
X

.e�'�!/
��1��

D

�
C

˛

ˇq

�
J!.'/�

1

˛
log

1

V

Z
X

.e�'�!/
˛�1�˛

D

�
D

�

ˇp
�F!;� .'/C

˛

ˇq
�F!;˛.'/�

�

ˇp
�F!;� .'/�C1 � �J!.'/�C:

The last inequality follows from Theorem 2.15 by choosing � sufficiently small so that
˛D;� > n=.nC 1/.

The same argument in the proof of Proposition 2.16 can be applied to prove the
following lemma after replacing m�1ŒD� by a smooth Kähler metric � 2 c1.X /.

Lemma 2.17 Let X be a Fano manifold and � be a smooth Kähler metric in c1.X /.
Let ! be a smooth Kähler metric in c1.X /. If there exists ˛ 2 .0; 1� such that

F!;�;˛.'/D J!.'/�
1

V

Z
X

'!n
�

1

˛
log

1

V

Z
X

e�˛'.�!/
1�˛.�� /

1�˛

is bounded below on PSH.X; !/\L1.X /, then F!;ˇ.'/ is J–proper on PSH.X; !/\
L1.X / for all ˇ 2 .0; ˛/.

We remark that Lemma 2.17 also serves as an alternative proof for Theorem 1.1 in [34]
relating R.X / and the continuity method.

2.5 Proof of Theorem 1.4

Proposition 2.18 (First part of Theorem 1.4) Let X be a Fano manifold and D be a
smooth divisor in j �mKX j for some m 2 ZC . If there exist ˇ 2 .0; 1� and a regular
conical Kähler–Einstein metric ! satisfying

Ric.!/D ˇ!C
1�ˇ

m
ŒD�;

then
ˇ �R.X /:

In particular, the inequality holds if and only if ˇ D 1.

Geometry & Topology, Volume 20 (2016)



68 Jian Song and Xiaowei Wang

Proof Let !KE be a regular conical Kähler–Einstein metric on X satisfying

Ric.!KE/D ˇ!KEC
1�ˇ

m
ŒD�:

By Proposition 2.11, we know that F!KE;ˇ is bounded below. By Proposition 2.16,
F!;ˇ0 is J–proper for all ˇ0 2 .0; ˇ/.

Let !; � 2 c1.X / be two smooth Kähler metrics on X . The J–properness of F!;ˇ0
immediately implies the J–properness of

F!;�;ˇ0.'/D J!.'/�
1

v

Z
X

'!n
�

1

ˇ0
log

1

V

Z
X

e�ˇ
0'.�!/

ˇ0.�� /
1�ˇ0

because �D is strictly bounded below from 0. Then by Lemma 2.12, there exists a
minimizer of F!;�;ˇ0 which solves the equation

Ric.!/D ˇ0!C .1�ˇ0/� � ˇ0!:

This shows that R.X /� ˇ0 and so R.X /� ˇ .

If ˇ DR.X / < 1, there must exist � > 0 and a regular conical Kähler–Einstein metric
g such that Ric.g/ D .ˇC �/gC .1� ˇ � �/m�1ŒD� by Corollary 2.10. We get a
contradiction to the definition of R.X / by repeating the previous argument.

Proposition 2.19 (Theorem 1.4) Let X be a Fano manifold. Then for any ˇ 2
.0;R.X //, there exist a smooth divisor D 2 j�mKX j for some m 2ZC and a regular
conical Kähler–Einstein metric g satisfying

Ric.!/D ˇ!C
1�ˇ

m
ŒD�:

Proof We break the proof into the following steps.

Step 1 Let ! and � be two smooth Kähler metrics in c1.X /. For any ˇ 2 .0;R.X //,
by Szeklyhidi’s result [34], the family

.!C
p
�1@@'t /

n
D
�
e�t'�!

�ˇ
.�� /

1�ˇ;

Z
X

.�!/
ˇ.�� /

1�ˇ
D V

of Monge–Ampère equations is solvable for all t 2 Œ0; 1�. Then by Lemma 2.12,

F!;ˇ.'/D J!.'/�
1

V

Z
X

'!n
�

1

ˇ
log

Z
X

e�ˇ'.�!/
ˇ.�� /

1�ˇ
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is bounded below on PSH.X; !/\L1.X /. By Lemma 2.17, for any ˇ0 2 .0; ˇ/,
F!;ˇ0.'/ is J–proper. It immediately follows that for any ˇ 2 .0;R.X //, there exist
�;C� > 0 such that for all ' 2 PSH.X; !/\L1.X /,Z

X

e�ˇ'!n
� C�e

.ˇ��/J!.'/�.ˇ=V /
R
X '!n

:

Step 2 Let D be a smooth divisor in j �mKX j for some m 2 ZC to be determined
later. We will later choose m sufficiently large. Let s be a defining section of D and h

be a smooth hermitian metric on �mKX . For any ˇ 2 .0;R.X //, there exists ı > 0

such that ˇC ı <R.X /. ThenZ
X

jsj
�

2.1�ˇ/
m

h
e�ˇ'!n

�

�Z
X

e�.ˇCı/'!n

� ˇ
ˇCı

�Z
X

jsj
�

2.1�ˇ/.ˇCı/
mı

h
!n

� ı
ˇCı

� Cı

�Z
X

e�.ˇCı/'!n

� ˛
˛Cı

if we choose m> .1�ˇ/.ˇC ı/=ı . By the conclusion in Step 1, there exist �;C� > 0

such that Z
X

jsj�
2.1�ˇ/

m e�ˇ'!n
� C�e

.ˇ��/J!.'/�.ˇ=V /
R
X '!n

:

Equivalently, F!;ˇ.'/ is J–proper on PSH.X; !/\L1.X /. By Proposition 2.11,
there exists a unique smooth conical Kähler–Einstein metric !ˇ solving

Ric.!ˇ/D ˇ!ˇC
1�ˇ

m
ŒD�:

Remark 2.20 Since .1 � ˇ/.ˇ C ı/=ı is decreasing with respect to ı , there is a
ı2 .0;R�ˇ/ such that the proof above works as long as m>.1�ˇ/R.X /=.R.X /�ˇ/,
which is equivalent to ˇ <R.m� 1/=.m�R/.

Now we can relate the optimal Moser–Trudinger constant to the invariant R.X /.

Corollary 2.21 Let X be a Fano manifold and ! 2 c1.X / be a smooth Kähler metric.

(1) If ˇ 2 .0;R.X //, F!;ˇ is J–proper on PSH.X; !/\L1.X /. Equivalently,
there exist �;C� > 0 such that the following Moser–Trudinger inequality holds
for all ' 2 PSH.X; !/\L1.X /:Z

X

e�ˇ'!n
� C�e

.ˇ��/J!.'/�.ˇ=V /
R
X '!n

:

(2) If ˇ 2 .R.X /; 1/, then

inf
PSH.X ;!/\L1.X /

F!;ˇ. � /D�1:
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Proof For ˇ 2 .0;R.X // and a fixed smooth Kähler metric � 2 c1.X /, there exists
a smooth Kähler metric ! satisfying Ric.!/D ˇ!C .1� ˇ/� . The corollary is an
immediate consequence of by modifying the interpolation formula in Proposition 2.16,
after replacing m�1ŒD� by � .

Immediately, we can show that R.X / and mt.X / take the same value for a Fano
manifold X .

Corollary 2.22 Let X be a Fano manifold. Then

(2-19) mt.X /DR.X /

D supfˇ 2 .0; 1/ j F!;ˇ is J–proper on PSH.X; !/\L1.X /g;

where ! 2 c1.X / is a smooth Kähler metric.

2.6 Proof of Theorem 1.5

Before proving Theorem 1.5, we first quote the following proposition establishing the
equivalence for the Mabuchi K–energy and the F –functional when either of them
is bounded below, proved in [22] by applying the Kähler–Ricci flow and Perelman’s
estimates for the scalar curvature.

Proposition 2.23 Let X be a Fano manifold and ! 2 c1.X / be a smooth Kähler
metric. Then Ding’s functional F! is bounded below on PSH.X; !/\C1.X / if and
only if the Mabuchi K–energy is bounded below.

Proposition 2.23 holds for the paired Mabuchi K–energy and the paired F –functional
as shown in [2]. One can also apply the continuity method for the conical Kähler
metrics with positive Ricci curvature as in [31]. Let PSH.X; !/\C1

D;ˇ
.X / be the set

of all bounded ' such that !C
p
�1@@' is a regular conical Kähler metric with cone

angle 2�ˇ along D .

Proposition 2.24 Let X be a Fano manifold and D 2 j�mKX j be a smooth divisor.
Let ! be a regular conical Kähler metric in c1.X / with cone angle 2�.1 � ˇ/=m

along D . Then
inf

PSH.X ;!/\C1
D;.1�ˇ/=m

.X /
M!;ˇ. � / > �1

is equivalent to
inf

PSH.X ;!/\L1.X /
F!;ˇ. � / > t �1:
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We can now prove Theorem 1.5.

Theorem 2.25 Let X be a Fano manifold and D be a smooth divisor in j �mKX j

for some m 2 ZC . If the paired Mabuchi K–energy M!;R.X / on X is bounded
below, then for any ˇ 2 .0;R.X // there exists a regular conical Kähler–Einstein metric
satisfying

(2-20) Ric.g/D ˇgC
1�ˇ

m
ŒD�:

Proof Let ! 2 c1.X / be a smooth Kähler metric. By Proposition 2.24, F!;R.X /.'/
is bounded below on PSH.X; !/\L1.X /. Applying the interpolation formula in
Proposition 2.16, F!;ˇ is J–proper on PSH.X; !/\L1.X / for all ˇ 2 .0;R.X //.
The theorem follows by Proposition 2.11.

When the Mabuchi K–energy is bounded below on X , for any ˇ 2 .0; 1/, there exists
a conical Kähler–Einstein metric satisfying Equation (2-20) for mD 1. In this case,
D is a smooth Calabi–Yau hypersurface of X . If we only assume R.X /D 1, we have
the same conclusion in Theorem 2.25 for the linear systems j �mKX j with m� 2.

Proposition 2.26 Let X be a Fano manifold and D be a smooth divisor in j �mKX j

for some m � 2. Then for any ˇ 2 .0; .m� 1/R.X /=.m�R.X ///, there exists a
regular conical Kähler–Einstein metric ! satisfying

Ric.!/D ˇ!C
1�ˇ

m
ŒD�:

In particular, when R.X /D 1, we have conical Kähler–Einstein metric for any ˇ 2
.0; 1/.

Proof We will give a proof for the case R.X / D 1; the general case follows from
the same argument and Remark 2.20. Let s be a defining section of j �mKX j and h

be a smooth hermitian metric on �mKX . Then jsj�.2��/
h

is integrable for any � > 0.
Furthermore, F!;.1�ˇ/m�1ŒD�;ˇ is proper for any smooth Kähler forms !; � 2 c1.X /

if ˇ 2 .0; 1/, Then the proposition can be proved by an interpolation argument similar
to the proof of Theorem 2.25.

3 Conical toric Kähler–Einstein metrics

3.1 Conical toric Kähler metrics

In this section, we will introduce toric conical Kähler metrics on toric Kähler manifolds
and corresponding toric Kähler and symplectic potentials as in [11; 12]. We begin with
some basic definitions for toric manifolds.
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Definition 3.1 A convex polytope P �Rn is called a Delzant polytope if a neighbor-
hood of any vertex of P is SL.n;Z/ equivalent to fxj � 0; j D 1; : : : ; ng �Rn . P is
called an integral Delzant polytope if each vertex of P is a lattice point in Zn .

Let P be an integral Delzant polytope in Rn defined by

(3-1) P D fx 2Rn
j lj .x/ > 0; j D 1; : : : ;N g;

where
lj .x/D vj �xC�j ;

vi is a primitive integral vector in Zn and �j 2 Z for all j D 1; : : : ;N . Then P

defines an n–dimensional nonsingular toric variety by the following observation.

For each n–dimensional integral Delzant polytope P , as in [11; 12], we consider the
set of pairs .p; fvp;igniD1

/, where p is a vertex of P and the neighboring faces are
given by lp;i.x/D vp;i �x��p;i > 0 for i D 1; : : : ; n. For each p , there is an affine
neighborhood X �Up ŠCn containing p with coordinate z D .z1; : : : ; zn/ such that
z.p/D 0. Then for any two vertices p and p0 , there exists �p;p0 2GL.n;Z/ such that

�p;p0 � vp;i D vp0;i :

Furthermore, we have
�p;p0 � �p0;p00 � �p00;p D 1:

Therefore �p;p0 serves as the transition function for two coordinate charts over .C�/n .
More precisely, let z D .z1; : : : ; zn/ and z0 D .z0

1
; : : : ; z0n/ 2Cn be the coordinates for

the chart associated to p and p0 respectively. Suppose �p;p0 D .˛ij /. Then

z0i D
Y
j

z
˛ij

j :

Each integral Delzant polytope uniquely determines a nonsingular toric variety XP

by such a construction with the data .p; fvp;igniD1
/. The constant �p;i determines an

ample line bundle L over XP , and moreover,

H 0.XP ;L/D spanfz˛g˛2Zn\P :

Let 'P D log.
P
˛2Zn\P jzj

2˛/. Then !P D
p
�1@@'P is a smooth Kähler metric on

.C�/n and it can be smoothly extended to a smooth global toric Kähler metric on XP

in c1.L/. Then the space of toric Kähler metrics in c1.L/ is equivalent to the set of
all smooth plurisubharmonic function ' on .C�/n such that ' �'P is bounded and
p
�1@@' extends to a smooth Kähler metric on XP . If we consider the toric Kähler
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potential ' which is invariant under the real torus action, we can view ' as a function
in Rn by

' D '.�/; �D .�1; : : : ; �n/; �i D log jzi j
2:

One can also define a symplectic potential u on P by

(3-2) u.x/D

NX
jD1

lj .x/ log lj .x/Cf .x/

such that f .x/ 2C1.P / and u.x/ is strictly convex in P . It is due to Guillemin [15]
that the toric Kähler potential and the symplectic potential are related by the Legendre
transform

'.�/D Lu.�/D sup
x2P

.x � ��u.x//; u.x/D L'.x/D sup
�2Rn

.x � ��'.�//

or equivalently

'.�/D x � ��u.x/; u.x/D x � ��'.�/; x Dr�'.�/; �Drxu.x/:

We would like to generalize the Guillemin condition to toric conical Kähler metrics on
XP . This can be considered as a generalization of orbifold Kähler metrics by replacing
the finite subgroup by a possibly infinite nondiscrete subgroup of .S1/n . Suppose that
the integral Delzant polytope is defined by

P D fx 2Rn
j lj .x/D vj �xC�j > 0; j D 1; : : : ;N g

with vj 2 Zn being a primitive lattice point and �j 2 Z.

Now we introduce the function spaces we will work with. Let p 2 P be a vertex,
whose neighboring faces are determined by vectors fvp;igniD1

. Let Up � X be the
affine neighborhood corresponding to p with coordinates .z1; : : : ; zn/ 2Cn . Then for
each 1� i � n; Œzi D 0� (corresponding to the faces determined by vp;i ) extends to a
smooth toric divisor of XP . Let D be a toric divisor of XP and suppose D restricted
to Up is given by

nX
iD1

ai Œzi D 0�:

We can lift any function f .z/ on Up invariant under the .S1/n –action to a function

zf .w/D f .z/

by letting
jwi j D jzi j

ˇi .p/; w D .w1; : : : ; wn/ 2Cn;
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and clearly zf .w/ is also .S1/n –invariant. In particular, we can regard the map w
as a ˇ.p/ D .ˇ.p/1; : : : ; ˇ.p/n/–covering of z 2 Cn . Then for any k 2 Z�0 and
˛ 2 .0; 1/, we define a space of .S1/n –invariant functions on Up by

C
k;˛
ˇ.p/;p

WD ff .z/D f .jz1j; : : : ; jznj/ j zf .w/ 2 C k;˛.Cn/g:

This allows us to define the weighted function space

C
k;˛
ˇ
.XP / WD ff 2 C 0.X / j f jUp

2 C
k;˛
ˇ.p/;p

for every vertex p 2 Pg;

where ˇD .ˇ1; : : : ; ˇN /2 .R
C/N .1 Now we define the space of weighted toric Kähler

metrics on XP by considering a Kähler current ! whose restriction to each chart is
given by

! D
p
�1@@'p

such that 'p 2 C1
ˇ;p

. Such a weighted toric Kähler metric is naturally a regular conical
Kähler metric with cone angle 2�ˇi along Œzi D 0� and is called a smooth ˇ–weighted
Kähler metric. The local lifting z'.w/ is a smooth plurisubharmonic function on the
covering space w 2Cn .

We can also define the space of weighted toric Kähler potential ' on .C�/n such that
' �'P is bounded and

p
�1@@' extends to a smooth weighted Kähler metric on XP .

We now define a weighted C1
ˇ

symplectic potential

u.x/D

NX
jD1

ˇ�1
j lj .x/ log lj .x/Cf .x/

for f 2C1.P / for j D 1; : : : ; n such that f 2C1.P / and u is strictly convex in P .
Then the weighted Kähler potentials and the weighted symplectic potential determine
each other uniquely. In particular, we have following straightforward generalization of
the Guillemin condition for conical toric Kähler metrics.

Proposition 3.2 The weighted C1
ˇ

toric potential ' and the weighted C1
ˇ

symplectic
potential are related by the Legendre transform

'.�/D Lu.�/D sup
x2P

.x � ��u.x//; u.x/D L'.x/D sup
�2Rn

.x � ��'.�//

or equivalently

'.�/D x � ��u.x/ with x Dr�'.�/ and u.x/D x � ��'.�/ with �Drxu.x/:

1Notice that fˇ.p/1; : : : ; ˇ.p/ng � fˇ1; : : : ; ˇN g .
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In particular, if u.x/D ˇ�1
j lj .x/ log lj .x/C f .x/, then the cone angle of the corre-

sponding conical toric Kähler metric is 2� ǰ along the toric divisor determined by
lj .x/D 0.

Let ! D
p
�1@@� be a smooth ˇ–weighted Kähler metric and let u D L� . Then

u.x/D
P

j ˇ
�1
j lj .x/ log lj .x/Cf .x/ for some f 2 C1.P /.

Example 3.3 Let P D Œ0; 1�. Then the associated toric manifold is X D P1 with the
polarization O.1/. We consider the symplectic potential

uD .ˇ1/
�1x log xCˇ�1

2 .1�x/ log.1�x/:

Then

�D log jzj2D u0.x/D .ˇ�1
1 �ˇ

�1
2 /C log

xˇ
�1
1

.1�x/ˇ
�1
2

; jzj2D
xˇ
�1
1

.1�x/ˇ
�1
2

eˇ
�1
1
�ˇ�1

2

and so
x � jzj2ˇ1 near 0; .1�x/� jzj�2ˇ2 near1:

In particular, x is a smooth function of jzj2ˇ1 near z D 0 and .1� x/ is a smooth
function of jzj�2ˇ2 near z D1. The Kähler potential ' is given by

'.�/D x.ˇ�1
1 �ˇ

�1
2 /�ˇ�1

2 log.1�x/:

Hence
p
�1@@' extends to a conical metric with cone angle 2�ˇ1 and 2�ˇ2 at ŒzD 0�

and ŒzD1� respectively. In particular, when ˇDˇ1Dˇ2 , 'Dˇ�1 log.1Cjzj2ˇ/ and
! D 2

p
�1@@' is a smooth ˇ–weighted Kähler–Einstein metric in c1.P

1/ satisfying

Ric.!/D ˇ!C .1�ˇ/.Œz D 0�C Œz D1�/:

Lemma 3.4 Let g be a smooth ˇ–weighted toric Kähler metric on a toric manifold
XP . Let D be the toric divisor such that g is a smooth toric Kähler metric on X nD .
Then for any k � 0, there exists Ck > 0 such that for any point p 2X nD ,

(3-3) jr
k
g Rm.g/jg.p/� Ck :

Proof The calculation of jrk
g Rm.g/jg.p/ can be locally carried out on the ˇ–

covering space for each coordinate chart .p; fvig
n
iD1

/ as in the orbifold case. All
the quantities must be bounded because the g is a smooth toric Kähler metric after
being lifted to the covering space.

We now can solve a Monge–Ampère equation with smooth ˇ–weighted data.
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Proposition 3.5 Let ! be a smooth ˇ–weighted toric Kähler metric on a toric man-
ifold XP . Then for any smooth ˇ–weighted function f on XP with

R
XP

e�f !n DR
XP
!n , there exists a unique ˇ–weighted smooth function ' satisfying

(3-4) .!C
p
�1@@'/n D ef !n; sup

XP

' D 0:

Proof We use the continuity method for t 2 Œ0; 1� to solve the equation

(3-5) .!C
p
�1@@'t /

n
D etfCct!n;

where ct is determined by
R
XP

etfCct!n D
R
XP
!n . Let

S D ft 2 Œ0; 1� j (3-5) is solvable for t with 't 2 C1ˇ .XP /g:

Obviously, 02S . S is open by applying the implicit function theorem for the linearized
operator

�ˇ;t W C
kC2;˛
ˇ

.XP /! C
k;˛
ˇ
.XP /:

All the local calculation can be carried out in the ˇ–covering space on each coordinate
chart .p; fvig

n
iD1

/ because all the data involved are invariant under the .S1/n –action.
It suffices to prove uniform a priori estimates for 't in C k

ˇ
.XP / for t 2 Œ0; 1�.

C 0 –estimates Let � be a smooth volume form on XP . Then etfCct!n=� lies in
L1C�.XP ; �/ for some � > 0. By Yau’s Moser iteration [47] adapted to the conical
case or by Kolodziej’s L1–estimate [17], there exists C > 0 such that for all t 2 Œ0; 1�,
if 't 2 C1

ˇ
.X / solves (3-5), then

k'tkL1.XP / � C:

Second-order estimates We consider

Ht D log tr!.!t /�A't :

Suppose at t 2 Œ0; 1�, supXP
Ht D Ht .q/. We lift all the calculation on the .S1/n –

invariant ˇ–covering space in a fixed local coordinate chart w 2 Cn . Standard
calculations show that near zq , there exists C > 0 such that

z�t;ˇ
zHt � �C trz!t

.z!/�AnCA � trz!t
.z!/�

A

2
trz!t

.z!/�C;

where zq , z! and z!t are the lifting of q , ! and !t . By the maximum principle, at
zq , trz!t

.z!/ is bounded above by a constant independent of t 2 Œ0; 1�. Combining the
Equation (3-4), trz!.z!t / is also bounded above by a constant independent of t . Hence
there exists C > 0 such that for all t 2 Œ0; 1�, if 't 2 C1

ˇ
.X / solves (3-5),

C�1! � !t � C!:
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Higher-order estimates Calabi’s third-order estimates can be applied in the same the
way as in [47; 29] by using the maximum principle after lifting all the local calculations
on the .S1/n –invariant covering space. The Schauder estimates can also be applied by
the bootstrap argument. Eventually, for any k > 0, there exists Ck such that for all
t 2 Œ0; 1�, if 't 2 C1

ˇ
.X / solves (3-5),

k'tkC k
ˇ
.XP /
� Ck :

3.2 Proof of Theorem 1.7

An n–dimensional integral polytope P is called Fano if it is a Delzant polytope and
�i D 1 for each defining function li.x/D vi �xC�i , from which we deduce 0 2 P .
The toric manifold XP associated to P is a Fano manifold. Each .n� 1/–face of P

corresponds to a toric divisor of P . Then the union DP D
P

j Dj for all the boundary
divisors lies in c1.X /D c1.�KX /, where Dj is the toric divisor induced by the face
flj .x/D 0g. In particular, ŒD� is very ample.

The Futaki invariant of XP with respect to .S1/n –action is shown in [24] exactly the
barycenter of P defined by

Pc D

R
P xdVR
P dV

;

where dV D dx1dx2 � � � dxn is the standard Euclidean volume form.

The following theorem on the existence of Kähler–Einstein metrics on toric Fano
manifolds is due to Wang and Zhu [45].

Theorem 3.6 There exists a smooth toric Kähler–Einstein metric on a toric Fano
manifold XP if and only if the barycenter of P coincides with 0.

If the barycenter is not at the origin, it is also proved in [45] that there exists a toric
Kähler–Ricci soliton on XP . The following theorem was proved by Li [18] to calculate
the greatest Ricci lower bound R.X /.

Theorem 3.7 Let XP be a toric Fano manifold associated to a Fano Delzant polytope
P . Let Pc be the barycenter of P and Q 2 @P such that the origin O 2 PcQ. Then
the greatest Ricci lower bound of XP is given by

(3-6) R.XP /D
jOQj

jPcQj
:
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For any � 2Rn , we define the divisor D.�/ by

(3-7) D.�/D

NX
jD1

lj .�/Dj :

D.�/ is a Cartier R–divisor in c1.X / and it is effective if and only if � 2 P . The
defining section s� of D.�/ is given by the monomial

s� D z� :

Although s� is only locally defined,

js� j
2
D jzj2� D e� ��

is globally defined and js� j�2 induces a singular hermitian metric on �KX and can
be viewed as a singular volume form with poles along Dj of order lj .�/. We deduce:

Lemma 3.8 If R.X / < 1, then the R–divisor D.�/ with � D� ˛
1�˛

Pc is effective if
and only if ˛ 2 Œ0;R.X /�.

We consider the real Monge–Ampère equation on Rn for a convex function � ,

(3-8) det.r2�/D e�˛��.1�˛/� ��:

Let u D L� be the symplectic potential. Then det.r2u/ D .det.r2�/n/�1 and the
dual Monge–Ampère equation for u is given by

(3-9) det.r2u/D e�˛uC.˛xC.1�˛/�/�ru:

If we let ! D
p
�1@@� , the corresponding curvature equation is given by

Ric.!/D ˛!C .1�˛/ŒD.�/�:

Lemma 3.9 Suppose there exists a smooth ˛–weighted Kähler–Einstein metric ! D
p
�1@@� satisfying

Ric.!/D ˛!C .1�˛/ŒD.�/�

for some ˛ 2 .0;R.X /� and � 2 P . Then

(3-10) � D�
˛

1�˛
Pc for ˛ ¤ 1 and any vector in P for ˛ D 1:

Furthermore, there exists f 2 C1.P / such that

(3-11) L�.x/D
NX

jD1

ˇ�1
j lj .x/ log lj .x/Cf .x/; ǰ D

lj .Pc/

lj .0/
˛:
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Proof Consider the corresponding Monge–Ampère equation

.detr2�/n D e�˛��.1�˛/� ��:

The right-hand side e�˛��.1�˛/� �� is integrable on Rn and in factZ
Rn

e�˛��.1�˛/� ��d�D

Z
Rn

det.r2�/d�D

Z
X

!n
D c1.X /

n:

Then the Monge–Ampère mass det.r2�/d� becomes dx by the moment map and

0D

Z
Rn

r
�
e�˛��.1�˛/� ��

�
d�

D�

Z
Rn

.˛r�C .1�˛/�/e�˛��.1�˛/� ��d�

D�

Z
P

.˛xC .1�˛/�/dxD�.˛Pc C .1�˛/�/

Z
P

dx:

Therefore � D ˛
1�˛

Pc for ˛ ¤ 1.

Suppose u.x/ D L�.x/ D
PN

jD1 ˇ
�1
j lj .x/ log lj .x/C f .x/. The Monge–Ampère

equations for � and u are given by

det.r2�/D e�˛.�CPc ��/; det.r2u/D e�˛.u�.x�Pc/�ru/:

Without loss of generality, we assume that l1.x/ D l2.x/ D � � � D ln.x/ D 0 with
li.x/ D vi � xC 1, 1 � i � n defines a vertex p of P . Then there exists a smooth
positive function F.x/ on any compact subset U of P with U \flj .x/D 0g D � for
all j > n, such that

det.r2u/D
F.x/

l1.x/l2.x/ � � � ln.x/
:

On the other hand,

u.x/� .x�Pc/ru.x/

D

NX
jD1

ˇ�1
j lj .Pc/ log lj .x/�

NX
jD1

ˇ�1
j .x�Pc/ � vj � .x�Pc/ � rf .x/

and so
e�˛.u�.x�Pc/�ru/

D
e�˛.x�Pc/�.rf .x/C

P
j ˇ
�1
j
vj /QN

jD1.lj .x/
˛ˇ�1
j

lj .Pc//
:

Comparing the powers of lj .x/, we have

ǰ D lj .Pc/˛ D
lj .Pc/

lj .0/
˛

since lj .0/D 1. This completes the proof of the lemma.
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Remark 3.10 Notice that it follows from [7] that the log Donaldson–Futaki invari-
ant defined in [13] for the toric Fano pair .X;D� /, with D� being the toric divisor
determined by the vector � 2 P , is

(3-12) DF.X;D� IL/D�V .P /.˛PC C �/ 2Rn;

where V .P / is the volume and PC 2Rn is the barycenter of the polytope P .

Lemma 3.9 leads us to consider the Monge–Ampère equation

(3-13) det.r2�/n D e�˛.��Pc ��/:

The right-hand side of Equation (3-13) is always integrable since Pc lies in P and
� � log.

P
k epk ��/ is bounded on Rn , where we are summing over all vertices fpkg

of P .

For each ˛ 2 .0; 1�, we define ˇDˇ.˛/D .ˇ1; ˇ2; : : : ; ˇN / by ǰ D .lj .Pc/= lj .0//˛ .

Lemma 3.11 For any ˛ 2 .0; 1�, there exists a C1
ˇ.˛/

conical toric Kähler metric !
such that

Ric.!/D ˛� C .1�˛/ŒD.�/�;

where � 2 c1.X / is a fixed C1
ˇ.˛/

toric Kähler metric and � D ˛
1�˛

Pc . In particular,
Ric.!/ > 0, if ˛ 2 .0;R.X //.

Proof It suffices to prove for ˛ 2 .0; 1/. Let yu.x/ D
P

j ˇ
�1
j lj .x/ log lj .x/ for

ǰ D .lj .Pc/= lj .0//˛ . Let y� DLyu and y! D
p
�1@@y� . Then there exists a C1

ˇ.˛/
real

valued .1; 1/–form � 2 c1.X / and a divisor D.�/ with � D� ˛
1�˛

Pc such that
p
�1@@ log y!n

D ˛�C .1�˛/ŒD.�/�:

This is because along each Dj defined by lj .x/D 0, y!n has a pole of order

1� ǰ D 1� lj .Pc/˛

and

.1�˛/D.�/D .1�˛/

�X
j

lj

�
˛

1�˛
Pc

�
Dj

�
D

X
j

.1� lj .Pc/˛/Dj :

Since � 2 c1.X / is C1
ˇ.˛/

, there exists  2 C1
ˇ.˛/

such that �C
p
�1@@ is a C1

ˇ.˛/

toric Kähler metric. Without loss of generality, we may assume thatZ
XP

e y!n
D

Z
XP

y!n

after a constant translation.
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By Proposition 3.5, the equation

.y!C
p
�1@@'/n D e y!n; sup

XP

' D 0

admits a unique C1
ˇ.˛/

solution ' . Let ! D y! C
p
�1@@' and � D �C

p
�1@@ ,

then we obtain
Ric.!/D ˛� C .1�˛/ŒD.�/�:

By Lemma 3.11, there is a C1
ˇ.˛/

Kähler potential �0 with !0 D
p
�1@@�0 such that

Ric.!0/D ˛� C .1�˛/D.�/

for a C1
ˇ.˛/

.XP / Kähler metric � 2 c1.XP / and � D ˛
1�˛

Pc if ˛ ¤ 0. Let

w D
1

˛

�
�˛Pc � �� log det.r2�0/

�
:

Then
p
�1@@w D �

and jw� y�j is uniformly bounded by the argument in Lemma 3.11. This implies that
w is a C1

ˇ.˛/
Kähler potential and we have

det.r2�0/D e�˛.w�Pc ��/:

We will then use the continuity method for the following family of Monge–Ampère
equations for t 2 Œ0; ˛�,

(3-14) det.r2�t /D e�t.�t�Pc ��/�.˛�t/w:

Let 't D �t ��0 and h� 2 C1
ˇ.˛/

.XP / be the unique function satisfying

�
p
�1@@ log �n

�
p
�1@@h� D ˛� C .1�˛/ŒD.�/�;

Z
XP

eh� �n
D

Z
XP

�n:

Then Equation (3-14) is equivalent to

(3-15) .
p
�1@@!0C

p
�1@@'t /

n
D e�t't

�
eh!0!0

�t=˛�
eh� �

�˛�t=˛
;

where h!0
is defined for � D !0 . Let

S D ft 2 Œ0; ˛� j (3-14) is solvable for t with
p
�1@@�t 2 C1ˇ.˛/.XP /g:

Obviously, �0 solves (3-14) for t D 0 and so S ¤ � . Notice that

Ric.!t /D t!t C .˛� t/� C .1�˛/ŒD.�/�� t!t
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for t 2 Œ0; ˛� and � D ˛
1�˛

Pc if ˛ ¤ 1. It implies that the first eigenvalue of the
Laplace operator �t D tr!t

.
p
�1@@/ is strictly greater than t . By the argument in

Proposition 3.5, S is open and it suffices to show that S is closed by proving uniform
a priori estimates for �t ��0 .

Proposition 3.12 There exists C > 0 such that for all t 2 Œ0; ˛�,

(3-16) k�t ��0kL1.Rn/ � C:

Proof We fix some positive �0 2 S . We let

ˆt D ˛
�1.�t �Pc � �/ and W D ˛�1.w�Pc � �/:

Then the Equation (3-14) becomes

detr2ˆt D e�.ˆtCW /:

Let Wt Dˆt CW . Immediately, we can see that the moment map with respect to ˆt

is given by
Ft W rˆt ! P �Pc

whose image is the translation of P by �Pc . In particular, the barycenter of the new
polytope P �Pc coincides with the origin.

Suppose
mt DWt .�t /D inf

Rn
Wt .�/

for a unique �t 2 Rn since Wt is asymptotically equivalent to log.
P

e.pk�Pc/��/

where pk are the vertices of P . We can apply the same argument as Wang and
Zhu [45]. First one can show by John’s lemma and the maximum principle (see [45,
Lemmas 3.1 and 3.2]), that there exists C > 0 such that for all t 2 Œ�0; ˛�,

mt DWt .�t /D inf
Rn

Wt .�/� C:

Then by using the fact that the barycenter of P �Pc lies at the origin O , the same
argument as in [45, Lemma 3.3] shows that there exists C >0 such that for all t 2 Œ�0; ˛�,

j�t j � C:

This then implies that
't D ˛

�1.ˆt �W /

is uniformly bounded above for t 2 Œ�0; ˛� by the same argument as in [45, Lemma 3.4].
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The uniform lower bound of 't can be obtained either by the Harnack inequality

� inf
XP

't � C.1C sup
XP

't /

adapted from the smooth case or directly by the argument in [45, Lemma 3.5].

Lemma 3.13 For any k � 0, there exists Ck > 0 such that for all t 2 Œ0; ˛�,

(3-17) k'tkC k.XP /
� Ck :

Proof The Laplacian �ˇ.˛/;t't is uniformly bounded by Yau’s estimates after lifting
the calculations to the ˇ.˛/–covering space as in the proof of Proposition 3.5. The
C 3 –estimates and the Schauder estimates can be applied in the same way.

Theorem 3.14 Let XP be a toric Fano manifold.

(1) For any ˇ 2 .0;R.XP //, there exist a unique smooth toric conical Kähler–
Einstein metric ! and a unique effective toric R–divisor Dˇ 2 j�KX j satisfying

Ric.!/D ˇ!C .1�ˇ/ŒDˇ �:

(2) For ˇ D R.XP /, there exists a unique smooth toric conical Kähler–Einstein
metric ! satisfying

(3-18) Ric.!/DR.XP /!C .1�R.XP //ŒDP �

for an effective Q–divisor DP in c1.X /. In particular, if Dj is the toric divisor
associated to the face defined by lj .x/D vj �xC�j D 0, then

DP D

X
j

1� ǰ

1�R.X /
Dj ; ǰ D

lj .Pc/

lj .0/
R.XP /

and the cone angle of ! along Dj is 2�ˇi , if R.X / < 1.

(3) For ˇ 2 .R.X /; 1�, there does not exist a smooth toric conical Kähler–Einstein
metric ! satisfying

Ric.!/D ˇ!C .1�ˇ/ŒD�;

with an effective R–divisor Dˇ in Œ�KX �.

Proof (1) and (2) are proved by the uniform estimates from Lemma 3.13. If ˇ >
R.XP /, there still exists a smooth ˇ–weighted Kähler–Einstein metric satisfying
Ric.!/D ˇ!C .1�ˇ/ŒDˇ � for some toric divisor D , however, by Lemma 3.8, D is
not effective and so (3) is proved.
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Corollary 3.15 Let X be a Fano toric manifold and ! 2 c1.X / be a smooth Kähler
metric. We define

F!;˛.'/D J!.'/�
1

V

Z
X

'!n
�

1

˛
log

1

V

Z
X

e�˛'!n

for all ' 2 C1.X /\PSH.X; !/. Suppose R.X / < 1. Then:

(1) For ˛ 2 .0;R.X //, F!;˛ is J–proper.

(2) For ˛ DR.X /, F!;˛ is bounded below.

(3) For ˛ 2 .R.X /; 1�, inf
'2PSH.X ;!/\C1.X /

F!;˛.'/D�1.

Proof It suffices to prove .2/ by Corollary 2.21 . This can be proved by modifying
the argument in [4; 2]. By Theorem 3.14, there exists a unique .S1/n –invariant
 2L1.XP /\PSH.XP ; !/ satisfying

.!C
p
�1@@ /D e�˛ �; �D .�!/

˛ .�D/
1�˛;

where �! is a smooth volume form with
p
�1@@ log�! D �! and �D is a pos-

itive .n; n/–current with �
p
�1@@ log�D D ŒD� and D D D. ˛

1�˛
Pc/. For any

' 2 PSH.X; !/ \L1.X /, let 't be the weak geodesic 't joining  and ' with
'0 D  and '1 D ' . Then the modified functional

f .t/D F!;˛.'t /D J!.'t /�
1

V

Z
XP

't!
n
�

1

˛
log

1

V

Z
XP

e�˛'�

is convex on Œ0; 1� and f 0.0/� 0 by applying the same argument as in Theorem 6.2 in
[4]. This shows that F!;˛ is bounded below and since �D is bounded below away
from 0, and therefore F!;˛ is bounded from below as well.

Example 3.16 Let X be P2 blown-up at one point. Then R.X /D 6
7

as shown in
[34] and X admits a holomorphic P1 fiber bundle � W X ! P1 . Let D1 be the
infinity section of � and H1 and H2 be the two toric P1 fiber of � . Then the divisor
DP in the Equation (3-18) is given by

DP D 2D1C .H1CH2/=2:

We remark that for ˇ 2 .R.X /; 1�, there exists a smooth toric conical Kähler–Einstein
metric in c1.XP / satisfying Ric.g/ D ˇgC .1� ˇ/ŒDˇ � for some toric divisor Dˇ

in c1.XP / which can not be effective. However, it is not a conical Kähler metric we
are interested in, because the Ricci current of such a Kähler–Einstein metric is not
bounded below.
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4 The Chern number inequality

4.1 Curvature estimates

In this section, by deriving some curvature estimates for a poly-homogenous conical
Kähler metric whose Ricci curvature is bounded, we prove a Chern number inequality
for Fano manifolds admitting conical Kähler–Einstein metric.

Let D be the smooth divisor of X . At each point p on D , we can use the holomorphic
local coordinates

z D .y; �/D .z1; : : : ; zn�1; zn/; y D .z1; : : : ; zn�1/; � D zn

and D is locally defined by � D 0. We write � D r1=ˇei� for � 2 Œ0; 2�/. We use
Greek letters ˛; ˇ; : : : as indices for 1; : : : ; n and letters i; j ; : : : for 1; : : : ; n� 1.

Let us recall the following result by Jeffres, Mazzeo and Rubinstein [16, Proposition 4.3]
on the asymptotic expansion of poly-homogenous conical Kähler–Einstein metrics.

Proposition 4.1 Suppose ! is a poly-homogenous conical Kähler–Einstein metric
with conical singularity along a smooth divisor D of angle 2�ˇ . Let ' is a local
potential of ! , ie ! D

p
�1@@' in a neighborhood of a conical point .y; �/, then the

asymptotic expansion of ' takes the form

(4-1) '.r; �;y/�
X

j ;k;l�0

ajkl.�; z/r
jCk=ˇ.log r/l :

In particular, if the Ricci curvature of ! is bounded and ˇ 2 .1
2
; 1/, ' has the expansion

(4-2) '.r; �;y/Da00.y/C.a01.y/ sin �Cb01.y/ cos �/r1=ˇ
Ca20.y/r

2
CO.r2C�/

for some �.ˇ/ > 0.

When the Ricci curvature is bounded and ˇ 2 .1
2
; 1/,

' D a.y/C b.y/.�Cx�/C
p
�1c.y/.� � x�/C d.y/j�j2ˇC o.j�j2ˇC�/

for some � > 0. From now on in this section, we will always assume that g is a regular
conical Kähler metric on X with cone angle 2�ˇ for ˇ 2 .1

2
; 1/ along the simple

smooth divisor D , since for ˇ 2 .0; 1
2
�, Proposition 1.8 can be obtained by applying

Simon Brendle’s curvature asymptotics [5, Section 3].

Let us start with the following lemma, which is a consequence of straightforward
calculations.
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Lemma 4.2 Let g be a poly-homogenous conical Kähler metric with cone angle
2�ˇ along a smooth divisor D for ˇ 2 .0; 1/. Let o.1/ be the quantity satisfying
limj�j!0 o.1/D 0. Then

gzixzj � ıij C o.1/;(4-3)

g
�x�
� j�j�2.1�ˇ/

C o.j�j�2.1�ˇ//;(4-4)

g
zi
x�
�O.1/:(4-5)

By taking the inverse, we have the following corollary from Lemma 4.2.

Corollary 4.3 Let g be a poly-homogenous conical Kähler metric with cone angle
2�ˇ along a smooth divisor D for ˇ 2 .0; 1/. Then

gzixzj � ıij C o.1/;(4-6)

g�
x�
� j�j2.1�ˇ/C o.j�j2.1�ˇ//;(4-7)

gzi
x�
� j�j2.1�ˇ/:(4-8)

The following lemma gives estimates for the curvature tensor of g .

Lemma 4.4 Let g be a poly-homogenous conical Kähler metric with cone angle 2�ˇ

along a smooth divisor D for ˇ 2 .0; 1/. If the Ricci curvature of g is bounded, then

Rzixzj zkxzl
�R

zixzj zk
x�
DO.1/;(4-9)

R
zixzj �x�

DO.j�j�2.1�ˇ//;(4-10)

R�xzj �xzl
DO.j�j�1/;(4-11)

R
�x��xzl

DO.j�j�1/;(4-12)

R
�x��x�
DO.j�j�max.1;4.1�ˇ///:(4-13)

Proof The estimates (4-9), (4-10) and (4-11) can be shown by straightforward calcu-
lation using the curvature formula

R
˛ x̌
x�

D�g
˛ x̌;
x�

Cg�x�g˛x�;
g
� x̌;x�

:

The estimates (4-12) and (4-13) follow by combining the boundedness of the Ricci
curvature and the estimates (4-10) and (4-11).
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Corollary 4.5 Let g be a poly-homogenous conical Kähler metric with cone angle
2�ˇ along a smooth divisor D for ˇ 2 Œ1

2
; 1/. If the Ricci curvature of g is bounded,

then
R

zi

�;zkxzl
�R

�

�;zkxzl
DO.1/;

R
zi

zp;zkxzl
�R

�
zp;zkxzl

DO.j�j2.1�ˇ//:

From the curvature estimates, we immediately have the following proposition.

Theorem 4.6 Let g be a poly-homogenous conical Kähler metric with cone angle
2�ˇ along a smooth divisor D for ˇ 2 .0; 1/. If the Ricci curvature of g is bounded,
then we have the following pointwise estimates for jRmj2 :

jRm.g/j2g DO.j�j�2C4.1�ˇ//:

Consequently, the L2 –norm of Rm.g/ is bounded, ie there exists C > 0 such that

(4-14)
Z

X

jRm.g/j2g dVol.g/� C:

4.2 Chern forms for conical Kähler metrics

Let g be a poly-homogenous conical Kähler metric with cone angle 2�ˇ along a
smooth divisor D . We let � be the connection form on the tangent bundle TX induced
by g , so locally we may write

�˛
 D g˛
x̌
g

 x̌;�

dz�;

and �˛
 D @�
˛

 is the curvature form of � . Then the total Chern class is defined by

det.tI C�/D
nX

iD0

t2.n�i/ci.�/:

Let Pi.�1; : : : ; �n/ be the polarization of ci.�/D ci.X;g/ for the conical metric g .

Let g0 be a smooth Kähler metric and �0 be the connection induced by g0 as

.�0/
˛

 D .g0/

˛ x̌.g0/
 x̌;�dz�:

Then �0 D
p
�1@�0 is the curvature form of �0 .

Let �t D t� C .1� t/�0 with curvature

�t D
x@�t D t�C .1� t/�0:
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Then we have

c2.X; !/� c2.X; !0/D 2
p
�1

Z 1

0

@P2.� � �0; �t / dt:

We will construct connections on the divisor D from � and �0 . Let p be a point in
the divisor D . We can choose holomorphic local coordinates

z D .z1; : : : ; zn/; � D zn

such that D is locally defined by � D 0 as in Section 4.1.

Definition 4.7 We define H and H0 locally by

Hij D gij ; H ij
D .H�1/ij ; Hnj D gnj ;(4-15)

.H0/ij D .g0/ij ; .H0/
ij
D .H�1

0 /ij ; .H0/nj D .g0/nj :(4-16)

Definition 4.8 For each coordinate system .z; �/ chosen as above, we define .1; 0/–
forms �D and �0;D locally by

�D D .�
i
i /jD ;(4-17)

�0;D D .�0/
i
i jD CH ij Hnj .�0/

n
i jD :(4-18)

Lemma 4.9 The .1; 0/–form

(4-19) �D D .H
ij Hij ;k jD/dzk D @ log det H jD

defines a global smooth Chern connection of the anticanonical line bundle of D . In
particular, its curvature form

p
�1@�D is a smooth closed real .1; 1/–form in c1.D/.

Proof By Corollary 4.3, we have gixnjD D 0 and hence

.�D/
i
i D gi x̌g

i x̌;k
dzk D .H

ij Hij ;k jD/dzk D @.log det H jD/D @ log.!jD/n�1:

By Proposition 4.1, the regular part of ! restricted to D is a smooth Kähler form
from the expansion in Proposition 4.1 and for different holomorphic local coordinates
z D .z1; : : : ; zn�1/ and w D .w1; : : : ; wn�1/ on D ,

�D.z/D �D.w/C @ log
ˇ̌̌̌
det
�
@zi

@wj

�ˇ̌̌̌2
:

Therefore �D defines a smooth connection on anticanonical bundle of D .
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Lemma 4.10 The .1; 0/–form

�0;D D
�
.�0/

i
i C .H

ij Hnj /.�0/
n
i

�
jD

D
�
.g0/

i x̌.g0/i x̌;k jDdzk C .H
ij Hnj /.g0/

n x̌.g0/i x̌;k jDdzk

�
defines a smooth Chern connection of the anticanonical bundle of D . In particular,
p
�1@�0;D is a smooth closed real .1; 1/ form in c1.D/.

Proof Since g0 is smooth and the restriction of Hij , H ij , Hn;xj to D are all smooth
by the asymptotic expansion in Proposition 4.1, �0;D is locally smooth. It suffices to
show that they patch together give rise to a connection.

To do that we need to show that the transformation of �0;D under different coordi-
nate charts satisfies the cocycle condition for the anticanonical bundle of D . Let
.z1; : : : ; zn�1/ and .w1; : : : ; wn�1/ be two holomorphic local coordinates for some
neighborhood of a point p in D . Then they extend to two holomorphic coordinates
.z1; ::; zn�1; zn D �/, .w1; : : : ; wn�1; wn D �/ in a neighborhood of p in X , where
D is locally defined by � D 0 and �D 0. Therefore for i D 1; : : : ; n� 1,

@�

@zi

ˇ̌̌
D
D

@�

@wi

ˇ̌̌
D
D 0:

By letting

A˛
 D
@z˛

@w

; B˛
 D

@w˛

@z

; zAi

k D
@zi

@wk

; zBi
k D

@wi

@zk

;

we obtain along D ,

AD

 
zA �

0 @�
@�

!
; B D

 
zB �

0 @�
@�

!
; AD B�1; zAD zB�1:

Straightforward computations show that

�0;D.z/D �0;D.w/C @ log jdet zAj2

which completes the proof.

For any poly-homogenous conical Kähler metric ! with cone angle 2�ˇ along a
smooth divisor D , we can define the first and second Chern classes c1.X; !/ and
c2.X; !/. A priori, the intersection numbers among c1.X; !/ and c2.X; !/ might
depend on the choice of ! even if the Ricci curvature of ! is bounded. The following
proposition relates the c1.X; !/ and c2.X; !/ to c1.X / and c2.X /.
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Proposition 4.11 Let D be a smooth divisor on a Kähler manifold D . Suppose ! is
a poly-homogenous conical Kähler metric with cone angle 2�ˇ along D with bounded
Ricci curvature. ThenZ

X

c1.X; !/^!
n�1
D .c1.X /� .1�ˇ/ŒD�/ � Œ!�

n�1;(4-20) Z
X

c2.X; !/^!
n�2
D .c2.X /C .1�ˇ/.�c1.X /C ŒD�/ � ŒD�/ � Œ!�

n�2;(4-21) Z
X

c2
1.X; !/^!

n�2
D .c1.X /� .1�ˇ/ŒD�/

2
� Œ!�n�2:(4-22)

Proof We break the proof into the following steps.

Step 1 Equations (4-20) and (4-22) follow easily from the following observation. By
our assumption, ! is a regular conical Kähler metric (cf Definition 1.3), from which
we deduce that Ric.!/D �0C

p
�1@@ C .1�ˇ/ŒD�, where �0 is a smooth closed

real valued .1; 1/–form and  2 PSH.X; �/\L1.X / for some smooth Kähler metric
� . In particular, we may assume  2 C1.X nD/ since ! is smooth outside D .
Therefore � D �0C

p
�1@@ is smooth on X nD and � 2 c1.X /� .1� ˇ/ŒD� as

 2 PSH.X; �/\L1.X /. Therefore, we have

c1.X; !/D c1.X /� .1�ˇ/ŒD� 2H 2.X /:

Step 2 We first introduce a few notations. Let !0 be a smooth Kähler form in the
same class of Œ!�. Since the curvature tensor can be viewed as the curvature in the
tangent bundle, we write � D .� i

j /, �0 D .�
i
j / as the Chern connections on the tangent

bundle with respect to the Kähler metric ! and !0 . Their curvature forms are given
by � and �0 with

�D
p
�1 @�; �0 D

p
�1 @�0:

Let s be a defining section of D and h be a smooth hermitian metric on the line bundle
associated to ŒD�. We define

X� D fp 2X j jsj2h.p/ > �
2
g:

Then locally � D fS for some holomorphic function and on @X� , we have

� D f s D jf sjei�
D �jf jh�1=2e

p
�1� ; � 2 Œ0; 2�/;

d� D
p
�1�d� C �e

p
�1�d.jf jh�1=2/:

Let � D d.jf jh�1=2/. Then � is a smooth 1–form and on @X� ,

d� D
p
�1�d� C �� j@X� :
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Step 3 At each point p 2 @X� , we can apply a linear transformation to .z1; : : : ; zn�1/

such that gij D ıij at p and by rescaling � so that gnxn D j�j
�2.1�ˇ/ near p . Let

Hij D gij ; H ij
D .H�1/ij ; Hnj D gnj :

then we have

(4-23) j�j�2.1�ˇ/gixn
D j�j�2.1�ˇ/.gnxi C o.1//.det.g˛ˇ//

�1

D gnxi C o.1/DH ij Hnj C o.1/

and the connection form � has the estimates

�n
n D �

�

�
D

X
gn x̌g

n x̌;˛
dz˛ D�.1�ˇC o.1//��1d�C

X
i

o.1/ � dzi

D�.1�ˇ/
p
�1d� C

X
i

O.1/ � dzi (since � � � on @X�);

� i
n D

X
gi x̌g

n x̌;˛
dz˛ D gixngnxn;nd�C o.1/��1d�C

X
i

o.1/ � dzi

D gixn.j�j�2.1�ˇ//�d�C o.1/ � ��1d�C
X

i

o.1/ � dzi

D�.1�ˇ/H ij Hnj�
�1d�C o.1/ � ��1d�C

X
i

o.1/ � dzi

D�
p
�1.1�ˇ/H ij Hnj d� C o.1/ � d� C

X
i

O.1/ � dzi ;

�n
i DO.1/ � d�C

X
i

o.1/ � dzi D o.1/ � d� C
X

i

o.1/ � dzi ;

� i
k D

X
˛

O.1/ � dz˛ D o.1/ � d� C
X

i

O.1/ � dzi :

On @X� , by our assumption that ˇ 2 .1
2
; 1/ and using (4-23) we deduce

�n
n D
p
�1

X
˛;ˇ

Rn

n;˛ x̌
dz˛ ^ dzˇ

D

X
˛

o.1/ � d� ^ dz˛C
X
ˇ

o.1/ � d� ^ dzˇC
X
i;j

O.1/ � dzi ^ dzj ;

�i
n D

�
gix
gnx
 ;˛

�
x̌dz˛ ^ dzˇ

D
p
�1.gixngnxn;n/xzk

dzk ^ d�C
p
�1.gij gnj ;n/xzk

dzk ^ d�

C
p
�1.gij gnj ;k/x�d�^dzkC

p
�1.gij gnj ;k/xzl

dzl^dzkC

X
k;l

o.1/ � dzk^dzl
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D
p
�1.1�ˇ/.H ij Hnj /xzk

dzk ^ �
�1d�

C

X
k

o.1/ � dzk ^ d� C
X
k;l

O.1/ � dzk ^ dzl

D
p
�1.1�ˇ/@.H ij Hnj /^ d� C

X
k

o.1/ � dzk ^ d� C
X
k;l

O.1/ � dzk ^ dzl ;

�n
i D
p
�1Rn

i;˛ x̌
dz˛ ^ dzˇ

D
p
�1Rn

i;nxl
d�^dzlC

p
�1Rn

i;kxndzk^dx�C
p
�1Rn

i;kxl
dzk^dzlCo.1/dzk^dzl

D o.1/dzk ^ d� C o.1/dzk ^ dzl ;

�i
p D
p
�1Ri

p;˛ x̌
dz˛ ^ dzˇ

D
p
�1Ri

p;nxl
d�^dzlC

p
�1Ri

p;kxndzk^dx�C
p
�1Ri

p;kxl
dzk^dzlCo.1/dzk^dzl

D o.1/dzk ^ d� CO.1/dzk ^ dzl :

Step 4 By our assumption, ! is a smooth Kähler metric with cone angle 2�ˇ along
D 2X such that it Ricci curvature is bounded on X nD . This implies that

(4-24) �˛˛ D Ric.!/D !0� .1�ˇ/
p
�1@@ log jsD j

2
h;

where h is a smooth Hermitian metric on the line bundle OX .D/, !0 is a smooth
Kähler metric and sD 2H 0.X;OX .D// is a defining section for D . This implies thatZ

X nX�

�˛˛ ^!
n�1
D .Œ!0�� .1�ˇ/ŒD�/ �!

n�1
C o.�/;

from which we obtain (4-20).

Let �t D t� C .1� t/�0 be the connection on the tangent bundle TX . The curvature

�t D
p
�1x@�t D t�C .1� t/�0:

The transgression formula gives

c2.X; !/� c2.X; !0/D 2
p
�1

Z 1

0

@P2.� � �0; �t / dt

and

2P2.� � �0; �t /D .� � �0/
n
n ^ .�t /

i
i � .� � �0/

i
n ^ .�t /

n
i C .� � �0/

i
i ^ .�t /

n
n

� .� � �0/
n
i ^ .�t /

i
n� .� � �0/

i
k ^ .�t /

k
i

D�
p
�1.1�ˇ/.t@� C .1� t/@�0/

i
i ^ d�

� .1�t/.1�ˇ/
p
�1
�
H ij Hnj@.�0/

n
i �.���0/

n
i ^@.H

ij Hnj /
�
^ d�
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C o.1/ d� ^ dzk ^ dzl CO.1/ dzi ^ dzk ^ dzl

D
p
�1.1�ˇ/

�
�t@.� i

i /^d��.1�t/@
�
.�0/

i
iCH ij Hnj .�0/

n
i

�
^d�

�
C o.1/ d� ^ dzk ^ dzl CO.1/ dzi ^ dzk ^ dzl :

Now let � be a smooth Kähler form. ThenZ
X

.c2.X; !/� c2.X; !0/^ �
n�2

D 2
p
�1

Z 1

0

�Z
X

@P2.� � �0; t�C .1� t/�0/^ �
n�2

�
dt

D 2

Z 1

0

�Z
@X�

P2.� � �0; t�C .1� t/�0/^ �
n�2

�
dtC o.1/

D.1�ˇ/
p
�1

Z 1

0

Z
@X�

�
�t@.� i

i /�.1�t/@..�0/
i
iCH ij Hnj .�0/

n
i /

�
^d�^�n�2dtCo.1/

D .1�ˇ/
p
�1

Z 1

0

Z
D

�
�t@�D � .1� t/@�0;D

�
^ .�jD/

n�2dt

D .1�ˇ/.�c1.D/=2� c1.D/=2/ � ŒD� � Œ��
n�2
C o.1/

D .1�ˇ/.�c1.X /C ŒD�/ � ŒD� � Œ��
n�2
C o.1/:

The last three equalities follow from Lemma 4.9, Lemma 4.10 and the adjunction
formula. And similarly, we haveZ

X

.c2
1.X; !/� c2

1.X; !0/^ �
n�2

D

Z 1

0

�Z
X

@Q.� � �0; t�C .1� t/�0/^ �
n�2

�
dt

D 2.1�ˇ/

Z 1

0

Z
@X�

�
�t@.�˛˛ /� .1� t/@..�0/

˛
˛/
�
^ d� ^ �n�2dt C o.1/

(by (4-24)) D .1�ˇ/
�
�c1.X /C .1�ˇ/ŒD�� c1.X /

�
� ŒD� � Œ��n�2

D
�
�2.1�ˇ/c1.X / � ŒD�C .1�ˇ/

2ŒD�2
�
� Œ��n�2

which is equivalent to (4-22).

Step 5 Suppose that !0 2 Œ!� is a smooth Kähler form. We want to show thatZ
X

c2.X; !/^!
n�2
D

Z
X

c2.X; !/^!
n�2
0 ;(4-25) Z

X

c2
1.X; !/^!

n�2
D

Z
X

c2
1.X; !/^!

n�2
0 :(4-26)
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Since the proofs are parallel to each other, we will only prove the (4-25). Let ' be
defined by ! D !0C

p
�1@@' .Z

X

c2.X; !/^ .!
n�2
�!n�2

0 /D

n�3X
iD0

Z
X

p
�1@@' ^ c2.X; !/^!

i
^!n�3�i

0 :

For any i D 0; 1; : : : ; n� 3,Z
X

p
�1@@' ^ c2.X; !/^!

i
^!n�3�i

0 D

Z
@X�

dc' ^ c2.X; !/^!
i
^!n�3�i

0 C o.1/:

Note that

dc' D o.1/d� CO.1/dzk ;

! D o.1/d� ^ dzk C o.1/d� ^ dzk CO.1/dzk ^ dzl

and

�i
i ^�

j
j ��

i
j ^�

j
i ��

n
n ^�

j
j ��

n
j ^�

j
n

D o.1/dzk^dzl^dzp^d�Co.1/dzk^dzl^dzq^d�CO.1/dzk^dzl^dzp^dzq:

ThereforeZ
X

p
�1@@'^c2.X; !/^!

i
^!n�3�i

0 D

Z
@X�

dc'^c2.X; !/^!
i
^!n�3�i

0 Co.1/D 0

after letting � tend to 0.

Step 6 Finally, combining the above estimates, we obtain (4-22) and the proof of the
proposition is completed.

One can apply a similar argument to show that if ! is a poly-homogenous conical
Kähler metric ! with cone angle 2�ˇ along a smooth divisor D and if the Ricci
curvature of ! is bounded, then the nth –Chern number cn.X; !/ is well-defined and
does not depend on the choice of ! .

4.3 The Gauss–Bonnet and signature theorems for Kähler surfaces with
conical singularities

Definition 4.12 Let X be a Kähler surface and † be a smooth holomorphic curve on
X . If g is a poly-homogenous conical Kähler metric with cone angle 2�ˇ along †,
we define the corresponding conical Euler number and signature by

Geometry & Topology, Volume 20 (2016)



Greatest Ricci lower bound, conical Einstein metrics and Chern number inequality 95

�.X;g/D

Z
X n†

1

8�2

�
S2

24
CjW j2�

j
ı

Ricj2

2

�
dg;

�.X;g/D
1

12�2

Z
X n†

.jW Cj2� jW �j2/dg;

where S is the scalar curvature of metric g , W is the Weyl tensor for g and
ı

Ric is
the traceless Ricci curvature. In particular, if ˇ D 1, we recover classical characteristic
class.

The Gauss–Bonnet and the signature theorems are proved in [1] for smooth compact
Riemannian 4–folds with specified conical metrics with cone angle 2�ˇ along a
smooth embedded Riemann surface. As an immediate consequence of Proposition 4.11
and Definition 4.12 above, we obtain the following formulas related to the recent result
by Atiyah and Lebrun [1] by removing the assumption ˇ 2 .0; 1

3
/ in the Kähler case.

Proposition 4.13 Let g be a poly-homogenous conical Kähler metric with angle 2�ˇ

for ˇ 2 .0; 1� along a holomorphic curve †. If the Ricci curvature of g is bounded, we
have

�.X;g/D �.X /� .1�ˇ/�.D/;

�.X;g/D �.X /� 1
3
.1�ˇ2/ŒD�2:

Proof To prove the statement, we apply the identities (cf [1])

1

8�2

�
S2

24
CjW j2�

j
ı

Ricj2

2

�
dg;D c2.X;g/

1

12�2
.jW Cj2� jW �j2/ dgD

1

3
.c2

1.X;g/� 2c2.X;g//

and the statement follows from Proposition 4.11

4.4 The Chern number inequality on Fano manifolds

In this section, we will prove Theorem 1.9.

Proposition 4.14 Let X be an n–dimensional Fano manifold. If R.X /D 1, then the
following Miyaoka–Yau type inequality holds:

c2.X / � c1.X /
n�2
�

n

2.nC 1/
c1.X /

n:
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Proof We fix a smooth divisor D 2 j�mKX j for some m2ZC . Such a divisor always
exists by Bertini’s theorem. Then for any ˇ 2 .0; 1/, there exists a poly-homogenous
conical Kähler–Einstein metric ! satisfying Ric.!/D ˇg!C .1�ˇ/m�1ŒD�.

By Chern–Weil theory, if we let

ı

Rijkxl
DR

ijkxl
�

tr.R/
n.nC 1/

.gij g
kxl
Cg

ixl
gk xj /;

ı

RicD Ric�
tr.Ric/

n
g

be the traceless curvature and Ricci curvature tensor, we have�
2.nC1/

n
c2.X; !/�c2

1.X; !/

�
� Œ!�n�2

D
1

n.n�1/

Z
X

�
nC1

n
j
ı

Rj
2
�

n2�2

n2
j
ı

Ricj2
�
!n:

We then have �
2.nC 1/

n
c2.X; !/� c2

1.X; !/

�
� Œ!�n�2

� 0:

By Proposition 4.11, we have

c1.X; !/D ˇc1.X /; c2.X; !/D c2.X /C .1�ˇ/.�c1.X /C ŒD�/ � ŒD�:

This implies that �
2.nC 1/

n
c2.X /�ˇ

2c2
1.X /

�
� .ˇc1.X //

n�2
� 0:

The theorem then follows by letting ˇ! 1.

We also have the following lemma when R.X / < 1 with the same argument as in the
proof of Proposition 4.14.

Lemma 4.15 Let D 2 j�KX j be a smooth divisor. If there exists a conical Kähler–
Einstein metric gˇ for some ˇ 2 .0;R.X // satisfying

Ric.g/D ˇgC .1�ˇ/ŒD�;

then

c2.X / � c1.X /
n�2
�

nˇ2

2.nC 1/
c1.X /

n:

Theorem 1.9 is proved by combining Proposition 4.14, Lemma 4.15 and Theorem 1.5.
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4.5 The Chern number inequality on minimal manifolds of general type

The following proposition was first claimed in [44], although the analytic part in the
proof does not seem to be complete. The first complete proof seems to have been
given by Zhang [49] using the Ricci flow. In this section, we apply Proposition 4.11 to
complete Tsuji’s original approach.

Proposition 4.16 Let X be a smooth minimal model of general type. Then

(4-27)
�

2.nC 1/

n
c2.X /� c2

1.X /

�
� .�c1.X //

n�2
� 0:

In particular, if the equality holds, the canonical Kähler–Einstein metric is a complex
hyperbolic metric on the smooth part of the canonical model of X .

Proof Fix a smooth ample divisor D on X . Since ŒKX �C �ŒD� is a Kähler class
for any � > 0, there exists a poly-homogenous conical Kähler–Einstein metric in
ŒKX �C �ŒD� with conical singularity along D satisfying

Ric.!/D�!C �ŒD�:

By the same argument as in the proof of Proposition 4.14,�
2.nC 1/

n
c2.X; !/� c2

1.X; !/

�
� .�c1.X; !//

n�2
�

Z
X

j
ı

R.!/j
2!n
� 0:

By standard argument from [14; 50], ! converges as � ! 0 to the unique Kähler–
Einstein metric gcan on the canonical model Xcan of X in the C1 local topology away
from the exceptional locus the pluricanonical system. In particular, !can is smooth on
the smooth part of Xcan .

By letting � tend to 0, we have

(4-28)
�

2.nC 1/

n
c2.X /� c2

1.X /

�
� .�c1.X //

n�2
�

Z
X

j
ı

R.!can/j
2!n

can � 0;

where X ıcan is the smooth part of Xcan . When the equality holds,
ı

R .gcan/ vanishes on
X ıcan and so gcan must be a complex hyperbolic metric on X ıcan .

Then by the estimate (4-28), we immediately obtain an L2 –bound for the curvature
tensor of the canonical Kähler–Einstein metric on the regular part of the canonical
model associated to a smooth minimal model of general type.
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5 Discussions

In this section, we speculate on the limiting behavior of the conical Kähler–Einstein
metrics as ˇ tends to R.X /.

Conjecture 5.1 Let X be a Fano manifold with R.X /D 1. Then by Proposition 1.6,
there exists a smooth divisor D 2 j�mKX j for some m 2ZC such that for any � > 0,
there exists a regular conical Kähler–Einstein metric g� with Ric.g�/D .1� �/g�C
�m�1ŒD� for all � 2 .0; 1/. We conjecture that .X;g�/ converges to a Q–Fano variety
.X1;g1/ coupled with a canonical Kähler–Einstein metric g1 in Gromov–Hausdorff
topology.

The above conjecture is related to the recent result in [40], where the Kähler–Ricci flow
is combined with the continuity method to produce a limiting Einstein metric space
when R.X /D 1. We also make a more general conjecture when R.X /¤ 1.

Conjecture 5.2 Let X be a Fano manifold and D be a smooth divisor in j �mKX j

for some m 2 ZC . We consider the conical Ricci flow defined by

(5-1)
@g

@t
D�Ric.g/CˇgCm�1.1�ˇ/ŒD�

starting with a regular conical Kähler metric g0 2 c1.X / with cone angle 2�.1� .1�

ˇ/m�1/ along D . Then for some m 2 ZC and a generic choice of D , we have:

(1) If ˇ 2 .0;R.X //, the flow converges to a regular conical Kähler Einstein metric
on X with conical singularity along D .

(2) If ˇ D R.X /, the flow converges to a singular Kähler–Einstein metric on a
paired Q–Fano variety .X1;D1/ with conical singularities along an effective
Q–divisor D1 2 Œ�KX1 �.

(3) If ˇ 2 .R.X /; 1�, the flow converges to a singular Kähler–Ricci soliton on a
paired Q–Fano variety .X1;D1/ with conical singularities along an effective
Q–divisor D1 2 Œ�KX1 �.
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