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The greatest Ricci lower bound,
conical Einstein metrics and
Chern number inequality

JIAN SONG
XIAOWEI WANG

We partially confirm a conjecture of Donaldson relating the greatest Ricci lower
bound R(X) to the existence of conical Kihler—Einstein metrics on a Fano manifold
X . In particular, if D € |— Kx| is a smooth divisor and the Mabuchi K-energy is
bounded below, then there exists a unique conical Kéhler—Einstein metric satisfying
Ric(g) = Bg + (1 — B)[D] for any B € (0,1). We also construct unique conical
toric Kéhler—Einstein metrics with § = R(X) and a unique effective Q—divisor
D e [—Kx] for all toric Fano manifolds. Finally we prove a Miyaoka—Yau-type
inequality for Fano manifolds with R(X) = 1.

32Q20, 53C55

1 Introduction

The existence of Kéhler—FEinstein metrics has been a central problem in Kéhler ge-
ometry since Yau’s celebrated solution [47] to the Calabi conjecture. In [47], Yau
also successfully extended his study of complex Monge—Ampere equations to those
admitting singularities. Constant scalar curvature metrics with conical singularities
have been extensively studied by McOwen [25], Troyanov [43] and Luo and Tian [23]
for Riemann surfaces. In general, we may consider a pair (X, D) for an n—dimensional
compact Kéhler manifold and a smooth complex hypersurface D of X. A conical
Kéhler metric g on X with cone angle 2778 along D is locally equivalent to the model

edge metric
n—1

g=Y dz; ®dzj +|z,| " Pdz, ® dz,
ji=1
if D is defined by z, = 0. Applications of conical Kéhler metrics were proposed
by Tian [37] to obtain various Chern number inequalities. Recently, Donaldson [13]
developed a linear theory to study the existence of canonical conical Kihler metrics,
and Brendle [5] solved Yau’s Monge—Ampere equations for conical Kéihler metrics
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with cone angle 278 for g € (0, %) along a smooth divisor D. The general case was
settled by Jeffres, Mazzeo and Rubinstein [16] for all § € (0,1). As an immediate
consequence, there always exist conical Kéhler—Einstein metrics with negative or zero
constant scalar curvature with cone angle 2778 along a smooth divisor D for g € (0, 1).
When X is a Fano manifold, Donaldson propose to study the conical Ké&hler—Einstein
equation

-1 Ric(w) = fo + (1 - B)[D],

where D is smooth divisor in the anticanonical class [-Kx] and B € (0, 1). One of
the motivations is that one can study the existence problem for smooth Kdhler—FEinstein
metrics on X by deforming the cone angle. Such an approach can be regarded as a
variant of the standard continuity method.

In particular, since Tian and Yau [41] have already established the existence of a
complete Ricci-flat Kéhler metric on the noncompact manifold X\ D, one would expect
that (1-1) were solvable for B sufficient small. This was confirmed by Berman [2]. Now
the question is how large 8 can be. The largest § is closely related to the holomorphic
invariant known as the greatest Ricci lower bound, first introduced by Tian [36].

Definition 1.1 Let X be a Fano manifold. The greatest Ricci lower bound R(X) is
defined by

(1-2)  R(X) = sup{f | Ric(w) > Bw for some smooth Kihler metric w € c{(X)}.

Székelyhidi proved [34] that [0, R(X)) is the maximal interval on which one can use
the continuity method to solve the Kdhler—FEinstein equation on a Fano manifold X . In
particular, it is independent of the choice of the initial Kéhler metric when applying
the continuity method. The invariant R(X) was explicitly calculated for P2 blown
up at one point by Székelyhidi [34], and for all toric Fano manifolds by Li [18]. It is
well-known that if the Mabuchi K—energy is bounded from below then R(X) =1, and
Munteanu and Székelyhidi proved [27] that R(X) = 1 implies that X is K—semistable.
The following conjecture was proposed by Donaldson [13] to relate R(X) to the
existence of conical Kidhler—Einstein metrics.

Conjecture 1.2 There does not exist a conical Kdhler-Einstein metric solving (1-1) if
B € (R(X), 1], while one does exist if f € (0, R(X)).

This conjecture can be considered as a geometric interpretation of the invariant R(X).

The conjecture is also important because it gives a new approach to Yau’s conjecture
[48, Problem 65] of the equivalence of the existence of a Kédhler—Einstein metric on
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Fano manifolds and a certain algebro-geometric stability condition, which was refined
and extended by Tian [38] and Donaldson [10]. The algebro-geometric aspect of
Conjecture 1.2 has been studied by Li [20], Sun [33], Odaka-Sun [28] and Berman [3].
In particular, the notion of Log K-stability was introduced in [20] and [33] as the
algebro-geometric obstruction to solving Equation (1-1). In particular, R(X) can be
applied to test the Log K—stability of X when it is toric Fano. In [3], Berman proves
that Log K-stability is a necessary condition for the solution of (1-1). This naturally
leads to the Log version of the Yau—Tian—Donaldson conjecture, that is, to establish
the equivalence of the solvability of (1-1) and the Log K-stability of (X, D) (cf [20]
and [28]). An interesting observation of Sun [33] is that K-—stability implies Log
K-—stability.

Now let us fix our conventions.

Definition 1.3 Let (X, D) be a compact Kéhler manifold together with a smooth
divisor D C X'. A Kihler current @ on X with bounded local potentials is said to be
a regular conical Kdhler metric if w is smooth on X \ D and Holder continuous in the
sense of [13, Section 4.3] and [6, Section 3.2] (see also [16, Section 2.6.1]) on X .

Now we describe the main results of the present work. The first one is to partially
confirm Conjecture 1.2. We consider a more general class of conical Kidhler—Einstein
metrics with smooth divisors in any pluricanonical systems, and remove the assumption
in Donaldson’s [13, Theorem 2] on D by showing there exist no holomorphic vector
fields tangential to D (cf Theorem 2.8).

Theorem 1.4 Let X be a Fano manifold and R(X) be the greatest lower bound of
Ricci curvature of X .

(1) Forany B € [R(X), 1] and any smooth divisor D € | —mKy | for some m € Z%,
there does not exist a conical Kihler—Einstein metric @ satisfying

1—
(1-3) Ric(w) = o + —ﬂ[D]
m
if R(X)<1.
(2) For any B € (0, R(X)), there exist a smooth divisor D € | —mKy| for some
m € Z" and a regular conical Kihler-Einstein metric w satisfying (1-3).

The second part of the theorem is not completely satisfactory in the sense that one
would like to have an m that is independent of 8 € (0, R(X)). In the case when the
Mabuchi K—energy is bounded below, or more generally R(X) = 1, we show that D
does not rely on .
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Theorem 1.5 Let X be a Fano manifold. If the Mabuchi K—energy (cf Definition 2.6)
is bounded below and if D € | — Kx| is a smooth divisor, then for any 8 € (0, 1) there
exists a regular conical Kdhler—Einstein metric satistying the conical Kdhler—Einstein
equation

Ric(w) = B + (1 — B)[D].

In general, suppose the paired Mabuchi K—energy M, gr(x) (cf (2-7)) for a conical
Kéhler metric w with cone angle 27w (1 — (1 — R(X))/m) along D is bounded below
for a smooth divisor D € | —mKy| for some m € Z . Then for any B € (0, R(X)),
there exists a regular conical Kéhler—Einstein metric satisfying Equation (1-3).

We would like to remark that most results of Theorem 1.4 and 1.5 were independently
obtained by Li and Sun [21]. Theorem 1.5 might have many applications. In particular,
if the Mabuchi K-energy is bounded below, there exists a sequence of conical Kihler—
Einstein metrics Ric(ge) = (1 —€)g + €[D] as € — 0. (X, g¢) might converge in
Gromov—Hausdorff topology to a Q-Fano variety Xo, coupled with a canonical
Kihler-Einstein metric. Theorem 1.5 also holds if R(X) =1 and D € | —mKx| for
some m > 2 as in the following proposition. By Bertini’s theorem, there always exists
a smooth divisor D € | —m Kx| for m sufficiently large.

Proposition 1.6 Let X be a Fano manifold and D € | —mKy| be a smooth divisor
for some m > 2. Then for any € (0,(m — 1)R(X)/(m — R(X))), there exists a
regular conical Kihler—Einstein metric w satisfying (1-3) for D. In particular, when
R(X) =1, Equation (1-3) with D is solvable for any 8 € (0, 1).

The invariant R(X) can also be identified as the optimal constant for the nonlinear
Moser-Trudinger inequality. Let X be a Fano manifold and w € ¢;(X) be a smooth
Kéhler metric on X . Let us first recall a version of Ding’s [9] F—functional,

1 1 1
1-4 F. oa=17] —— | po"——=log— —Beyyn
(1-4) ,B w(®) 7 / 5 og - / e w

where

Vo1 - :
J, = Ao Adp Aw' A1
W) =~ ,~=ZO”+1/X 9 Ao Ao’ Ao

is the Aubin—Yau functional, w, = w++/—133¢ >0 and V = | v 0. As acorollary of
Theorem 1.4, we can establish a connection between R(X') and the Moser—Trudinger
inequality.
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(1) If B € (0,R(X)), F, g is bounded below and J—proper (see Definition 2.3)
on PSH(X,w) N L*°(X), or equivalently, there exist €, Cc > 0 such that the
Moser-Truding inequality

/ e PO < C.oB=Tu@=(BIV) [y v
X

holds for ¢ € PSH(X,w) N L*°(X).
(2) If B e (R(X),1), then

inf F <) = —00.
PSH(X.0)n LX) P ()

The properness of the F—functional on Fano Ki#hler—Einstein manifolds without
holomorphic vector fields was first proved by Tian [38] and Tian and Zhu [42].
The J-properness of F was conjectured in this case in [38] and later proved by
Phong, Song, Sturm and Weinkove [30]. The presence of the smooth divisor D
eliminates the existence of holomorphic vector fields tangent to D, as will be shown in
Theorem 2.8. It is interesting to ask whether or not F, g is always bounded from below
on PSH(X,w) N L*(X) if B = R(X). In the case of toric Fano manifolds, F, g
is indeed bounded from below if 8 = R(X) as a corollary of the following theorem
(Corollary 3.15). A more interesting problem will be to understand the limiting behavior
of the conical Kihler—Einstein metrics as 8 — R(X), since holomorphic vector fields
will appear in the limiting space. The following theorem serves an example for the
above speculation.

Theorem 1.7 Let X be a toric Fano manifold. Then there exist an effective toric
Q—divisor D € | — Kx|, which is unique when R(X) < 1, and a smooth toric conical
Kéhler metric w (cf Section 3.1) unique up to a holomorphic automorphism of X
satisfying

(1-5) Ric(w) = R(X)w + (1 — R(X))[D].

Moreover, R(X) is the largest possible B € (0, 1] such that

(1-6) Ric(w) = Bw + (1 - B)[Dg]

admits a regular conical toric solution wg for an effective toric R —divisor Dg € |- Kx]|.
We remark that the divisor D cannot be smooth, instead it is a union of effective
smooth toric Q—divisors with simple normal crossings. Theorem 1.7 is closely related

to the results of Li [19] with a different approach for the limiting behavior of the
continuity method. The proof of Theorem 1.7 relies on the toric setting introduced by
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Donaldson [11; 12] and the estimates in Wang and Zhu [45]. For 8 > R(X), there still
exists a regular conical solution for Equation (1-6), however, Dg won’t be effective
and so the Ricci current of the conical metric cannot be positive. In Theorem 1.7,
R(X) will be explicitly calculated as by Li [18] and D is determined by Lemma 3.8
and Lemma 3.9. For example, let X be P? blown up at one point, which admits a
P! —ruling 7: X — P! with Dy, being the section at the infinity. Then R(X) = g
and D = 2Duo + (H; + H»)/2, where H; and H, are the two P! fibers invariant
under the torus action. This seems to suggest that Donaldson’s conjecture might only
hold for smooth divisors lying in the pluri-anticanonical system. In fact, it was shown
by Li and Sun [21] that Theorem 1.7 can be applied to prove Conjecture 1.2 in the
toric case when one is allowed to replace | — Kx| by the linear system of a suitable
power of — Ky .

Finally, we will give some applications of Theorem 1.5. To do that, let us define the
conical Ricci curvature of a regular conical Kihler metric w on (X, D) with angle
278 along D by restricting Ric(w) to X \ D (ie Ric(w) — (1 — B)[D]). In general,
the conical Kihler metrics do not have bounded curvature tensors, as they might blow
up near the divisor, particularly when the cone angle is greater than 7. However, we
have the following:

Proposition 1.8 Let X be a Kihler manifold and D be a smooth divisor on X .
Let g be a conical Kihler metric on X with cone angle 2xf8 along D with B €
(0, 1) satistying the poly-homogenous expansion introduced in [ 16, Proposition 4.3]
(cf Proposition 4.1). If the Ricci curvature of g is bounded, then the L?—norm of the
curvature tensors of g is also bounded.

Here the Ricci curvature of a conical Kéhler metric g being bounded means that
the Ricci curvature of g is uniformly bounded on X \ D. Proposition 1.8 enables
us to define Chern characters, and in particular the Chern numbers for those conical
Kéhler metrics and derive corresponding Gauss—Bonnet and signature formulas for
Kihler surfaces with conical singularities along a smooth holomorphic curve %. This
is related to recent results of Atiyah and Lebrun [1] for smooth Riemannian 4—folds.
In fact, the bound on the L2—norm of the curvature tensor only depend on the scalar
curvature bound and topological invariants such as intersection numbers among D
and the first and second Chern classes. In [16, Proposition 4.3], the authors prove
that conical Kéhler—Einstein metrics for smooth divisor D € | —m Kx| admit poly-
homogenous expansions (cf Proposition 4.1). This in particular implies the following
Miyaoka—Yau-type inequality (cf [26; 46]).
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Theorem 1.9 Let X be a Fano manifold. If R(X) = 1, then the Miyaoka—Yau-type
inequality
n
1-7 2(X) e (X)) = ——c (X)"
(1-7) c2(X)-c1(X) _2(n+1)01( )
holds. In general, if D € | — Kx| is a smooth divisor and if the paired Mabuchi
K—energy Mp g is bounded below, then

np?
1-8 (X)) e (X)) = ———c (X)".
(1-8) c2(X)-c1(X) _2(n—|—1)61( )
Remark 1.10 The above result can be obtained as a consequence of log K—stability as
long as the equivalence between the existence of conical Kdhler—Einstein metrics and
log K-stability is established; in particular, the condition R = 1 should be equivalent
to K—semistability.

A parallel argument can be applied to give a complete proof of the Chern number
inequality for smooth minimal models of general type by using conical Kidhler—Einstein
metrics. This approach was first proposed by Tsuji [44], while the analytic estimates
seem missing. We remark that the first complete proof for smooth minimal models of
general type is due to Zhang [49], who used the Kéhler—Ricci flow.

2 R(X) and conical Kihler-Einstein metrics

2.1 Paired energy functionals

We recall the paired energy functionals originally introduced in [2].

Definition 2.1 Let X be a Fano manifold and w € ¢{(X) be a Kihler current with
bounded local potential and €2¢ be an integrable nonnegative real-valued (7, n)—current
(hence a Hermitian metric on K)_(1 ) on X whose curvature

6 = —~/—10010g Qg € c1(X)

is a nonnegative (1, 1)—current. Let €2, be the integrable nonnegative real-valued
(n, n)—current satisfying

V—1301og Qp = w.
Suppose
[ @@ =v =iy
X
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for a fixed B € (0, 1]. We define the paired F—functional by
1 1 1 _ _
QD Foop@)=do@) -y, [ g0~ g0y [ (7002)" @)
Vx B "V ix
for ¢ € PSH(X, w) N L°°(X), where
Vo1 i+ .
Jol9) = —— > /X3<pA8<pAw’Awg 1=

i:0n+1

is the Aubin—Yau J—functional and wy, = w + +/ —199¢ > 0.

The Euler-Lagrangian equation for (2-1) is given by

(2-2) (0 +V=100p)" = (¢720)" (29)' 7.
and the corresponding curvature equation is

(2-3) Ric(wy) = Bwy + (1 —)0.

When B =1, F,, g g(¢) = F,, is the original Ding’s functional [9]. The paired F—
functional also satisfies the cocycle condition by slightly modifying the proof for the
original F—functional.

Lemma 2.2 F,, ¢ g satisfies the cocycle condition
(2-4) Fo08(0)—Fo,080—V)=Fy,o0p¥)
for any ¢,y € PSH(X, w) N L*°(X), where wy, =  + =130y .

Notice by letting F(w, wy) = F, 9,8(¢) With 0y = @ + +/ —19d¢, the above equation
can be rewritten as

F(w,wy) + F(wy, wy) + Fwy,») = 0.

Definition 2.3 We say a functional G(-) is J—proper on PSH(X, w) N L*°(X) if
there exist 6, Cs > 0 such that

G(p) = 8Ju(p) —Cs
for all ¢ € PSH(X,w) N L*®(X).

Let X be a Fano manifold and D be a smooth divisor in |[—m Ky |. Let s be a defining
section of [D]. Since s € HO(X, K§_m),

Qp =|s|7H" = (s@5) /"
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can be considered as a smooth nonnegative real (n, n)—form with poles along D of
order m~!. Obviously, Ric(Qp) = —v/—1001log 2p = m~![D]. We then define the
following notation for convenience.

Definition 2.4 Let D € | —mKy/| be a smooth divisor for some m € Z*. We define
(2-5) Fw,ﬂ(‘ﬂ) = Fw,m_l[D],ﬂ((p)

1 1 1 _ -
= Jol) =5 [ po" = groes [ 0@ @),

v 8
1 1 1
Q6 Fupl)=Jo@) - /X v~ 5 log /X hoQ,.

To relate the Moser-Trudinger inequality to R(X), we introduce the next definition.

Definition 2.5 Let X be a Fano manifold and w € ¢;(X) be a smooth Kéhler metric.
We define the optimal Moser—Trudinger constant by

mt(X) = sup {ﬁ € (0,1]

inf F, 2) > — .
PSH(X,aglﬂLOO(X) w.p(") oo}

It is straightforward to verify that the invariant mt(X’) does not depend on the choice

of the Kihler metric w € ¢;(X). We also define the paired Mabuchi K—energy for
conical Kéhler metrics, first introduced in [2], as follows.

Definition 2.6 Let X be a Fano manifold. Suppose @ and w, are two regular conical
Kihler metrics in ¢ (X) with cone angle 27 (1 — (1 — 8)/m) along a smooth divisor
D €| —mKy|. The paired Mabuchi K—energy for (X, D) is defined by

(2-7) Mw,ﬁ(‘ﬁ) = Mw,D,ﬂ
=3 [ 08 0 = B = o) + 5, [ ot~}

where h,, is the Ricci potential of w defined by v/—199/,, = Ric(w) —w, and

n—1
I,(p) = V-1 Z/X8¢J Adp A Aw;_i_l
i=0

is the Aubin—Yau /—functional. In particular, M,, ; is the original functional introduced
by Mabuchi (cf Tian [38]).
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It is proved in [2, Theorem 1.1] that if the conical Kihler-Einstein equation is solvable
for the data (D, B), both F, g and M,, g are bounded below PSH(X, w) N C*°(X).
Furthermore, if one is bounded below, the other must also be bounded below, and
conversely, if either one of the functionals is J—proper, the Monge—Ampere equation
associated to the conical Kéhler—Einstein equation admits a bounded solution [2].
Moreover, it follows from the work of Chen, Donaldson and Sun [6, Section 3] (see also
[16]) that the solution is a regular conical Kéhler—Einstein metric as in Definition 1.3.

2.2 Pluri-anticanonical system

In this section, we will remove the assumption on the nonexistence of holomorphic
vector fields tangent to a smooth divisor D in [13, Theorem 2], when a conical Kihler—
Einstein metric is constructed by deforming the angle along the divisor D. First, let us
recall an elementary fact.

Lemma 2.7 Let X be a Fano manifold of dim X > 2. For any sufficiently large
m € 7T, there exists a smooth divisor D € |-mKx|. Moreover, we have

(D)= (1 =myey (X Ip= (]|

Theorem 2.8 Let X be a Fano manifold of dim X > 2 and D be a smooth divisor in
| =mKy/| for some m € Z*. Then there is no holomorphic vector field tangent to D.

Proof First, we claim there that no holomorphic vector field vanishes along D. To
achieve this, it suffices to show that

(2-8) HY (X, TX® K¥™)=0
thanks to the exact sequence
0—TXQ®KY" —TX — TX |p—0.
Since TX ® Ky =~ QS’(_I , we have
HOX, TX ® K&™) = HO(X, Q' @ k2" Dy),

If m > 1, then the right-hand side is 0 by the Kodaira—Akizuki—Nakano vanishing
theorem and the fact that Ky is negative. For m = 1, Equation (2-8) follows from
HO(X, Q%) =~ H* (X, Ox) = 0, which is a consequence of the Kodaira vanishing
theorem and X being Fano.

Second, we claim that any holomorphic vector field tangent to D must vanish along
D. Let us start with dim X = 2; by classification we know that any Fano surface X
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admitting a nontrivial holomorphic vector field must be isomorphic to either P! x P!
or P2 blown up at 0, 1,2 or 3 points. If X is isomorphic to P2 blown up at 0, 1,2
or 3 points, any holomorphic vector field on X is the lifting of a holomorphic vector
field on P? fixing the blown-up points. So any smooth invariant divisor with nontrivial
restriction of the holomorphic vector field on X must be P!, hence g(D) = 0. But by
Lemma 2.7, D € | —mKy| implies that g(D) > 1, which is a contradiction. Hence
the holomorphic vector field tangent to D must vanish along D. The same argument
appliesto X = P! x P!,

So from now on, let us assume that dim X > 3. Since X is Fano, we have 7{(X) =0
and hence 7{(D) = 0 by the Lefschetz hyperplane theorem and our assumption
dim X > 3. Since m > 0, either ¢y (D) <0 or D is a simply connected Calabi—Yau
manifold by Lemma 2.7. In both cases D does not admit any nontrivial holomorphic
vector field. So our proof is completed. a

Remark 2.9 Theorem 2.8 was speculated by Donaldson [13] and was first proved
in [2] in the case when the holomorphic vector field is Hamiltonian and m = 1.

Combined with the openness result in [13], we immediately have the following corollary.

Corollary 2.10 Let X be a Fano manifold and D € | —m K| be a smooth divisor for
some m € ZT . If there exists a regular conical Kahler—Einstein metric satisfying

Ric(g) = g+~ L (D]

for some B € (0, 1), then there exists € > 0 such that for any B’ with | — | <€,
there exists a regular conical Kéihler-Einstein metric g’ satisfying

1—p

m

Ric(g") = B'g +

[D].

2.3 The a—invariant and the Moser-Trudinger inequality

Let X be a Fano manifold and D be a smooth divisor in | —m Ky| for some m € Z*.
Let @’ € ¢1(X) be a smooth Kihler form and let €2, be a smooth volume form on X
such that

Ric(Qyp) = —vV—13010g Qo = o'

We now apply the continuity method and consider the following family of equations
for B €0, 1]:

(2-9) (0 + V—100¢)" = e (2P (Qp)' P, t<]0,B].
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We let
S ={zr [0, B]|(2-9) is solvable for some ¢ with w; a regular conical Kdhler metric}.

By the results in [16], 0 € S and S is open. Let w; = w 4+ ~/—13d¢; forany t € S.
The curvature equation of (2-9) is given by

Ric(w;) = tws + (B—1)o' + %[D] > twy.

Hence the Green function for w; is uniformly bounded below by ¢ for all € S [16].
Furthermore, let A; be the Laplace operator associated to w;. Then

Argr = —@r — 1@y

Following the argument for the smooth case with slight modification to the conical
Kihler metrics, one can show the following proposition. It is proved in a more general
setting in [2].

Proposition 2.11 Let X be a Fano manifold and D € | —m Kx| be a smooth divisor.

(1) If there exists B € (0, 1] and a regular conical Kihler-Einstein metric wgg
satisfying
. 1-5
Ric(wkp) = Boxe + T[D]’

then the paired F —functional

1 1 1 _ _
]:wKE,ﬂ(‘P) = J(I)KE(gD) - 35 / goa)lréE Y 10g 37 / (e waKE)ﬂ (QD)I ﬂ
Vx B "V ix
is uniformly bounded below for all ¢ € PSH(X, wxg) N L= (X).

(2) If w € ¢1(X) is a smooth Kéhler metric and the functional F,, g(¢) is J—proper
on PSH(X, w) N L°°(X) for some B € (0, 1], then there exists a unique regular
conical Kihler metric wgg solving

Ric(a)KE) = ,BCUKE + %[D]

The same argument as in the proof of Proposition 2.11 can be applied to prove the
following lemma if one replaces m~![D] by a smooth Kihler metric 0 € ¢;(X).
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Lemma 2.12 Let X be a Fano manifold and 8 be a smooth Kéhler metric in ¢;(X).

(1) If there exists a smooth Kihler metric wg on X satisfying

Ric(wg) = Bwg + (1 - )0

for some B € (0, 1], then

1 1 1 _ -
Fayo.6®) = oy @)= | 005 =g roe [ (0,720

is uniformly bounded below on PSH(X, w) N L°°(X).

(2) If w€ci(X) is a smooth Kéhler metric and the functional F,, ¢ g(¢) is J-proper
on PSH(X,w) N L°°(X) for some B € (0, 1], then there exists a unique smooth
Kihler metric wg solving

Ric(wg) = Bwp + (1— B)6.

The o—invariant was introduced by Tian [35] to obtain a sufficient condition for the
existence of Kihler—Einstein metrics on Fano manifolds. Demailly showed [8] that
the a—invariant coincides with the log canonical threshold in birational geometry. It is
natural to relate the log canonical threshold for pairs to the paired o—invariant, which
was first introduced in [2] as a generalization of the «—invariant.

Definition 2.13 Let X be a Fano manifold and D € | — m Kx| be a smooth divisor.
Let s be a defining section of [D] and /& be a smooth Hermitian metric on —m Ky .
Let w € ¢1(X) be a smooth Kihler metric. Then we define the paired «—invariant for

p € (0.1] by

(2-10)  ap,g(X)

=supqa >0

/ |s m —aﬁ(w—supw)wn <oo}.
(pePSH(X a))ﬂLOO(X)

It is straightforward to check that the invariant ap g does not depend on the choice of
smooth Hermitian metric # and Kahler metric w € ¢1(X). The following existence
theorem was first proved by Berman in [2, Section 6], where he constructed a unique
Holder continuous conical Kéhler—Einstein metrics via an effective estimate of ap g.
By [6, Section 3] (see also [16, Section 8]), we know that this conical Kéhler—Einstein
metric is in fact regular in the sense of Definition 1.3.
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Theorem 2.14 There exists Bp € (0, 1] such that for all 8 € (0, Bp] we have
2-11) X)> —
- o —_—
b.p n+1
In particular, there exists a regular conical Kédhler—Einstein metric w € ¢1(X) satisfying

1-p

Ric(w) = Bw + T[D]

for B € (0,8p).

In [32], the first author proves that if the o—invariant on an n—dimensional Fano
manifold is greater n/(n + 1), then the F—functional is J—proper. The following
theorem is a generalization to the conical case.

Theorem 2.15 Let X be a Fano manifold and w € ¢1(X') be a smooth Kéhler metric.
If D € | —mKy/| is a smooth divisor and if there exists p € (0, 1] such that

n
n+1

OtD’lg(X) >

’

then the functional

1 1 1
Foi) = Jol)=; [ 00" =210, [ (e720)" @)

as in Definition 2.4 is J,—proper on PSH(X, w) N L*°(X).

Proof We break the proof into three steps.

Step 1 Since ap g(X) >n/(n+ 1), by Theorem 2.14 there exists a regular conical
Kéhler—FEinstein metric wkg satisfying

Ric(oxe) = oxe + (D]

Let PSH(X, wkg, K) be the set of all ¢ € PSH(X, wgg) N L°°(X) such that

(2-12) 0SCY @ = sup ¢ —i}f(p S+ 1)Jp (@) + K.
X

We claim that F,, . g is Ju,—proper for all ¢ € PSH(X, wkg, K). To see that, take o
satisfying
np
n+1

<a < fBmin(apg, 1) <p
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and let Qp = |sp|*/™ with sp € HO(K;’_’") being a section defining D. Then

1

1 , !
7/ e_ﬂw(QD)l_ﬂ(a)féE)ﬂ — 7/ e~ @—suwpo)+(a@—By—a sup(ﬂ(QD)l—ﬂ(a)ﬁE)ﬁ
X X

< %e(a—ﬁ)inftp—asupw[Xe—a(w—suw)(QD)l—ﬁ(eréE)ﬂ
< ge(a—ﬂ) inf p—a sup g
vV
by the definition of ap g. By assumption (2-12), we have
% /X e PO (Qp) B (wlt)P < CeBONF D (@)—Bsun)
< CeHDB=) o (0)=(B/V) [x o

— CePoxe @ —((n+Da—nB) oy (0©)—(B/V) [x o

By taking logarithm of both sides of the above inequality, we obtain

Funep@) = ((n +15- ) Jons @) —C.

hence our claim follows.

Step 2 Now we will remove the assumption (2-12) for ¢ € PSH_(X ,w)NL%®(X). We
first consider all ¢ € PSH(X, w) such that o’ = wgg + +/—100d¢ is a regular conical
Kahler metric with cone angle 27 (1 — (1 — 8)/m) along D.

Following [39, Section 6.2], we consider the following family of Monge—Ampere
equations:

(2-13) (@ + vV=100p,)" = (¢ Q) Qb2 1elo.1].

Since Equation (2-13) can be uniquely solved for # = 1 and there exists no nontrivial
holomorphic vector field tangential to D by Theorem 2.8, by the implicit function
theorem in [13, Theorem 2] we deduce that Equation (2-13) is solvable for all 7 in a
neighborhood of 1. In particular, we have ¢; = —¢. Then, by an argument completely
parallel to [39, Section 6.2], we obtain that (2-13) is actually solvable for all ¢ € [0, 1].

Let w; =o' ++/—1 85(,0, . Note that the Ricci curvature of wgg++/—1 85(@ —1) = wy
isno less than §/2 for t > % Then the Green functions for both w and w; are uniformly
bounded from below by —G for some positive number G by [16, Lemma 6.7], and

AwKE(QD _901) = tra)KE(a)t —CI)KE) > —n, Awt ((pl‘ —§01) =n.
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Then by Green’s formula, for ¢ > l, we have

1 1
e 3 [ e—enete-nG=@i-en =y [ -enal +nG.
V Ix V Jx
Recall from [39, Chapter 6] that for any smooth Kéhler form @ on X, one can define
1 _
In(W):== | ¥(@"—-w)) withwy, =w+V—-130y,
vV Jx v
and that 7, and J,, satisfy
(2-15) 0=<1Io(¥)—Ju(¥) <nJy(y) fory e PSH(X, w).
Plugging them into (2-14) we obtain

oscx (¢r — ¢1) < Lo (9r —91) +2nG < (n+ 1) Joo (91 — @1) + 2nG.

This implies that ¢; —¢; € PSH(X, wkg, 2nG), and then the J,,, —properness holds
for ¢; — ¢, and there exist Cy, C, > 0 such that

o
o p 01— 1) > ((n e —n)JwKEm =G

B
> (%— - i 1)080;((% —¢1)—Cs.

Consequently, there exist C3 > 0 such that

}’l(l _Z)Ja)KE((p) = l’l(l —I)Jw/(QDI)
(using (2-15)) = (1 =)o (91) — Jor (1))

1
Z/; (o (ps) — Jor (ps5)) ds
= w/,ﬂ((pt)_fa)’,ﬂ(wl)

(by Lemma 2.2) = wKE,B((Pt_(Pl)
o n
> - ——— — -C
_(ﬂ n+1)OSCX((Pt ¢1) — s,

where the third inequality follows from the fact that (I, — Ju)(@;) is monotonically
increasing for ¢ € [0, 1]. Then by applying the cocycle condition and the same argument
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in the smooth case in [38; 42], we obtain

1
Foxe.8(9) = —For p(91) = /0 (T (@1) — Jor (@1))dt

> (1=0) (Lo (@)~ Jor (90) 2+ o)

1—1¢ 21—t
zTwa(fpl)— )OSCX(wt—wl)—C4

—t
=z _szKE((p) _CS(I _t)szKE(‘p) _C6~

Since Cs and Cg are 1ndependent of the choice for r > 5 by choosing ¢ sufficiently
close to 1, we can find €/, Cer > 0, such that

(2_16) ]:a)KE,ﬂ(‘p) Z E/JwKE((p) - CG/

for all ¢ € PSH(X, wkg) satisfying that w,, is a regular conical Kihler metric with
cone angle 27 (1 — (1 —fB)/m) along D. We claim that the set of such ¢ is dense in
PSH(X, wkg) N L*°(X), from which we deduce that the J,,, —properness holds for
PSH(X, wgg) N L°°(X).

To see that, notice that for any ¢ € PSH(X, wgg) N L*°(X), we have ¢ + ¢ €
PSH(X, w)NL>®(X) with ¥ defined by wgg = w ++/—139y and supy ¥ = 0. Since
PSH(X, w) NC*°(X) is dense in PSH(X, w) N L (X)) and for any ¢ € PSH(X, w)N
C°(X) we have

e = ¢ +ev/—100|s 2 TP/™ s ¢ € PSH(X, ) N LP(X) as € — 0,

and wg,_ is a regular conical Kéhler metric for each 0 < € < 1. Hence our claim
follows.

Step 3 Finally, to prove the J,—properness for any smooth w, all we need is to
replace Jy, by Jyp for smooth w in the definition of F, g. To do that, let us write
WK = + v/ —1 851// and recall that
0 1 n
Fo@)=Jo@) =, | oo
X
satisfies the cocycle condition F2(¢) — wKE (p —¥) = F2(y), which implies that

|
Q1D Jo) =0 =) = T3, [ 90" [ (-0t [ vor
1
=Jw(w>+7f)((¢—w)(w"—wﬁE>,
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since by our choice, w + ~/—190¢ = wkg + ~/—133(¢ — ¥) > 0. Again by [16,
Lemma 6.7], the Green function with respect to wkg is bounded from below, so we
obtain

1
sup(p —¥) < 7/ (¢ —V¥)oge + C.
X
and hence
1

(2-18) supw—CSV/ (9 —¥)oxe

X
since ¥ is fixed. So by Lemma 2.2, we obtain

Fw.8(0) = Foxe p(9 = V) + Fo p(¥)
(by (2-16)) > €' Ju (9 — V) — Cer

1
by C11) =€ (Jalo) = Jow)+ 5 [ (0= Wiefs-o" )~ Co
(p s fixed) > ¢ (Jw(q)) o [o—vete— [ ww”) e
V x Vx
(by (2-18)) > e/(Jw(qo) +supp — % /X goa)”) -C

1
> e/(Jw(go) + 7[ (supg —w)w”) —C =€ Jy(p)-C,
X
where the constant C = C(w, wgg, ¥, Ce). a

2.4 An interpolation formula

In this section, we will prove the following interpolation formula for the F —functional
to obtain J—properness.

Proposition 2.16 Let X be a Fano manifold and D a smooth divisor in | —m K x| for
some m € Z7 . Let w be a smooth Kihler metric in ¢ (X). If there exists a € (0, 1]
such that

inf Fw’a( ') > —00,
PSH(X,w)NL>®(X)

then F,, g(¢) is J—proper on PSH(X,w) N L*°(X) forall B € (0,a).
Proof We want to show that

1 1
Fo,ple) = Jw(w)—vaww”——

L =00 \Bio \1-B
log /X (€ Q)P (D)

is J—proper for all 8 € (0, @).
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First for 0 <7 < <o, we write B =1t/p+a/q forsome 1/p+1/q = 1. Then the
Holder inequality implies the interpolation

1 1 _ —
Fo@) = Jolg)= 5 10 7, [ (200

T o 1 1 Q, \ 7 PTe/
=(—+— ) Ju(p)— = log — ¢ t® .Q
(ﬁp+ﬁq)J(¢) ﬁOgix(e szu) >
T 1 1 - Tol—1
EE(Jw((P)_;IOgV/I;/(e Q) Qp )

o 1 1 — apl—a
+ 5 (st - s10e, [ Pauale)

T o T
= Fo,: @)+ - Foul®) = o Fo,(¢) —C1 = eJu(p) — C.
Br Bq Br
The last inequality follows from Theorem 2.15 by choosing 7 sufficiently small so that
apr>n/(n+1). O

The same argument in the proof of Proposition 2.16 can be applied to prove the
following lemma after replacing m~'[D] by a smooth Kihler metric 6 € ¢;(X).

Lemma 2.17 Let X be a Fano manifold and 6 be a smooth Kéhler metric in ¢{(X).
Let w be a smooth Kéhler metric in ¢y (X). If there exists o € (0, 1] such that

1 1 1 _ _ _
Fw,e,aw):lw(w)——/ gow"——log—/ ¢ (Q0) 7 Q)
V X o V X

is bounded below on PSH(X, w)NL*°(X), then F,, g(¢) is J—proper on PSH(X, w)N
L°(X) forall 8 € (0,).

We remark that Lemma 2.17 also serves as an alternative proof for Theorem 1.1 in [34]
relating R(X') and the continuity method.

2.5 Proof of Theorem 1.4

Proposition 2.18 (First part of Theorem 1.4) Let X be a Fano manifold and D be a
smooth divisor in | —m Ky | for some m € Z . If there exist B € (0, 1] and a regular
conical Kdhler—Einstein metric w satistying

Ric(w) = fw + %[D],

then
B = R(X).

In particular, the inequality holds if and only if § = 1.
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Proof Let wkg be a regular conical Kéhler—Einstein metric on X satisfying

Ric(wke) = Boxe + %[D]-

By Proposition 2.11, we know that F,, . g is bounded below. By Proposition 2.16,
Fo,p is J-proper for all " € (0, B).

Let , 6 € ¢;(X) be two smooth Kéhler metrics on X'. The J—properness of F,, g
immediately implies the J—properness of

1 1 1 y y ’
Foop @) = Jolg) [ v~ 5 log / B0, ()P

because $2p is strictly bounded below from 0. Then by Lemma 2.12, there exists a
minimizer of Fy, g g which solves the equation

Ric(w) = o+ (1-5)0 > fw.
This shows that R(X) > 8’ and so R(X) > .

If B = R(X) < 1, there must exist € > 0 and a regular conical Kihler—Einstein metric
g such that Ric(g) = (B + €)g + (1 — B —e)m™![D] by Corollary 2.10. We get a
contradiction to the definition of R(X) by repeating the previous argument. a

Proposition 2.19 (Theorem 1.4) Let X be a Fano manifold. Then for any B €
(0, R(X)), there exist a smooth divisor D € | —mKy| for some m € Z and a regular
conical Kdhler—Einstein metric g satisfying

Ric(w) = Bw + ﬂ[D].
m

Proof We break the proof into the following steps.

Step1 Let w and 6 be two smooth Kihler metrics in ¢ (X'). For any 8 € (0, R(X)),
by Szeklyhidi’s result [34], the family

@+ V000" = (720)" @) [ @) @0 =V
X
of Monge—Ampére equations is solvable for all ¢ € [0, 1]. Then by Lemma 2.12,

1 1
Fopl@) = Jol0) = [ oo =S log [ (@020
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is bounded below on PSH(X, w) N L*°(X). By Lemma 2.17, for any B’ € (0, ),
F, p (@) is J—proper. It immediately follows that for any B € (0, R(X)), there exist
€, C¢ > 0 such that for all ¢ € PSH(X,w) N L*®(X),

/ e PO < C.e BT @—B/V) [y v
X

Step 2 Let D be a smooth divisor in | —m Ky | for some m € Z™T to be determined
later. We will later choose m sufficiently large. Let s be a defining section of D and &
be a smooth hermitian metric on —m Ky . For any 8 € (0, R(X)), there exists § > 0
such that B 4+ 6 < R(X). Then

B
_2=8) B+ 2(=B8)(B+8) 5)(5-’1'3) ﬂ+5
/|S|h T e—ﬂwwnf(/ e—(ﬂ+8)wwn) (/ s, a)”)
X X

O(

<G (/ e~ (BF0e yn )
X

if we choose m > (1 —)(B + §)/8. By the conclusion in Step 1, there exist €, Cc > 0
such that

15|72 e PO < CLe BT @)=(B/V) [x 0"

Equivalently, 7, g(¢) is J—proper on PSH(X,w) N L*°(X). By Proposition 2.11,
there exists a unique smooth conical Kihler-Einstein metric wg solving

Ric(wg) = Bwg + %[D] O

Remark 2.20 Since (1 — 8)(8 + 6)/§ is decreasing with respect to §, there is a
8 € (0, R—p) such that the proof above works as long as m > (1—8) R(X)/(R(X)—p),
which is equivalent to 8 < R(m —1)/(m — R).

Now we can relate the optimal Moser—Trudinger constant to the invariant R(X).

Corollary 2.21 Let X be a Fano manifold and w € ¢{(X') be a smooth Kéhler metric.

(1) If B € (0, R(X)), F, g is J-proper on PSH(X,w) N L*°(X). Equivalently,
there exist €, C¢ > 0 such that the following Moser—Trudinger inequality holds
for all ¢ € PSH(X,w) N L*°(X):

/ eBOuN < C.e BT @—B/V) [x v
X
(2) IfB e (R(X),1), then

inf F ) =—
PSH(X,aglﬂLOO(X) w’ﬂ( ) o
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Proof For B € (0, R(X)) and a fixed smooth Kéhler metric 6 € ¢;(X), there exists
a smooth K#hler metric w satisfying Ric(w) = fw + (1 — 8)68. The corollary is an
immediate consequence of by modifying the interpolation formula in Proposition 2.16,
after replacing m~![D] by 6. a

Immediately, we can show that R(X) and mt(X) take the same value for a Fano
manifold X .

Corollary 2.22 Let X be a Fano manifold. Then

2-19) mt(X) = R(X)
= sup{p € (0,1) | Fy, g is J-proper on PSH(X, w) N L*°(X)},

where w € c¢1(X) is a smooth Kéhler metric.

2.6 Proof of Theorem 1.5

Before proving Theorem 1.5, we first quote the following proposition establishing the
equivalence for the Mabuchi K-energy and the F—functional when either of them
is bounded below, proved in [22] by applying the K#hler—Ricci flow and Perelman’s
estimates for the scalar curvature.

Proposition 2.23 Let X be a Fano manifold and w € c;(X) be a smooth Kihler
metric. Then Ding’s functional F,, is bounded below on PSH(X, w) N C*°(X) if and
only if the Mabuchi K—energy is bounded below.

Proposition 2.23 holds for the paired Mabuchi K-energy and the paired F—functional
as shown in [2]. One can also apply the continuity method for the conical Kéhler
metrics with positive Ricci curvature as in [31]. Let PSH(X, w) N C7° (X ) be the set
of all bounded ¢ such that w + V-1 88<p is a regular conical Kahler metrlc with cone
angle 27f along D.

Proposition 2.24 Let X be a Fano manifold and D € | —m Ky| be a smooth divisor.
Let @ be a regular conical Kéhler metric in ¢ (X) with cone angle 2x(1 — B)/m
along D. Then

inf My g(+) > —00
PSH(X,0)NCE’ (1 gy (X) .
is equivalent to
inf F ) >t—00
PSH(X,w)NL>(X) @.p(")
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We can now prove Theorem 1.5.

Theorem 2.25 Let X be a Fano manifold and D be a smooth divisor in | —mKx|
for some m € Z . If the paired Mabuchi K—energy My, R(x) on X is bounded
below, then for any 8 € (0, R(X)) there exists a regular conical Kihler-Einstein metric
satisfying

(2-20) Ric(g) = Bg + %[D]

Proof Let w € ¢{(X) be a smooth Kéhler metric. By Proposition 2.24, F,, r(x)(¢)
is bounded below on PSH(X, w) N L°°(X). Applying the interpolation formula in
Proposition 2.16, F,, g is J—proper on PSH(X, w) N L*°(X) for all B € (0, R(X)).
The theorem follows by Proposition 2.11. |

When the Mabuchi K—energy is bounded below on X', for any S € (0, 1), there exists
a conical Kéhler—Einstein metric satisfying Equation (2-20) for m = 1. In this case,
D is a smooth Calabi—Yau hypersurface of X . If we only assume R(X) =1, we have
the same conclusion in Theorem 2.25 for the linear systems | —m Kx| with m > 2.

Proposition 2.26 Let X be a Fano manifold and D be a smooth divisor in | —m Ky |
for some m > 2. Then for any € (0,(m —1)R(X)/(m — R(X))), there exists a
regular conical Kdhler—Einstein metric w satisfying

1 —

Ric(w) = Bw + —'B[D]

m

In particular, when R(X) = 1, we have conical Kihler-Einstein metric for any f €
0,1).

Proof We will give a proof for the case R(X) = 1; the general case follows from
the same argument and Remark 2.20. Let s be a defining section of | —mKy| and &
be a smooth hermitian metric on —m Kx . Then |s|;(2_€) is integrable for any € > 0.
Furthermore, F,, (;_gym—1[p},g 1s proper for any smooth Kéhler forms w, 6 € ¢1(X)
if B € (0, 1), Then the proposition can be proved by an interpolation argument similar
to the proof of Theorem 2.25. a

3 Conical toric Kihler—Einstein metrics

3.1 Conical toric Kihler metrics

In this section, we will introduce toric conical Kdhler metrics on toric Kidhler manifolds
and corresponding toric Kdhler and symplectic potentials as in [11; 12]. We begin with
some basic definitions for toric manifolds.

Geometry & Topology, Volume 20 (2016)



72 Jian Song and Xiaowei Wang

Definition 3.1 A convex polytope P C R” is called a Delzant polytope if a neighbor-
hood of any vertex of P is SL(n,Z) equivalentto {x; >0, =1,...,n} CR". P is
called an integral Delzant polytope if each vertex of P is a lattice point in Z".

Let P be an integral Delzant polytope in R” defined by
3-1) P={xeR"|lj(x)>0,j=1,...,N},

where
lj(x) =vj -X-f—)\j,

v; is a primitive integral vector in Z" and A; € Z forall j =1,..., N. Then P
defines an n—dimensional nonsingular toric variety by the following observation.

For each n—dimensional integral Delzant polytope P, as in [11; 12], we consider the
set of pairs (p,{vp,i};_,), where p is a vertex of P and the neighboring faces are
given by [, i(x) =vpi-x—Ap;>0fori =1,...,n. Foreach p, there is an affine
neighborhood X D U, = C" containing p with coordinate z = (zy, ..., z,) such that
z(p) = 0. Then for any two vertices p and p’, there exists 0, ,» € GL(n, Z) such that

Op.p’ " Vp,i = Vp/.i-
Furthermore, we have
Op.p' *Op'.p" " Op",p = 1.
Therefore o, ,/ serves as the transition function for two coordinate charts over (C*)".

More precisely, let z = (z;, ..., z,) and 2’ = (2], ..., z;;) € C" be the coordinates for
the chart associated to p and p’ respectively. Suppose 0, , = (a;j). Then

/I _ Qjj
4=TT=".
J

Each integral Delzant polytope uniquely determines a nonsingular toric variety Xp
by such a construction with the data (p, {vp,;}7_,). The constant A, ; determines an
ample line bundle L over Xp, and moreover,

H(Xp,L) = span{z®} 7 nnp-

Let pp =10g(}",cznrp 121**). Then wp = v/—130¢p is a smooth Kihler metric on
(C*)™ and it can be smoothly extended to a smooth global toric Kéhler metric on Xp
in ¢ (L). Then the space of toric Kéhler metrics in ¢; (L) is equivalent to the set of
all smooth plurisubharmonic function ¢ on (C*)” such that ¢ — @p is bounded and
V-1 85(,0 extends to a smooth Kéhler metric on Xp. If we consider the toric Kéhler
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potential ¢ which is invariant under the real torus action, we can view ¢ as a function
in R” by
0=¢(p), p=(p1,-..pn), pi=loglzi|®.

One can also define a symplectic potential # on P by

N
(3-2) u(x) =Y _1j(x)logl;(x) + f(x)

j=1

such that f(x) € C*®(P) and u(x) is strictly convex in P. It is due to Guillemin [15]
that the toric Kdhler potential and the symplectic potential are related by the Legendre
transform

@(p) = Lu(p) = sug(x-p—u(X)), u(x) = Lo(x) = Suﬂg (x-p—¢(p))
X€E pER”

or equivalently

p(p)=x-p—u(x), ulx)=x-p—e(p), x=Vpp(p), p=Vxu(x).

We would like to generalize the Guillemin condition to toric conical Kihler metrics on
Xp. This can be considered as a generalization of orbifold Kéhler metrics by replacing
the finite subgroup by a possibly infinite nondiscrete subgroup of (S')”. Suppose that
the integral Delzant polytope is defined by

P={xeR"|lj(x)=vj-x+1;>0,j=1,...,N}
with v; € Z" being a primitive lattice point and A; € Z.
Now we introduce the function spaces we will work with. Let p € P be a vertex,

whose neighboring faces are determined by vectors {vp;}7_,. Let U, C X be the

affine neighborhood corresponding to p with coordinates (z1,...,z,) € C". Then for
each 1 <i <n, [z = 0] (corresponding to the faces determined by v, ;) extends to a
smooth toric divisor of Xp. Let D be a toric divisor of Xp and suppose D restricted
to Up is given by

n
Z aijlz; = 0].
i=1
We can lift any function f(z) on U, invariant under the (S!)"-action to a function
Sw) = f(z)

by letting
wil = 1z P w = (wi.... wa) €C",
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and clearly f (w) is also (S!)"—invariant. In particular, we can regard the map w
as a B(p) = (B(P)1.....B(p)n)—covering of z € C". Then for any k € Z=° and
a € (0,1), we define a space of (S!)"”—invariant functions on U, by

k’ . g - ~
Chimp =1/ = [zl |zl | f(w) € CR@CM)y.
This allows us to define the weighted function space

ka(Xp) ={feC’X)| Sflu, € ﬂ(p) for every vertex p € P},

where B = (B1,....Bn) € (RT)N .1 Now we define the space of weighted toric Kiihler
metrics on Xp by considering a Kéhler current @ whose restriction to each chart is

given by
w = —185@1,

such that ¢, € C ﬂ°° Such a weighted toric Kihler metric is naturally a regular conical
Kéhler metric with cone angle 27f; along [z; = 0] and is called a smooth B-weighted
Kdihler metric. The local lifting ¢(w) is a smooth plurisubharmonic function on the
covering space w € C".

We can also define the space of weighted toric Kéhler potential ¢ on (C*)" such that
@ —@p is bounded and +/—10d¢ extends to a smooth weighted Kéhler metric on Xp.

We now define a weighted C g" symplectic potential

N
u(x) =Y Bl (x)loglj(x) + f(x)

j=1

for /€ C®(P) for j =1,...,n suchthat /€ C%®°(P) and u is strictly convex in P.
Then the weighted Kéhler potentials and the weighted symplectic potential determine
each other uniquely. In particular, we have following straightforward generalization of
the Guillemin condition for conical toric Kihler metrics.

Proposition 3.2 The weighted C ﬁ°° toric potential ¢ and the weighted C é’° symplectic
potential are related by the Legendre transform

@(p) = Lu(p) = sup (x-p—u(x)), u(x)=_Lp(x)= sup (x-p—9(p)

xX€P pER

or equivalently
p(p) =x-p—u(x) withx =Vyp(p) and u(x)=x-p—e(p) with p= Vyu(x).

"Notice that {B(p)1., ., B(pIn} Cib1.---. BN}
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In particular, if u(x) = ,Bj_ll i (x)loglj(x) + f(x), then the cone angle of the corre-

sponding conical toric Kahler metric is 2 8; along the toric divisor determined by
li(x)=0.

Let @ = ~/—133¢ be a smooth S—weighted Kihler metric and let u = £¢. Then
u(x)=73%; ,Bj_llj(x) log/;(x) + f(x) for some f € C*®(P).

Example 3.3 Let P = [0, 1]. Then the associated toric manifold is X = P! with the
polarization O(1). We consider the symplectic potential

u=(B1) 'xlogx + B5'(1—x)log(l—x).
Then
—1 —1
Xﬁl |2 _ X'Bl eﬂl—l_ﬂz—l

p=log|z|> =u'(x) = (By"' =B ") +1log T (1—x)f!

(1-x)f2"
and so

X ~ |z|2ﬁ1 near 0, (1—x)~ |z|_2‘32 near oo.

In particular, x is a smooth function of |z|2/31 near z = 0 and (1 — x) is a smooth
function of |z|_2’32 near z = 0o. The Kihler potential ¢ is given by

o(p) = x(B7' = B7 ") — B3 ' log(1 —x).

Hence ~/—13d¢ extends to a conical metric with cone angle 2778 and 27, at [z = 0]
and [z = oc] respectively. In particular, when = = B3, ¢ =~ log(1+ |z)28) and
w = 2+/—130¢ is a smooth f—weighted Kihler-Einstein metric in ¢ (P!) satisfying

Ric(w) = po + (1 - B)([z = 0] + [z = o0]).
Lemma 3.4 Let g be asmooth —weighted toric Kéhler metric on a toric manifold

Xp. Let D be the toric divisor such that g is a smooth toric Kdhler metric on X \ D.
Then for any k > 0, there exists C > 0 such that for any point p € X \ D,

(3-3) IVERm(g)l¢(p) < Ck.

Proof The calculation of |VfgC Rm(g)|g(p) can be locally carried out on the B-—
covering space for each coordinate chart (p,{v;}7_,) as in the orbifold case. All
the quantities must be bounded because the g is a smooth toric Kédhler metric after

being lifted to the covering space. a

We now can solve a Monge—Ampere equation with smooth S-weighted data.

Geometry & Topology, Volume 20 (2016)



76 Jian Song and Xiaowei Wang

Proposition 3.5 Let w be a smooth B —weighted toric Kdhler metric on a toric man-
ifold Xp. Then for any smooth f—weighted function f on Xp with |. Xpe_f o" =
[y, ", there exists a unique B —weighted smooth function ¢ satisfying

P

(3-4) (0 + vV—103¢p)" = e/ ", supp =0.
Xp

Proof We use the continuity method for ¢ € [0, 1] to solve the equation
(3-5) (@ + V—=100¢,)" = ' Ter e,
where ¢; is determined by [y, etf Teign = Jx, @" Let

S ={t €[0, 1] | (3-5) is solvable for ¢ with ¢; € CEO(XP)}.

Obviously, 0€ S. S is open by applying the implicit function theorem for the linearized
operator
Aps: C§ T2 (Xp) — CL%(Xp).

All the local calculation can be carried out in the f—covering space on each coordinate
chart (p, {v;}7_,) because all the data involved are invariant under the (S 1) _action.
It suffices to prove uniform a priori estimates for ¢; in C é‘ (Xp) fort €0, 1].
C%—estimates Let  be a smooth volume form on Xp. Then e/ *¢ " /Q lies in
Lite (Xp, Q) for some € > 0. By Yau’s Moser iteration [47] adapted to the conical
case or by Kolodziej’s L °°—estimate [17], there exists C > 0 such that for all # €[0, 1],
if ¢; € CEO(X) solves (3-5), then

l@ellLoe(xp) = C-
Second-order estimates We consider
H; =logtry(ws) — Agy;.
Suppose at ¢ € [0, 1], supy,, H; = H;(q). We lift all the calculation on the (ShHy"-

invariant S—covering space in a fixed local coordinate chart w € C". Standard
calculations show that near ¢, there exists C > 0 such that

- A
Ay pH; > ~Cuig, (@) — An+ 4115, (@) = 7 115, @) — C.

where ¢, ® and @, are the lifting of ¢, » and w;. By the maximum principle, at
g, trg, (@) is bounded above by a constant independent of ¢ € [0, 1]. Combining the
Equation (3-4), trz(w;) is also bounded above by a constant independent of ¢. Hence
there exists C > 0 such that for all 7 € [0, 1], if ¢; € CEO(X) solves (3-5),

C o <w; <Cow.
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Higher-order estimates Calabi’s third-order estimates can be applied in the same the
way as in [47; 29] by using the maximum principle after lifting all the local calculations
on the (S!)”—invariant covering space. The Schauder estimates can also be applied by
the bootstrap argument. Eventually, for any k > 0, there exists Cj such that for all
t€[0,1],if ¢; € CEO(X) solves (3-5),

”(pf||C§(Xp) = Ck. a

3.2 Proof of Theorem 1.7

An n—dimensional integral polytope P is called Fano if it is a Delzant polytope and
A; = 1 for each defining function /;(x) = v; - x + A;, from which we deduce 0 € P.
The toric manifold Xp associated to P is a Fano manifold. Each (n — 1)—face of P
corresponds to a toric divisor of P. Then the union Dp = ;j Dj for all the boundary
divisors lies in ¢;(X) = ¢ (—=Kyx), where D; is the toric divisor induced by the face
{/j(x) = 0}. In particular, [D] is very ample.

The Futaki invariant of Xp with respect to (S!)”—action is shown in [24] exactly the
barycenter of P defined by
_ [pxadv

= fpav

where dV = dxydx; - - - dxy is the standard Euclidean volume form.

c

The following theorem on the existence of Kihler—Einstein metrics on toric Fano
manifolds is due to Wang and Zhu [45].

Theorem 3.6 There exists a smooth toric Kidhler—Einstein metric on a toric Fano
manifold Xp if and only if the barycenter of P coincides with 0.

If the barycenter is not at the origin, it is also proved in [45] that there exists a toric
Kihler-Ricci soliton on X p. The following theorem was proved by Li [18] to calculate
the greatest Ricci lower bound R(X).

Theorem 3.7 Let Xp be a toric Fano manifold associated to a Fano Delzant polytope
P. Let P, be the barycenter of P and Q € 0P such that the origin O € P.Q. Then
the greatest Ricci lower bound of Xp is given by

Q .
[P0l

(3-6) R(Xp) =

Geometry & Topology, Volume 20 (2016)



78 Jian Song and Xiaowei Wang
For any t € R”, we define the divisor D(t) by

N
(3-7) D(r) =) 1j(1)D;.

D(7) is a Cartier R—divisor in ¢;(X) and it is effective if and only if T € P. The

defining section s, of D(t) is given by the monomial
Sz =1z".

Although s; is only locally defined,

|2‘E

|| = |2[*" =™

is globally defined and |s;|~2 induces a singular hermitian metric on —Ky and can
be viewed as a singular volume form with poles along D; of order /;(r). We deduce:

Lemma 3.8 If R(X) < 1, then the R—divisor D(r) with t = —12 P, is effective if
and only if « € [0, R(X)].

We consider the real Monge—Ampere equation on R” for a convex function ¢,

(3-8) det(V2¢) = ¢~ @9~ (U—0)Tp

Let u = L¢ be the symplectic potential. Then det(VZu) = (det(V2¢)")~! and the
dual Monge—Ampere equation for u is given by

(3-9) det(Vzu) — e—oeu-i—(oex-i—(l—ot)r)-Vu'
If we let @ = +/—139¢, the corresponding curvature equation is given by
Ric(w) = aw + (1 —a)[D(7)].
Lemma 3.9 Suppose there exists a smooth «—weighted Kahler—Einstein metric @ =

V—100¢ satistying
Ric(w) = aw + (1 —a)[D(7)]

for some o € (0, R(X)] and t € P. Then

(3-10) r=—1LPc for a # 1 and any vectorin P fora = 1.
—a

Furthermore, there exists f € C°(P) such that

N
G-11) L) =D B ) loghi(x) + f(x), B =S
j=1
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Proof Consider the corresponding Monge—Ampere equation
(det V2¢)" = e—d—(—a)rp

The right-hand side e~@®~(1=®)™ jg integrable on R” and in fact
/ e @ (—)Tpg, — / det(V2¢)dp = / o" =c(X)".
n R” X
Then the Monge—Ampere mass det(V2¢)dp becomes dx by the moment map and
0= / V(e @-U=®wr)g,
—_ / (@Ve + (1 —a)r)e 2~ (-0Tryg,
R~

= —/ (ax + (1 —a)t)dx = — (P + (1 —a)r)/ dx.
P P
Therefore v = %Pc for a # 1.

Suppose u(x) = LP(x) = ZJN=1 ,Bj_llj (x)loglj(x) 4+ f(x). The Monge—Ampere
equations for ¢ and u are given by

det(V3g) = e @@+ PP dey(V2y) = e~ U—x—Pe)Vu)

Without loss of generality, we assume that /{(x) = /,(x) = --- = [,(x) = 0 with
li(x) =vi-x+1,1=<1i <n defines a vertex p of P. Then there exists a smooth
positive function F(x) on any compact subset U of P with U N {/ i(x) =0} =¢ for

all j > n, such that Fx)

2, —
= L OhG) b

On the other hand,
u(x)—(x— P.)Vu(x)
N N
=Y B i (P)logli(x) =Y B (x = Pe)-vj — (x — Pe) - V f(x)

j=1 j=1
and so o= P (Vf()+X; B vy)

e—tx(u—(x—Pc)-Vu) —
—17.
[T (1 ()i 1 Py

Comparing the powers of /;(x), we have

lj(Pc)
= ].(P 4
since /j(0) = 1. This completes the proof of the lemma. o
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Remark 3.10 Notice that it follows from [7] that the log Donaldson—Futaki invari-
ant defined in [13] for the toric Fano pair (X, D;), with D; being the toric divisor
determined by the vector 7 € P, is

(3-12) DF(X, D;; L) = —V(P)(aPc + 1) € R",

where V(P) is the volume and P¢ € R” is the barycenter of the polytope P.
Lemma 3.9 leads us to consider the Monge—Ampere equation

(3-13) det(V2g)" = e~ @@~ Fep)

The right-hand side of Equation (3-13) is always integrable since P, lies in P and
¢ —log(> " ePxP) is bounded on R”, where we are summing over all vertices {py}
of P.

For each o € (0, 1], we define B = B(a) = (B1,B2.....Bn) by Bj = (i (Pc)/ 1 (0))c.

Lemma 3.11 For any « € (0, 1], there exists a C ﬁo? ) conical toric Kéhler metric w
such that
Ric(w) = af + (1 —a)[D(7)],

where 6 € ¢{(X) is a fixed Cg(oa) toric Kahler metric and t© = 12 P.. In particular,
Ric(w) > 0, if a € (0, R(X)).

Proof Tt suffices to prove | for « € (0,1). Let u(x) =2 ,3 1;(x)log/j(x) for

Bi = (j(P:)/1j(0))a. Let ¢ L and @ = v/ — 88¢ Then there exists a Cﬁof’ ) real

valued (1, 1)—form 7 € ¢ (X) and a divisor D(r) with T = —1%; P, such that
V=1331log&" = an + (1 —)[D(7)].
This is because along each D; defined by /;(x) = 0, @" has a pole of order
1-Bj =1-=1;(Pc)

and
(l—a)D(t)—(l—a)(Zl( ) ) Z(l l;(Po)a)Dj.

Since n € ¢y (X) is Cﬂ( X there exists ¥ € C ﬂ( ) such that 4 ~/—130y isa C
toric Kihler metric. Without loss of generality, we may assume that

| evor=| o
Xp Xp

ﬂ(a)

after a constant translation.
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By Proposition 3.5, the equation

(@ +vV—1009)" =e¥d", supp =0
Xp

admits a unique Cg? ) solution ¢. Let w = ® + v/—13d¢ and 6 = 1+ ~/—190v,
then we obtain
Ric(w) = a6 + (1 —a)[D(7)]. a

By Lemma 3.11, there is a C ﬂof ) Kihler potential ¢o with wy = v/—193¢g such that
Ric(wg) = a8+ (1 —a)D(7)

for a C°°)(XP) Kihler metric 6 € ¢;(Xp) and © = %, Pc if o # 0. Let

1
w = —(—aP.-p—logdet(V¢y)).
o

Then

V=190w =6

and |w — $ | is uniformly bounded by the argument in Lemma 3.11. This implies that
wisa Cg° 5@) Kéhler potential and we have

det(V2gg) = e~ @ Fep),

We will then use the continuity method for the following family of Monge—Ampere
equations for 7 € [0, «],

(3-14) det(V2¢t) — o 1@ —Pcp)—(a—t)w

Let ¢ = ¢y — g and hy € C Bla )(Xp) be the unique function satisfying
—+/—1031og 0" — V—130hg = af + (1 —a)[D(7)]. / ehogn = | o".
Xp Xp

Then Equation (3-14) is equivalent to
(3-15) (V=109w0 + v/—100¢,)" = e~ (chov ag)/* (che 0)* /%
where A, is defined for 6 = wq. Let
S ={t €[0,a]| (3-14) is solvable for  with v/~10d¢, € C5o,)(Xp)}.
Obviously, ¢ solves (3-14) for t = 0 and so S # ¢. Notice that
Ric(wy) =tws + (@ —1)0 + (1 —a)[D(7)] > tw;
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for t € [0,a] and © = %, P, if @ # 1. It implies that the first eigenvalue of the
Laplace operator A; = tr,, (+/—199) is strictly greater than 7. By the argument in
Proposition 3.5, S is open and it suffices to show that S is closed by proving uniform
a priori estimates for ¢, — ¢g.

Proposition 3.12 There exists C > 0 such that for all t € [0, «],

(3-16) s — dollLoo®m) = C.

Proof We fix some positive €y € S. We let
O =o' ($—Perp) and W=a"l(w—Pep).
Then the Equation (3-14) becomes
det V2<I>, = ¢ (@ W)

Let W; = ®; + W . Immediately, we can see that the moment map with respect to ®;
is given by
F;: Vb, - P—P,

whose image is the translation of P by — P.. In particular, the barycenter of the new
polytope P — P, coincides with the origin.

Suppose
my = Wi(pr) = ]iRQlth(/))

for a unique p; € R” since W; is asymptotically equivalent to log(3_ e(Px—Fc)p)
where pj are the vertices of P. We can apply the same argument as Wang and
Zhu [45]. First one can show by John’s lemma and the maximum principle (see [45,
Lemmas 3.1 and 3.2]), that there exists C > 0 such that for all ¢ € [¢q, ],

my = Wi (pr) = ]iél,th(,O) =C.

Then by using the fact that the barycenter of P — P, lies at the origin O, the same
argument as in [45, Lemma 3.3] shows that there exists C > 0 such that for all 7 € [¢g, @],

lpe] < C.

This then implies that
Yr = Ol_l(q)t -W)

is uniformly bounded above for ¢ € [¢(, ] by the same argument as in [45, Lemma 3.4].
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The uniform lower bound of ¢; can be obtained either by the Harnack inequality

—infe, < C(1 4 sup ¢;)
Xp

Xp

adapted from the smooth case or directly by the argument in [45, Lemma 3.5]. a

Lemma 3.13 For any k > 0, there exists Cj > 0 such that for all t € [0, «],

(3-17) leellcr xpy = Ci-

Proof The Laplacian Agy) ;¢ is uniformly bounded by Yau’s estimates after lifting
the calculations to the B(«)—covering space as in the proof of Proposition 3.5. The
C3—estimates and the Schauder estimates can be applied in the same way. a

Theorem 3.14 Let Xp be a toric Fano manifold.

(1) For any 8 € (0, R(Xp)), there exist a unique smooth toric conical Kihler—
Einstein metric w and a unique effective toric R —divisor Dg € |- K| satisfying

Ric(w) = Bw + (1 — B)[Dgl.

(2) For B = R(Xp), there exists a unique smooth toric conical Kihler—Einstein
metric w satistfying

(3-18) Ric(w) = R(Xp)w + (1 — R(Xp))[Dp]

for an effective Q—divisor Dp in ¢;(X). In particular, if D; is the toric divisor
associated to the face defined by [j(x) = vj-x 4+ Aj =0, then

_ l_ﬁj . ._lj(Pc)
DP_ZI—R(X)D]’ Pi="10) RXP)

and the cone angle of w along Dj is 2nf;, if R(X) < 1.

(3) For B € (R(X), 1], there does not exist a smooth toric conical Kihler—Einstein
metric w satisfying

Ric(w) = po + (1 - pP)[D],
with an effective R—divisor Dg in [-Kx].
Proof (1) and (2) are proved by the uniform estimates from Lemma 3.13. If 8 >
R(Xp), there still exists a smooth B—weighted Kdhler—Einstein metric satisfying

Ric(w) = Bw + (1 — B)[Dg] for some toric divisor D, however, by Lemma 3.8, D is
not effective and so (3) is proved. O
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Corollary 3.15 Let X be a Fano toric manifold and w € c;(X) be a smooth Kéhler
metric. We define

1 1 1
Foal9) = Ju(@)~ 5, [ po" = tog [ oo
’ | 4 X o | %4 X
for all p € C*°(X) NPSH(X, w). Suppose R(X) < 1. Then:

(1) Fora € (0,R(X)), Fy, is J—proper.
(2) For o = R(X), Fy o is bounded below.

3) F e (R(X),1], inf F, = —00.
(3) Fora € (R(X) ](pePSH(X,laI})ﬂCOO(X) w,a(®) oo

Proof It suffices to prove (2) by Corollary 2.21 . This can be proved by modifying
the argument in [4; 2]. By Theorem 3.14, there exists a unique (S!)”—invariant
Y e L°(Xp) NPSH(Xp, w) satisfying

(w+ J—_laéw) = u, pn=(Qw)*(Qp) e,

where Q, is a smooth volume form with +/—1391log Q, = —w and Qp is a pos-
itive (1, n)—current with —v/—1301log Qp = [D] and D = D(7%; Pc). For any
¢ € PSH(X,w) N L*®(X), let ¢; be the weak geodesic ¢; joining ¥ and ¢ with
¢o = ¥ and @1 = ¢. Then the modified functional

1 1 1 _
10 = Foalo) =Joten — | e~ oy [ e

Vv Xp o 1% Xp
is convex on [0, 1] and f’(0) > 0 by applying the same argument as in Theorem 6.2 in
[4]. This shows that F, o is bounded below and since €2p is bounded below away
from 0, and therefore F,  is bounded from below as well. O
Example 3.16 Let X be P2 blown-up at one point. Then R(X) = g as shown in
[34] and X admits a holomorphic P! fiber bundle 7: X — P!. Let Do be the
infinity section of 7 and H; and H, be the two toric P! fiber of 7. Then the divisor

Dp in the Equation (3-18) is given by
Dp =2Dy + (Hy + H)/2.

We remark that for § € (R(X), 1], there exists a smooth toric conical Kdhler—Einstein
metric in ¢;(Xp) satisfying Ric(g) = Bg + (1 — B)[Dg] for some toric divisor Dg
in ¢ (Xp) which can not be effective. However, it is not a conical Kéhler metric we
are interested in, because the Ricci current of such a Kidhler—Einstein metric is not
bounded below.
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4 The Chern number inequality

4.1 Curvature estimates

In this section, by deriving some curvature estimates for a poly-homogenous conical
Kihler metric whose Ricci curvature is bounded, we prove a Chern number inequality
for Fano manifolds admitting conical Kédhler—Einstein metric.

Let D be the smooth divisor of X . At each point p on D, we can use the holomorphic
local coordinates

Z:(y’S):(ZI»”-»Zn—laZn)’ y:(zlw--’zn—l)? é:Zn

and D is locally defined by £ = 0. We write £ = r!/Bei? for 6 € [0,27). We use
Greek letters «, 8, ... as indices for 1,...,n and letters 7, j,... for 1,...,n—1.

Let us recall the following result by Jeffres, Mazzeo and Rubinstein [16, Proposition 4.3]

on the asymptotic expansion of poly-homogenous conical Kihler—Einstein metrics.

Proposition 4.1 Suppose o is a poly-homogenous conical Kihler—Einstein metric
with conical singularity along a smooth divisor D of angle 2nf. Let ¢ is a local
potential of w, ie @ = ~/—13d¢ in a neighborhood of a conical point (y, ), then the
asymptotic expansion of ¢ takes the form

(4-1) o(r.0.9) ~ Y a0, 2)r/ P logr).
J,k,[=0

In particular, if the Ricci curvature of @ is bounded and 8 € (%, 1), ¢ has the expansion
(4-2) @(r.6. y) =aoo()+(ao1 (y) sin +bo1 (v) cos O)r /P +-az ()r? +0(r>*¢)

for some €(f8) > 0.

When the Ricci curvature is bounded and 8 € (%, 1),

0 =a(y) +b(V)E+E) + V—1c(»)(E—E) +d()IEI*P +o(gPTe)

for some € > 0. From now on in this section, we will always assume that g is a regular
conical K#hler metric on X with cone angle 2z for § € (%, 1) along the simple
smooth divisor D, since for B € (0, %], Proposition 1.8 can be obtained by applying
Simon Brendle’s curvature asymptotics [5, Section 3].

Let us start with the following lemma, which is a consequence of straightforward
calculations.
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Lemma 4.2 Let g be a poly-homogenous conical Kihler metric with cone angle
27 along a smooth divisor D for B € (0,1). Let o(1) be the quantity satisfying
lim|§-|_)0 0(1) = 0. Then

(4-3) gzz; ~ 8ij +o(1),
(4-4) geg ~ IEI7207P o207,
(4-5) g5~ O0().

By taking the inverse, we have the following corollary from Lemma 4.2.

Corollary 4.3 Let g be a poly-homogenous conical Kihler metric with cone angle
278 along a smooth divisor D for B € (0,1). Then

(4-6) g7 ~ i 4 o(1),
4-7) g5~ JE[20-P) 4 o(g20-R),
(4-8) gzz'g,\, E]20-P)

The following lemma gives estimates for the curvature tensor of g.

Lemma 4.4 Let g be a poly-homogenous conical Kéhler metric with cone angle 2w 8
along a smooth divisor D for € (0, 1). If the Ricci curvature of g is bounded, then

(4-9) Rzzizz ~ R,z 5= 0,
(4-10) wEE 0(|§|_2(1_'B))’
4-11) Rezyez, = O(E17D),

12 Regez, = O(IEI™),

(4-13) REESE — 0(|§|—max(1,4(1—,3))).

Proof The estimates (4-9), (4-10) and (4-11) can be shown by straightforward calcu-
lation using the curvature formula

Ryt = ~8apy i+ 8" 2av 8y

The estimates (4-12) and (4-13) follow by combining the boundedness of the Ricci
curvature and the estimates (4-10) and (4-11). O
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Corollary 4.5 Let g be a poly-homogenous conical Kdhler metric with cone angle
2B along a smooth divisor D for 8 € [%, 1). If the Ricci curvature of g is bounded,
then

Zj & .
Rgazkfl ~ RE,Zk?l = 0(),
i H _ 2(1—
ijzzkEl ~ RZp,ZkE] - O(|$| ( B))

From the curvature estimates, we immediately have the following proposition.

Theorem 4.6 Let g be a poly-homogenous conical Kdhler metric with cone angle
2nfB along a smooth divisor D for € (0, 1). If the Ricci curvature of g is bounded,
then we have the following pointwise estimates for | Rm|? :

|Rm(g)|2 = O(&|72H40=P)),

Consequently, the L?—norm of Rm(g) is bounded, ie there exists C > 0 such that

(4-14) f |[Rm(g)|3 dVol(g) < C.
X

4.2 Chern forms for conical Kihler metrics

Let g be a poly-homogenous conical Kéhler metric with cone angle 278 along a
smooth divisor D. We let 6 be the connection form on the tangent bundle 7X induced
by g, so locally we may write

and Q;‘ﬁ = 59)‘} is the curvature form of 6. Then the total Chern class is defined by

n
det(t] +Q) =Y 12 De;(Q).
i=0

Let P;(2y,...,2y) be the polarization of ¢;(2) = ¢;(X, g) for the conical metric g.

Let go be a smooth Kihler metric and 6, be the connection induced by g¢ as
(80)% = (80)* (20)., 5., d2-

Then Q¢ = ~/—196 is the curvature form of 6.

Let 8; =160 + (1 —1)8y with curvature

Q;=00; =12+ (1—1)Qy.
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Then we have
1_
Cz(X,a))—Cz(X,a)()):zv—l/ 0P,(0 — 06y, 2;) dr.
0

We will construct connections on the divisor D from 6 and 6y. Let p be a point in
the divisor D. We can choose holomorphic local coordinates

z=(21,...,2n), E=12,

such that D is locally defined by £ = 0 as in Section 4.1.

Definition 4.7 We define H and H locally by
(4-15) Hj =g;5. HY=(H5  Hy=g,;.

@16)  (Ho)i=(g0)5. (Ho) =(Hy ). (Ho)yr = (80),5-

Definition 4.8 For each coordinate system (z, ) chosen as above, we define (1, 0)-
forms 6p and 0y p locally by

4-17) Op = (0)Ip.

(4-18) 60.0 = (60);|p + H H,;(60)] | p-
Lemma 4.9 The (1,0)—form

(4-19) 0p = (H7 H; i |p)dzi = dlogdet H|p

defines a global smooth Chern connection of the anticanonical line bundle of D. In
particular, its curvature form ~/—1096p is a smooth closed real (1, 1)—form in c¢{ (D).

Proof By Corollary 4.3, we have g’”|p = 0 and hence
(0p)i =g’ g,ﬂ w92k = (H’H, k|D)dzi = d(logdet H|p) = dlog(w|p)"~".

By Proposition 4.1, the regular part of w restricted to D is a smooth Kihler form
from the expansion in Proposition 4.1 and for different holomorphic local coordinates

z=1(z1,...,2p—1) and w = (wq,...,Wy—1) on D,
dz; 2
Op(z) = Op(w) + dlog|det
8wj
Therefore 0p defines a smooth connection on anticanonical bundle of D. O
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Lemma 4.10 The (1, 0)—form
00,0 = ((60): + (HY H,7)(60)7)Ip
= ((80)"P(80);,4Ip 2k + (H" Hy5)(20)" (80),5 4| D=k )
defines a smooth Chern connection of the anticanonical bundle of D. In particular,

~/—100y, p is a smooth closed real (1, 1) form in c; (D).

Proof Since g¢ is smooth and the restriction of H7 , HJ , H, 7 to D are all smooth
by the asymptotic expansion in Proposition 4.1, 00 D is locally smooth. It suffices to
show that they patch together give rise to a connection.

To do that we need to show that the transformation of 6y p under different coordi-
nate charts satisfies the cocycle condition for the anticanonical bundle of D. Let

(z1y...,2p—1) and (wq, ..., wy—1) be two holomorphic local coordinates for some
neighborhood of a point p in D. Then they extend to two holomorphic coordinates
(zty e Zn—1-2zn = &), (w1, ..., wy—1, w, = n) in a neighborhood of p in X, where
D is locally defined by £ =0 and n = 0. Therefore fori =1,...,n—1,

an 3

—| = =0.

0z; |D ow; |D
By letting

go= Ve pa a0 g Ow
Y dwy,’ 3z, TR T wy TR T 9z

we obtain along D,

) (Z *)
= as ,
o

Straightforward computations show that

B x -1 F7_ p-1
= 03_7’] ) A:B ) A:B .
¢

f0.p(z) = Ao, p(w) + dlog |det A|?

which completes the proof. a

For any poly-homogenous conical Kdhler metric @ with cone angle 27 along a
smooth divisor D, we can define the first and second Chern classes c¢;(X,®) and
¢2(X,w). A priori, the intersection numbers among ¢ (X, ) and ¢, (X, w) might
depend on the choice of w even if the Ricci curvature of @ is bounded. The following
proposition relates the ¢ (X, w) and ¢, (X, w) to ¢1(X) and c;(X).
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Proposition 4.11 Let D be a smooth divisor on a Kihler manifold D . Suppose w is
a poly-homogenous conical Kahler metric with cone angle 28 along D with bounded
Ricci curvature. Then

(4-20) /X (X0 Ao™ = (e (X)— (1— B)D) -],
@4-21) /X (X 0) A" = (2(X) + (1= B)(—c1 (X) + (D)) - [D] - [0l 2,

(4-22) /X A(X.0) A" = (e (X) — (1 = D) -[o]' 2.

Proof We break the proof into the following steps.

Step 1 Equations (4-20) and (4-22) follow easily from the following observation. By
our assumption, w is a regular conical Kihler metric (cf Definition 1.3), from which
we deduce that Ric(w) = 19 + /=193y + (1 — B)[D], where 5 is a smooth closed
real valued (1, 1)—form and ¥ € PSH(X, ) N L°°(X) for some smooth Kéhler metric
f. In particular, we may assume ¥ € C°°(X \ D) since w is smooth outside D.
Therefore 1 = 1y + ~/—190y is smooth on X \ D and 5 € ¢1(X) — (1 — B)[D] as
¥ € PSH(X, 8) N L*°(X). Therefore, we have

c1(X,0) = ¢1(X)— (1 - B)[D] € H*(X).

Step 2 We first introduce a few notations. Let @y be a smooth Kahler form in the
same class of [@]. Since the curvature tensor can be viewed as the curvature in the
tangent bundle, we write 6 = (9}), By = (GJ’: ) as the Chern connections on the tangent
bundle with respect to the Kédhler metric @ and wq. Their curvature forms are given

by Q2 and ¢ with
Q=+—-100, Q=+—106,.

Let s be a defining section of D and / be a smooth hermitian metric on the line bundle
associated to [D]. We define

Xe={peX|lsli(p)> e}
Then locally £ = fS for some holomorphic function and on dX,, we have
E=fs=|[sle" =e|fIn?eVT1 g elo,2m),
dE = N—1tdo +ee¥1d(| f1h1/?).
Let T = d(| f|h~'/?). Then 7 is a smooth 1—form and on dX¢,
dE = N—1&do + ety .
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Step 3 At each point p € X, we can apply a linear transformation to (zy, ..., z;,—1)
such that g,z = dij at p and by rescaling & so that g,z = 1E|720=A) pear p. Let

o _1
}Ilj = gijT’ Hl] — (H )l']T’ Hnj = gnf
then we have

(4-23) 6|20 gl = || 7207P) (g =+ 0(1))(det(ggp)) ™
= g,7+o(1) = HT Hy; +o(1)

and the connection form 6 has the estimates

o =05 = ¢"g, 7 dz = —(1— B +0(1)E" dE+ Y o(1)-dz
=—(1—B)vV=ldo+)_0(1)-dz (since £~ on 81X6),

0= ¢"Pg,5 dz0 = g;ﬁgnﬁ,nds +o(DET'dE+ " o(1) - dz;
= g (&2 P)edE +0(1) - £ dE + Zo(l)-dzl,-
= —(1—P)H Hz£7"dE +o(1) -g—ldgl+ Y o(1)-dzi
= —vV=1(1-p)H" H,;do +0(1)-do + 210(1) -dz;,

0f = 0(1)-dg+ Y o(l)-dz; = o(1)-do + Xi:ou) -dz;,

0p =Y 0(1)-dzg =0(1)-do+Y_ O(l)-dz.

On 0X¢, by our assumption that 8 € (% 1) and using (4-23) we deduce
Qu=~V-1) R cdzg ndZg
a.B

=Y o(1)-dondze+ Y _o(1)-do ndzg+ Y O(1)-dz; AdEj,
o B i,j
Qiz = (glygnf,a)gdza N dflg
= V=g ™ gunn)z, dzk 1 dE +~=1(87 g7 )z dzk A dE
+V 18" g7 gdENdz+V=1(2" 8,7 )z dZindzg+ ) 0(1) - dzg Az
k,l
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= V=11 - p)(H" H )z, dzie N6 dE

+> o(l)-dzg ndo+ Y O(1)-dzy AdZ
k k,l

= V—1(1-B)a(H" H )/\da—i-ZO(l) dz ndo + Y O(1)-dz Adz,

k,l
VvV — R —dZa /\dZﬂ
=+— Rn —dé/\dZ[—i-\/ 1R} de/\dé-'—l-V Rn Zk/\d§[+0(l)d2k/\dfl
i,kn
=o(l)dzx Ado +o(1)dzy ANdzy,
== 1R’ —dza/\dzlg
=V- IR’ —dé/\dzl—i-v _dz AdE+— R’ Zk/\dzl—i-o(l)dzk/\dzl
pkn
= o(l)dzk ANdo + O(l)dz, Adz;.

Step 4 By our assumption, @ is a smooth Kidhler metric with cone angle 27 along
D € X such that it Ricci curvature is bounded on X \ D. This implies that

(4-24) Q% = Ric(w) = wo — (1 — B)v/—13dlog |sp |7,

where /1 is a smooth Hermitian metric on the line bundle Oy (D), wq is a smooth
Kihler metric and sp € H°(X, Ox (D)) is a defining section for D. This implies that

[ QEre™ = (nl- (1= pIDY-0" + ofe),
X\ X,

from which we obtain (4-20).
Let 6; =16 + (1 — )8y be the connection on the tangent bundle 7X . The curvature
= /=130, =12 + (1 —1)Qy.
The transgression formula gives
(X, ) — 2 (X, wg) = 2«/—_1/01 AP (0 — 69, ;) dt
and
2P3(0 =00, R¢) = (0 —0o)y A Q)i = (6 = 00)y A Q)] + (0 —00); A (R0)),
= (0= 00)} A (1), = (6 B0)j A (R0
= —V/=1(1 = B)(t30 + (1 —1)36p)} A do
— (1=0)(1=B)V=1(H" H,58(00)] —(0—00)! NO(H" H,5)) A do
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+o(1)do Adz AdZp + O(1) dzi A dzy AdZ;
= V=1(1—B)(~1(6}) Ado — (1-1)3((60)} + H H,z(60)") A do)
+o(1)do ANdzy ANdzp + O(1) dzi Adzy A dz;.

Now let n be a smooth Kéhler form. Then
/ (c2(X. ) — 2 (X, wo) A" 2
X
1
=24-1 / (/)‘(5P2(9 — 00,12+ (1—1)Qp) A Un_z)dl
0
1
= 2/ (/ Pr(60— 00,12+ (1—1)Q20) A n”_2)dt+ o(1)
0 0Xe
1 — . — . Py
=(1—,6)V—1// (—18(9;)—(1—1)3((90)§—|—H” Hnj(90)7))/\d0/\n”_2dt+0(1)
0J0Xc

1 — —
=(1 —,B)x/—_I/O /D(—zae,) —(1 —t)BQO,D) A ()" 2dr

= (1=B)(=c1(D)/2=c1(D)/2)-[D]-["" + o(1)
= (1= B)(=c1(X) +[D])-[D]-[]""* + o(1).

The last three equalities follow from Lemma 4.9, Lemma 4.10 and the adjunction
formula. And similarly, we have

X(c%(X, w) —c2(X, w) A2

1
:/ (/ 5Q(9—90,zsz+(1—z)szo)An"—2)d1
0 X
1 — f—
=2(1 _ﬂ)/ofax (—23(0%) — (1 =1)d((0)2)) Ado A" 2dt + o(1)

(by (4-24)) = (1—B)(—c1(X) + (1= B)[D]—c1 (X)) -[D]-[n]" >
= (—=2(1 = B)c1(X)-[D]+ (1= B)*[D]?) - [n]" >

which is equivalent to (4-22).

Step 5 Suppose that wg € [w] is a smooth Kihler form. We want to show that
(4-25) / X, w) A2 = / (X, ) Al ™2,
X X

(4-26) Lc‘f(X,w)Aw"_z=/Xclz(X,w)/\a)6’_2.
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Since the proofs are parallel to each other, we will only prove the (4-25). Let ¢ be
defined by w = wy + v—100¢.

n—3
/ (X, 0) A (" —0f™) = Z/ V=13dp Ay (X, 0) A’ Aol 3T
X 4 X

i=0

Foranyi =0,1,...,n—3,
/X\/—lagq)/\cz(X,a))/\wi/\a)g_3_i = /aXdch/\cz(X,a))/\wi Aol 4 o(1).

Note that

d¢ =o(l)do + O(1)dzy,
w=o(l)do Adzy +o(1)do Adzy, + O(1)dzy A dz;

and

QIAQ ~QIAQ] ~QEAQ] ~ QI AQ)

=o(l)dzy NdzZy Ndzp Ndo +o()dzi AdZy NdZg Ndo + O(1)dzy NdZp ANdzp NdZy.
Therefore

/«/—lagga/\cz(X,w)/\a)i/\w(’)’_3_i=/ d°pAcr(X, 0) A0’ Aol T3 +o(1) =0
X 0Xe

after letting € tend to 0.

Step 6 Finally, combining the above estimates, we obtain (4-22) and the proof of the
proposition is completed. a

One can apply a similar argument to show that if @ is a poly-homogenous conical
Kihler metric @ with cone angle 2w along a smooth divisor D and if the Ricci
curvature of @ is bounded, then the n"—Chern number ¢, (X, ) is well-defined and
does not depend on the choice of w.

4.3 The Gauss—Bonnet and signature theorems for Kihler surfaces with
conical singularities

Definition 4.12 Let X be a Kihler surface and ¥ be a smooth holomorphic curve on

X . If g is a poly-homogenous conical Kihler metric with cone angle 278 along X,
we define the corresponding conical Euler number and signature by
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1 (S? |Roic|2
X(X»g)Z/ —(—+|W|2— )dg,
X\x 87

1 -
o) = o [ WP W s

[e]
where S is the scalar curvature of metric g, W is the Weyl tensor for g and Ric is
the traceless Ricci curvature. In particular, if 8 = 1, we recover classical characteristic
class.

The Gauss—Bonnet and the signature theorems are proved in [1] for smooth compact
Riemannian 4—folds with specified conical metrics with cone angle 278 along a
smooth embedded Riemann surface. As an immediate consequence of Proposition 4.11
and Definition 4.12 above, we obtain the following formulas related to the recent result
by Atiyah and Lebrun [1] by removing the assumption 8 € (0, %) in the Kahler case.

Proposition 4.13 Let g be a poly-homogenous conical Kihler metric with angle 273
for § € (0, 1] along a holomorphic curve X. If the Ricci curvature of g is bounded, we
have

x(X.g) = x(X)—=(1-B)x(D),
o(X.g) =0(X)—1(1-p»DP.

Proof To prove the statement, we apply the identities (cf [1])

1 [S? |Roic|2
— =+ |W|]? - —— ) dg, = 2 (X,
8772(24+| | > ) g, =c2(X, g)

_ 1
S (WP =W dg = S(F(X.9) = 2e2(X. g)

and the statement follows from Proposition 4.11 |

4.4 The Chern number inequality on Fano manifolds

In this section, we will prove Theorem 1.9.

Proposition 4.14 Let X be an n—dimensional Fano manifold. If R(X') = 1, then the
following Miyaoka—Yau type inequality holds: