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Holomorphic Lagrangian branes
correspond to perverse sheaves

XIN JIN

Let X be a compact complex manifold, Db
c .X / be the bounded derived category

of constructible sheaves on X , and Fuk.T �X / be the Fukaya category of T �X . A
Lagrangian brane in Fuk.T �X / is holomorphic if the underlying Lagrangian sub-
manifold is complex analytic in T �XC , the holomorphic cotangent bundle of X . We
prove that under the quasiequivalence between Db

c .X / and DFuk.T �X / established
by Nadler and Zaslow, holomorphic Lagrangian branes with appropriate grading
correspond to perverse sheaves.

53D40, 32S60

1 Introduction

For a real analytic manifold X , one could consider two invariants that encode the
local/global analytic and topological structure of X : one is the derived category Db

c .X /

of constructible sheaves on X , and the other is the Fukaya category Fuk.T �X / of its
cotangent bundle T �X . Roughly speaking, Db

c .X / is generated by locally constant
sheaves supported on submanifolds of X , which we will call (co)standard sheaves. The
morphism spaces between these sheaves are naturally identified with relative singular
cohomology of certain subsets of X taking values in local systems. On the other
hand, Fuk.T �X / is the realm of exact Lagrangian submanifolds of T �X and their
intersection theory. Here we use the infinitesimal Fukaya category from [15], where
Lagrangian branes are allowed to be noncompact and should have controlled behavior
near infinity.

In [15], Nadler and Zaslow established a canonical quasiembedding

H 0.�X /W D
b
c .X / ,! DFuk.T �X /

induced from �X , which is called the microlocal functor, between the A1–version of
these two categories. Later on, Nadler [14] proved that �X is actually a quasiequiv-
alence of categories, hence H 0.�X / is an equivalence. The key ingredient in the
construction of �X is to associate each standard or costandard sheaf a Lagrangian
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brane in T �X which lives over the submanifold and asymptotically approaches the
singular support of the sheaf near infinity, so that the Floer cohomologies for these
branes match with the morphisms on the sheaf side. One could view this as a way of
quantizing the singular support of a sheaf by a Lagrangian brane.

In the complex setting, when X is a complex manifold, one could also study D–
modules on X . The Riemann–Hilbert correspondence equates the derived category
of regular holonomic D–modules Db

rh.DX / with Db
c .X /. There are also physical

interpretations of the relation of branes (including coisotropic branes) with D–modules;
see Kapustin [9] and Kapustin and Witten [10]. These relations together with �X

connect different approaches to quantizing conical Lagrangians in T �X .

In this paper, we investigate the special role of holomorphic Lagrangian branes in
Fuk.T �X / in the complex setting, via the Nadler–Zaslow correspondence. For the
notion of holomorphic, we have used the complex structure on T �X induced from
that on X . Recall there is an abelian category sitting inside Db

c .X /, the category
of perverse sheaves, which is the image of the standard abelian category (single D–
modules) in Db

rh.DX / under the Riemann–Hilbert correspondence. Our main result is
the following:

Theorem 1.1 Let X be a compact complex manifold and let H 0.�X /
�1 denote the

inverse functor of H 0.�X /. Then for any holomorphic Lagrangian brane L in T �X ,
H 0.�X /

�1.L/ is a perverse sheaf in Db
c .X / up to a shift. Equivalently, L gives rise

to a single holonomic D–module on X .

In the remainder of the introduction, we discuss the motivation and the proof of
our result from two aspects: symplectic geometry and microlocal geometry. In the
symplectic geometry part, we will summarize the Floer cohomology calculations we
have for certain classes of Lagrangian branes. Then in the microlocal geometric side,
we will introduce the microlocal approach to perverse sheaves and explain why the
Floer calculations imply our main theorem. All of the functors below are derived and
we will always omit the derived notation R or L unless otherwise specified.

1.1 Floer complex calculations

We calculate the Floer complex for two pairs of Lagrangian branes in the cotangent
bundle T �X of a complex manifold X . It involves three kinds of Lagrangians which
we briefly describe. Firstly, we have a (exact) holomorphic Lagrangian brane L with
grading � dimC X (see Proposition 5.1). One could dilate L using the RC–action on
the cotangent fibers and take limit to get a conical Lagrangian

(1-1) Conic.L/ WD lim
t!0C

t �L:
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Then for each smooth point .x; �/ 2 Conic.L/, we define a Lagrangian brane, which
we will call a local Morse brane, depending on the following data. We choose a generic
holomorphic function F near x which vanishes at x and has d<.F /xD � . By the word
“generic” we mean the graph �d<.F / should intersect Conic.L/ at .x; �/ in a transverse
way. Then the local Morse brane, denoted Lx;F , is defined by extending �d<.F / in
an appropriate way, so that Lx;F lives over a small neighborhood of x , and Lx;F has
certain behavior near infinity. Note that the construction of Lx;F is completely local;
it only knows the local geometry (actually the microlocal geometry) around x . The
last kind of Lagrangian we consider is the brane corresponding to a standard sheaf
associated to an open set V under the microlocal functor �X . The construction is
very easy. Take a function m on X with mD 0 on @V and m > 0 on V ; then the
Lagrangian is the graph �d log m , which lives over V . We will call such a brane a
standard brane and denote it by LV;m . We have been mixing up the terminology
Lagrangian and Lagrangian brane freely, since the Lagrangians Lx;F and LV;m will
be equipped with canonical brane structures. Our Floer complex calculations show the
following:

Theorem 1.2 Under certain assumptions on the boundary of V , we have

HF.Lx;F ;LV;m/' .�.B�.x/\V;B�.x/\V \f<.F / < 0g/; d/;(1-2)

HF�.Lx;F ;L/D 0 for � ¤ 0;(1-3)

where B�.x/ is a small ball around x and the first identification is a canonical quasi-
isomorphism.

a

LV;m

b

Lb;F1

Lb;F2

R

Figure 1: A picture illustrating a standard brane, two local Morse branes and
their Floer cohomology for X DR
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An illustrating picture1 for the branes LU;m and Lx;F in the case of X D R is
presented in Figure 1, where V D .a; b/, F1 D x� b and F2 D b�x . The standard
brane LV;m corresponds to the sheaf i�CV , and one can check that (1-2) holds and
compare it with (1-5).

1.2 Microlocal geometry

There are roughly two characterizations of perverse sheaves. One is characterized by
the vanishing degrees of the cohomological (co)stalks of sheaves. The other is the
microlocal (or Morse theoretic) approach using vanishing property of the microlocal
stalks (or local Morse groups) of a sheaf. These are due to Beilinson, Bernstein and
Deligne [3], Goresky and MacPherson [6] and Kashiwara and Schapira [11]. In this
paper, we will mainly adopt the latter one. We also include a path from (co)stalk
characterization to the microlocal characterization in Section 2.

The microlocal stalk of a sheaf is a measurement of the change of sections of the sheaf
when propagating along the direction determined by a given covector in T �X . More
precisely, let F be a sheaf whose cohomology sheaf is constructible with respect to
some stratification S . There is the standard conical Lagrangian ƒS in T �X associated
to S , which is the union of all the conormals to the strata. Now pick a smooth
point .x; �/ in ƒS , and choose a sufficiently generic holomorphic function F near x

with F.x/D 0 and dFx D � (this is exactly the same condition we put on F when
we constructed Lx;F in Section 1.1). The microlocal stalk (or local Morse group)
Mx;F .F/ of F is defined to be

(1-4) Mx;F .F/D �.B�.x/;B�.x/\f<.F / < 0g;F/

for a sufficiently small ball B�.x/. In particular if F is i�CV , the standard sheaf
associated an open embedding i W V ,!X , then one gets

(1-5) Mx;F .i�CV /D �.B�.x/\V;B�.x/\V \f<.F / < 0g;C/:

Recall that H 0.�X / sends i�CV to LV;m , and standard sheaves associated to open
sets generate the category Db

c .X /. So comparing (1-5) with (1-2), one almost sees
that the functor HF.Lx;F ;�/ on DFuk.T �X / is equivalent to the functor Mx;F .�/

on Db
c .X / under the Nadler–Zaslow correspondence. This is confirmed by studying

composition maps on the A1–level.

With the same assumptions as above plus the further assumption that S is a complex
stratification, the microlocal characterization of a perverse sheaf is very simple. It

1Of course X DR is not a complex manifold, but it will become clear that the construction of local
Morse brane generalizes to the real setting; also see Section 2.3

Geometry & Topology, Volume 19 (2015)



Holomorphic Lagrangian branes correspond to perverse sheaves 1689

says that F is a perverse sheaf if and only if the cohomology of the microlocal stalk
Mx;F .F/ is concentrated in degree 0 for all choices of .x; �/. For a holomorphic
Lagrangian brane L, it is not hard to prove that H 0.�X /

�1.L/ is a sheaf whose
cohomology sheaf is constructible with respect to a complex stratification. Now it is
easy to see that (1-3) directly implies our main theorem (Theorem 1.1).

1.3 Organization

The preliminaries are included in the appendices. We first collect basic material on
analytic-geometric categories, since this is a reasonable setting for stratification theory
(hence for constructible sheaves) and for Lagrangian branes. Then we give a short
account of A1–categories, which are the algebra basics for Fukaya category. Lastly,
we give an overview of the definition of infinitesimal Fukaya categories, with some
specific account for Fuk.T �X / to supplement the main content.

Section 2 starts from basic definitions and properties of constructible sheaves and
perverse sheaves, then heads towards the microlocal characterization of a perverse
sheaf. Section 3 gives an overview of Nadler–Zaslow correspondence, with detailed
discussion on several aspects, including Morse trees and the use of the homological
perturbation lemma, since similar techniques will be applied in the later sections.
Section 4 is devoted to the construction of the local Morse brane Lx;F and the proof
that it corresponds to the local Morse group functor Mx;F on the sheaf side. In
Section 5, we show the proof of (1-3) and conclude with our main theorem, some
consequences and generalizations.

Acknowledgements I would like to express my deep gratitude to my advisor, Pro-
fessor David Nadler, for suggesting this problem to me and for numerous invaluable
discussions throughout this project. I am indebted to Professor Denis Auroux, Cheol-
Hyun Cho, Si Li and Eric Zaslow for several helpful discussions. I would also like to
thank Penghui Li, Zack Sylvan and Hiro Tanaka for useful conversations. Especially, I
am grateful to the referee for many useful comments and suggestions, which improved
this paper significantly.

2 Perverse sheaves and the local Morse group functor

2.1 Constructible sheaves

Let X be an analytic manifold. Throughout the paper, we will always work in a fixed
analytic-geometric setting, and all the stratifications we consider are assumed to be
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Whitney stratifications (see Appendix A). A sheaf of C–vector spaces is constructible
if there exists a stratification S D fS˛g˛2ƒ such that i�˛F is a locally constant sheaf,
where i˛ is the inclusion S˛ ,!X . Let Db

c .X / denote the bounded derived category of
complexes of sheaves whose cohomology sheaves are all constructible. In the following,
we simply call such a complex a sheaf. The category Db

c .X / has a natural differential
graded enrichment, denoted Sh.X /. The morphism space between two sheaves F ;G is
the complex RHom.F ;G/, where RHom.F ; � / is the right derived functor of the usual
Hom.F ; � / functor (by taking a global section of the sheaf Hom.F ; � /). Similarly, we
denote by ShS.X / the subcategory of Sh.X / consisting of sheaves constructible with
respect a fixed stratification S .

There are the standard four functors between Sh.X / and Sh.Y / associated to a map
f W X ! Y , namely f�; f!; f

� and f ! . Here and after, all functors are derived, though
we omit the derived notation. The functors f�; f � are right and left adjoint functors,
and so are f ! and f! . More explicitly, we have for F 2 Sh.X /;G 2 Sh.Y /,

Hom.G; f�F/' f�Hom.f �G;F/; f�Hom.F ; f !G/'Hom.f!F ;G/;

Hom.G; f�F/' Hom.f �G;F/; Hom.F ; f !G/' Hom.f!F ;G/:

We also have the Verdier duality DW Sh.X / ! Sh.X /op , which gives the relation
Df�Df!D;Df

�Df !D . Let i W U ,!X be an open inclusion and j W Y DX�U ,!X

be the closed inclusion of the complement of U ; then i� D i ! and j� D j! . There
are two standard exact triangles, taking global sections of which gives the long exact
sequences for the relative hypercohomology of F for the pair .X;Y / and .X;U /
respectively:

(2-1) j!j
!F ! F ! i�i

�F
Œ1�
�!; i!i

!F ! F ! j�j
�F

Œ1�
�! :

The stalk of F at x 2 X will mean the complex i�xF , where ix W fxg ,! X is the
inclusion. The i th cohomology sheaf of a complex F will be denoted by Hi.F/. Note
that the stalk of Hi.F/ at x is isomorphic to H i.i�xF/. Also let

supp.F/ WD fx 2X W Hj .F/x ¤ 0 for some j g:

According to [15], the standard objects, ie sheaves of the form i�CU , where i W U ,!X

is an open inclusion, generate Sh.X /. The argument goes as follows. It suffices to
prove the statement for the subcategory ShS.X / for any stratification S D fS˛g˛2ƒ .
Without loss of generality, we can assume each stratum of S is connected and is a cell.
Let S�k , 0� k � nD dim X , denote the union of all strata in S of dimension less than
or equal to k . Let S>k DX �S�k and Sk D S�k �S�k�1 . Denote by ik ; i>k ; j�k

the inclusion of S� with corresponding subscripts. The standard exact triangle on the
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left of (2-1) for a sheaf G supported on S�k gives

(2-2) j�k�1!j
!
�k�1G! G! ik�i

�
k G D i>k�1�i

�
>k�1G

Œ1�
�!:

We start from the equality Gn D F 2 ShS.X / and then use (2-2) inductively for
Gk�1D j�k�1!j

!
�k�1

Gk D j�k�1!j
!
�k�1

F from kD n through kD 1, and get that F
can be obtained by taking iterated mapping cones of shifts of i˛�CS˛ , S˛ 2 S . Let
US D fX;O˛ D X � xS˛;O

0
˛ D X � @S˛ W ˛ 2ƒg. Now the claim is i˛�CS˛ can be

generated by iU�CU ;U 2 US . This follows from a similar argument. Putting F DCX ,
i D iO˛ or i D iO 0˛ on the left of (2-1), we get the generation statement for

j xS˛!j
!
xS˛

CX ; j@S˛!j
!
@S˛

CX :

Then letting G D j xS˛!j
!
xS˛

CX in (2-2) for k D dim S˛ , and identifying

j�k�1!j
!
�k�1G with j@S˛!j

!
@S˛

G and ik�i
�
k G with i˛�CS˛ ;

we get the generation statement for i˛�CS˛ .

Since Sh.X / is a dg–category, it suffices to study the morphisms between any two
standard objects associated to open sets, and the composition maps for a triple of
standard objects.

Proposition 2.1 [15, Lemma 4.4.1] Let i0W U0 ,! X and i1W U1 ,! X be the
inclusion of two open submanifolds of X . Then there is a natural quasi-isomorphism

Hom.i0�CU0
; i1�CU1

/' .�. xU0\U1; @U0\U1/; d/:

Furthermore, for a triple of open inclusions ik W Uk ,!X , k D 0; 1; 2, the composition
map

Hom.i1�CU1
; i2�CU2

/˝Hom.i0�CU0
; i1�CU1

/! Hom.i0�CU0
; i2�CU2

/

is naturally identified with the wedge product on (relative) de Rham complexes,

.�. xU1\U2; @U1\U2/; d/˝.�. xU0\U1; @U0\U1/; d/! .�. xU0\U2; @U0\U2/; d/:

Nadler and Zaslow [15] showed how to perturb U0 and U1 to have transverse boundary
intersection, and how to use the perturbed open sets to calculate Hom.i0�CU0

; i1�CU1
/.

Let mi be a semidefining function of Ui for i D 0; 1 (see Remark A.3). There exists a
fringed set R�R2

C (see Definition A.6) such that m1 �m0W X !R2 has no critical
value in R (by Corollary A.7). In particular, for .t1; t0/ 2 R, Xm0Dt0

and Xm1Dt1

intersect transversely. Then there is a compatible collection of identifications

.�. xU0\U1; @U0\U1/; d/' .�.Xm0�t0
\Xm1>t1

;Xm0Dt0
\Xm1>t1

/; d/:
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2.2 Perverse sheaves

Let X be a complex analytic manifold of dimension n. In this section, we review some
basic definitions and properties of the perverse t –structure .pD�0

c .X /;pD�0
c .X //

(with respect to the “middle perversity”). The exposition is following Hotta, Takeuchi
and Tanisaki [8, Section 8.1].

Definition 2.2 Define the full subcategories pD�0
c .X / and pD�0

c .X / in Db
c .X / as

follows. A sheaf F 2 pD�0
c .X / if

dimfSupp.Hj .F//g � �j for all j 2 Z

and F 2 pD�0
c .X / if

dimfSupp.Hj .DF//g � �j for all j 2 Z:

An object of its heart Perv.X /D pD�0.X /\pD�0.X / is called a perverse sheaf. Let

p��k
W Db

c .X /!
pD�k.X / WD pD�0.X /Œ�k�;

p��k
W Db

c .X /!
pD�k.X / WD pD�0.X /Œ�k�

be the corresponding truncation functors. Let

pH k
D

p��kp��k Œk�W Db
c .X /! Perv.X /

be the k th perverse cohomology functor.

Here are several properties of perverse t –structures.

Proposition 2.3 Let F 2Db
c .X / and S D fS˛g˛2ƒ be a complex stratification of X

consisting of connected strata with respect to which H j .F/ are constructible. Then:

(1) F 2D�0
c .X / if and only if H j .i�

S˛
F/D 0 for all j > � dim S˛ .

(2) F 2D�c 0.X / if and only if H j .i !
S˛

F/D 0 for all j < � dim S˛ .

Lemma 2.4 (1) A sheaf F2Db
c .X / is isomorphic to zero if and only if pH k.F/D0

for all k 2 Z.

(2) A morphism f W F ! G in Db
c .X / is an isomorphism if and only if the induced

map pH k.f /W pH k.F/! pH k.G/ is an isomorphism for all k 2 Z.

Proof (1) Since F 2Db
c .X /, we have F 2 pD�a.X /\pD�b.X / for some a; b 2Z.

From the distinguished triangle

p��b�1F ! p��bF ' F ! p��bp��bF ' 0
Œ1�
�!
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we get F 2 pD�b�1.X /. Inductively, we conclude that F ' 0.

Item (2) is an easy consequence of (1).

Proposition 2.5 F 2 Db
c .X / is perverse if and only if pH�.F/ is concentrated in

degree 0.

Proof The forward direction is clear.

Conversely, consider the exact triangle

p���1F ! F ! p��0F
Œ1�
�! :

It gives rise to a long exact sequence in Perv.X /,

!
pH k.p���1F/! pH k.F/! pH k.p��0F/! pH kC1.p���1F/! :

Since pH�.F/ is concentrated in degree 0, we have pH k.p���1F/D 0 for all k 2Z.
From Lemma 2.4, we get F is isomorphic to p��0F .

Similarly, if we consider the exact triangle

p��0p��0F ! p��0F ! p��1F
C1
��!

and get a long exact sequence in Perv.X /, then we can conclude that p��0F is
isomorphic to p��0p��0F D pH 0.F/. Therefore, F ' pH 0.F/ in Db

c .X /.

Fix a complex stratification S D fS˛g˛2ƒ of X with each stratum connected. The
perverse t –structure on Db

c .X / induces the perverse t –structure on Db
S.X /.

Let ƒS WD
S
˛2ƒ T �S˛X � T �X be the standard conical Lagrangian associated to S .

For each S˛ 2 S , let D�S˛X D T �S˛X \ .
S
˛¤ˇ2ƒT �SˇX /. Then the smooth locus

in ƒS is the union
S
˛2ƒ.T

�
S˛

X �D�S˛X /.

2.3 Local Morse group functor Mx;F on Db
S .X/

We have that Perv.X / is an abelian subcategory in Db
c .X /. An exact sequence

0 ! F ! G ! H ! 0 in Perv.X /, though it corresponds to an exact triangle in
Db

c .X /, does not give an exact sequence on the stalks. The correct “stalk” to take in
Perv.X /, in the sense that it gives an exact sequence, is the microlocal stalk. We now
introduce the microlocal stalk under its other name: local Morse group functor.

Let .x; �/ 2ƒS be a smooth point. Fix a local holomorphic coordinate z around x

with origin at x , and let r.z/D kzk2 be the standard distance squared function. Let F
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be a germ of a holomorphic function on X , ie a holomorphic function defined on some
small open ball B2�.x/D fz W r.z/ < .2�/2g �X , such that F.x/D 0, d<.F /x D �

and the graph �d<.F / is transverse to ƒS at .x; �/. We also assume � small enough
so that x is the only ƒS –critical point of <.F /. In the following, we will call such a
triple .x; �;F / a test triple.

Let �x;F W DS.B�.x//!Db
c .F

�1.0/\B�.x// be the vanishing cycle functor asso-
ciated to F (see [11, Section 8.6] for the definition of nearby and vanishing cycle
functors). Note that for any F 2DS.X /, �x;F .F/ is supported on x .

Definition 2.6 Given .x; �;F /, define the local Morse group functor

Mx;F WD j !
x�x;F Œ�1�l� D j �x �x;F Œ�1�l�W Db

S.X /!Db.C/;

where the maps l W B�.x/ ,!X and jx W fxg ,! F�1.0/\B�.x/ are the inclusions.

It is a standard fact that on Db
S.X /,

Mx;F .F/' �.B�.x/;B�.x/\F�1.t/;F/(2-3)

' �.B�.x/;B�.x/\f<.F / < �g;F/;

where t is any complex number with 0< jt j � � , and �� 0 with j�j � � .

More generally, let X be a real analytic manifold with a Riemannian metric, and let SD
fS˛g˛2ƒ be a (real) stratification. Assume a function gW X !R satisfies conditions
similar to the ones that <.F / satisfies at a given point x 2 S˛ , with Morse index of
gjS˛ equal to �. Then given a sheaf F in Db

S.X /, the hypercohomology groups

(2-4) Hi.B�.x/; fg < 0g\B�.x/;F Œ��/; i 2 Z

are independent of the choices of g and x for .x; dgx/ staying in a fixed connected
component of T �S˛X �D�

S˛
X . For more details, see Massey [13, Theorems 2.29, 2.31]

and the references therein. In the complex setting, T �S˛X �D�S˛X is always connected,
so Mx;F .F/ are quasi-isomorphic for different choices of .x; �/ in it (but not in a
canonical way since there may be monodromy).

Then the singular support SS.F/ of F can be described as the closure of the set of
covectors in ƒS with the relative hypercohomology groups in (2-4) not all equal to 0.
For the definition of SS.F /, see [11, Section 5.1]; the fact that one can use vanishing
cycles to detect singular support is stated in [11, Proposition 8.6.4].

Lemma 2.7 Mx;F W D
b
S.X /!Db.C/ is t –exact. It commutes with Verdier duality.
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Proof It is standard that �x;F Œ�1� and l� are perverse t –exact. Since �x;F Œ�1�l�.F/
is supported on x , we have

Mx;F .
pH k.F//D j !

fxg�x;F Œ�1�l�.pH k.F//

'H k.j !
fxg�x;F Œ�1�l�.F//DH k.Mx;F .F//:

Since �x;F Œ�1� and l� commute with D , it is easy to see that

Mx;F D D j !
fxg�x;F Œ�1�l�D 'Dj �

fxg�x;F Œ�1�l� DDMx;F :

Lemma 2.8 For each stratum S˛ 2 S , choose one test triple .x˛; �˛;F˛/ with
.x˛; �˛/ 2ƒS˛ . If Mx˛;F˛ .F/' 0 for all S˛ 2 S , then F ' 0.

Proof From the previous discussion, Mx˛;F˛ .F/' 0 for one choice of .x˛; �˛;F˛/
is equivalent to Mx˛;F˛ .F/' 0 for all possible choices of .x˛; �˛;F˛/.

Again, let S�k , 0� k � nD dimC X , denote the union of all strata in S of dimension
less than or equal to k . Let S>k D X � S�k and Sk D S�k � S�k�1 . Denote by
ik ; i>k ; j�k the inclusion of S� with corresponding subscripts.

For any test triple .x; 0;F / with x 2 Sn , x is a Morse singularity of F with index 0.
By basic Morse theory, Mx;F .F/ ' 0 implies i�nF ' 0. By the adjunction exact
triangle (2-1), F ' j�n�1!j

!
�n�1

F .

In the following we will only look at B�.x/, and omit functors related to the open
inclusion l W B�.x/ ,!X . Note that for x 2 Sn�1 , by the base change formula,

�x;F .j�n�1!j
!
�n�1F/' yj�n�1!�x;Fn�1

.j !
�n�1F/;

where Fn�1 is the restriction of F to Sn�1 , and yj�n�1 is the inclusion of F�1.0/\

S�n�1 into F�1.0/. Therefore Mx;F .j�n�1!j
!
�n�1F/'Mx;Fn�1

.j !
�n�1F/. Since

x is a Morse singularity of Fn�1 with index 0 on Sn�1 , by a previous argument,
j !

n�1
F ' 0. By Verdier duality, j �

n�1
F ' 0 as well. Applying the adjunction exact

triangle again to the open set S�n�1 , we get F ' j�n�2!j
!
�n�2F , and by induction,

we get F ' 0.

Combining the two lemmas, we immediately get the following (a similar statement can
be found in [11, Theorem 10.3.12]).

Proposition 2.9 (Microlocal characterization of perverse sheaves) For each stratum
S˛ 2 S , choose a test triple .x˛; �˛;F˛/ with .x˛; �˛/ 2 ƒS˛ . Then F 2 Db

S.X / is
perverse if and only Mx˛;F˛ .F/ has cohomology groups concentrated in degree 0 for
all S˛ 2 S .
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2.4 Mx;F as a functor on the dg–category ShS.X/

We can naturally view Mx;F as a dg–functor from ShS.X / to Ch, where Ch denotes
the dg–category of cochain complexes of vector spaces. And we have a natural
identification

Mx;F ' �.B�.x/;B�.x/\f<.F / < �g;�/

for sufficiently small � > 0 and ��� �� 0.

To make future calculations easier, we refine S into a new (real) stratification zS with
each stratum a cell, and view ShS.X / as a subcategory of ShzS.X /. We extend Mx;F

to ShzS.X /, as long as x is not lying in any newly added stratum, and the microlocal
characterization for perverse sheaves (Proposition 2.9) still applies for ShS.X /. In the
following, to simplify notation, we still denote zS by S .

We have seen in Section 2.1 that ShS.X / is generated by i�CU for U 2USDfX;O˛D

X � xS˛;O
0
˛ DX �@S˛ WS˛ 2 Sg. So to understand Mx;F , it suffices to understand its

interaction with these standard generators. It is easy to see that Mx;F is only nontrivial
on the finite subcollection of i�CU , where

(2-5) U 2 US;x WD fV 2 US W x 2 xV g:

Similar to Proposition 2.1, we have the following lemma.

Lemma 2.10 For each iV W V ,!X open, consider the dg–functor �.V;�/W Sh.X /!
Ch. For any two open embeddings i0W U0 ,!X; i1W U1 ,!X , the composition map

(2-6) HomSh.X /.i0�CU0
; i1�CU1

/˝�.V; i0�CU0
/! �.V; i1�CU1

/

is canonically identified with the wedge product on the de Rham complexes,

.�. xU0\U1; @U0\U1/; d/˝ .�.U0\V /; d/! .�.U1\V /; d/:

Corollary 2.11 (1) The functor Mx;F .�/ on ShS.X / fits into the exact triangle

Mx;F .�/ �! �.B�.x/;�/ �! �.B�.x/\f<.F / < 0g;�/
Œ1�
�!.

(2) Given U0;U1 open in X , the composition map

HomSh.X /.i0�CU0
; i1�CU1

/˝Mx;F .i0�CU0
/!Mx;F .i1�CU1

/

is canonically given by the wedge product on the de Rham complexes:

.�. xU0\U1; @U0\U1/; d/˝ .�.U0\B�.x/;U0\B�.x/\f<.F / < 0g/; d/

! .�.U1\B�.x/;U1\B�.x/\f<.F / < 0g/; d/:
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3 The Nadler–Zaslow correspondence

3.1 Two categories: Open.X/ and Mor.X/

Let Open.X / be the dg–category whose objects are open subsets in X with a semidefin-
ing function (see Remark A.3). For two objects U0D .U0;m0/;U1D .U1;m1/, define

HomOpen.X /.U0;U1/ WD Hom.i0�CU0
; i1�CU1

/' .�. xU0\U1; @U0\U1/; d/:

The composition for a triple is the wedge product on de Rham complexes as given
in Proposition 2.1. From previous discussions, Sh.X / is a triangulated envelope of
Open.X /.

Define another A1–category, denoted Mor.X /, with the same objects as Open.X /.
The morphism between two objects Ui D .Ui ;mi/; i D 0; 1 is defined by the Morse
complex calculation of Hom.i0�CU0

; i1�CU1
/, using perturbation to smooth transverse

boundaries similar to the process at the end of Section 2.1. Let fi D log mi for i D 0; 1.
Pick a stratification T compatible with @U0 . There is xt1 > 0 such that m1 has
no ƒT –critical value in .0;xt1/. Fix t1 2 .0;xt1/. Let W be a small neighborhood of
@U0\Xm1Dt1

on which df0 and df1 are linearly independent. Since Xm1Dt1
\U0�W

is compact, one could dilate df0 by � > 0 so that jdf1j> 2�jdf0j on Xm1Dt1
\U0�W .

There is xt0 > 0 such that for any t 2 .0;xt0/, Xm0Dt intersects Xm1Dt1
transversally.

Choose t0 2 .0;xt0/ such that j� � df0j> 2jdf1j on Xm0Dt0
\Xm1�t1

�W . Such a t0
always exists, since df1 is bounded on Xm1�t1

. There is also a convex space of choices
of Riemannian metric g in a neighborhood of Xm0�t0

\Xm1�t1
, with respect to which

the gradient vector field r.f1 � �f0/ is pointing outward along Xm0Dt0
\Xm1�t1

,
and inward along Xm0�t0

\Xm1Dt1
. After small perturbations, one can perturb the

function f1� �f0 to be Morse, and the pair .f1� �f0;g/ to be Morse–Smale.

Let M be an n–dimensional manifold with corners. By definition, for every point
y 2 @M , there is a local chart �y W Uy!Rn identifying an open neighborhood Uy of y

with an open subset of a quadrant fxi1
� 0; : : : ;xik

� 0g. We will say a function f
on M is directed if

(1) �y�f can be extended to be a smooth function on an open neighborhood of
�y.Uy/, and with respect to some Riemannian metric g , the gradient vector
field of the resulting function is pointing either strictly outward or strictly inward
along every face of �y.Uy/;

(2) f is a Morse function on M and the pair .f;g/ is Morse–Smale.

We will also call .f;g/ a directed pair. From the above discussion, f1��f0 is directed
on the manifold with corners Xm0�t0

\Xm1�t1
.
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Now define

HomMor.X /.U0;U1/ WDMor�.Xm0>t0
\Xm1>t1

; f1� �f0/;

where Mor�.Xm0>t0
\Xm1>t1

; f1 � �f0/ is the usual Morse complex associated to
the function f1 � �f0 (after small perturbations when necessary). It is clear from
the above description that the definition essentially doesn’t depend on the choices of
t0; t1; � and g . There are compatible quasi-isomorphisms between the complexes with
different choices.

The (higher) compositions are defined by counting Morse trees as follows.

Definition 3.1 A based metric ribbon tree T is a tree embedded into the unit disc
consisting of the following data.

Vertices There are nC 1 points on the boundary of the unit disc in R2 labeled
counterclockwise by v0; : : : ; vn , where v0 is referred as the root vertex, and others are
referred as leaf vertices. There is a finite set of points in the interior of the disc, which
are referred as interior vertices.

Edges There are straight line segments referred as edges connecting the vertices. An
edge e connecting to the root or a leaf is called an exterior edge; otherwise it is called
an interior edge. We will use ei to denote the unique exterior edge attaching to vi ,
and ein to denote an interior edge. The resulting graph of vertices and edges should be
a connected embedded stable tree in the usual sense, ie the edges do not intersect each
other in the interior, there are no cycles in the graph, and each interior vertex has at
least 3 edges.

Metric and orientation The tree is oriented from the leaves to the root, in the direction
of the shortest path (measured by the number of passing edges). Each interior edge ein

is given a length �.ein/ > 0. One could parametrize the edges as follows, but the
parametrization is not part of the data. Each ein is parametrized by the bounded interval
Œ0; �.ein/� respecting the orientation. Every ei�fvig; i ¤ 0 is parametrized by .�1; 0�
and e0�fv0g is parametrized by Œ0;1/.

Equivalence relation Two based metric ribbon trees are considered the same if there
is an isotopy of the closed unit disc which identifies the above data.

Let Ui D .Ui ; fi/, i 2 Z=.k C 1/Z be a sequence of objects in Mor.X / (when we
compare the magnitude of two indices, we think of them as natural numbers ranging
from 0 to k ). We can apply the perturbation process as before to produce a directed
sequence zUi D . zUi ; zfi/, where the @ zUi are all smooth and transversely intersect with
each other, and zfj �

zfi is directed on xzU i \
xzUj for j > i (the boundary on which
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r. zfj �
zfi/ is pointing outward is understood to be @ zUi \

xzUj ). A Morse tree is a
continuous map �W T !X such that:

(1) �.vi/ 2 Cr. zUi�1\
zUi ; zfi �

zfi�1/ for i 2 Z=.kC 1/Z.

(2) The tree divides the disc into several connected components, and we label these
components counterclockwise starting from 0 on the left-hand-side of e0 (with
respect to the given orientation). Let `.e/ and r.e/ denote the label on the left-
and right-hand-side of an edge e respectively. Then we require that �je is C 1

and under some parametrization of the edges, we have

d�.t/

dt

ˇ̌̌
ein
Dr. zf`.ein/�

zfr.ein// for t 2 .0; �.ein//;

d�.t/

dt

ˇ̌̌
ei

Dr. zf`.ei /�
zfr.ei // for t 2 .�1; 0/ if i ¤ 0 and t 2 .0;1/ if i D 0:

For ai 2Cr. zUi\
zUiC1; zfiC1�

zfi/; i 2Z=.kC1/Z, let M.T I zf0; : : : ; zfk�1I a0; : : : ; ak/

denote the moduli space of Morse trees with �.vi/D ai�1 . After a small perturbation
of the functions, this moduli space is regular, and the signed count of the 0–dimensional
part M.T I zf0; : : : ; zfk I a0; : : : ; ak/

0-d gives the higher compositions

mk
Mor.X /.ak�1; ak�2; : : : ; a0/

D

X
bk2Cr. zU0\ zUk ; zfk�

zf0/

]M.T I zf0; : : : ; zfk I a0; : : : ; ak�1; bk/
0-d
� bk :

3.2 Open.X/'Mor.X/ via the homological perturbation lemma

Let us recall the homological perturbation lemma summarized in Seidel [18]. As-
sume we are given an A1–category A and a collection of chain maps F;G on
HomA.X1;X2/ for each pair of objects X1;X2 such that

G ıF D Id; F ıG � IdDm1
A ıH CH ım1

A;

where H is a map on HomA.X1;X2/ of degree �1.

Theorem 3.2 There exists an A1–category B with the same objects, morphism
spaces and m1 as A. This comes with A1–morphisms F W B!A, GW A! B which
are identity on objects and F1 D F;G1 D G . There is also a homotopy H between
F ıG and IdA such that H1 DH .

Remark 3.3 In this paper, all A1–categories and A1–functors are assumed to be c–
unital. The homological perturbation lemma generalizes to left A1–modules, namely,
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in addition to the above data, let MW A ! Ch be a left A1–module over A and
assume for each object X , there are chain maps zF ; zG and a homotopy zH on M.X /

satisfying
zG ı zF D Id; zF ı zG � IdD d ı zH C zH ı d;

then one can construct a left A1–module N over B such that

N 1
D zG ıM1

ıF;

and there are module homomorphisms

t W N ! F�M; sWM! G�N :

Then we have the composition

T D .RG.t// ı sWM!N ıG!M ıF ıG;

where RG is taking composition with G on the right. Using the homotopy between
F ıG and IdA , we get a composition of morphisms between the induced cohomological
functors:

H.T /W H.M/
H .s/
���!H.N ıG/

H .RG.t//
������!H.M/DH.M ıF ıG/:

Then it is easy to check that H.T /D Id and H.s/ ıH.RG.t//D Id, so

H.s/W H.M/
�

�!H.G�N /:

Here we will use the version where G is an idempotent, HomB.X1;X2/ is the image
of G and F W HomB.X1;X2/! HomA.X1;X2/ is the inclusion; see Kontsevich and
Soibelman [12]. The same for zG and zF .

Let .X;g/ be a Riemannian manifold with corners. Let .f;g/ be a directed pair
with 't the gradient flow of f . Denote by H0 � @X the hypersurface where rf is
pointing outward, and H1 � @X the hypersurface where rf is pointing inward.
Let D0.X � H0;H1/, D0.X � H1;H0/, called relative currents, be the dual of
�.X �H1;H0/ and �.X �H0;H1/ respectively.

In the following, we briefly recall the idempotent functor on �.X;H0/ constructed in
Harvey and Lawson [7] and [12] and used by [15] in the manifold-with-corners setting.
Consider the functor

(3-1)

P W �.X �H1;H0/!D0.X �H1;H0/;

˛ 7!
X

x2Cr.f /

�Z
Ux

˛

�
ŒSx �;
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where Cr.f / is the set of critical points of f , Ux is the unstable manifold associated
to x and Sx is the stable manifold associated to x .

There is a homotopy functor T between P and the inclusion I W �.X �H1;H0/ ,!

D0.X �H1;H0/ given by the current f.'t .y/;y/W t 2R�0g �X �X in D0.X �X /.
To construct a real idempotent functor on �.X �H1;H0/, one composes it with a
smoothing functor. For readers interested in further details, see [12].

A consequence of the functor P is the Morse theory for manifolds with corners:

(3-2) �.X �H1;H0/'Mor�.X; f /:

Following the notation in Section 3.1, this implies the canonical quasi-isomorphisms

HomMor.X /.U0;U1/'Mor�.Xm0>t0
\Xm1>t1

; f1� �f0/

' .�.Xm0�t0
\Xm1>t1

;Xm0Dt0
\Xm1>t1

/; d/

' .�. xU0\U1; @U0\U1/; d/D HomOpen.X /.U0;U1/:

Applying the homological perturbation lemma to the dg–category Open.X / through
the functors P , I and T for each pair of objects, one can show that Mor.X / is exactly
the A1–category B in Remark 3.3 constructed out of these data. Using the setup
for defining higher morphisms in Mor.X / of Section 3.1, there is a nice description
of M.T I zf0; : : : ; zfk�1I a0; : : : ; ak/ in terms of intersections of the stable manifold
of ai for i ¤ k and the unstable manifold of ak , which also involves the functors P

and I . After a smoothing functor, one replaces intersection of currents by wedge
product on differential forms, then compare this with the formalism of the homological
perturbation lemma to get the assertion. For more details about the argument, see [12].
We will use the same idea in Section 4.3 for left A1–modules.

3.3 The microlocalization �X W Sh.X/
�
�!Tw Fuk.T �X/

For any UD .U;m/2Mor.X /, we can associate the standard brane LU;m in Fuk.T �X /
(see Appendix C.3.1(b)), and in this way Mor.X / is naturally identified with the A1–
subcategory of Fuk.T �X / generated by these standard branes.

Roughly speaking, one does a series of appropriate perturbations and dilations to the
branes LUi ;mi

, i D 1; : : : ; k , so that:

(1) After further variable dilations (see Appendix C.3.1(c)), one can use the mono-
tonicity properties (Proposition C.1, Remark C.2) to get that all holomorphic
discs bounding the (dilating family of) the new branes � �Li ; i D 1; : : : ; k have
boundary lying in the partial graphs � �Li j zUi

D � ��d zfi
, i D 1; : : : ; k , where zUi

is a small perturbation of Ui and zfi W
zUi!R is some function.
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(2) The sequence . zUi ; zfi/; iD1; : : : ; k is directed, and hence one could use . zUi ; zfi/

as representatives in the calculation of (higher) morphisms involving Ui D

.Ui ;mi/, i D 1; : : : ; k , in Mor.X /.

Since we will use the same technique in Sections 4.2 and 4.3, we defer the details until
then.

Recall the Fukaya–Oh theorem.

Theorem 3.4 (Fukaya and Oh [5]) For a compact Riemannian manifold .X;g/ and
a generic sequence of functions f1; : : : ; fk on X , there is an orientation-preserving
diffeomorphism between the moduli space of holomorphic discs (with respect to the
Sasaki almost complex structure) bounding the sequence of graphs � ��dfi

, iD1; : : : ; k ,
and the moduli space of Morse trees for the sequence .X; �fi/, i D 1; : : : ; k , for all
� > 0 sufficiently small.

Since the proof of the theorem is local and essentially relies on the C 1 –closeness of
the graphs to the zero section, one could adapt it to the directed sequence . zUi ; zfi/,
i D 1; : : : ; k , and conclude that the moduli space of discs bounding � �Li , i D 1; : : : ; k ,
is diffeomorphic (as oriented manifolds) to the moduli space of Morse trees for the
sequence . zUi ; zfi/, i D 1; : : : ; k . Therefore we get the quasiembedding i W Mor.X / ,!
Fuk.T �X /.

Next we compose i with the quasiequivalence PW Open.X/!Mor.X/ from Section 3.2,
and get a quasiembedding i ıPW Open.X /! Fuk.T �X /. Then taking twisted com-
plexes on both sides, we get the microlocal functor �X W Sh.X /! Tw Fuk.T �X /. To
simplify notation, we will denote Tw Fuk.T �X / by F.T �X /. The main idea in [14]
of proving that �X is a quasiequivalence is to resolve the conormal to the diagonal
in T �.X �X / using product of standard branes in T �X . Since we will only use the
statement, we refer interested readers to [14] for details.

For a fixed stratification S , let FukS.T
�X / be the full subcategory of Fuk.T �X /

consisting of branes L with L1 � T1S X , and let FS.T
�X / denote its twisted

complexes. Then we also have

(3-3) �X jShS.X /W ShS.X /
�

�! FS.T
�X /:

4 Quasirepresenting Mx;F on FukS.T
�X/ by the local

Morse brane Lx;F

Continuing the convention from Section 2, for a complex stratification S , we refine it
to have each stratum a cell, and denote the resulting stratification by S as well. The

Geometry & Topology, Volume 19 (2015)



Holomorphic Lagrangian branes correspond to perverse sheaves 1703

test triples .x; �;F / we are considering for ƒS are always away from the newly added
strata.

Given a test triple .x; �;F /, we will construct a Lagrangian brane Lx;F supported on
a neighborhood of x , such that the functor HomF.T �X /.Lx;F ;�/W FS.T

�X /! Ch
under pullback by �X is quasi-isomorphic to the local Morse group functor Mx;F .

4.1 Construction of Lx;F

Consider the function r�<.F /W B2�.x/!R2 , where r.z/D kzk2 as before. Let R

be an open subset of ƒS –regular values of r � <.F / in R2 , such that it contains
.0; ı/� f0g for some ı > 0, and if .a; b/; .a; c/ 2R for b < c , then fag � Œb; c��R

(here we have used Lemma A.5). There exists a 0< zr2 < ı for which the function r
has no ƒS –critical value in .0; zr2/. Fixing such a zr2 , choose 0< zr1 < zr2 and � > 0

small enough so that R contains .zr1; zr2/� .�2�; 2�/, and <.F / has no ƒS –critical
value in .�2�; 0/ or .0; 2�/. Also choose zr1 < r1 < r2 < zr2 .

Let

�D�1
2
�; ı1 D

1
2
.r2� r1/; ı2 D

1
4
�;

u.z/D r.z/� .r2� ı1/; v.z/D<.F /.z/� .�� ı2/:

Near fuD v D 0g, we smooth the corners in

W1 WD fuD 0; v � 0g[ fu� 0; v D 0g

as follows. Let x�1 D
1
2

min.ı1; ı2/. We remove the portion fu2C v2 � x�2
1
g from W1

and glue in 3
4

of the cylinder fu2 C v2 D x�2
1
g, ie the part where u; v are not both

negative. Then we smooth the connecting region so that its (outward) unit conormal
vector is always a linear combination of dr and d<.F /, in which at least one of the
coefficients is positive. This can be achieved by looking at the local picture in the
leftmost corner of Figure 2, where we complete u; v to be the coordinates of a local
chart. We will denote the resulting hypersurface by �W1 .

Now we choose a defining function m �W1
for �W1 such that

(i) in an open neighborhood U1 of �W1 , m �W1
is a function of u; v , and dm �W1

¤ 0,

(ii) m �W1
D u on fv � �4

3
x�1; juj �

1
2
x�1g, m �W1

D v on fu� �4
3
x�1; jvj �

1
2
x�1g.

Then there exists a 0< �1 <
1
2
x�1 , so that the set f0�m �W � �1g is contained in U1 ,

and dm �W1
is a linear combination of dr and d<.F / over that set, in which at least

one of the coefficients is positive.
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Similarly, we can smooth the corners in frD r2;<.F /� �g[ fr� r2;<.F /D �g, but
in the way illustrated on the right-hand-side of Figure 2. We will denote the resulting
hypersurface by �W0 . We choose a defining function m �W0

and �0 > 0 in the same
fashion as for m �W1

and �1 .

rD kzk2 D r2� ı1

m �W1
D �1

m �W1
D 0

<F D��

<F D �� ı2

<F D �
<F D �

x
�

rD r2

rD r1

m �W0
D 0

Figure 2: Construction of U : U is the shaded area, and the leftmost and
rightmost pictures are illustrating the local smoothing process for the corners.

Let bW .�1; �/! R be a nondecreasing C 1 –function such that b.x/ D x for x 2

.�1
4
�; 1

2
�/, limx!�� b.x/DC1, and the derivative b0D0 exactly on .�1;���. Let

cW .0; r2/! R�0 be a nondecreasing C 1 –function such that limx!r�
2

c.x/DC1,
and c0D0 exactly on .0; r1�. Let d W .�1; 0/!R�0 be a nondecreasing C 1 –function
with limx!0� d.x/DC1, and d 0D0 exactly on .�1;��0�. Let eW .0;C1/!R�0

be a nondecreasing C 1 –function with limx!0C e.x/D �1 and e0 D 0 exactly on
Œ�1;C1/.

Now define
f D b ı<.F /C c ı rC d ım �W0

C e ım �W1

on
U D the domain bounded by �W0 and �W1:

The construction of U is interpreted in Figure 2, where U is the shaded area.

Lemma 4.1 We have that �df is a closed, properly embedded Lagrangian submanifold
in T �X satisfying x�df t xƒS D f.x; �/g in T �X .
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Proof Only the part �df \ƒS D f.x; �/g needs to be proved. The hypersurfaces
rD r1 and <.F /D�� divide U into three regions

U1 D fr� r1g\U; U2 D fr> r1g\ f<.F / >��g\U; U3 D f<.F /���g\U:

On U1 (resp. U3 ), df is a positive multiple of d<.F / (resp. dr), so df 62ƒS over
U1[U3 except at x . On U2 , df is a linear combination of d<.F / and d r, in which
at least one of the coefficients is positive. Since r�<.F / is ƒS –regular on U2 , we
get df 62ƒS .

By Propositions C.3 and C.4, �df can be equipped with a canonical brane structure b .
Let Lx;F denote .�df ; E ; b; ˆ/ as an object in Fuk.T �X /, where E is a trivial local
system of rank 1 on �df and the perturbation ˆD fLs

x;F
g is defined as follows.

For sufficiently small s > 0, let

(4-1) Us D fx 2 U W jf .x/j< � log sg; U0 D U

and Ls
x;F

be a Lagrangian over xU satisfying:

(1) Ls
x;F
j xUs
D �df j xUs

.

(2) Ls
x;F
j@U D T �

@U
X jj�j�ˇs

, where ˇs!1 as s! 0.

(3) Ls
x;F
jU D �dfs

jU for a function fs on U .

(4) fsjUs
D f jUs

, and dfsjz D �.z/df jz for some 0< �.z/� 1 for z 2 U �Us .

(5) Let Ks
x� Dminfj�j W � 2Ls

x;F
j@Ux�g; we require Ks

x�1
>Ks

x�2
for 0< x�1 < x�2 < s .

The notation LjW for a Lagrangian L and a subset W � X means the set
L\��1.W /, where � W T �X !X is the standard projection.

4.2 Computation of HomFuk.T �X /.Lx;F ;LV / for V 2 US;x

Let V 2 US;x (recall the notation is defined in (2-5)); then @V is stratified by a
subset S@V of S . Fix a semidefining function m for V (see Appendix A.2.3). We have
the standard Lagrangian brane LV;m associated to V as defined in Appendix C.3.1(b),
for which we will simply denote by LV . Let

Vt DXm>t for t � 0:

Let .@U /out , .@U /in denote �W0 and �W1 respectively. Let A denote the annulus
enclosed by .@U /in , r D r2 and <.F / D �, including only the boundary compo-
nent .@U /in .
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Lemma 4.2 For t > 0 sufficiently small, there is a compatible collection of quasi-
isomorphisms of complexes

.�.. xU � .@U /out/\Vt ; .@U /in\Vt /; d/

'.�.. xU � .@U /out/\Vt ;A\Vt /; d/(4-2)

'.�.Br2
.x/\Vt ;Br2

.x/\f<.F / < �g\Vt /; d/(4-3)

'.�.Br2
.x/\V;Br2

.x/\f<.F / < �g\V /; d/:(4-4)

Proof For (4-2), we only need to prove that A \ Vt deformation retracts onto
.@U /in\Vt . First, we can construct a smooth vector field on an open neighborhood of
. xU � .@U /out/\ f�� ı2 < <.F / < �g integrating along which gives a deformation
retraction from A onto U \ f<.F / � �� ı2g \ fm �W1

� 0g [ .@U /in . For example,
we can choose the vector field v such that

v.<.F //D� 1I v.r/D0 near @Br2
.x/I v.m/D0 near @Vt I v.m �W1

/¤0 on �W1:

Similarly, we can construct a deformation retraction from U \ f<.F / � �� ı2g \

fm �W1
� 0g[ .@U /in onto .@U /in\Vt .

The identification in (4-3) is by excision on the triple .Vt \ fm �W1
< 0g/ � Vt \

Br2
.x/\f<.F / < �g � Vt \Br2

.x/, and a deformation retraction from Vt \Br2
.x/

onto Vt \fm �W0
< 0g. One can construct a similar vector field for this and we omit the

details. The quasi-isomorphism (4-4) can also be obtained in a similar way.

Let Lt
V
; t > 0 small, be a family of perturbations of LV supported over xVt satisfying

(1) Lt
V
j xV2t
DLV j xV2t

;

(2) Lt
V
j@Vt
D T �

@Vt
X jj�j��t

for some �t > 0;

(3) Lt
V
jVt
D �dhVt

, where hVt
is a function on Vt such that hVt

jV2t
D log mjV2t

,
dhVt

and d log m are colinear on Vt and 1� dhVt
=d log m� 1:2.

Again by Propositions C.3 and C.4, LV carries a canonical brane structure. Let LV

also denote the object in Fuk.T �X / consisting of the canonical brane structure, a
trivial local system of rank 1 on it and the above perturbation fLt

V
gt�0 . The proof of

the following lemma is essentially the same as in [15, Section 6]. The only difference
is that we use the above conical perturbations and avoid geodesic flows.

Lemma 4.3 There is a fringed set R � R2
C , such that for .t; s/ 2 R, there is a

compatible collection of quasi-isomorphisms

HomFuk.T �X /.L
s
x;F ;L

t
V /'�.V \Br2

.x/;V \Br2
.x/\f<.F / < �g/:
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Proof Step 1: Perturbations and dilations This step is essentially the same as the
perturbation process in Mor.X / stated at the beginning of Section 3.1. Nevertheless,
we repeat it to set up notation. There is an (nonempty) open interval .0; �0/ such
that for all t 2 .0; �0/, @Vt and @U intersect transversally. Fixing any t 2 .0; �0/,
there is an open neighborhood Wt of @Vt \ @U such that the covectors d log mjz
and Ls

x;F jz are linearly independent for all s > 0 and z 2 Wt \
xVt \

xU . Choose
t < xt <�0 such that Xt�m�xt \@U �Wt . Since Xt�m�xt �Wt is compact, we can find
�t > 0 such that jdhVt

j > �t jdf j on .Xt�mV �xt �Wt /\ xU . There is a small �1 > 0

such that . xU �U�1
/\Xt�mV �xt �Wt and on . xU �U�1

/\ xVt �Wt we have jdhVt
j

bounded above by some Mt , so we can find �1 > xs > s > 0 small enough so that
f�t j�j W � 2Ls

x;F j xU�Uxsg is bounded below by 2Mt . In summary, we first choose t;xt ,
then �t and lastly s;xs , and it is clear that the collection of such .t; s/ forms a fringed
set in R2

C . It is also clear that we can choose xs small so that .t;xt/� .s;xs/�R.

There is a Riemannian metric g on X such that after a small perturbation, .hVt
�

�tfs;g/ is a directed pair on the manifold with corners xVxt \ xUxs , and choices of such
metric form an open convex subset. And this also holds for any .zs; zt/ 2 .t;xt/� .s;xs/.

Step 2: Energy bound Choose t < t1 < t2 < t3 < xt and s < s1 < s2 < s3 < xs .

Let G1DLt
V
jXt2<m<t3

and G2D �t �L
s
x;F
jUs2
� xUs3

. Choose some very small ıi;v > 0

and define the tube-like open set

Ti D

[
.x;�/2Gi

Bvıi;v
.x; �/;

where Bvıi;v
.x; �/ means the vertical ball in the cotangent fiber T �x X of radius ıi;v

centered at .x; �/. With small enough ıi;v , we have T1\T2 D∅.

Let
L

t;`
V
D '`

D
log m

t3;
xt

.Lt
V / and L

s;`
x;F
D '

�t`

D
f
s3;xs

.�t �L
s
x;F /

for 0< ` < 1, where
'`

D
log m

t3;
xt

and '
�t`

D
f
s3;xs

are the variable dilations defined in Appendix C.3.1(c). Note that the variable dilations
fix G1;G2 and xLt;`

V
\ xL

s;`
x;F
D .1� `/ � .xLt

V
\ �t �

xLs
x;F

/.

By Proposition C.1 and Remark C.2, for ` sufficiently close to 1, all the discs bound-
ing Lt;`

V
and Ls;`

x;F
have boundaries lying in Lt;`

V
jXm>t2

[Ls;`
x;F
jUs2

. Fixing such an `,
the same holds for the family of uniform dilations � �Lt;`

V
and � �Ls;`

x;F
, 0< � � 1.

It is easy to see that Ls;`
x;F
jUs1

and Lt;`
V
jVt1

are the graphs of differentials of a directed
sequence .Us1

; f1/; .Vt1
; f2/, and by the Fukaya–Oh theorem (Theorem 3.4) and
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Morse theory for manifolds with corners (3-2), we have for � > 0 sufficiently small,

HomFuk.T �X /.L
s
x;F ;L

t
V /' HomFuk.T �X /.� �L

s;`
x;F

; � �L
t;`
V
/

'Mor�. xUs1
\ xVt1

; �.f2�f1//

' .�.. xU � .@U /out/\Vt1
; .@U /in\Vt1

/; d/

' .�.Br2
.x/\V;Br2

.x/\f<.F / < �g\V /; d/:

The last identity is from Lemma 4.2.

4.3 H.Mx;F /ŠH.��
X

HomF.T �X /.Lx;F ;�/)

Given a sequence of open submanifolds with semidefining functions .Vi ;mi/, i D

1; : : : ; k , there is a fringed set R�RkC1
C such that for all .tk ; : : : ; t1; t0/ 2R, there

exist �k ; : : : ; �1; �0 > 0 and .tk ; : : : ; t1; t0/ < .xtk ; : : : ;xt1;xt0/ 2R, satisfying:

(1) @U (resp. @Ut0
/; @Vt1

; : : : ; @Vtk
intersect transversally, ie the unit conormal

vectors to them are linearly independent at any intersection point.

(2) Let � ti

i D �i �L
ti

Vi
jVi;xti

for i D 1; : : : ; k , and � t0

0
D �0 �L

t0

x;F
jUxt0

; then

�i �L
ti

Vi
\ �j �L

tj
Vj
D �

ti

i \�
tj
j

for 0< i < j and �0 �L
t0

x;F
\ �i �L

ti

Vi
D �

t0

0
\�

ti

i for i > 0.

(3) For all .pi/
k
iD1
2R with .ti/kiD0

<.pi/
k
iD0

<.xti/
k
iD0

, we have that the sequence
.Uxt0

; �0ft0
/; .V1; �1hV1;t1

/; : : : ; .Vk ; �khVk;tk
/ is a directed sequence.

The notation .ti/kiD0
< .si/

k
iD0

means ti < si for all 0� i � k . We start by choosing
appropriate tk and �k and then do induction. First, let

ƒ¤k D

[
i<k

ƒi :

There is �k > 0 such that on .0; �k/, mk has no ƒ¤k –critical value. Pick any small
tk 2 .0; �k/, and form L

tk

Vk
. Let �k D 1.

Suppose we have chosen tk ; : : : ; tiC1 and �k ; : : : ; �iC1 for i > 0, let ƒj ;tj be the
associated conical Lagrangian of the stratification compatible with fXmjDtj g, for
j D i C 1; : : : ; k . Let

ƒ¤i D

�[
j<i

ƒj

�
[

�[
j>i

ƒj ;tj

�
:
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There is �i > 0 so that mi has no ƒ¤i –critical value in .0; �i/. On Vi \Xmj�tj

for each j > i , there is an open neighborhood Wij of XmiD0 \XmjDtj on which
d log mi and d log mj are everywhere linearly independent. Choose tj < �

0
ji < �j

such that Xtj�mj��
0
j i
\@Vi �Wij for j > i . On Xtj�mj��

0
j i
\Vi�Wij , the covectors

in �j �L
tj
Vj

are bounded from below by some Nij > 0. Choose �i > 0 such that on this
region, the covectors in �i �LVi

are bounded above by 1
2
Nij for all j > i . Next, choose

0<�0ij <�i so that Xmi��
0
ij
\Xmj��

0
j i
�Wij for all j > i . Then covectors in �j �L

tj
Vj

over Xmi��
0
ij
\Xmj�tj �Wij are bounded above by some Mij . Choose 0<ti<�

0
ij for

all j > i so that the covectors on the graph �i � d log mi over XmiDti
\Xmj�tj are

bounded below by 2Mij . Now we have ti ; �i and L
ti

Vi
.

Finally, having chosen tk ; : : : ; t1 , and �k ; : : : ; �1 , to choose �0 , we do the same thing
as before. However, to choose t0 , we do not shrink U . Instead, we find t0 small
enough so that on U �Ut0

\Xmj�tj , �0 �L
t0

x;F
is bounded below by 2M0j for all

j > 0. Clearly, the choices of .tk ; : : : ; t0/ form a fringed set R�RkC1
C .

The choices of xtk ; : : : ;xt0 can be made as follows. First, xtk can be anything satisfying
tk < xtk < �

0
ki

for all i < k . Once we have chosen xtk ; : : : ;xtiC1 for i > 0, xti should
satisfy ti <xti <�

0
ij for all j ¤ i and on Xti�mi�xti

, the covectors d log mi are bounded
below by 1:5Mij for all j > i . A similar choice can be made for xt0 . Also we can
make .xtk ; : : : ;xt0/ belong to R.

Again, we do variable dilations to �0 �L
t0

x;F
; �i �L

ti

Vi
and run the energy bound argument

on holomorphic discs. Choose .ti/kiD0
< .pi/

k
iD0

< .qi/
k
iD0

< .si/
k
iD0

< .xti/
k
iD0

in R.
Let

zL
t0;`
x;F
D '

�0`

D
f

s0;
xt0

.�0 �L
t0

x;F
/; zL

ti ;`
Vi
D '

�i`

D
log mi
si ;
xti

.�i �L
ti

Vi
/ for i > 1;

zL
t0;`
x;F
jUp0
D �

d zft0;`
; zL

ti ;`
Vi
jVi;pi

D �
d zhi;ti

;

for some function zft0;` on Up0
, and zhi;ti ;` on Vi;pi

for 1� i � k .

For ` sufficiently close to 1, all holomorphic discs bounding these Lagrangians have
boundaries lying in zLt0;`

x;F
jUq0
[
Sk

iD1
zLti ;`

Vi
jVi;qi

. Since the sequence

.Up0
; zft0;`/; .V1;p1

; zh1;t1;`/; : : : ; .Vk;pk
; zhk;tk ;`/

is directed, using the Fukaya–Oh theorem, we get the following.

Lemma 4.4 For ` sufficiently close to 1,

mk
Fuk.T �X /W HomFuk.T �X /. zL

tk�1;`
Vk�1

; zL
tk ;`
Vk
/˝ � � �˝HomFuk.T �X /. zL

t0;`
x;F

; zL
t1;`
V1
/

! HomFuk.T �X /. zL
t0;`
x;F

; zL
tk ;`
Vk
/Œ2� k�
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is given by counting Morse trees,

mk
Fuk.T �X /.ak�1; : : : ; a0/

D

X
T

X
ak2S

#M.T I � zft0;`; �
zh1;t1;`; : : : ; �

zhk;tk ;`I�.a0/; : : : ; �.ak//
0-d
� ak ;

for all � sufficiently close to 0, where S D � � .�d zft0;`
\�d zhk;tk ;`

/ and � W T �X !X

is the standard projection.

Consider the following diagram:

B D FS.T
�X /

FDHomF.T�X/.Lx;F ;�/

))
zB DMorS.X /
5 U

i
hh

I
��

F j zB

// Ch

zAD OpenS.X /

P

KK

� _

j

��
AD ShS.X /

�X

XX

Mx;F

FF

Here i W zB ,!B and j W zA ,!A are embeddings into triangulated envelopes; the functors
I;P are from applying the homological perturbation formalism to the functor P in
(3-1); �X W A! B is the microlocal functor in Section 3.3.

In Remark 3.3, putting G and zG to be the idempotent P in (3-1) on corresponding
complexes, M to be Mx;F jzA and F to be I , gives us the N exactly the same as F jzB .
This follows directly from Lemma 4.4, and we have

H.j �Mx;F /ŠH.P�F jB/ŠH.j ���X F/:

Since the functors ��
X
F and Mx;F both respect forming cones, we have

(4-5) H.��X F/ŠH.Mx;F /:

5 Computation of HomFuk.T �X/.Lx;F ;�/ on holomorphic
branes in FukS.T

�X/

5.1 Holomorphic Lagrangian branes

Let X be a compact complex manifold of dimension n. Let T �XC denote the
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holomorphic cotangent bundle of X equipped with the standard holomorphic symplectic
form !C . Like in the real case, there is a complex projectivization of T �XC , namely

xT �XC D .T
�XC �C�T �X XC � f0g/=C

�:

For a holomorphic (complex analytic) Lagrangian L in T �XC which is by assumption
a C–set in T �X , using [16, Theorem 4.4] of Peterzil and Starchenko, one sees that xL
is complex analytic in T �X C . Note if X is a proper algebraic variety, then L is
algebraic in T �XC .

There is the standard identification (of real vector bundles) �W T �XC ! T �X as
follows. In local coordinates .qzj ;pzj / on T �XC and .qxj ; qyj ;pxj ;pyj / on T �X ,
where zj D xj C

p
�1yj on X , we have qxj D <qzj , qyj D =qzj , pxj D <pzj ,

pyj D �=pzj . It is easy to check that ��! D<!C , so � sends every holomorphic
Lagrangian to a Lagrangian. In the following, by a holomorphic Lagrangian in T �X ,
we mean an exact Lagrangian which is the image �.L/ of a holomorphic Lagrangian L

in T �XC under the identification � . We will write L instead of �.L/ when there is
no cause of confusion.

Equip T �X with the Sasaki almost complex structure JSas and let � be the canonical
trivialization of the bicanonical bundle � (See Appendix C.3.3).

First we have the following lemma on the flat case X DCn (we do not need X to be
compact here), where � is the volume form �D

Vn
iD1.dqxi C

p
�1dpxi /^ .dqyi C

p
�1dpyi / up to a positive scalar.

Proposition 5.1 Every holomorphic Lagrangian brane in T �X (X D Cn ) has an
integer grading with respect to JSas .

Proof Let L be a holomorphic Lagrangian in T �XC . For any .x; �/ 2 L, let
v1; : : : ; vk ; w1; : : : ; wn�k be a basis of T.x;�/L. After a change of coordinate and basis,
we can assume vi D @q

zi
C
Pn
�D1 v

�
i @pz�

and wj D
Pn
�D1w

�
j @pz�

for i D 1; : : : ; k

and j D 1; : : : ; n� k .

Then the condition of L being a Lagrangian implies that w1; : : : ; wn�k generate
h@p

zi
iiDkC1;:::;n and after another change of basis, we get vi D @q

zi
C
Pk
�D1 v

�
i @pz�

with .v�i /i;�2f1;:::;kg a symmetric k � k matrix.

Let J1 D
�

0
1
�1
0

�
and

Jm D

0BBB@
J1

J1

: : :

J1

1CCCA
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be of size 2m � 2m. Then T�.x;�/�.L/ has the form
�

Ik

0
0
0

ˇ̌
A
0

0
K

�
(by this, we

mean T�.x;�/�.L/ is spanned by the row vectors of the matrix under the basis
@q

x1
; @q

y1
; : : : ; @qxn ; @qyn ; @p

x1
; @p

y1
; : : : ; @pxn ; @pyn ), where Ik is the identity matrix

of size 2k � 2k , A is a symmetric matrix satisfying AJk D�JkA, and

K D

0BBBBB@
1

�1
: : :

1

�1

1CCCCCA
of size 2.n� k/� 2.n� k/. In particular, KJn�k D�Jn�kK .

Let � D
Vn

iD1.dqxi C
p
�1dpxi /^ .dqyi C

p
�1dpyi / be a holomorphic volume

form on T �X with respect to JSas . Then for any basis u1; : : : ;u2n of T�.x;�/�.L/,
.�.u1 ^ � � � ^ u2n//

2 D C � .det.Ik C
p
�1A/ det.

p
�1K//2 where C > 0. Since

AJk D �JkA, for any eigenvector v of A with eigenvalue �, we have A.Jkv/ D

��.Jkv/. In particular, if 1C�
p
�1 is an eigenvalue of IkC

p
�1A then 1��

p
�1 is

an eigenvalue of it as well, and they are of the same multiplicity. So .�.u1^� � �^u2n//
2

is always a positive number, which implies that L has integer grading.

In the general case of X , for any small disc D D f
P

i jzi j
2 < �g � X , let JD be

the Sasaki almost complex structure induced from a metric on X which is flat on D .
Given a graded holomorphic Lagrangian L, deform Jcon (relative to infinity) to agree
with JD on a relatively compact subset of T �X jD . Proposition 5.1 says that it gives a
new grading on L which has integer value on that subset. Since the space of compatible
almost complex structures which agree with Jcon near infinity is contractible and X is
connected, the integer on each connected component of L is independent of D , and
this constant has the same amount of information as the original grading of L. Because
of this, we will by some abuse of language say that every holomorphic Lagrangian has
integer grading.

Proposition 5.2 Let L0;L1 be two holomorphic Lagrangians in T �X with integer
gradings �0; �1 respectively. Assume that L0 and L1 intersect transversally. Then
HF�.L0;L1/ is concentrated in degree �1� �0C n.

Proof Let p 2 L0 \L1 . By the proof of Proposition 5.1 and transversality, under
one coordinate system TpL0 has the form

�
Ik

0
0
0

ˇ̌
A0

0
0

K0

�
and TpL1 has the form�

0
0

0
Il

ˇ̌
K1

0
0

A1

�
, where kC l � n, Ai ; i D 0; 1 is of the same type as A and Ki ; i D 0; 1

is of the same type as K in the proof of Proposition 5.1.
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We find the degree of p using (C-7). First, let

M0 D

�
I C
p
�1A0 0

0
p
�1K0

�
; M1 D

�p
�1K1 0

0 I C
p
�1A1

�
;

Ui DMi.<M 2
i C=M 2

i /
�1=2; i D 0; 1; zU D U0U1U�1

0 ;

C D< zU= zU�1; U D .C C
p
�1I/.C 2

C I/�1=2:

It is easy to see Ui ;U 2 U.2n/, and under an orthonormal basis of TpL0 , we have

TpL1 D U �TpL0;

and the eigenvalues together with eigenvectors of U will give the canonical short path
from TpL0 to TpL1 .

Let S 0 D fB 2M2n�2n.C/ W BJn D�Jn
xBg. Then for a matrix in S 0 , its eigenvalues

are of the form �i ;�x�i ; i D 1; : : : ; n. It is straightforward to check that U 2 S 0 (since
Ui 2 S 0 ), so the eigenvalues of U are e2�

p
�1˛i ; e2�

p
�1.�.1=2/�˛i /; i D 1; : : : ; n, for

some ˛i 2 .�
1
2
; 0/. Therefore

deg.p/D �1� �0� 2

nX
iD1

.˛i �
1
2
�˛i//D �1� �0C n:

Let Lag.T �X / be the set of all Lagrangian submanifolds in T �X . Let LagS.T
�X /D

fL 2 Lag.T �X / WL1 �ƒ1S g.

5.2 Transversality of Lx;F with t � L for L 2 LagS.T
�X/ and t > 0

sufficiently small

For any L2Lag.T �X /, consider Lt>0Df..x; �/; t/ W .x; �/2 t �L; t > 0g�T �X �R
and denote each fiber over t as Lt . Define Conic.L/D xLt>0�Lt>0�T �X�f0g, and
we also view it inside T �X . Similarly, if X is a proper algebraic variety and L is a
holomorphic Lagrangian (hence algebraic) in T �XC , consider Lw2C� D f..x; �/; w/ W

.x; �/ 2w �L; w 2C�g � T �XC �C� . Define Conic.Lalg/ to be the fiber at 0 of the
algebraic closure of Lw2C� in T �XC �P1 .

Let

Cone.L1/D Cl
n
.x; �/ 2 T �X W lim

s2RC;s!1
.x; s�/ 2L1 in T �X

o
� T �X:

For a holomorphic Lagrangian L, L1C will denote xL\T1XC � T �X C , and let

ConeC�.L
1
C /D Cl

n
.x; �/ 2 T �XC W lim

�2C�;�!1
.x; ��/ 2L1C in T �X C

o
� T �XC;

where Cl means taking the closure. In particular, Cone.L1/ � ConeC�.L
1
C /, so

L 2 LagS.T
�X / for a complex stratification S .
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In the following, S is a refinement of a complex stratification, with each stratum a cell,
and L 2 LagS.T

�X /.

Lemma 5.3 Conic.L/ is a closed (possibly singular) conical Lagrangian in T �X .

Proof We have Conic.L/ D Cone.L1/ [ �.L/. In fact, Conic.L/ \ T �
X

X D

�.L/ and .x; �/ 2 Conic.L/ � T �
X

X if and only if there exists .xn; �n/ 2 L and
tn ! 0C such that limn!1.xn; tn�n/ D .x; �/ if and only if limt!1.x; t�/ D

limn!1.xn; �n/ 2L1 .

Since Lt>0 D f..x; �/; t/ W .x; �/ 2 t �L; t > 0g is a C–set in T �X �R, Conic.L/ is
a C–set. Note that Conic.L/ � ƒS , so we can take a stratification of ƒS which is
compatible with Conic.L/. Then choose a stratification T of Lt�0 WD xLt>0 compatible
with the above stratification restricted to Conic.L/. It is clear that for any covector
.x; �/ in an open stratum in ƒS away from Conic.L/, Lx;F \ t �L D ∅ for t > 0

sufficiently small, for any test triple .x; �;F /. So we only need to look at .x; �/ in an
open stratum of Conic.L/.

Let T˛ be an open stratum of Conic.L/. For any ..x; �/; 0/ 2 T˛ , there is some open
neighborhood of it that only intersects open strata in Lt>0 , and let .x; �;F / be a test
triple for ƒS . Denote Lx;F DLx;F �R� T �X �R.

Lemma 5.4 In a neighborhood of ..x; �/; 0/, Lx;F intersects Lt>0 transversally.

Proof For a small (open) ball Br .x/ with center x , ��1.Br .x//� T �X is diffeo-
morphic to Dn�Rn , where Dn is the (open) unit disc in Rn . So we have two C–maps
by taking tangent spaces,

f1W Lt>0! GrnC1.R
2nC1/; f2W Lx;F ! GrnC1.R

2nC1/;

and by restriction, these give the map

f D .f1; f2/W Lt>0\Lx;F ! GrnC1.R
2nC1/�GrnC1.R

2nC1/:

Let N D f.A;B/ 2 GrnC1.R
2nC1/�GrnC1.R

2nC1/ W ACB ¤ R2nC1g. It is clear
that N is a closed C–set.

Suppose there is a sequence of points ..xn; �n/; tn/2Tˇ; tn> 0 approaching ..x; �/; 0/,
where Tˇ is an open stratum in Lt>0 , on which Lx;F and Lt>0 intersect non-
transversally, then f ..xn; �n/; tn/ 2 N . Since N is compact, there exists a subse-
quence ..xnk

; �nk
/; tnk

/ such that f ..xnk
; �nk

/; tnk
/ converges to a point in N and

limk!1 T..xnk
;�nk

/;tnk
/Lt>0 exists.

By the Whitney property, T.x;�/ Conic.L/� limk!1 T.xnk
;�nk

;tnk
/Lt>0 . This implies

that L is not transverse to Lx;F at .x; �/, which is a contradiction.
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Lemma 5.5 Let ..x; �/; 0/2T˛ as in Lemma 5.4. Then Lx;F intersects t �L transver-
sally for all sufficiently small t > 0, and the intersections are within the holomorphic
portion of Lx;F .

Proof First, by the curve selection lemma, given any neighborhood W of ..x; �/; 0/,
we have Lx;F \Lt0>t>0 �W for t0 sufficiently small.

We only need to prove there is a neighborhood of ..x; �/; 0/ contained in W , such that
for any ..xt ; �t /; t/2Lt\Lx;F , 0< t < t0 , we have ��T.xt ;�t ;t/.Lt>0\Lx;F /¤f0g,
where � W Lt>0\Lx;F !R is the projection to t . In fact, since Lt>0 t Lx;F in W ,
��T.xt ;�t ;t/.Lt>0\Lx;F /¤ f0g implies the transversality of Lt and Lx;F .

The assertion is true because the function t on Lt>0\Lx;F has no critical value in
.0; �/ for some � > 0 sufficiently small.

Now we are ready to prove the main theorem.

Theorem 5.6 If L is a holomorphic Lagrangian brane of constant grading �n and
F 2 Sh.X / quasirepresents L, ie �X .F/'L, then F is a perverse sheaf.

Proof From (3-3), F 2 ShS.X / for a complex analytic stratification S . Let zS
be a refinement of S with each stratum a cell. By Proposition 5.2, for generic
choices of test triple .x; �;F / of ƒzS , we have the cohomology of Mx;F .F/ '
HomFuk.T �X /.Lx;F ;L/ concentrated in degree 0, so F is perverse.

Remark 5.7 One could easily deduce from the above discussions that if F 2 Perv.X /
quasirepresents a holomorphic brane L, then Conic.L/ D SS.F/ and in particular
Cone.L1/D �.ConeC�.L

1
C //.

Recall the Morse-theoretic definition of the characteristic cycle CC.F/ for F 2ShS.X /

(see [11, Chapter IX] or Schmid and Vilonen [17, Section 2]; in general X only needs
to be a real oriented analytic manifold). Consider

S
S˛2S T �

S˛
X �D�

S˛
X D

S
i2I ƒi ,

where ƒi ; i 2 I are disjoint connected components.

Definition 5.8 The characteristic cycle CC.F/ of a sheaf F 2 ShS.X / is the La-
grangian cycle with values in the orientation sheaf of X defined as follows.

(1) The orientation on ƒi ; i 2 I are induced from the canonical orientation of T �
S˛

X .

(2) The multiplicity of ƒi is equal to �.Mx;F .F//, where .x; dFx/ 2 ƒi and
.x; dFx;F / is a test triple for ƒS .
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Corollary 5.9 If X is a proper algebraic variety, F and L are as in Theorem 5.6,
and L is equipped with a vector bundle of rank d with flat connection, then CC.F/D
d �Conic.Lalg/sm .

Proof If X is a proper algebraic variety, then Conic.Lalg/ is an algebraic cycle whose
multiplicity at a smooth point .x; �/ is equal to the intersection number of Lx;F

with Lt for t > 0 sufficiently small, and this is equal to the Euler characteristic of the
local Morse group at .x; �/ quotient by the rank of the vector bundle.

5.3 A generalization

Holomorphic branes are very restrictive. First, they have strong conditions on CC.F/
for the sheaf F it represents or equivalently Conic.Lalg/ if X is proper algebraic. For
example, on T �P1 , we cannot have a connected L with Conic.Lalg/ equal to the sum
of the zero section and one cotangent fiber, each of which has multiplicity 1. Second,
fixing Conic.Lalg/, they cannot produce all the perverse sheaves with this characteristic
cycle. For example, on T �P1 , let Conic.Lalg/D T �

X
X CT �

zD0
X CT �zD1X , then the

only candidates for connected L are meromorphic sections of the holomorphic bundle
T �P1! P1 which have simple poles at 0 and 1. One can show that up to a positive
multiple, only �dz=z and ��dz=z are exact Lagrangians. So there are only two kinds
of perverse sheaves coming in this way: one is i�LU Œ1� on P1�f1g and i!LU Œ1� on
P1�f0g, where LU is a rank-1 local system on U D P1� .f0g[f1g/, and the other
is its Verdier dual.

For this reason, we consider a broader class of branes which may produce more perverse
sheaves, namely, the branes which are holomorphic near infinity, and are multigraphs
near the zero section.

Proposition 5.10 Let L be a connected Lagrangian brane in T �X . Assume that
L1 ¤∅, there is r > 0 such that L\T �X jj�j>r is complex analytic on which it has
grading �n, and L\T �X jj�j�rC� is a multigraph if �.L/D T �

X
X , ie �jL\T �X jj�j�r

is a submersion. Then L quasirepresents a perverse sheaf F .

Proof We only need to check the local Morse group on the zero section.

If �.L/ ¤ T �
X

X , then Mx;F .F/ ' 0 for .x; dFx D 0/ a generic point on the zero
section.

If �.L/ D T �
X

X , take a generic point .x; 0/ on the zero section and construct a
local Morse brane Lx;F . Over a small ball Br .x/ of x in X , ��1.Br .x//\L is a
finite covering plus some holomorphic portion of L. Consider HF.Lx;F ; t �L/ for
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t > 0 sufficiently small. Since each sheet in the covering connects to a holomorphic
part of grading �n by a path along which there is no critical change of the grading,
HF�.Lx;F ; t �L/ is concentrated in degree 0.

Although one could not represent every perverse sheaf by a holomorphic Lagrangian
brane, it is speculative that locally every indecomposable perverse sheaf can be repre-
sented by a holomorphic brane.

Appendix A: Analytic–geometric categories

Analytic–geometric categories provide a setting on subsets of manifolds and maps
between manifolds, where one can always expect reasonable geometry to happen
after standard operations. A typical example is if a C 1 –function f W X !R is in an
analytic-geometric category C and it is proper, then its critical values form a discrete
set in R. For more general and precise statement, see Lemma A.5. This tells us that
the map f D x2 sin. 1

x
/W R!R does not belong to any C , and gives us a sense that

certain pathological behavior of arbitrary functions and subsets of manifolds are ruled
out by the analytic-geometric setting.

The following is a brief recollection of background results from van den Dries and
Miller [4]. All manifolds here are assumed to be real analytic, unless otherwise
specified.

A.1: Definition

An analytic-geometric category C assigns every analytic manifold M a collection of
subsets in M , denoted as C.M /, satisfying the following axioms.

(1) M 2 C.M / and C.M / is a Boolean algebra, namely, it is closed under the
standard operations \;[; .�/c (taking complement).

(2) If A 2 C.M /, then A�R 2 C.M �R/.

(3) For any proper analytic map f W M !N , f .A/ 2 C.N / for all A 2 C.M /.

(4) If fUigi2I is an open covering of M , then A 2 C.M / if and only if A\Ui 2

C.Ui/ for all i 2 I .

(5) Any bounded set in C.R/ has finite boundary.

It is easy to construct a category C from these data. Namely, define objects as all pairs
.A;M / with A 2 C.M /, and a morphism f W .A;M /! .B;N / to be a continuous
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map f W A! B , such that the graph �f � A�B is lying in C.M �N /. We will
always omit the ambient manifolds, and will call A a C–set and f W A! B a C–map.

The smallest analytic-geometric category is the subanalytic category Can consisting
of subanalytic subsets and continuous subanalytic maps. It is enough to assume that
C D Can throughout the paper, but we work in more generality.

A.2: Basic facts

Here we list several basic facts on analytic-geometric categories that are used in the
main content without proof.

A.2.1: Derivatives Let A be a .C 1; C/–submanifold of M . If A 2 C.M /, then
its tangent bundle TA is a C–set of TM , and its conormal bundle T �

A
M is a C–set

in T �M .

A.2.2: Curve selection lemma

Lemma A.1 Let A 2 C.M /. For any x 2 xA�A and p 2Z>0 , there is a C–curve, ie
a C–map �W Œ0; 1/! xA, of class C p , with �.0/D x and �..0; 1//�A.

A.2.3: Defining functions For any closed set A in M , a defining function for A is
a function f W M !R satisfying AD ff D 0g.

Proposition A.2 For any closed C–set A and any positive integer p , there exists a
.C p; C/–defining function for A.

Remark A.3 In the main content, we frequently use the notion of a function f

satisfying ff > 0g D V for a given open C–set V , and we will call f a semidefining
function of V .

A.2.4: Whitney statifications (1) Let M D RN . A pair of C p submanifolds
.X;Y / in M (dim X D n; dim Y Dm) is said to satisfy the Whitney property if:

(a) (Whitney property A) For any point y 2 Y and any sequence fxkgk2N � X

approaching y , if lim
k!1

Txk
X exists and equal to � in Grn.RN /, then TyY � � .

(b) (Whitney property B) In addition to the assumptions in (a), let fykgk2N � Y

be any sequence approaching y ; if the limit of the secant lines lim
k!1

xkyk exists
and equal to `, then `� � .
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It is easy to see that Whitney property B implies Whitney property A. The Whitney
property obviously extends for any manifold M , just by covering M with local charts.

(2) A C p stratification of a closed subset P is a locally finite partition by C p –
submanifolds S D fS˛g˛2ƒ satisfying

S˛ \ xSˇ ¤∅; ˛ ¤ ˇ) S˛ � xSˇ �Sˇ:

A Whitney stratification of P in class C p is a C p stratification S D fS˛g˛2ƒ such
that every pair .S˛;Sˇ/ satisfies the Whitney property.

We will also need the following notions:

(i) We say that a collection of subsets in M , A, is compatible with another collection
of subsets B , if for any A 2A and B 2 B , we have either A\B D∅ or A� B .

(ii) Two stratifications S and T are said to be transverse if for any S˛ 2 S and
Tˇ 2 T , we have S˛ t Tˇ . It is clear that

S \ T WD fS˛ \Tˇ W S˛ 2 S;Tˇ 2 T g

is also a stratification.

(iii) Let f W P ! N be a C 1 –map, and S; T be C p –stratifications of P and N

respectively. The pair .S; T / is called a C p –stratification of f if f .S˛/ 2 T for all
S˛ 2 S , and the map S˛! f .S˛/ is a submersion.

Now assume C D Can , CR
an or Can;exp (see the definitions in [4]).

Proposition A.4 Let P be a closed C–set in M . Let A;B be collections of C–sets in
M;N respectively.

(a) There is a C p –Whitney stratification S � C.M / of P that is compatible with A,
and has connected and relatively compact strata.

(b) Let f W P ! N be a proper .C 1; C/–map. Then there exists a C p –Whitney
stratification .S; T / � C.M /� C.N / of f such that S and T are compatible
with A and B respectively, and have connected and relatively compact strata.

One can take the strata in (a), (b) to be all cells.

(iv) For any C p Whitney stratification S of M , define its associated conormal

ƒS WD
[

S˛2S

T �S˛X:
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Let f W X !R be a C 1 –map. We say x 2X is a ƒS –critical point of f if dfx 2ƒS .
We say w 2 R is a ƒS –critical value of f if f �1.w/ contains a ƒS –critical point.
More generally, let f D .f1; : : : ; fn/W M ! Rn be a proper .C 1; C/–map. We say
that x is a critical point of f if there is a nontrivial linear combination of .dfi/x ,
i D 1; : : : ; n, contained in ƒS . Similarly, w 2 Rn is called a critical value of f if
f �1.w/ contains a critical point. Otherwise, w is called a regular value of f .

If in addition S � C.M / and f W X ! R is a proper C–map, then we apply curves
selection lemma (Lemma A.1) and have:

Lemma A.5 The ƒS –critical values of f form a discrete subset of R.

We will need the following variant of the notion of a fringed set from [6], which is also
used in [15].

Definition A.6 A fringed set R in Rn
C is an open subset satisfying the following

properties. For nD 1, RD .0; r/ for some r > 0. For n> 1, the image of R under
the projection Rn

C! Rn�1
C to the first n� 1 entries is a fringed set in Rn�1

C , and if
.r1; : : : ; rn�1; rn/ 2R, then .r1; : : : ; rn�1; r

0
n/ 2R for all r 0n 2 .0; rn/.

Corollary A.7 Let f D .f1; : : : ; fn/W M ! Rn be a proper .C 1; C/–map. Then
there is a fringed set R�Rn

C consisting of ƒS –regular values of f .

A.3: Assumptions on X and Lagrangian submanifolds in T �X

Throughout the paper, X is assumed to be a compact real analytic manifold or compact
complex manifold. Then T �X is real analytic. The projectivization

T �X D .T �X �R�0�T �X X � f0g/=RC

is a semianalytic subset in the manifold PC.T �X�R/D .T �X�R�T �
X

X�f0g/=RC .

Fix an analytic-geometric category C and define C–sets in T �X to be C–sets in
PC.T �X � R/ intersecting T �X . All Lagrangian submanifolds L in T �X are
assumed to satisfy xL� T �X a C–set in T �X . All subsets of X are assumed to be
C–sets unless otherwise specified.

Appendix B: A1–categories

Roughly speaking, an A1–category is a form of category whose structure is more
complicated but more flexible than the classical notion of category: composition of
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morphisms are not strictly associative but only associative up to higher homotopies,
and there are also successive homotopies between homotopies. In this section, we
will briefly recall the definition of A1–category, left and right A1–modules and
A1–triangulation. The materials are from [18, Chapter 1].

B.1: A1–categories and A1–functors

A nonunital A1–category A consists of the following data:

(1) A collection of objects X 2 ObA.

(2) For each pair of objects X;Y , a morphism space HomA.X;Y / which is a
cochain complex of vector spaces over C .

(3) For each d � 1 and sequence of objects X0; : : : ;Xd , a linear morphism

md
AW HomA.Xd�1;Xd /˝ � � �˝HomA.X0;X1/! HomA.X0;Xd /Œ2� d �

satisfying the identities

(B-1)
X

kClDdC1;k;l�1
0�i�d�l

.�1/|i mk
A.ad ; : : : ; aiClC1;m

l
A.aiCl ; : : : ; aiC1/; ai ; : : : ; a1/D 0;

where |i D ja1jC � � �C jai j � i and aj 2 HomA.Xj�1;Xj / for 1� j � d .

A special case of an A1–category is a dg–category where all the higher composi-
tions md

A , d � 3 vanish.

From the above definition, at the cohomological level for Œa1�2H.HomA.X0;X1/;m
1
A/

and Œa2� 2 H.HomA.X1;X2/;m
1
A/, we have that their composition Œa2� � Œa1� WD

.�1/ja1jŒm2
A.a2; a1/� 2 H.HomA.X0;X2//;m

1
A/ is well defined, and it is easy to

check that the product is associative. We will let H.A/ denote the nonunital graded
category arising in this way. There is also a subcategory H 0.A/�H.A/ which only
has morphisms in degree 0.

An A1–category is called c–unital if H.A/ is unital. All the A1–categories we
encounter throughout this paper are c–unital unless otherwise specified. We will always
omit the prefix c–unital at those places. One major benefit of dealing with c–unital
A1–categories is that one can talk about quasiequivalence between categories; see
below.

Given two nonunital A1–categories A and B , a nonunital A1–functor F W A! B
assigns each X 2 ObA an object F.X / in B , and it consists for every d � 1 and
sequence of objects X0; : : : ;Xd 2 ObA, of a linear morphism

Fd
W HomA.Xd�1;Xd /˝ � � �˝HomA.X0;X1/! HomB.F.X0/;F.Xd //Œ1� d �;
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satisfying the identitiesX
k�1

X
s1C���CskDd;

si�1

mk
B.F

sk .ad ; : : : ; ad�skC1/; : : : ;Fs1.as1
; : : : ; a1//

D

X
kClDdC1;k;l�1

0�i�d�l

.�1/|iFk.ad ; : : : ; aiClC1;m
l
A.aiCl ; : : : ; aiC1/; ai ; : : : ; a1//:

The composition of two A1–functors F W A! B and GW B! C is defined as

.G ıF/d .ad ; : : : ; a1/

D

X
k�1

X
s1C���CskDd;

si�1

Gk.Fsk .ad ; : : : ; ad�skC1/; : : : ;Fs1.as1
; : : : ; a1//:

It is clear that F descends on the cohomological level to a functor from H.A/ to H.B/,
which we will denote by H.F/. One easy example of a functor from A to itself is
the identity functor IdA , which is identity on objects and hom spaces and Idk

A D 0 for
k � 2.

Let QD Nu-fun.A;B/ be the A1–category of nonunital A1–functors from A to B
defined as follows. An element T D .T 0;T 1; : : :/ of degree jT j D g , called a
premodule homomorphism, in HomQ.F ;G/ is a sequence of linear maps

T d
W HomA.Xd�1;Xd /˝ � � �˝HomA.X0;X1/! HomB.F.X0/;G.Xd //Œg� d �I

in particular, T 0 is an element in HomB.F.X /;G.X // of degree g for each X .

We also have the following structures:

.m1
Q.T //

d .ad ; : : : ; a1/

D

X
1�i�k

X
s1C���CskDd;

si�0;sj�1;j¤i

.�1/|mk
B.G

sk .ad ; : : : ; ad�skC1/; : : : ;

GsiC1.as1C���CsiC1
; : : : ; as1C���CsiC1/;T

si .as1C���Csi
; : : : ; as1C���Csi�1C1/;

Fsi�1.as1C���Csi�1
; : : : ; as1C���Csi�2C1/; : : : ;Fs1.as1

; : : : ; a1//

�

X
rClDdC1;r;l�1

1�i�d�l

.�1/|iCjT j�1
X

T r .ad ; : : : ; aiClC1;m
l
A.aiCl ; : : : ;

aiC1/; ai ; : : : ; a1//

If we write the right-hand-side of the above formula for short asX
mB.G; : : : ;G;T;F ; : : : ;F/�

X
T .Id; : : : ; Id;mA; Id; : : : ; Id/;
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then for T0 2 HomQ.F0;F1/ and T1 2 HomQ.F1;F2/, we have

m2
Q.T1;T0/D

X
mB.F2; : : : ;F2;T1;F1; : : : ;F1;T0;F0; : : : ;F0/;

and similar formulas apply to higher differentials md
Q for d > 2. Note that there is

no mA involved in md
Q for d � 2.

Those T for which m1
Q.T /D 0 are the module homomorphisms, and H.T / in H.Q/

descends to a natural transformation between H.F/ and H.G/ under the map

H.Nu-fun.A;B//! Nu-fun.H.A/;H.B//;

where Nu-fun.H.A/;H.B// denotes for the category of (linear, graded) functors from
H.A/ to H.B/ and their natural transformations. Assume F ;GW A ! B are two
A1–functors such that F.X /D G.X / for every X 2Ob.A/. Then F and G is called
homotopic if there is T 2 Hom�1

Q .F ;G/ such that m1
Q.T /

d D Gd � Fd . We have
H.F/DH.G/ if F and G are homotopic.

Let A, B be c–unital A1–categories. A functor F W A!B is called c–unital if H.F/
is unital. Then the full subcategory fun.A;B/�Q consisting of c–unital functors is a
c–unital A1–category.

A c–unital functor F W A! B is a quasiequivalence if H.F/W H.A/!H.B/ is an
equivalence of categories.

B.2: A1–modules and Yoneda embedding

In this subsection, we will assume all A1–categories to be c–unital.

Define the A1–category of left A–modules as

l–mod.A/D fun.A;Ch/:

Explicitly, any M 2 l–mod.A/ assigns a cochain complex M.X / to each object X

and we have

md
MW HomA.Xd�1;Xd /˝ � � �˝HomA.X0;X1/˝M.X0/!M.Xd /Œ2� d �

with the property thatX
mM.Id; ::; Id;mM/C

X
mM.Id; : : : ; Id;mA; Id; : : : ; Id/D 0;

where there is at least one Id after mA in the second term.

An important example of a left A–module is zYX0
for X0 2ObA defined as zYX0

.X /D

HomA.X0;X / and zYd
X0

coincides with md
A .
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The category of right A–modules mod.A/ (following usual convention, we do not de-
note it by r–mod.A/) can be defined similarly as fun.Aopp;Ch/. An important example
is YX0

defined as YX0
.X /D HomA.X;X0/ and this gives the Yoneda embedding

YW A!mod.A/;

X 7! YX :

For ci 2 HomA.Yi�1;Yi/, 1� i � d ,

Y.cd ; : : : ; c1/
k
W YY0

.Xk/˝HomA.Xk�1;Xk/˝ � � �˝HomA.X0;X1/! YYd
.X0/

is mkCdC1
A .cd ; : : : ; c1; b; ak ; : : : ; a1/ for b 2 YY0

.Xk/ and ai 2 HomA.Xi�1;Xi/.

Note that mod.A/ is a dg–category, and the Yoneda embedding Y is cohomologi-
cally full and faithful. This gives a construction showing that every A1–category is
quasiequivalent to a (strictly unital) dg–category, ie its image under Y .

For F W A! B , we can define the associated pullback functor

F�W mod.B/.resp. l–mod.B//!mod.A/.resp. l–mod.A//;

M 7!M ıF :

B.3: A1–triangulation

Recall that a triangulated envelope of an A1–category A is a pair .B;F/ of a trian-
gulated A1–category and a quasiembedding F W A! B such that B is generated by
the image of objects in A. We refer the reader to [18, Section 3, Chapter 1] for the
definition of triangulated A1–categories. Any two triangulated envelopes of A are
quasiequivalent.

There are basically two ways of constructing A1–triangulated envelope. One is to
take the usual triangulated closure of the image of A under the Yoneda embedding
in mod.A/, since mod.A/ is triangulated. The other is by taking twisted complexes
of A which we denote by Tw.A/. The formulation in the definition is a little bit long
and messy, which we do not really need in this paper, so we refer the reader to consult
Seidel [18, Section 3] for a detailed description.

Appendix C: Infinitesimal Fukaya categories

In this section, we review the definition of the infinitesimal Fukaya category on a Liou-
ville manifold, originally from [15]. This section is by no means a complete or rigorous
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exposition of Fukaya categories. One could consult Auroux [2] for a comprehensive
introduction, and Seidel’s book [18] for a complete and rigorous treatment.

Our goal here is to give a rough idea of how the Fukaya category (in the exact setting)
is defined, and what kind of extra structures one should put on the ambient symplectic
manifold and on the Lagrangian submanifolds so to give a coherent definition of the
A1–structure. We also include several specific facts about Fuk.T �X /, which will
supplement the main content.

C.1: Assumptions on the ambient symplectic manifold

Let .M; ! D d�/ be a 2n–dimensional Liouville manifold. By definition, M is
obtained by gluing a compact symplectic manifold with contact boundary .M0; !0 D

d�0/ with an infinite cone .@M0 � Œ1;1/; d.r�0j@M0
// along @M0 , where r is the

coordinate on Œ1;1/. We require that the Liouville vector field Z , defined by the
property �Z! D � , is pointing outward along @M0 , and the gluing is by identifying Z

with r@r .

Let J be an !–compatible almost complex structure on .M; !/ whose restriction
to the cone @M0 � ŒS;1/ for S � 0 satisfies that J@r D R, where R is the Reeb
vector field of r�0j@M0�frg , and J preserves ker.r�0j@M0�frg/, on which it is induced
from J j@M0�fSg . We will call such a J a conical almost complex structure. It is a
basic fact that the space of all such almost complex structures is contractible. The
compatible metric g will be conical near infinity, ie g D r�1dr2CS�1rds2 , where
ds2D !. � ;J � /j@M0�fSg . Let H be the set of Hamiltonian functions whose restriction
to @M0� ŒS;1/ is r for S� 0. Note that the Hamiltonian vector field XH of H 2H
near infinity is �rR.

One can compactify M using the cone structure, ie SM D M0 [ fŒt0x W t1� j x 2

@M0; t0; t1 2 RC; t2
0
C t2

1
¤ 0g; here Œt0x W t1� denotes the equivalence class of the

relation .t0x; t1/� .�t0x; �t1/ for �> 0. It is easy to see that SM DM [M1 , where
we think of an element .x; r/ in the cone as Œrx W 1� and the points in M1 are of the
form Œx W 0�.

C.2: Floer theory with Z=2Z–coefficients and gradings

To obtain well-defined Floer theory for noncompact Lagrangian submanifolds, we
should be more careful about their behavior near infinity. First we restrict ourselves in
some fixed analytic-geometric setting C , and require that the Lagrangians L we are
considering satisfy xL is a C–set in SM (see Appendix A.3). Second, we need to ensure
compactness of holomorphic discs with Lagrangian boundary conditions. A sufficient
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condition for this is the tameness condition following Sikorav [19]. We will discuss
this in more detail in the next section.

Recall the Floer theory defines for each pair of Lagrangians L1;L2 in M a Z=2Z–
graded cochain complex

CF�.L0;L1/ WD

� M
p2L0\L1

Z=2Zhpi; @CF

�
;(C-1)

@CF.p/D
X

q2L1\L2

]M.p; qIL0;L1/
0-d
� q;(C-2)

where M.p; qIL0;L1/
k-d is the quotient (by R–symmetry) of the .kC1/–dimensional

locus of the moduli space yM.p; qIL0;L1/ of holomorphic strips, starting from q ,
ending at p and bounding L0;L1 , ie a map

uW R� Œ0; 1�!M

such that

lim
s!�1

u.s; t/D q; lim
s!C1

u.s; t/D p;(C-3)

u.R� f0g/�L0; u.R� f1g/�L1;(C-4)

.du/0;1 D 0
�
,

@u

@s
CJ.u/

@u

@t
D 0

�
:(C-5)

There are always several technical issues to be clarified in the above definition.

(a) Transverse intersections Implicit in (C-1) is the step of Hamiltonian perturbation
to make L0 and L1 transverse. Let L1i denote xLi \M1 . If L1

0
\ L1

1
D ∅,

then one chooses a generic Hamiltonian function zH , whose Hamiltonian vector field
vanishes on L1 outside a compact region, and replaces L1 by �t

zH
.L1/ for small

t > 0. If L1
0
\L1

1
¤∅, then one replaces L1 by �t

H
.L1/ for a generic H 2H . It

can be shown that �t
H
.L1

1
/ will be apart from L1

0
for sufficiently small t > 0. The

invariance of Floer theory under Hamiltonian perturbations ensures that the complex
CF�.L0;L1/ is well defined up to quasi-isomorphisms.

(b) Regularity of moduli space of strips One views the x@–operator on u, ie .du/0;1 ,
as a section of a natural Banach vector bundle over a suitable space of maps u satisfying
(C-3) and (C-4). Then yM.p; qIL0;L1/ becomes the intersection of x@ with the zero
section. We need the intersection to be transverse, and this is equivalent to the linearized
operator Du (a Fredholm operator) of x@ at any u 2 x@�1.0/ being surjective. In many
good settings (including the cases in Fuk.T �X /) this is true for a generic choice
of J , which we will refer to as a regular (compatible) almost complex structure. Then
by Gromov’s compactness theorem, M.p; qIL0;L1/

0-d is a compact manifold, so
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]M.p; qIL0;L1/
0-d is finite. Different choices of regular J give cobordant moduli

spaces, therefore the number does not depend on such choices (note that we are working
over Z=2Z, so we do not need any orientation on M.p; qIL0;L1/ to conclude this).
More generally, one would need to introduce time-dependent almost complex structures
and Hamiltonian perturbations to achieve transversality.

(c) @2
CF D 0 This is ensured when no sphere or disc bubbling occurs, and it holds for

a pair of exact Lagrangians L0;L1 , ie � jLj is an exact 1–form for j D 0; 1. To verify
this, one studies the boundary of the 1–dimensional moduli space M.p; qIL0;L1/

1-d

of holomorphic strips starting at q and ending at p , and realizes that they are broken
trajectories corresponding exactly to the terms involving q in @2

CF.p/. Since the number
of boundary points is even, @2

CF D 0.

(d) Gradings For any holomorphic strip u connecting q to p , the Fredholm index of
the linearized Cauchy–Riemann operator Du “in principle” gives the relative grading
between p and q . The index can be calculated by the Maslov index of u defined as
follows. A strip R� Œ0; 1� is conformally identified with the closed unit disc D , with
two punctures on the boundary. Then one can trivialize the symplectic vector bundle
u�TM over the closed unit disc, and think of TpLj ;TqLj for j D 0; 1 as elements
in the Lagrangian Grassmannian LGr.R2n; !0/, where !0 is the standard symplectic
form on R2n .

By a standard fact from linear symplectic geometry, there is a unique set of num-
bers f˛k 2 .�

1
2
; 0/gkD1;:::;n such that relative to an orthonormal basis fv1; : : : ; vng

of TpL0 , TpL1 is spanned by e2�
p
�1˛kvk for k D 1; : : : ; n. One could con-

sult Alston [1, Lemma 3.3] for a proof. Since we use it in Proposition 5.2, we
discuss this in a little more detail. First, this property is invariant under U.n/–
transformation, so we can assume TpL0 DRn �Rn˚

p
�1Rn . There is a standard

way to produce a unitary matrix U such that TpL1 D U � TpL0 , namely choose
a symmetric matrix A in GLn.R/ for which TpL1 D .AC

p
�1I/ � TpL0 , then

let U D .AC
p
�1I/.A2 C I2/�1=2 . Also for any B C

p
�1C 2 U.n/ satisfying

TpL1 D U �TpL0 , we have BC
p
�1C D .AC

p
�1I/.A2C I2/�1=2O for some

O 2 O.n/, and BC�1 D A. Now let fv1; : : : ; vng be an orthonormal collection of
eigenvectors of A, hence of U as well, and let

e2�
p
�1˛1 ; : : : ; e2�

p
�1˛k ; j̨ 2 .�

1
2
; 0/

be their corresponding eigenvalues of U . Then f j̨ gjD1;:::;n is the desired collection
of numbers.

Then �p.t/ WDSpanfe2�
p
�1 j̨ tvj g2LGr.R2n; !0/; t 2 Œ0; 1� is the so called canonical

short path from TpL0 to TpL1 . Let �q be the canonical short path from TqL0 to
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TqL1 , and j̀ ; j D 0; 1 denote the path of tangent spaces to Lj from q to p in
u�TM j@D . Then the Maslov index of u, denoted as �.u/, is defined to be the Maslov
number of the loop by concatenating the paths `0; �p;�`1;��q .

In general, �.u/ depends on the homotopy class of u, so would not give well-defined
relative degree between p and q . But if L0;L1 are both oriented, we have a well-
defined grading, namely, deg.p/ D 0 if �p takes the orientation of L0 into the
orientation of L1 , otherwise, deg p D 1. In the next section, we will see that under
certain assumptions, we will not only get Z=2Z–gradings on the Floer complex, but
Z–gradings.

Product structure Consider three Lagrangians L0;L1;L2 , then one can define a
linear map

mW CF�.L1;L2/˝CF�.L0;L1/! CF�.L0;L2/;

m.a1; a0/D
X

a22L0\L2

]M.a0; a1; a2IL0;L1;L2/
0-d
� a2I

M.a0; a1; a2IL0;L1;L2/
0-d is the 0–dimensional locus of the moduli space of equiv-

alence class of holomorphic maps

uW .D; f0; 1; 2g/! .M; fa0; a1; a2g/;u.i.i C 1//�Li ; i 2 Z=.3Z/;

where 0; 1; 2 are three (counterclockwise) marked points on @D , and i.i C 1/ denotes
the arc in @D connecting i and i C 1. The equivalence relation is composition with
conformal maps of the domain. Since the conformal structure of a disc with three
marked points on the boundary is unique (and there is no nontrivial automorphism),
we can just fix a conformal structure once for all.

As before one needs to separate L0;L1;L2 near infinity if necessary, and the sep-
aration process obeys a principle called propagating forward in time. Namely one
replaces Li by �ti

Hi
.Li/, for some Hi 2H; i D 0; 1; 2, and the choices of .t2; t1; t0/ 2

R3
C should be in a fringed set (see Definition A.6). The regularity issue about

M.a0; a1; a2IL0;L1;L2/ is similar to that of (b).

Similarly to (c), by looking at the boundary of M.a0; a1; a2IL0;L1;L2/
1-d , one

concludes

m.@CF � ; � /Cm. � ; @CF � /C @CFm. � ; � /D 0:

This means that m induces a multiplication on the cohomological level HF� . We will
see later that m is not strictly associative, but associative up to homotopy.
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C.3: (Infinitesimal) Fukaya category of M

The preliminary version of the Fukaya category (with Z=2Z–grading, and over Z=2Z–
coefficients), is an upgrade of the Floer theory, which uncovers much richer structure,
the A1–structure, of Lagrangian intersection theory. One not only studies @CF and m,
but also studies for each sequence of nC 1 Lagrangians the higher compositions �n

�d
W CF�.Ld�1;Ld /˝ � � �˝CF�.L1;L2/˝CF�.L0;L1/! CF�.L0;Ld /Œ2� d �;

�d .ad�1; : : : ; a1; a0/D
X

ad2L0\Ld

]M.a0; a1; : : : ; ad IL0;L1; : : : ;Ld /
0-d
� ad ;

where the moduli space M.a0; a1; : : : ; ad IL0;L1; : : : ;Ld /
0-d is defined similarly as

before. Assuming regularity of the moduli spaces and no bubblings (ensured by La-
grangians being exact), the boundary of M.a0; a1; : : : ; ad IL0;L1; : : : ;Ld /

1-d gives
us the identity (B-1).

Now let us discuss the (final) version of Fukaya category with Z–gradings and C–
coefficients. We first collect several basic notions about T �X which we will use in
later discussions.

C.3.1: Some basic notions about T �X (a) Almost complex structures A com-
plex structure, called the Sasaki almost complex structure JSas on T �X , is defined as
follows. For any point .x; �/ 2 T �X , there is a canonical splitting

T.x;�/T
�X D Tb˚Tf ;

using the dual Levi-Civita connection on T �X , where Tf denotes the fiber direction
and Tb denotes the horizontal base direction. The metric also gives an identification
j W Tb ! Tf and it induces a unique almost complex structure, JSas , by requiring
JSas.v/D�j .v/ for v 2 Tb .

Since T �X is a Liouville manifold, one can use the construction in Appendix C.1
to get a conical almost complex structure, by requiring J jj�jDr D JSasjj�jDr for r

sufficiently large, and J D JSas near the zero section. We will denote any of these
almost complex structures by Jcon .

(b) Standard Lagrangians Given a smooth submanifold Y � X and a defining
function f for @Y which is positive on Y , we define the standard Lagrangian

(C-6) LY;f D T �Y X C�d logf � T �X jY :

It is easy to check that LY;f is determined by f jY .

In the main content, we often restrict ourselves to standard Lagrangians defined by an
open submanifold V and a semidefining function of V (see Remark A.3).
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(c) Variable dilations Consider the class of Lagrangians of the form L D �df ,
where f is a function on an open submanifold U with smooth boundary, and @U
decomposes into two components .@U /in and .@U /out such that limx!@Uin f .x/D�1

and limx!@Uout f .x/DC1.

The variable dilation is defined by the following Hamiltonian flow. Choose 0<A<

B < 1 and a bump function bA;BW R!R, such that bA;B.s/D s on Œlog B;� log B�

and jbA;B.s/j D � log
p

AB outside Œlog A;� log A�. We assume that bA;B is odd
and nondecreasing. Take a function Df

A;B
which extends bA;B ı�

�f to the whole
T �X . The Hamiltonian flow 't

D
f

A;B
fixes LjXjf j>� log A

, dilates LjXjf j<� log B
by the

factor 1� t , and sends L to a new graph.

C.3.2: Compactness of moduli space of holomorphic discs: Tame condition and
perturbations As we mentioned in the last section, we need a certain tameness
condition to ensure the compactness of the moduli space of holomorphic discs bound-
ing a sequence of Lagrangians. The tameness condition adopted here is from [19,
Definitions 4.1.1 and 4.7.1]; .M;J / is certainly a tame almost complex manifold in
that sense. For a smooth submanifold N , let dN . � ; � / denote the distance function
of the metric on N induced from M . The tameness requirement on a Lagrangian
submanifold L is the existence of two positive numbers ıL;CL , such that within any
ıL –ball in M centered at a point x 2 L, we have dL.x;y/ � CLdM .x;y/;y 2 L,
and the portion of L in that ball is contractible.

The main consequence of these is the monotonicity property on holomorphic discs
from [19, Proposition 4.7.2(iii)].

Proposition C.1 There exist two positive constants RL; aL , such that for all r<RL ,
x 2M , and any compact J–holomorphic curve uW .C; @C /! .Br.x/; @Br.x/[L/

with x 2 u.C /, we have Area.u/� aLr
2 .

Remark C.2 As indicated in [15], the argument of this proposition is entirely local,
one could replace the pair .M;L/ by an open submanifold U �M together with a
properly embedded Lagrangian submanifold W in U satisfying the tame condition. In
particular, if M DT �X and W is the graph of differential of a function f over an open
set which is C 1 –close to the zero section, ie the norm of the partial derivatives of f
has uniform bound, then one can dilate W towards the zero section, and get a uniform
bound for the family .� �U; � �W /. More precisely, one could find R��W D �RW and
a��W D aW .

With the monotonicity property, one can show the compactness of moduli of discs bound-
ing a sequence of exact Lagrangians L1; : : : ;Lk using a standard argument. Moreover,
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assume M D T �X , and consider the class of Lagrangians in Appendix C.3.1(c), then
we have better control of where holomorphic discs can go bounding a sequence of such
Lagrangians; see the proof of Lemma 4.3 and [15, Section 6.5] for more details.

C.3.3: Gradings on Lagrangians and Z–grading on CF� Let

LGr.TM /D
[

x2M

LGr.TxM; !x/

be the Lagrangian Grassmannian bundle over M . To obtain gradings on Lagrangian
vector spaces in TM , we need a universal Lagrangian Grassmannian bundle

DLGr.TM /;

and this amounts to the condition that 2c1.TM /D 0. Choose a trivialization ˛ of the
bicanonical bundle �˝2 , and a grading to 
 2 LGr.TxM; !x/ is a lifting of the phase
map �.
 /D ˛.ƒn
 /=j˛.ƒn
 /j 2 S1 to R.

The condition 2c1.TM / D 0 holds if M D T �X for an n–dimensional compact
manifold X , because the pullback of ƒnT T �X to the zero section X is just orX ˝C ,
where orX is the orientation sheaf on X . Since or˝2

X
is always trivial, and X is

a deformation retract of T �X , we get c1.T T �X / is 2–torsion. In fact, given a
Riemannian metric on X , or˝2

X
is canonically trivialized, and the same for �˝2 .

For a Lagrangian submanifold L in M , we define a grading of L to be a continuous
lifting L!R to the phase map �LW L! S1 . The obstruction to this is the Maslov
class �L D �

�
L
ˇ 2H 1.L;Z/, where ˇ is the class representing the 1 2H 1.S1;Z/.

Proposition C.3 Standard Lagrangians and the local Morse brane Lx;F in T �X both
admit canonical gradings.

The reason that all these Lagrangians admit canonical grading is that they are all
constructed by (properly embedded) partial graphs over smooth submanifolds. Suppose
there is a loop ��L such that .�L/j�W �!S1 is homotopically nontrivial. Since �
is contained in a compact subset of L, one can dilate L so that when �! 0, T .� �L/j�
is uniformly close to the tangent planes to the zero section if LD Lx;F or to T �

Y
X

if L D LY;f . It is easy to check that T �
Y

X has constant phase 1 (resp. �1) if Y

has even (resp. odd) codimension, so admit canonical grading 0 (resp. 1). Then we
get a contradiction, because the homotopy type of the map .���L/j���W � ��! S1 is
unchanged under dilation, and L has a canonical grading.
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Given two graded Lagrangians Li ; �i W Li !R, i D 0; 1, then for any p 2L0\L1

(assuming transverse intersection), we can define an absolute Z–grading of p

(C-7) deg p D �1� �0�

nX
iD1

˛i ;

where ˛i ; i D 1; : : : ; n are constants defining the canonical short path from L0 to L1

in Appendix C.2(d).

It is easy to check that ind.u/D deg q� deg p for any holomorphic strip u connect-
ing q to p for q;p 2L0\L1 , and the absolute Z–grading gives the Z–grading of
CF�.L0;L1/ for two graded Lagrangians. For more details, see [1, Section 4].

C.3.4: Pin–structures Recall that PinC.n/ is a double cover of O.n/ with center
Z=2Z�Z=2Z. A Pin–structure on a manifold M of dimension n is a lifting of the
classifying map M!BO.n/ of TM to a map M!BPinC.n/. The obstruction to the
existence of a Pin–structure is the second Stiefel–Whitney class w2 2H 2.M;Z=2Z/.
The choices of Pin–structures form a torsor over H 1.M;Z=2Z/.

For any class Œw� 2 H 2.M;Z=2Z/, one could define the notion of a Œw�–twisted
Pin–structure on M . Fix a Čech representative w of Œw�, and a Čech cocycle � 2
Č

1
.X;O.n// representing the principal O.n/–bundle associated to TM . Then choose

a Čech cochain zw 2 Č
1
.X;PinC.n// which is a lifting of � under the exact sequence

0! Č
1
.X;Z=2Z/! Č

1
.X;PinC.n//! Č

1
.X;O.n//! 0:

We say zw defines a Œw�–twisted Pin–structure if the Čech-coboundary of zw , which
obviously lies in the subset Č

2
.X;Z=2Z/, is equal to w . It is clear that the definition

does not essentially depend on the choice of cocycle representatives, and the set of
Œw�–twisted Pin–structures, if nonempty, forms a torsor over H 1.M;Z=2Z/.

Fix a background class Œw� 2H 2.M;Z=2Z/, and for any submanifold L�M , define
a relative Pin–structure on L to be a Œw�jL –twisted Pin–structure. Here we fix a
Čech-representive of Œw�, and use it for all L. Note that the existence of a relative
Pin–structure only depends on the homotopy class of the inclusion L ,!M .

Now let M D T �X and fix ��w2.X / as the background class in H 2.M;Z=2Z/ and
a relative Pin–structure on the zero section. For any smooth submanifold Y �X , the
metric on X gives a canonical way (up to homotopy) to identify T �

Y
X near the zero

section with a tubular neighborhood of Y in X , hence there is a canonical relative
Pin–structure on T �

Y
X by pulling back the fixed relative Pin–structure on X . Since the

inclusion LY;f ,!M in (C-6) is canonically homotopic to the inclusion T �
Y

X ,!M

by dilation, and similarly for Lx;F ,!M with T �
U

X ,!M , we have the following.
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Proposition C.4 The Lagrangians LY;f and Lx;F have canonical Pin–structures.

C.3.5: Final definition of Fuk.M / Fix a background class in H 2.M;Z=2Z/.

Definition C.5 A brane structure b on a Lagrangian submanifold L�M is a pair
.z̨;P /, where z̨ is a grading on L and P is a relative Pin–structure on L.

Recall that we need tame Lagrangians to ensure compactness of moduli of discs, but
there are many Lagrangians, eg many standard Lagrangians in T �X , which are not
tame, but admit appropriate perturbations by tame Lagrangians. Therefore the following
is introduced in [15].

Definition C.6 A tame perturbation of L is a smooth family of tame Lagrangians Lt ,
t 2R, with L0 DL such that:

(1) Restricted to the cone @M0 � Œ1;1/, the map t � r W Lt jr>S !R� .S;1/ is
a submersion for S � 0.

(2) Fix a defining function mxL for xL � SM ; we require that for any � > 0, there
exists t� > 0 such that Lt �N�.L/ WD fmxL < �g for jt j< t� .

Note it is enough to define the family over an open interval of 0 in R.

Now we define Fuk.M /. An object in Fuk.M / is a triple .L; b; E/ together with
a tame perturbation fLtgt2R of L, where .L; b/ is an exact Lagrangian brane, E
is a vector bundle with flat connection on L. It is clear that any element in the
perturbation family Lt canonically inherits a brane structure, and a vector bundle with
flat connection from L. In the following, we still use L to denote an object.

It is proved in [15, Lemma 5.4.5] that every standard Lagrangian admits a tame
perturbation. So for each pair .U;m/ of an open submanifold U �X and a semidefining
function m of U , there is a standard object in Fuk.T �X /, which is the standard
Lagrangian LU;m equipped with the canonical brane structures, a trivial rank-1 local
system and the perturbation in [15, Lemma 5.4.5].

The morphism space between L0 and L1 is the Z–graded Floer complex enriched by
the vector bundles

HomFuk.M /.L0;L1/DW
M

p2L0\L1

Hom.E0jp; E1jp/˝C ChpiŒ� deg.p/�:

Implicit in the formula is to first do Hamiltonian perturbations to L0 and L1 (as objects
in Fuk.M /) as in Appendix C.2(a), and then replace the resulting Lagrangians by
their sufficiently small tame perturbations. In Section 4.2, we choose certain conical
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perturbations to Lx;F and LV which combines the Hamiltonian and tame perturbations
together.

The relative Pin–structures on the Lagrangian branes enable us to define orientations
on the moduli space of discs, and gives the (higher) compositions over C ,

�d
W HomFuk.M /.Ld�1;Ld /˝ � � �˝HomFuk.M /.L1;L2/˝HomFuk.M /.L0;L1/

! HomFuk.M /.L0;Ld /Œ2� d �

�d .�d�1˝ ad�1; : : : ; �1˝ a1; �0˝ a0/D
X

ad2L0\Ld

X
u2M

sgn.u/ ��u˝ ad ;

where M D M.a0; a1; : : : ; ad IL0;L1; : : : ;Ld /
0-d , �i 2 Hom.Ei jai

; EiC1jai
/ for

i D 0; : : : ; d � 1, and �u 2 Hom.E0jad
; Ed jad

/ associated to a holomorphic disc u is
the composition of successive parallel transport along the edges of u and �i on the
corresponding vertices.
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