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Totally twisted Khovanov homology

LAWRENCE P ROBERTS

We define a variation of Khovanov homology formally similar to totally twisted
Heegaard–Floer homology. Over a certain field, this version of Khovanov homology
has a completely explicit description in terms of the spanning trees of a link projection.
We prove that this new theory is a link invariant and describe some of its properties.
Finally, we provide the results of some computer computations of the invariant.

57M27; 57M25

1 Introduction

1.1 Background

In [8], M Khovanov introduced his well-known construction of a homology theory for
a link L in S3 whose Euler characteristic encodes a version of the Jones polynomial
for L (see also Bar-Natan [3] and Viro [12]). This construction used the exponentially
many ways a link diagram can be resolved, in a manner analogous to Kauffman’s
state summation approach to the Jones polynomial. However, Thisthlethwaite and
others had established a more efficient means for computing the Jones polynomial by
using the spanning trees of the Tait graphs for the link diagram. Trying to repeat this
process for Khovanov homology led to papers by A Champanerkar and I Kofman [5]
and S Wehrli [13]. Both papers show that, in principle, the Khovanov homology can
be computed from a complex whose generators are the spanning trees for one of the
Tait graphs of L by demonstrating that the Khovanov homology deformation retracts
to a subcomplex whose generators are in one-to-one correspondence with the spanning
trees. However, while these constructions identified the generators of the complex with
spanning trees, they only demonstrated the existence of the differential for a spanning
tree complex, remaining mute about how to fully and explicitly compute it. In [5]
A Champanerkar and I Kofman describe parts of the differential, but not the entire
structure.

In this paper, we describe a new structure in (reduced, characteristic 2) Khovanov
homology which leads to a homology theory the author calls totally twisted Khovanov
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2 L P Roberts

homology (due to formal analogies with the “totally twisted” Heegaard–Floer homol-
ogy). It arises by deforming the Khovanov differential, and is a singly graded theory. It
shares many of the properties of Khovanov homology. In particular, it provides a new
invariant homology theory for links. However, there is one notable difference: taken
with the correct coefficients, the totally twisted homology deformation retracts to a
spanning tree complex with a completely explicit differential.

An almost complete account of the construction of totally twisted Khovanov homology,
the main results of the paper and some of the author’s computerized comparison to
Khovanov homology are presented in the remainder of this introduction. This account
also forms the main narrative of the paper, and should be read before the remaining
sections. The proofs of the theorems stated in this introduction occur in the remaining
sections. The paper concludes by proving the basic results common to most knot
homology theories using the spanning tree perspective. In the preprint version of this
paper originally posted to the arXiv, substantial computer calculations were cited to
suggest that for knots the spanning tree complex had homology identical with the
characteristic 2, ı–graded, reduced Khovanov homology. Shortly after the appearance
of that preprint, T Jaeger proved this result in [6].

1.2 The construction

Throughout, L will be an oriented link in S3 , equipped with a marked point p 2 L.
We will study L through a link diagram: a generic projection L of L into S2 , taking p

to a noncrossing point. We will always use script letters to denote links and nonscript
letters to denote link diagrams.

Definition 1.1 For an oriented link diagram,

(1) CR.L/ denotes the set of crossings in L,

(2) n˙.L/ is the number of right-handed (positive)/left-handed (negative) crossings.

It will be convenient to let �L be the image of the projection of L in S2 ; �L is the
four-valent graph found by stripping L of its crossing data.

Definition 1.2 The components of S2n�L are the faces of L. The set of faces will
be denoted FL . Let PL DZ=2ZŒxf j f 2 FL� be the polynomial ring which assigns a
formal variable to each f 2 FL . The field of fractions of PL will be denoted FL .

We will make essential use of the requirement that every coefficient ring have charac-
teristic 2. We will usually enumerate the faces of L and then identify the faces of L

with the corresponding formal variable xi .
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Example As an illustration, to which we return repeatedly, consider the following
diagram for the two-component unlink:

c1

c2

p

L

c1

c2

p

�L

x1

x2 x3
x4

On the left is the oriented diagram L with a marked point p , and two labeled crossings.
We will identify CR.L/ with fc1; c2g. On the right is the four-valent graph �L . The
vertices are identified with the crossings, and the marked point is not at a crossing.
The shaded region is one face of L labeled with the formal variable x4 . There are
three other faces in FL , labeled by their formal variables x1;x2;x3 . Thus, PL D

Z=2ZŒx1;x2;x3;x4� and FL is the field of binary rational functions in four variables.

1.3 Resolutions

To each subset S � CR.L/, we define the resolution LS of L to be the diagram
obtained by locally resolving each crossing in CR.L/ according to the rule:1

s 62 S s 2 S

The diagram LS includes only the solid lines, and thus is a collections of disjoint
circles embedded in S2 . One of the circles contains the image of the marked point p

and will be called the marked circle for LS . If we include the dark gray lines for those
crossings s 62 S and the light gray lines for s 2 S , we obtain a 1–complex embedded
in S which will be denoted �S .

We can partially order the resolutions by asserting LS �LS 0 when S � S 0 .

Definition 1.3 (1) R.L/ is the set of resolutions LS , S � CR.L/. It is in one-to-
one correspondence with the power set of CR.L/.

(2) Given a resolution LS , ı.LS /D jS j.

(3) For i 2Z, Ri.L/ is the subset of R.L/ consisting of those LS with ı.LS /D i .

Ri.L/ consists of those resolution diagrams adorned with exactly i green arcs.

1In the more common language of 0– and 1–resolutions used for Khovanov homology, the 0–,
1–values correspond to the indicator function for S as a subset of CR.L/ .
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4 L P Roberts

Example (continued) The four resolutions for our example unlink are depicted with
their colored arcs in Figure 1.

1.4 Discs and formal areas

To each subset T � FL we can associate a special element of PL :

ŒT �D
X
f 2T

xf :

We will use the following shorthand: if fi1; : : : ; ikg � FL then Œi1 : : : ik � will also
denote Œffi1

; : : : ; fik
g�. In particular, both equal xi1

C � � �Cxik
. Thus, Œ2�D x2 and

will be preferred to Œf2g�.

For a resolution S of L, we use the additional arcs in �S to divide the components
of S2nLS into a collection of smaller regions that are in one-to-one correspondence
with FL . We call these components the faces of LS and label them with the same
formal variable as the corresponding face of L. If R is a component of S2nLS then it
is a union of faces fi1

; : : : ; fik
of LS , and we assign R the following element of PL :

ŒR�D Œffi1
; fi2

; : : : ; fik
g�D Œi1 : : : ik �D xi1

C : : :Cxik
:

Using this data and the marked point p , we can assign a formal area to each of the
circles in a resolution LS . Every unmarked circle C in LS bounds two discs in S2

which are unions of faces in LS . These two discs can be distinguished by which one
contains the marked point p .

Definition 1.4 Given S � CR.L/, let CIR.LS / be the set of circles in the resolu-
tion LS . Given an unmarked circle C 2 CIR.LS / let

(1) Ap.C / be the component of S2nC which does not contain p ; Ap.C / will be
called the interior of C ;

(2) the exterior of C in LS be the component of S2nC which contains p ;

(3) ŒC � be ŒAp.C /�, the formal area of the interior of C , ie the sum of the formal
variables assigned to the faces contained in C .

1.5 Complexes associated to resolutions

As with reduced Khovanov homology we will associate an algebraic object to each
resolution LS of a diagram L. In this paper, we assign a Koszul complex to LS . In
our setting we need Koszul complexes over PL which take the following form.
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� �

� �

x2 x3 x4

Lfc1g

x2 x4

x3

L∅

x2
x3

x4

Lfc1;c2g

x2 x3 x4

Lfc2g

Figure 1: The four resolutions for the unlink considered in the text: from
left to right we have the resolutions with ı equal to 0; 1 and 2 respectively.
The marked point is depicted with a darkened disc. The labels for each of
the faces in each resolution are given as a formal variable in PL . In Lfc2g

the unmarked circle has area x3 while the bounded region inside the marked
circle has area x2Cx3Cx4 . The � and � maps indicate whether we use a
multiplication or comultiplication when constructing the Khovanov complex.

Definition 1.5 Let R be a ring of characteristic 2. For r 2 R let KR.r/ be the
complex

0 �!RvC
�r
�!Rv� �! 0;

where v˙ occur in gradings ˙1. Given elements r1; : : : ; rk 2 PL the Koszul complex
KR.r1; : : : ; rk/ is the tensor product complex

K.r1/˝R K.r2/˝R � � � ˝R K.rk/:

Our definition differs from the normal one in three respects: we only define the complex
in characteristic 2 and thus do not specify a sign convention for the differential in
the tensor product complex; the gradings are different than usual but will be more
convenient for our purposes; we choose to explicitly label a basis for the rank-1 free
modules in K.r/.

We will use the ring associated to the faces of LS as well as the marked point to
associate a Koszul type complex to the resolution LS :

Geometry & Topology, Volume 19 (2015)



6 L P Roberts

Definition 1.6 Given a link diagram L and a subset S � CR.L/, let CIR.LS / D

fC0;C1; : : : ;Ckg with C0 being the marked circle. Define

V.LS /D PLv0˝PL
KPL

.ŒC1�; : : : ; ŒCk �/;

where v0 is in grading 0. The grading on any V.LS / will be called a q–grading.

To summarize, we use the formal areas of the unmarked circles in LS as the sequence
of elements of PL in forming a Koszul complex.2 However, we do not use the rank-2
complex for C0 . Instead, let KC0

be the trivial complex 0! PLv0! 0, supported in
degree 0. This is the first factor in the tensor product defining V.LS /.

Definition 1.7 Let C be an unmarked circle. The differential in K.ŒC �/ will be
denoted @C . Thus the differential in V.LS / will be @V.LS / D

P
i>0

@Ci
. It changes the

q–grading by �2.

As usual, we represent the basis for V.LS / through decorations on the diagram LS :
each basis element can be represented as LS with each circle Ci , i > 0, adorned with
either a C or a �, depending on whether the element vC or v� is in the i th –factor of
the basis element [3].

Example In Figure 1, Lfc2g
consists of two circles: C0 and C1 . Then K.C1/ is

the complex KPL
.Œ3�/ and V.LS / is the complex PLv0˝PL

KPL
.Œ3�/. Each of the

complexes V.LS / associated to the four resolutions in Figure 1 is depicted in Figure 2
(with the factor from the marked circle suppressed).

Before proceeding we note that if we mod out by the ideal .xf j f 2 FL/, then the
complex V.LS / is precisely the module associated to LS by Khovanov in defining
the characteristic 2, reduced Khovanov homology [8; 3]. This motivates the use of v˙
and the definition of the q–grading, as these will then be identical to Khovanov’s.

1.6 Totally twisted Khovanov homology

We can now describe the totally twisted Khovanov complex. The reader familiar
with reduced Khovanov homology in characteristic 2 will immediately recognize the
procedure as that of [8], but with significant additions. Before we start, we will need
notation for shifting the gradings in the Koszul complexes above. We use the following
notation throughout the paper:

2One needs a convention for which circle to choose as C1 , C2 , etc. Such a convention can be found
in [3] and is the one used for computations described later in this paper.
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PL�C

�x4

PL��

V.Lfc1g
/f1g

PL

V.L∅/

gPL

V.Lfc1;c2g
/f2g

PL�C

�x3

PL��

V.Lfc2g
/f1g

Figure 2: In each box is an example complex of the form V.LS / for the
resolutions in Figure 1. The relative positions of the complexes are identical
to the relative positions of the resolutions in that figure. The thick, green
vertical arrows correspond to the differentials in the Koszul complex for that
resolution, using the formal areas of the unmarked circles in that resolution.
Furthermore, we have amassed the complexes for each resolution into an
example of a totally twisted Khovanov complex.

Definition 1.8 Let M D
L
Ev2Zk MEv be a Zk –graded R–module. Then M Œ Ew�

denotes the Z–graded module with .M Œ Ew�/Ev ŠMEv� Ew .

Consequently, gradM Œ Ew�.m/D gradM .m/C Ew on homogeneous elements m 2M .

If we follow Khovanov’s construction, we should combine the complexes V.LS / into
a bigraded module KHred.L/ by taking KHred.L/D

L
Ki.L/, where for each i 2Z,

Ki.L/D
M

S�CR.L/; jS jDi

V.LS /Œ.i; i/�

is the q–grading from V.LS / corresponds to the second element of the bigrading. Thus
each Ki is a q graded chain complex. Since V.LS / has a differential, @V.LS / , KH.L/
inherits a differential, @V , which reduces the q–grading by 2. The other grading on
KHred.L/ is Ki.L/! i , and will be called the h–grading. The homogeneous elements
of KHred.L/ in h–grading i and q–grading j will be denoted KHi;j

red.L/.
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8 L P Roberts

As a bigraded module KHred.L/ is that used for the (unshifted, reduced) Khovanov
chain complex (tensored with PL ). Khovanov discovered a .C1; 0/ differential z@KH

on this bigraded module, which defines the reduced, unshifted Khovanov complex
ACKH�;�u .L/ D .KHred.L/; z@KH/. Note that ACKH�;�u .L/ is a direct sum of chain
complexes, one in each q–grading.

The differential z@KH is constructed from the multiplication �W V ˝ V ! V and
the comultiplication �W V ! V ˝ V for a certain commutative Frobenius algebra,
V D Z=2ZvC ˚ Z=2Zv� , graded as above. On the graded basis, these maps are
given by

�W

8<:
vC˝ vC! vC;

vC˝ v�! v�;

v�˝ v�! 0;

�W

�
vC! vC˝ v�C v�˝ vC;

v�! v�˝ v�;

where each map shifts the q–grading by �1. To obtain a differential preserving the
q–grading the image, thus, needs to be shifted by 1.

If we tensor V with PL we obtain the module underlying the complex K.ŒC �/ for C

an unmarked circle in some resolution LS . � and � can be extended to maps on the
modules K.ŒC �/, but when we try to extend to the chain complexes we need to account
for the different areas incorporated in each circle. Nevertheless, in Section 2 we prove:

Proposition 1.9 If C is a circle in LS[fig formed by merging the circles C1 and C2

in LS , then

�W K.ŒC1�/˝K.ŒC2�/! K.ŒC �/Œ1�

is a chain map on the Koszul complexes over PL . Likewise, if C1 and C2 arise
in LS[fig from dividing a circle C in LS , then

�W K.ŒC �/!
�
K.ŒC1�/˝K.ŒC2�/

�
Œ1�

is a chain map over PL .

On a summand V.LS /, z@KH is a sum of chain maps V.LS /! V.LS[fig/Œ1� for each
i 62 S . The addition of i to the set S corresponds to changing LS at one crossing,
and thus either merges two circles in LS — in which case the map uses � on the
corresponding factors and the identity on the others — or divides a circle, in which case
we use � on the factor corresponding to the splitting circle. The remaining factors are
mapped by the identity. Thus z@KH is a chain map when considering unmarked circles.
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Totally twisted Khovanov homology 9

For the marked circle, we treat v0 as a shifted v� , so

�W

�
vC˝ v0! v0;

v�˝ v0! 0;
�W v0! v0˝ v�;

since dividing the marked circle results in a marked circle and a new unmarked circle.
These also extend to chain maps on the Koszul complexes above.

Together these results imply:

Theorem 1.10 Let z@KHW KHi;j
red.L/! KHiC1;j

red .L/ be the Khovanov differential and
let @V W KHi;j

red.L/! KHi;j�2
red .L/ be the Koszul differential. Then @D @KHC @V is a

differential on KHred.L/.

Thus, CKH�u.L/ D .KHred.L/; @/ is a chain complex, the unshifted totally twisted
Khovanov complex for L.

Example (continued) Figure 2 depicts the unshifted totally twisted Khovanov com-
plex for the two-component unlink we introduced earlier. Each of the horizontal arrows
is an isomorphism in this complex.

Gradings The (unshifted) reduced Khovanov complex over PL is ACKH�;�u .L/ D

.KHred.L/; z@KH/. Since z@KH is a .C1; 0/–differential on the bigraded module, the
homology of this complex is also bigraded, with the h–grading being the homology
grading. With the addition of @V the homology is no longer naturally bigraded. Instead,
we equip KHred.L/ with a single grading:

Definition 1.11 The ı–grading on KHred.L/ is ıW KHi;j
red.L/! 2i � j .

The differential z@KH is a .C1; 0/ map, and thus changes ı by C2. The differential @V
is a .0;�2/ map, so it also shifts the ı–grading by C2. Thus, ı provides a grading to
the complex CKH�u.L/. The ı–grading will be written as a subscript, to distinguish it
from the q and h–gradings.3

Shifting In addition, the homology of the unshifted complex is not quite an invariant
of L. This is also true for the reduced Khovanov homology ACKH�;�u . To define a
complex whose homology is an invariant of L, Khovanov shifts the bigraded complex
ACKH�;�u by Œ.�n�.L/; nC.L/�2n�.L//�. We will make the same shift, which changes
ı by 2.�n�.L//� .nC�2n�/.L/ D�nC.L/. Once we make this shift, the resulting
complex will be (almost) an invariant of the link L.

3There are several definitions of the ı grading in the literature of Khovanov homology. Our definition
is �2 times the definition of the ı–grading used by J Baldwin in [1] and �1 times J Rasmussen’s definition
in [11].
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Definition 1.12 The unshifted totally twisted Khovanov complex for a link diagram L

is the complex CKH�u.L/D .KHred; @/, where

KHred.L/D
M

S�CR.L/

V.LS /Œ.jS j; jS j/�

is equipped with the ı–grading, and @D z@KHC @V .

The totally twisted Khovanov complex, CKH�.L/ is CKH�u.L/Œ�nC.L/�, the complex
resulting from shifting the ı–grading by �nC.L/. We will denote the homology of
this complex by KH�.L/.

Comment The name “totally twisted” comes from assigning a formal variable to
every face in L. The construction works equally well if we only assign formal vari-
ables to some of the faces of L, which is equivalent to modding out by the ideal
generated by the remaining faces. Therefore, between the reduced Khovanov complex
over PL and KT�.L/ there are many twisted complexes, one for each subset of faces,
with KT�.L/ being the most twisted. We can make this more algebraic through the
following definition:

Definition 1.13 Let L be a link diagram and let M be a module over PL . Then
KH�.LIM / is the homology of the chain complex CKH�.L/˝PL

M equipped with
the differential @˝ IM .

We can obtain the intermediate twisted homologies by choosing different modules
for M . For example:

Proposition 1.14 Let M D Z=2Z be the module over PL with trivial action, ie
xi � 1D 0 for each variable xi . Then

KH�.LIM /ŠeKH
�
.L/;

the delta graded, reduced Khovanov homology.

1.7 Invariance

In Section 4 we prove the fundamental result for the invariance of the totally twisted
Khovanov homology:

Theorem 1.15 Let L be a diagram for L with marked point p , and let L0 be another
diagram obtained from L by Reidemeister I, II, and III moves, conducted in open
discs which do not include the marked point. Then the chain complexes KH�.L/ and
KH�.L0/ are stably chain homotopy equivalent.
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In that section we also explain the notion of stable isomorphism needed in this paper.
This notion relates the rings PL and PL0 even though FL and FL may not be in
one-to-one correspondence.

It should be noted that the author does not know if a similar result, or just isomorphism
of the corresponding homology modules, occurs when changing the marked point, in
particular if the marked point changes between components of a link. However, we
will change coefficients in a moment, and then the invariance under change of marked
point can be established.

x2 x4
x3

x2 x4

x3

FL

CT0.L;p/

x3

x2 x4

FL

CT2.L;p/

x2 x4

x3

1
x4

1
x3

Figure 3: The unshifted spanning tree complex for the unlink example in
Figure 2. Over FL the vertical arrows in Figure 2 are isomorphisms. Simpli-
fying both of these leaves the left and right diagrams, as these consist only of
a single marked circle. The expense is a change in coefficient, written next to
the top and bottom arrows. The differential in the new complex is the sum
of the maps corresponding to the two arrows. The top arrow comes from
changing the resolution at c1 first, followed by c2 . This alteration cleaves
from the marked circle the region marked with x4 and then rejoins it. Call
this BT;T 0 , so ŒBT;T 0 �D x4 . This means WT;T 0 is the region cleaved off by
changing the resolution at c2 first and then at c1 . This is the region contained
in the inner circle, so ŒWT;T 0 �D x3 .
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1.8 The spanning tree deformation

As stated above, our interest in the totally twisted Khovanov homology comes from
the existence of an homotopy equivalent spanning tree model for the chain complex
CKH�.L/. However, to realize this model it is necessary to use elements of the field FL

as coefficients. Doing so makes each of the complexes K.ŒC �/ acyclic as the nontrivial
map is an isomorphism. For example, in Figure 2 the thickened vertical arrows are
isomorphisms over FL . We can use these isomorphisms to simplify the chain complex
using the following analog of Gaussian elimination:

For a chain complex C over a field, if @v D �wC z with �¤ 0 (and w and z linearly
independent), there is a chain homotopy equivalent complex defined on C=Spanfv;wg
with differential @0 defined by this rule: If @uD�wC�vCr with r linearly independent
of v and w , then @0u D r � ���1z , where, for grading reasons, either nu or � (or
both) will be zero.

The result of applying this simplification to both vertical arrows in Figure 2 appears
in Figure 3. For example, the bottom arrow in Figure 3 arises from the formula with
v D vC in V.Lfc2g

/, w D v� and � D x3 For more general diagrams we use a
standard result about Koszul complexes: that K.ŒC1�; : : : ; ŒCk �/ is acyclic over FL ;
see Matsumura [10]. Consequently, when we simplify along nonzero components
of @V only those resolutions with V.LS /D FLv0 will remain to contribute. These are
precisely the resolutions which consist of a single circle.

Resolutions consisting of a single circle are in one-to-one correspondence with pairs of
complementary spanning trees for the Tait graphs of L. These graphs are found by
first bicoloring the faces of L in a checkerboard fashion. Taking all the black faces
as vertices, each crossing in CR.L/ provides an edge since it abuts one or two black
faces. The Tait graphs for L are the two planar graphs obtained by repeating this
construction for both the black and white faces. Furthermore, the marked point on L

abuts one black and one white region. These regions identify a root vertex in each
graph. Resolutions LS which consist of a single circle divide S2 into two discs, one
of each color, which are composed of the black faces and the white faces. If we take
only those crossings which are resolved in LS as a merging of two black faces, we
obtain a spanning tree for the black graph. Likewise, if we take the complementary set
of edges, we obtain a spanning tree for the white graph.

Thus, in the homotopy equivalent complex, only those resolutions contribute generators
which correspond to the rooted spanning trees. We now explicitly describe the chain
complex in terms of the rooted spanning trees.
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Totally twisted Khovanov homology 13

Within R.L/ we distinguish those resolutions which result in a single circle in S2 :

O.L/D fS � CR.L/ jLS is connectedg:

Furthermore, let Oi.L/ D O.L/\Ri.L/. Elements of O.L/ will be typically be
denoted by T , or a decorated variant. Given T 2O.L/ we let

O.T;L/D fT 0 2O.L/ j T � T 0g

and Oi.T;L/DO.T;L/\Oi.L/. If ı.T /D i then OiCk.T;L/ are those resolutions
such that LT 0 is a single (marked) circle and T 0nT is a k crossing subset of CR.L/nT .

We now define the chain complex: Take

CTi.L/D SpanFL
fT 2Oi.L/g

for each i 2 Z. Note that if L is a split diagram, then CT�.L/ Š 0 as there are no
such resolutions. There is a boundary map

@i;LW CTi.L/! CTiC2.L/:

For each T 0 2 OiC2.S;L/, T 0nT D fc1; c2g for two crossings c1; c2 2 CR.L/nS .
In LT these are depicted with resolution arcs a1 and a2 . For LT 0 to be a single circle,
a1 and a2 must have interlocking feet along the circle LT . Since all the arcs are
disjoint, one of the arcs must lie in each region of S2nLT . Between T and T 0 there
are two elements b; w 2R.L/, with b D T [fc1g and w D T [fc2g. Lb consists of
two circles, found by surgering the arc a1 . One of these circles contains the marked
point while the other bounds a region BT;T 0 � S2 disjoint from the marked point p ,
which is cleaved from LT by the change in resolution at c1 . Likewise, Lw consists
of two circles, one marked and the other containing a subset WT;T 0 disjoint from p .
For the case of our extended example, see Figure 3.

To BT;T 0 we assign the formal area ŒBT;T 0 � in FL which is the sum of the formal
variables for the faces in BT;T 0 . Similarly we can define an area ŒWT;T 0 � for WT;T 0 .
These define the boundary map @i;L

(1) @i;LT D
X

T 02OiC2.T;L/

hT;T 0iT 0;

where

(2) hT;T 0i D
1

ŒBT;T 0 �
C

1

ŒWT;T 0 �
:

This differential emerges from the reduction process previously described, but given
its form we can also verify that it is a boundary map directly. This argument is
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combinatorial and is presented in Section 6. Moreover, we can verify that this complex
is invariant under changes of the marked point. Together, these statements form:

Theorem 1.16 Let L be the diagram for an oriented link with a marked point p . Let
CT�.L;p/D

L
i2Z CTi.L;p/, and @L be the map

L
@i;L . Then .CT�.L/; @L/ is a

chain complex, whose homology will be denoted HT�u.L/. The isomorphism type of
the chain complex is invariant under changes of the marked point.

The arguments for invariance of the twisted Khovanov homology are readily extended
to FL , and thus apply to the homotopy equivalent spanning tree complex. Consequently,
we obtain the main result of this paper:

Theorem 1.17 Let L be the diagram for an oriented link, L. Then the (stable)
isomorphism class of HT�u.L/Œ�nC� is an oriented link invariant, denoted HT�.L/.

1.9 Properties

The reduced Khovanov homology has Euler characteristic equal to the Jones polynomial
(for a suitable convention on the coefficients of the polynomial). The spanning tree
complex also has a classical knot invariant as its Euler characteristic:

Theorem 1.18 For a link L in S3 , let

P .t/D
X
j2Z

rkFL
.HTj .L//tj :

Then det.L/D jP .i/j, where i D
p
�1.

The strange form of the Euler characteristic comes from @L being a C2–differential.
However, using a C2–differential ensures that our gradings will occur in Z and not 1

2
Z.

This theorem can be derived either from the relationship with Khovanov homology,
where one interprets the addition of @V as corresponding to evaluating the Jones
polynomial at �1, or from the known relationship between the spanning trees of the
Tait graph and the determinant of a link. We will opt for the latter in Section 8.

Second, we highlight the long exact sequence arising from the resolutions of a crossing
in L.
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Proposition 1.19 Let L be oriented link diagram with crossing c . Let L0 be the
resolution of L at c according to the rule c 62 S , and let L1 be the resolution of L at c

according to the rule c 2 S . If c is a positive crossing, and if e D nC.L/� nC.L1/

(for any orientation on L1 ), then

(3) � � � ! HTiCe�1.L1/˝FL1
FL! HTi.L/! HTiC1.L0/˝FL0

FL

! HTiCeC1.L1/˝FL1
FL! � � � :

However, if c is negative, and f D nC.L/� nC.L0/, then

(4) � � � ! HTi�1.L1/˝FL1
FL! HTi.L/! HTiCf .L0/˝FL0

FL

! HTiC1.L1/˝FL1
FL! � � � :

The groups in these long exact sequences are tensored with FL to have all groups over
the same field. The proof of the proposition as well as details of the actions of FL0

and FL1
are in Section 9.1.

The long exact sequence can be used to replicate an argument of Manolescu and
Ozsváth [9]. In particular:

Theorem 1.20 If L represents a (quasi)alternating link with a connected diagram L,
then HTi.L/Š 0 when i ¤ �.L/ and has rank det.L/ when i D �.L/, the signature
of L.

We will use the convention that the signature of the right-handed trefoil is �2. This
result can also be proved from the more detailed connection with Khovanov homology
given below. We also note the spanning tree homology has two properties similar to
those for other knot homologies.

Theorem 1.21 Let L be an oriented link. Then HTi.L/Š HT�i.xL/.

Theorem 1.22 Let L1 , L2 be two nonsplit oriented links, and let L D L1 # L2 , in
some manner. Then

HTk.L/Š
M

iCjDk

HTi.L1/˝HTj .L2/;

where Š denotes stable equivalence.

Again, similar results should be provable directly from the totally twisted Khovanov
homology. However, each of these three properties is proved in Section 9 using the
spanning tree formalism.
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1.10 Relationship with Khovanov homology

There is a more precise relationship between the (characteristic 2, reduced) Khovanov
homology and the totally twisted Khovanov homology, which extends also to the
spanning tree homology. The q–grading, after we add @V , defines a filtration on
the totally twisted Khovanov homology. We can examine the induced Leray spectral
sequence to derive a relationship with Khovanov homology.

Theorem 1.23 The spectral sequence induced by the filtration from the q–grading has
E0 page isomorphic to the ı–graded reduced Khovanov complex ACKH�.L/ and con-
verges, in finitely many steps, to HT�.L/.

Proof On the unshifted, twisted Khovanov complex, the map .i; j /! j is a filtration
and ı.i; j /D 2i � j is a grading. To compute the E0 –page we ignore the portion of
the differential which changes the j –value. For us, this is the .1; 0/ portion of the
differential, z@KH . Consequently, the E0 page is just the reduced Khovanov complex
over the field FL . The complex is bounded, so the corresponding spectral sequence
converges to the total homology of the complex. The total homology when using the
ı–grading is isomorphic to HT�u.L/, since we are working over a field. Finally, when
we shift the Khovanov complex by .�n�; nC�2n�/ to obtain the invariant homology,
the ı–grading shifts by �nCC2n�C2.�n�/D�nC , which is how we calculated the
shift to apply to HT�u.L/ to obtain HT�.L/. Thus in the spectral sequence above, we
may use the Khovanov shifts on each bigraded page, and this appropriately shifts the
total grading so that the direct sum of the pieces with ı D k converges to HTk.L/.

Corollary 1.24 If eKHs.L/ is the portion of the (reduced) Khovanov homology
over FL in ı–grading s , then

eKHs.L/� rk HTs.L/:

This corollary implies bounds on the Khovanov width of links in S3 , a result we
examine in more depth in a later paper. For now, it is a natural question whether more
can be said. To this end we relate some computations and the results of computer
calculations of HT�.L/ and compare them with the results for characteristic 2, reduced
Khovanov homology.

1.11 Computations

1.11.1 Unlinks To finish our extended example let L be the two-component unlink
above. We compute the spanning tree homology HT�.L/ for the unlink L in the
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example. The spanning tree homology is trivial. Both of the arrows in Figure 3 are
multiplication by a nonzero element of FL ; the boundary operator is multiplication
by their sum: .x3Cx4/=x3x4 . Since this element is also nonzero, the corresponding
boundary map is an isomorphism, and the homology is trivial. This confirms the
intuition that the homology should be trivial since the simplest diagram for the two-
component unlink is disconnected and thus unable to support any spanning trees for
both its Tait graphs. On the other hand, for the twisted homology KH�.L/, the situation
is more complicated. For the complex in Figure 2, we can reduce two of the horizontal
isomorphisms — one out of L∅ and the other into Lfc1;c2g

— to be left with

0 �! PL

�.x3Cx4/
������! PL �! 0

with homology Z=2ZŒx0
1
;x0

2
;x0

4
�, as a PL –module where x3 acts by multiplication

by x0
4

. We can compare this with the usual geometrically split diagram for the two-
component unlink. Then we would have two circles, enclosing regions y1 and y2 ,
where we choose the labels so that the circle enclosing y1 is the marked circle. The
homology module would then be the homology of the complex

0 �! Z=2ZŒy1;y2�
�y2
�! Z=2ZŒy1;y2� �! 0:

The homology of this complex is Z=2ZŒy1� as a Z=2ZŒy1;y2�–module with y2 acting
by multiplication by 0. This complex and its homologies will be related through the
notion of stable isomorphism over polynomial rings to the complex for the diagram in
our example, under which they are equivalent.

Using the invariance results above, the completely split diagram for the n–component
unlink will give a complex isomorphic to K.y2; : : : ;yn/ over P D Z=2ZŒy1; : : : ;yn�,
where y1 corresponds to the bounded region enclosed by the marked circle. Since
y2; : : : ;yn is a regular sequence over P , standard results about Koszul complexes (see
for example [10, Theorem 16.5]) imply

KHk.L/Š
�

Z=2ZŒy1� k D 0;

0 k ¤ 0;

which determines the stable isomorphism class of the totally twisted Khovanov homol-
ogy. In fact, we can take this homology to be Z=2Z in grading 0, as a Z=2Z–module,
considered up to stable equivalence.

1.11.2 Example calculations for knots A computer can quickly calculate the ranks
of the spanning tree homology for knots up to 15 crossings. There is a mild difficulty
in that computations over FL are not very efficient due to the large number of variables
that may need to be tracked. The details of the workaround and results of these computer
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surveys will be highlighted in the sequel to this paper, as will various generalizations.
Here we relate some of the data with an eye to understanding HT�.K/ more fully,
where K is a knot.

When this paper originally appeared, these computations were more extensively de-
scribed and provided evidence to conjecture that for a knot K , HT�.K/ is (stably)
isomorphic to eKH�red.K/. This result has been proved by T Jaeger in [6]. Since the
conjecture has been proven we give a shorter list.

Caution As mentioned above, in the Khovanov homology literature, there are several
different definitions of the ı–grading. Below we implicitly convert the results in other
papers to the ı–grading employed in this paper.

We will describe the homology HT�.K/ by its Poincaré polynomial,X
j2Z

rkFL
.HTj .L//ıj ;

which indicates the ranks and the gradings. Since we are currently interested in stable
equivalence over fields, the “graded ranks” are all that remain.

(1) Theorem 1.20 shows that for (quasi)alternating knots and links, HT�.L/ has
the same rank in each ı–grading as eKH�red.L/. The analogous theorem for
eKH�red.L/ was proven for alternating links by E S Lee, and for quasialternating
links by Manolescu and Ozsváth [9].

(2) The torus knots T5;3 , T7;3 , and T5;4 also have the rank of HT�.K/ in each ı–
grading the same as that for eKH�red.K/. For T5;3 the common Poincaré polyno-
mial is

HT�.T5;3/W 4ı�8
C 3ı�6;

found from a diagram yielding 27 spanning trees as generators. Likewise, for T7;3

both theories have Poincaré polynomial

HT�.T7;3/W 4ı�12
C 4ı�10

C ı�8;

found from a diagram yielding 841 spanning trees as generators. For T5;4 the
homology is

HT�.T5;4/W 4ı�12
C 4ı�10

C 5ı�8;

found from a diagram yielding 1805 spanning trees as generators. It is worth
describing the chain complex for T5;4 . The table below lists the nonzero number
of generators in each ı–grading for the diagram used in the computation:
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ı �12 �10 �8 �6 �4

# gens 125 500 700 400 80

(3) In [11], there are several examples of knots where the knot Floer homology differs
from eKH�red.K/, we consider the .2; 5/–cable of the positive trefoil, C2;5T ,
and the .2; 7/–cable of the positive trefoil, C2;7T . These are the knots 13n4639

and 13n4587, respectively. For these we find

HT�.C2;5T /W 4ı�8
C 7ı�6

C 8ı�4;

HT�.C2;7T /W 4ı�10
C 5ı�8

C 8ı�6:

In addition, the torus knot T4;5 also has different ı–graded knot Floer and
Khovanov homology. Nevertheless, all of these still have identical Poincaré poly-
nomials for the spanning tree and reduced, characteristic 2, ı–graded Khovanov
homologies.

1.11.3 Results for links One can make the same comparison for links as for knots. It
is straightforward to see that the homologies for the two-component unlinks are different
(see Section 1.11.1). However, even among nonsplit links there are discrepancies
between the homologies as soon as nonalternating links appear in the link tables. Of
the 1424 links with 11 or fewer crossings found on the KnotAtlas website, 200 have
different Poincaré polynomials for the spanning tree and reduced, characteristic 2

Khovanov homology.

For instance, L6n1, L7n1, and L8n8 are depicted from left to right below:

HT�.L6n1/ has Poincaré polynomial 4ı0 , whereas for the ı–graded, reduced, char-
acteristic 2 Khovanov homology has polynomial ı�2C 5ı0 . Thus there is a higher
differential in the spectral sequence in Theorem 1.23. For L7n1 a similar reduction oc-
curs: the spanning tree homology has polynomial 4ı5 whereas the Khovanov homology
has ı3C5ı5 . For L8n8 we have 4ı�1C4ı1 for the spanning tree homology, whereas
the Khovanov homology is 6ı�1C 6ı . For L8n6 we have spanning tree homology
4ı2C4ı4 whereas the Khovanov homology is 5ı2C5ı4 . No obvious property of a link
explains these reductions. L6n1 has three components whereas L7n1 has only two;
nevertheless, they have the same rank difference when compared to their Khovanov
homologies. L8n8 and L8n6 both have nullity 1, but their rank comparisons are
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different. On the other hand, L6n1 has nullity 0 but the same rank reduction as L8n8.
The author has no ready explanation for the occurrence of the higher differentials for
links, nor an explanation for why they seem to occur frequently.

Acknowledgments The author did not discover the idea of “twisting” a link homology
chain complex to deform it to a spanning tree complex. As he understands it, the idea
first emerged in unpublished work of P Ozsváth and Z Szabó in the context of Heegaard–
Floer homology. The author learned the Heegaard–Floer idea from John Baldwin
while at the Mathematical Sciences Research Institute for the program on Homology
theories of knots and links in the spring of 2010. While at MSRI, he stumbled on
to the constructions in this paper while trying to understand what he was being told,
completing the proof of invariance in fall of 2010. John Baldwin and Adam Levine
have used this idea, in conjunction with a construction of C Manolescu, to describe
Ozsváth and Szabó’s knot Floer homology using spanning trees of a link diagram;
see Baldwin and Levine [2]. The author would like to thank John Baldwin for those
conversations, as well as P Ozsváth and Z Szabó for the great idea. He would also like
to thank Liam Watson, Matt Hedden and Tom Mark for listening as he worked out
some of the details while at MSRI. The author would also like to thank MSRI for the
great semester. Finally, the author would like to thank the referee for many thoughtful
suggestions, which contributed meaningfully to the improvement of this paper.

2 Totally twisted Khovanov homology

Theorem 2.1 Let z@KHW KH�;�.L/! KH�C1;�.L/ be the Khovanov differential, and
let @V W KH�;�.L/! KH�;��2.L/ be the map

L
@V.LS / . Then @ D z@KH C @V is a

boundary map on KH.L/.

Proof To show .z@KHC @V/
2 � 0 we need to show z@KH ı @V D @V ı z@KH . However,

z@KHW V.LS /!
M

i2CR.L/nS

V.Lfig[S /ŒC1�;

so it suffices to verify that z@KH;S D prV.Lfig[S /ŒC1� ı
z@KH is a chain map V.LS /!

V.Lfig[S /Œ � �C 1 for each i 2 CR.L/nS . Furthermore, since V.LS / is itself a tensor
product, we can verify that z@KH is a chain map through three lemmas addressing its effect
on each of the factors. These verify that z@KH is a chain map for factors corresponding
to circles which are not merging or dividing, and for factors corresponding to circles
that merge or that divide. Furthermore, implicitly each argument will allow one of the
circles to be the marked circle.
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Lemma 2.2 If C is a circle which is unaffected by changing the resolution from LS

to Lfig[S , then z@KH induces a chain map on K.ŒC �/.

Proof The map z@KH induces the identity map on the module underlying K.ŒC �/.
Furthermore, ŒC � is the same for both LS and LS[fig since the circle is unchanged.
Thus, the map z@KH is the identity on the chain complex K.ŒC �/ as well.

x2

x3

x5

x2

x3

x5

�C˝ �C
�

�C
�.x2Cx3Cx5/ �x3

�.x2Cx5/

��˝ �C �C˝ ��
�

��

�x3 �.x2Cx3Cx5/
��˝ ��

x2

x3

x6 x2

x3

x6

�C˝ �C
� �C

�.x2Cx3/ �x6 �.x2Cx3Cx6/

��˝ �C �C˝ ��
�

��

�x6 �.x2Cx3/
��˝ ��

Figure 4: Examples of the two cases considered in the proof of Lemma 2.3:
the first figure depicts case (1), Ap.C1/ � Ap.C2/ along with a simplified
version of the chain complexes and maps involved, while the bottom figure
depicts case (2), Ap.C1/\Ap.C2/D∅ . The labels are not consecutive to
indicate each may be only a portion of a larger diagram.
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Lemma 2.3 Let C1 and C2 be circles in LS which merge into a single circle C

in Lfig[S . The map

�W K.ŒC1�/˝K.ŒC2�/! K.ŒC �/ŒC1�

is a chain map.

Proof When C1 and C2 are both unmarked circles, there are two cases to consider:
Ap.C1/�Ap.C2/ (or Ap.C2/�Ap.C1/), and Ap.C1/\Ap.C2/D∅. Examples
of the argument in the two cases are given in Figure 4. In each case we start by
computing ŒC �. If Ap.C1/ \ Ap.C2/ D ∅ then merging C1 and C2 produces a
circle C with Ap.C /DAp.C1/ \Ap.C2/, the boundary connect sum of Ap.C1/ and
Ap.C2/. But then any face f 2FL with f \Ap.C /¤∅ has either f \Ap.C1/¤∅
or f \ Ap.C2/ ¤ ∅, but not both. Thus ŒC � D ŒC1�C ŒC2�. In the other case, if
Ap.C1/ � Ap.C2/, merging C1 and C2 results in Ap.C / D Ap.C2/nAp.C1/, but
ŒAp.C2/nAp.C1/�C ŒC1�D ŒC2�. Since we are working in characteristic 2,

ŒC �D ŒAp.C2/nAp.C1/�D ŒC1�C ŒC2�:

Thus in both cases, ŒC �D ŒC1�C ŒC2�.

With this result, we will now verify that @K.ŒC �/ ı�D�ı .@K.ŒC1�/˝ICI˝@K.ŒC2�//.
The map @K.ŒC �/ ı� computed on generators of K.ŒC1�/˝K.ŒC2�/ equals

vC˝ vC
�
�! vC

@K.ŒC �/

����! ŒC �v�;

vC˝ v�; v�˝ vC
�
�! v�

@K.ŒC �/

����! 0;

v�˝ v�
�
�! 0

@K.ŒC �/

����! 0:

On the other hand, if we apply @D @K.ŒC1�/˝ IC I˝ @K.ŒC2�/ first, and then �, we
obtain

vC˝ vC
@
�! .ŒC1�v�˝ vCC ŒC2�vC˝ v�/

�
�! .ŒC1�C ŒC2�/v�;

vC˝ v�
@
�! ŒC1�v�˝ v�

�
�! 0;

v�˝ vC
@
�! ŒC2�v�˝ v�

�
�! 0;

v�˝ v�
@
�! 0

�
�! 0:

Since ŒC �D ŒC1�C ŒC2� these two maps are equal. Now let C1 be the marked circle.
Then K.ŒC1�/ is spanned by v0 . v0 behaves identically to v� in �, but both of the
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above maps have image equal to 0 if one of the generators equals v� . Thus � is also a
chain map when merging the marked circle.

Lemma 2.4 Let C be an unmarked circle in LS which divides into two circles C1

and C2 in Lfig[S . The map

�W K.ŒC �/!
�
K.ŒC1�/˝K.ŒC2�/

�
ŒC1�

is a chain map.

Proof The module V underlying the complex K.ŒC �/ is a Frobenius algebra with
multiplication � and counit �W V !F given by �.v�/D 1 and �.vC/D 0. That V is a
Frobenius algebra implies that � ı� is a nondegenerate bilinear form which induces an
isomorphism �W V ! V � . The comultiplication � for a Frobenius algebra is the map
obtained from �W V ˝V !V by dualizing, V �˝V � V � , and then identifying V �

with V using ��1 to obtain V ! V ˝V . Let f˙ be the basis dual to v˙ in V � . We
consider the differential on V under this duality. The map @V induces a map @� which
can be computed as @�.f�/D ŒC �fC , and otherwise 0. �.v˙/D f� , so � is a chain
map K.ŒC �/!K.ŒC �/� . Since � is a chain map, it follows easily that � is likewise a
chain map.

Of course, this last lemma can also be verified directly, using the same method as in
Lemma 2.3 and the result on ŒC �.

These three lemmas imply that the building blocks of z@KH are chain maps on the factors
in V.LS /. Consequently, z@KHC @V is a differential on KH.L/.

3 Before proving invariance: stable equivalence

Our goal is to show that KH�.L/ is almost a link invariant. We will not quite get a
link invariant due to the presence of the additional marked point. Instead, in the next
section, we will prove:

Theorem 3.1 Let L be the diagram for a link L in S2 , equipped with a marked
point p . The (stable) chain homotopy type of KH�.L/ is an invariant of L under
Reidemeister moves and planar isotopies in S2nfpg.

In other words, as long as the isotopies do not cross the marked point, the homology
is an invariant. The author does not know if the twisted homology is invariant under
changes of marked point. However, for a different set of coefficients, we will be able
to prove this.
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In this section, we collect some algebraic constructions that will help us prove the
theorem in the next section. We need these constructions because different projections
on L can have different numbers of faces, and thus the corresponding twisted complexes
occur with nonisomorphic coefficient rings, PL . Thus, in this section we describe an
appropriate algebraic equivalence for relating the complexes for different projections.
These constructions will allow us to prove the invariance theorem by adapting the usual
proofs of invariance for Khovanov homology; see [8] and Bar-Natan [4].

Let W be a vector space over F , and let PW D Sym.W / be its symmetric algebra.
The algebra PW is an integral domain, so we may find its field of fractions FW . A
basis for W identifies PW with a commutative polynomial ring generated by the
basis elements, and FW with the corresponding field of rational functions. Thus, we
will sometimes refer to FW as Rat.W / when we wish to emphasize this connection.
Any linear map AW W !W 0 induces a map Sym.A/W PW ! PW 0 . If A is also an
injection, then A also induces a map Rat.A/W FW ! FW 0 since Sym.A/ has trivial
kernel. When A is an isomorphism Sym.A/ and Rat.A/ are also isomorphisms in the
appropriate category.

If M is a module over PW , and AW W ! W 0 , then M ˝PW
PW 0 is a module

over PW 0 where .p �m/˝p0 Dm˝ .Sym.A/.p/ �p0/ and the action of PW 0 occurs
on the second factor. Likewise if V is a vector space over FW , then V ˝FW

FW 0 is a
vector space over F 0 .

Definition 3.2 Let W and W 0 be two F –vector spaces. A module M over PW is
stably isomorphic to a module M 0 over PW 0 if there is an F –vector space W 00 , and
injections i; i 0W W;W 0 ,!W 00 which induce an isomorphism

M ˝PW
PW 00 ŠM 0

˝PW 0
PW 00

as PW 00 modules. When we wish to identify W 00 and the injections we will say that W

is stably isomorphic to W 0 through .W 00; i; i 0/.

We will consider this as a relation on pairs .M;W /, although we will often omit
reference to W when it is clear in the context.

Lemma 3.3 Stable isomorphism of pairs .M;W / is an equivalence relation on mod-
ules M over the rings PW , when W is an F –vector space.

Proof The identity and symmetry of the relation are clear in the definition. We need
only verify transitivity. Suppose that .M;W / is stably isomorphic to .M 0;W 0/ through
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. �W1; i; i
0
1/ and .M 0;W 0/ is stably isomorphic to .M 00;W 00/ through . �W2; i

0
2; i
00/.

Let �W be the quotient of �W1˚
�W2 by the subspace

fi 01.w/˚
E0� E0˚ i 02.w/ j w 2W 0g:

Then projection onto �W composed with i ˚E0 is an injection W ,! �W , since it maps
entirely into the first factor, while no nontrivial element in the subspace is entirely
in the first factor. Likewise, E0˚ i 00 induces an injection W 00 ,! �W . Furthermore,
i 01 ˚ 0 and 0˚ i 02 induce injections of W 0 into �W with the same image. We now
consider T D .M ˝PW

P �W1
/ ˝P �W1

P �W . On the one hand, T is isomorphic to
M ˝PW

.P �W1
˝P �W1

P �W /. Here the action of PW on P �W is given by symmetric
power of the composition of the inclusion maps. On the other hand stable equivalence
implies that T is isomorphic to T 0 D .M 0˝PW 0

P �W1
/˝P �W1

P �W where the action
of P �W1

on P �W is by the inclusion Id˚E0 followed by projection, and the action of PW 0

on P �W1
is by i 01 . Reorganizing the tensor product using associativity, as before we

obtain an isomorphism with M 0˝PW 0
P �W where the action of PW 0 on P �W is given

by the symmetric power of pr ı.i 01˚E0/.

We can perform the same argument starting with .M 00˝PW 00
P �W2

/˝P �W2
P �W . This

is isomorphic to M 00 ˝PW 00
P �W with action given by the symmetric power of the

composition W 00 ,! �W2 ,! �W . It is, as above, also isomorphic to M 0˝PW 0
P �W with

action of PW 0 on P �W given by the symmetric power of pr ı.E0˚ i 0
2
/. However, we

have pr ı.E0˚ i 0
2
/D pr ı.i 0

1
˚ E0/, so this is also isomorphic to M 0˝PW 0

P �W where
the action of PW 0 on P �W is given by the symmetric power of pr ı.i 0

1
˚ E0/. From

the preceding paragraph, we can conclude that M ˝PW
P �W using the composition

I W W ,! �W1 ,! �W is isomorphic, as a P �W –module, to M 00˝PW 00
P �W using the

inclusion I 00W W 00 ,! �W2 ,! �W . In particular, .M;W / and .M 00;W 00/ are stably
isomorphic through . �W ; I; I 00/.

Lemma 3.4 If M is a free module over PW , M 0 is a free module over PW 0 and
.M;W / is stable isomorphic to .M 0;W 0/, then dimPW

M D dimPW 0
M 0 .

Proof Let fei 2M j i 2ƒg be a basis for M over PW . Then since .
P

aiei/˝w

equals
P

ei˝Sym.I1/.ai/ �wD
P
.ei˝1/ � .Sym.I1/.ai/ �w/, we see that fei˝1 j

i 2 ƒg is a basis for M ˝PW
P �W over P �W . Consequently, it has the same rank.

Performing the same calculation for M 0 we see that the ranks must be equal.

A similar equivalence relation holds for vector spaces over FW . When two vector
spaces are stably isomorphic their dimensions over their respective fields are equal.
If V is a graded vector space over FW , stable isomorphism induces stable isomorphism
in each grading, and the rank equality holds in each grading.
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We will use stable isomorphisms to relate chain complexes of modules defined over PW

for differing vector spaces W . To do this we note a commutative algebra result:

Lemma 3.5 Let I W W ,! W 0 be an injection of finite-dimensional vector spaces.
Then PW 0 is free, hence flat, as a PW –module.

Proof We select a basis for W , fw1; : : : ; wkg and consider S D fI.w1/; : : : ; I.wk/g

in W 0 . S is linearly independent over F , and thus can be extended to a basis for W 0

by appending some vectors fykC1; : : : ;ylg. With these choices, there are ring isomor-
phisms PW Š F Œw1; : : : ; wk � and PW 0 Š F ŒI.w1/; : : : ; I.wk/;ykC1; : : : ;yl �. As a
module over PW , PW 0 is thus isomorphic to PW ŒykC1; : : : ;yl � with basis given by
the monomials in ykC1; : : : ;yl . Thus PW 0 is free over PW .

Consequently, we can define stable isomorphism for chain complexes where every
chain group is free.

Definition 3.6 Let C be a chain complex with chain groups free over PW and let C0

be similarly defined for PW 0 . We will say that C is stably isomorphic to C0 if there are
injections I; I 0W W;W 0 ,!W 00 such that C˝I PW 00 is isomorphic to C0˝I 0 PW 00 as
chain complexes over PW 00 . Likewise, we will say that C is stably chain homotopic to
C0 if there is a W 00 where C˝I PW 00 is chain homotopic to C0˝I 0 PW 00 .

Due to the flatness, if C is stably isomorphic to C0 then Hi.C/ is stably isomorphic
to Hi.C0/ through .W 00; I; I 0/. Consequently, there is a well-defined notion of stable
rank, and stably isomorphic complexes will have identical Euler characteristics.

Definition 3.7 Let v 2W with W an F –vector space. KW .v/ is the complex

0 �! PW
�v
�! PW �! 0

supported in gradings C1 and �1. Let v1; : : : ; vk be vectors in W . Then

KW .v1; : : : ; vk/D KW .v1/˝PW
KW .v2/˝PW

� � � ˝PW
KW .vk/

denotes the Koszul complex for v1; : : : ; vK .

Example Let L be a link diagram, and let W be the vector space over Z=2Z
generated by the faces of L. Then PW D PL , and the Koszul complexes in the
definition correspond to those in the definition of the totally twisted Khovanov homology
in Section 1.2.

The following is a straightforward exercise in definitions:

Proposition 3.8 Let I W W ,!W 0 be an injection of vector spaces, and v1; : : : ; vk2W .
Then K.v1; : : : ; vk/ is stably chain isomorphic to K.I.v1/; : : : ; I.vk//.
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In addition, some of our chain complexes will be defined over fields with large isomor-
phism groups. We can use these isomorphisms to adjust our chain complexes. Let C�
be a chain complex over a field F , and let � W F!F 0 be a field homomorphism, then we
have new chain complex over F 0 : C 0�DC�˝F F 0 where the action of F on F 0 is given
by .�; f /! �.�/ �f . In effect this construction just applied � to all the coefficients.
That is, if we have a basis fxig given in C� and @x0D

P
fixi , then C 0� will be spanned

by the same basis elements but with differential map @0x D
P
�.fi/xi . @0 is easily

verified to be a differential from � being a field map. In particular, when F D Rat.W /

and F 0 D Rat.W 0/ with I W W ,! W 0 , C� and C 0� will be stably isomorphic. We
will also denote the tensor product as C� ˝� F 0 when we wish to emphasize the
homomorphism.

4 Invariance for the totally twisted Khovanov homology

Given a set, A, let WA be the vector space over Z=2Z generated by the elements of A.
We will write xs for the element in PWA

which corresponds to the basis vector for
s 2A. Recall that we will use a special notation for certain elements in PWA

. For each
T �A let

ŒT �D
X
s2T

xs:

We will also denote this element by xT when it is convenient. For i1; : : : ; ik 2S we will
shorten Œfi1; i2; : : : ; ikg� to Œi1i2 : : : ik �, so that both will denote xi1

Cxi2
C � � �Cxik

.

4.1 Two auxiliary constructions

4.1.1 Dissection In constructing PL we associated a formal variable to each face
in FL . If we consider modules over these rings up to stable equivalence, we can make
this more flexible. In particular, we can partition the faces in L and assign formal
variables to each of the new components. Usually we will do this by embedding arcs
in S2 with endpoints on L and interiors mapped to S2n�L , as in Figure 5. If we
let S be this collection of arcs, we can use the set of components AD S2n.�L[S/

to form the vector space WA , as above. We will denote this vector space by WL;S

and the corresponding symmetric algebra PWL;S
by PL;S . We can make PL;S into

a module over PL . For each face Ri 2 FL , the arcs of S partition Ri into a set of
subcomponents S1;i ; : : : ;Sk;i . If Sj ;i is associated to the formal variable yj ;i in PL;S ,
we can define a map I W PL ,! PL;S by the decomposition relations

xi
I
�! y1;i Cy2;i C � � �Cyk;i
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corresponding to RiDS1;i[� � �[Sk;i . Define CKH�u.LIS/ to be CKH�u.LIS/˝I PL;S

and KH�u.LIS/ to be the homology KH�u.lIPL;S /. We can use this complex to
compute the twisted Khovanov homologies:

Lemma 4.1 KH�u.L/ is stably isomorphic to KH�u.LIS/.

Proof The module PL;S is flat over PL , and thus KH�u.LIS/Š KH�u.L/˝I PL;S .
The stable isomorphism follows directly.

x9

x6

x2

C2

x1

x3

x7

x9

x4

x5

C3 x10

x8

LS

C1

C4

V.LS /D .PL�0/˝KC2
.Œ3457�/

˝KC3
.Œ459�/˝KC4

.Œ8�/

�!

Figure 5: The complex assigned to a resolution in which some regions have
been dissected and some edges have received weights

4.1.2 Edge weighting In addition to dissecting the regions, we will also find it useful
to attach a weight to an edge, which can then be incorporated into the formal area of
a circle in resolutions LS . We depict this by adding a dot to the edge and labeling
the dot with an element of PL or with a new formal variable (and then enlarging PL ).
Diagrammatically we will draw an arrow from the weight to the point, to distinguish it
from the weights assigned to the faces. For an example, see Figure 5.

A weight w assigned to a point on an edge should be interpreted as adding w to the
weights of each of the regions adjacent to the edge. Thus, if C is a circle in a diagram
for L and we add a weight w to a point in an edge then the area of C in the new
diagram is

(1) ŒC � if the closure of Ap.C / contains neither or both of the faces adjacent to the
edge,

(2) ŒC �Cw if Ap.C / contains one of the adjacent faces but not the other.

Geometry & Topology, Volume 19 (2015)



Totally twisted Khovanov homology 29

Each edge occurs in only one circle C in a resolution LS . Given LS , write the states
as v˝ v0 where v0 D v˙ is the decoration on the circle containing the weighted edge.
If @V.LS / is the Koszul differential without the edge weight, then the complex with
the edge weight has differential @V.LS /CwDC where DC .v˝ vC/ D v˝ v� and
DC .v˝ v�/D 0. We will call this distributing the weights, and note that by iterating
the process we can distribute the weights on multiple edges.

If there are multiple points on the same edge, we can coalesce the points into one
point and add their weights to get the weight of the new point. Once we have the
adjusted area we can form the twisted Khovanov complex as before. For an example,
see Figure 5. In particular, the area for C3 is x4C x5C x9 due to the edge weight,
while that for C2 is x3Cx4Cx5Cx7 with no edge contribution, since C3 contains
both regions which receive the extra x9 term.

Let E be the data consisting of the weights on the edges. We will denote an edge
weighted diagram for L by .L;E/, and the corresponding chain groups, homology
groups, etc by KH�u.LIE/.

Lemma 4.2 Let .L;E/ be an edge weighted diagram for a link L. Suppose edges
e1; : : : ; en are weighted with w1; : : : ; wn and let E0 be edge weight data identical to E

away from the ei , but assigning weight 0 to each ei . Suppose that after distributing the
weights on e1; : : : ; en , the new areas of each face are still linearly independent of all
the other weights in .L;E0/, then KH�u.LIE/ is stably isomorphic to KH�u.L;E

0/.

Proof Let x0
A

be the variable in .L;E0/ assigned to face A, and let x0
A
!xAC

P
wj

where the sum is over all the edges ej in the boundary of A. This defines a change of
variables from the ring for .L;E0/ to that for .L;E/ which identifies the complexes
for .L;E0/ and .L;E/. The assumption on the linear independence guarantees that
xAC

P
wj is not equal to the adjusted area assigned to any other face in .L;E/ since

the adjusted areas remain linearly independent vectors over F . Consequently, the map is
an injection PL;E0! PL;E which can be used to establish the stable isomorphism.

4.2 Deforming the chain complex

In proving that stable chain homotopy class of CT�.L/ is invariant under the Reide-
meister moves we will make use of the following formulation of a well-known lemma
in homological algebra, which follows from a graded version of Gaussian elimination.

Lemma 4.3 Let .M; d/ be a differential module over a ring R. Suppose M Š

M1 ˚M2 ˚M3 as an R–module and that d D ŒLij �i;jD1;2;3 with respect to this
decomposition. If L32 is an R–isomorphism, then there is a submodule D �M with
d jD W D!D �M such that
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(1) .D; d jD/ is a deformation retract of .M; d/ and

(2) .D; d jD/ is isomorphic to .M1; d
0/, where d 0 DL11�L12 ıL�1

32
ıL31 .

We will refer to the process of cutting down from .M; d/ to .D; d jD/ as reduction,
and we will say that we are canceling L32 . It will often be the case that L2

11
D 0,

and so L11 is a differential on M1 . For this reason, we will call �L12 ıL�1
32
ıL31 a

perturbation term and d 0 the perturbed differential. As the lemma is well known, we
will omit some of the computations underlying the proof in favor of indicating which
computations should be performed.

Proof Let QDM2C d.M2/. Then .Q; d jQ/ is an acyclic subcomplex of M . Let
x 2 M1 . Under � W M ! M=Q, d.x/ is mapped to L11.x/ �L12.y/ D .L11 �

L12L�1
32

L31/.x/. Thus the quotient M=Q is the complex in item ii) of the lemma
since L32 is an isomorphism. In particular, this shows that d 0 is a differential, which
can also be verified directly using the nine relations between the Lij found from
d2 � 0. On the other hand, there is a chain map .M1; d

0/ ! .M; d/ defined as
�.x/ D x ˚�L�1

32
L31.x/˚ 0. That this is a chain map is an exercise in using the

entries of d2 � 0. Furthermore, � is injective, due to the form of the first summand.
We let D be im �, so .D; d jD/ is chain isomorphic to .M1; d

0/. It remains to verify
that .D; d jD/ is a deformation retract of .M; d/. However,

� ı �D IdM1

and if we let

H D

240 0 0

0 0 �L�1
32

0 0 0

35
it is then easy to verify (once again using d2 D 0) that

� ı� � IdM D dH CHd

so that .D; d jD/ is a deformation retract of .M; d/. In particular, D is chain homotopy
equivalent to M .

4.3 Invariance under the first Reidemeister move

Convention All gradings in the following sections are ı gradings.

Proposition 4.4 Let c be a crossing in an oriented link diagram L which can be
removed by a local Reidemeister I move. If L0 is the diagram after the move, then
KH�.L/ is (stably) chain homotopy equivalent to KH�.L0/.
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xB

xA

c

xn

xB

xA xn

A

C

M
fS jc 62Sg

V.LS /ŒjS j�

�

xB

xA xn

M
fS jc2Sg

V.LS /ŒjS j�

CKH�u.L/
Š

V Œ�1�Š V ˝ �C

V Œ1�

V Œ1�Š V ˝ ��

xn

�. � ˝ �C/

Š

�. � ˝ ��/

Š

xB

xn

xA

Figure 6: A schematic representation of the proof of invariance under the first
Reidemeister move for a positive crossing: we prove that the twisted complex
for the diagram L in the upper left is homotopy equivalent to the edge
weighted diagram in the lower right. This, in turn, is stably isomorphic to the
twisted homology for L0 , the diagram resulting from the Reidemeister move.
The complex is reduced along the thickened arrow, which is an isomorphism
of the respective submodules of the chain modules.

Proof There are two cases to consider, based on the handedness of the crossing.
Let L0 be the diagram resulting after the Reidemeister move. The argument for Case I
below is directly reflected in the diagrams in Figure 6.

Case I: c is right-handed Our aim is to show that CKH�u.L/, for L with a local
swatch as in the upper left corner of the figure, is chain homotopy equivalent to complex
for the edge weighted diagram in the lower right. The edge weighted diagram is stably
isomorphic to CKH�u.L

0/ by Lemma 4.2. We can divide CKH�u.L/ as a direct sum ofL
c 62S V.LS /ŒjS j� and

L
c2S V.LS /ŒjS j�. This is depicted in the top right of Figure 6.

When c 62S , there is a complete circle, C , in the local diagram used in the Reidemeister
move. Thus V.LS /Š V.L0

S
/˝K.C /. Let xn be the formal variable associated with

the region, Ap.C /, so that @C is multiplication by xn . The complex CKH�u.L/ can
be decomposed further. Let V D CKH�u.L

0/, then
L

c2S V.LS / Š V Œ1�, where the
grading shift comes from the additional resolution at c when compared with L0 , and
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L
c 62S V.LS / Š VC˚ V� where V˙ D V ˝ v˙ and the last factor is that from C .

Then CKH�u.L/ Š V�˚VC˚V Œ1� Š V Œ1�˚V Œ�1�˚V Œ1� since VC has Khovanov
bigrading shifted by .0; 1/ compared with V and that corresponds to a ı–shift of �1.
The twisted differential, when written to respect this decomposition, is the sum of two
maps:

@L D @KH;LC @V;L D

24 @KH;L0 0 0

0 @KH;L0 0

�. � ˝ v�/ �. � ˝ vC/ @KH;L0

35C
24@V;L0 xnDC 0

0 @V;L0 0

0 0 @V;L0

35
D

24 @L0 xnDC 0

0 @L0 0

�. � ˝ v�/ �. � ˝ vC/ @L0

35 :

In particular, �. �˝vC/W VCŠ V Œ�1�
�
�! V Œ1� is an isomorphism, since vC acts as the

identity element in the Frobenius algebra. The inverse map H is simply �! �˝ vC .
This decomposition is depicted as the middle bottom diagram of Figure 6.

If we consider the decomposition of CKH�u.L/ above as that into M1˚M2˚M3 as
in Lemma 4.3, then we can cancel the isomorphism L32 D �. � ˝ vC/. Consequently,
we obtain the perturbed differential on V� :

.L11CL12L�1
32 L31/.�˝ v�/D .@L0 ˝ I/.�˝ v�/CxnDC ıH ı�.�˝ v�/

D .@L0.�/Cxn�.�˝ v�//˝ v� :

Under the identification V� Š V Œ1�, we can drop the last v� factor. Given a full reso-
lution, L0

S
, let C 0 be the circle containing the local arc, then the perturbed differential

on V� is then @V C xnDC 0 . This is the edge weighted differential occurring in the
last diagram in Figure 6. By Lemma 4.2 the last complex is stably chain isomorphic to
V� Š CKH�u.L

0/Œ1�.

Finally, we address the grading shifts. We know that nC.L/ D nC.L
0/C 1. There-

fore we have that CKH�.L/ Š CKH�u.L/Œ�nC.L/� is stably chain homotopic to
CKH�u.L

0/Œ1�Œ�nC.L
0/ � 1� Š CKH�u.L

0/Œ�nC.L
0/�. The latter is CKH�.L0/ by

definition, and we have verified (stable) chain homotopy invariance in this case.

Note There is a special case implicitly handled in the above argument: if the arc in
the local diagram belongs to the marked circle. This is addressed by noting that if the
circle C 0 is assigned v� , then by case (I) deforming the differential has no effect on
the image of that state.

Case II: c is a left-handed crossing We decompose CKH�u.L/ as in the right-handed
case, although the gradings and differential are different. Indeed,

L
c2S V.LS / Š
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VCŒ1�˚V�Œ1�ŠV ˚V Œ2� and the map �W V !VCŒ1�˚V�Œ1� followed by projection
onto V�Œ1� is surjective. There is still a map

VCŒ1�
�xn
��! V�Œ1�

as before, and elements in V with nontrivial image under the composition of �
with projection to VCŒ1�. These occur when the circle C 0 containing the local arc
in V is adorned with a vC . Thus, we may deform the complex to one supported
on VCŒ1� with a perturbed differential. Namely, for states marked vC˝ vC (arc ˝
C ) in VCŒ1� the image under @C is xn.vC ˝ v�/. This is canceled using � since
�.xnvC/ D xn.v� ˝ vC/ C xn.vC ˝ v�/. But this map also has the component
xn.v�˝ vC/ in VCŒ1�. Consequently, the effect of the cancellation is to perturb the
differential in VCŒ1� by adding terms vC˝vC!xn.v�˝vC/. Once again, this has the
effect of adding xn to the formal area of the region bounded by C 0 . The result of this
deformation is a chain complex in the same ı–gradings as .V ˝ vC/Œ1�. This complex
is isomorphic, under the change of variables imposed by Lemma 4.1, to V , with the
same grading since the tensor product with vC contributes a �1 to the ı–grading. On
the other hand, the number of positive crossings is not altered by the Reidemeister
move, hence CKH�.L/ is (stably) chain homotopy equivalent to CKH�.L0/.

4.4 Invariance under the second Reidemeister move

Proposition 4.5 If L is a diagram for L and L0 is another diagram differing from L

only by a local Reidemeister II move, then KH�.L/ is (stably) chain homotopy equiva-
lent to KH�.L0/.

Proof The argument refers to Figure 7. We show that the CKH�u.L/ for L as in
the upper left diagram of Figure 7 is chain homotopy equivalent to complex for the
edge weighted and dissected diagram in the lower right, by canceling the thickened
arrows in the lower diagram. This diagram, in turn, represents a complex that is
stably isomorphic to the complex for L0 by Lemmas 4.1 and 4.2. In particular, we let
Vc1
D
L
fS jc1 62S;c22Sg V.LS / and note that Vc1

as a graded module is identical with
KH.L0/Œ1�, while the restricted twisted differential differs from that on for L0 only in
the area contributions. The proof consists of canceling portions of CKH�u.L/ using
Lemma 4.3, to obtain a perturbed differential on Vc1

complex for the edge weighted
and dissected diagram in the lower right.

Let

V∅ D
M

fS W c1;c2 62Sg

V.LS /; Vc2
D

M
fS W c12S;c2 62Sg

V.LS /; Vc1;c2
D

M
fS W c1;c22Sg

V.LS /:
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x2

x1 xn x3

x02

c1

c2

x2

x1

xn x3

x0
2

c1; c2 62 S
x2

x1 xn
x3

x0
2

c1 62 S; c2 2 S

x2

x1 xn
x3

x0
2

c1 2 S; c2 62 S

x2

x1 x3

xn

x0
2

c1; c2 2 S

CKH�u.L/Š

V∅ŠV Œ�1�

Kc1

Š g �

Vc1

V Œ1�
�xn V Œ�1�

.V˝��/˚.V˝�C/

Š Vc2

Kc2

�

Š

f
V ŒC1�

ŠVc1c2

Š
x2

x1 x3

xn

xn x0
2

xn

Figure 7: A representation of the proof of invariance under the second Reide-
meister move: the complex is reduced along the thickened arrows, which are
both isomorphisms. This is essentially the proof in [8], but the map which
multiplies by xn introduces a nontrivial perturbation to the differential on
the complex after the reduction. The alteration is depicted through the edge
weighting in the last diagram. We then verify that the twisted chain complex
for the edge weighted diagram is stably isomorphic to that for L0 .
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Then KH.L/Š V∅˚Vc1
˚Vc2

˚Vc1c2
, as depicted in Figure 7.

Furthermore, Vc2
can be decomposed as .V ˝vC/˚.V ˝v�/, where the second factor

is the decoration on the circle, C , in the local diagram for Vc2
(in Figure 7), and V is

the complex Vc1c2
Œ�1�. The map Vc2

! Vc1c2
in CKH�u.L/ is identical to the map in

the Khovanov complex: it is � applied to the last factor and a factor corresponding
to the arc C merges into. In particular, on V ˝ vC , � restricts to an isomorphism
f W V ˝ vC! Vc1c2

. Consequently, given any state s in Vc1c2
, there is a canceling

state, f �1.s/ in Vc2
. Likewise, the Khovanov division map �W V Œ�1�Š V∅! Vc2

followed by projection to V ˝ v� is an isomorphism, since s ! L.s/˚ .s ˝ v�/

where L.s/ 2 V ˝ vC may or may not be zero, depending on the state s . Call this
isomorphism g .

The twisted differential provides a map @C W V ˝ vC
�xn
��! V ˝ v� which takes s˝ vC

to xn.s˝ v�/.

We can cancel the isomorphisms f and g simultaneously, since their domains and
images are disjoint. More precisely, CKH�u.L/ŠM1˚M2˚M3 , where M1 D Vc1

,
M2 D .V ˝ vC/˚V∅ and M3 D .V ˝ v�/˚Vc1c2

, then:

@L D

2666664
@Vc1

0 Kc1
0 0

0 @V˝vC � 0 0

0 0 @V∅ 0 0

0 �xn g 0 0

Kc2
f 0 � @Vc1c2

3777775
Then L32D

�
�xn

f
g
0

�
, which is an isomorphism since f and g are. Canceling along L32

produces a deformation equivalent chain complex on Vc1
with a perturbed differential.

By Lemma 4.3, this perturbed differential is given by

L11CL12L�1
32 L31 D @Vc1

C
�
0 Kc1

� � 0 f �1

g�1 g�1. �xn/f
�1

� �
c0

Kc2

�
D @Vc1

CKc1
g�1. �xn/f

�1Kc2
:

If � is a generator of Vc1c2
then f �1.�/ is the generator for Vc2

with the same
decorations on the common circles, and a C on the circle C , which we will denote
�˝ vC . Thus, . � xn/f

�1.�/D xn.�˝ v�/. Then g�1.�˝ x�/D � , where � is the
corresponding state in V∅ . Thus, under this identification, g�1. �xn/f

�1Kc2
D xnKc2

and the perturbed differential is @Vc1
CxnKc1

Kc2
. We will now examine the maps Kc1

and Kc2
more closely.
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For any resolution LS with c1 62 S , c2 2 S , we will let CL and CR be the circles
containing the left and right arcs in the local picture for Vc1

in Figure 7. Note that CL

and CR may be the same circle in the larger diagram LS . The map Kc1
Kc2

is just a
Khovanov homology map, and can be computed by considering two cases.

Case 1: CL DCR Then Kc2
is a copy of � and Kc1

is a copy of � applied to
the circles resulting from the division at c2 that gives �. But in characteristic 2,
�ı�W V! V is the zero map. Consequently there is no perturbation to the differential
applied to any state from this case.

Case 2: CL ¤CR Then Kc2
is a merge map, and we use �. Kc1

comes from
dividing this same circle, and uses �. Thus we need to compute �ı�W VCL

˝VCR
!

VCL
˝VCR

. It is straightforward to verify that

vC˝ vC! v�˝ vCC v�˝ vC;

vC˝ v�; vC˝ v�! v�˝ v�;

v�˝ v�! 0:

The perturbation is xn times this map, and thus equals xn.DCL
˝ I C I ˝DCR

/,
where DC is the isomorphism V ˝ vC! V ˝ v� where VC D FvC˚Fv� . We can
interpret this formula as endowing each of the two arcs in the local diagram with the
additional weight xn , and including that weight in the formal area used in the vertical
differentials for CL and CR . Indeed, when CL and CR coincide, the weight is added
twice, once for each arc, and thus cancels so the vertical differential doesn’t change.
When CL and CR are distinct, xn is added to each of ŒCL� and ŒCR �. Note also that
if one or both arcs is contained in the marked circle, it will act as if adorned by v�
and the additional contribution will not appear for that circle. By Lemmas 4.1 and 4.2
the complex for the diagram in the lower right is stably isomorphic to the complex
for L0 .

4.5 Invariance under the third Reidemeister move

Proposition 4.6 If L is a diagram for L and L0 is another diagram differing from L

only by a local Reidemeister III move, then KH�.L/ is (stably) chain homotopy
equivalent to KH�.L0/.

Proof We consider the case of a third Reidemeister move from the upper left diagram
in Figure 8 to the upper left diagram in Figure 9. The resolutions, S , with d; e 62 S

are in the upper layer of the cubes (shown to the left in the diagrams) while those
with d; e 2 S are in the bottom layer (shown to the right). As with the proof of
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Figure 8: Diagrams for the link L in the proof of RIII invariance: notice the
small diagram over an arrow in the bottom picture. This depicts the surface
used in the proof of RIII invariance.
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Figure 9: Diagrams for the link L0 in the proof of RIII invariance
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RII–invariance, we group according to the local resolution pattern; thus we can think
of CKH�u.L/ as a standard mapping cone from homological algebra,

CKH�u.L/ŠMC
� M
fS jd 62Sg

V.LS /!
M
fS jd2Sg

V.LS /

�
;

where the homomorphism comes from changing the resolution at d . Thus the homo-
morphism consists entirely of terms from the Khovanov differential, since the vertical
differentials do not alter the resolutions. A similar result holds for L0 and e .

As in Figures 8 and 9, we will further decompose the terms in the mapping cone,
based on the choices of resolutions at c1 and c2 . We will refer to the eight different
summands in the decomposition of CKH�u.L/ shown in the middle of these figures
by subscripts indicating which crossings are 1–resolved to obtain that summand: for
example, Vd;c1

D
L
fS jd;c12S;c2 62Sg V.LS /, while V Š

L
fS jd;c1;c2 62Sg V.LS /.

The bottom layers in Figures 8 and 9, when e 2 S , d 2 S , are identical except for the
presence of weight x7 in one and y7 in the other. These weights are treated differently
since they correspond to the faces in the diagrams which are eliminated and created by
the RIII move. Otherwise, for i D 1; : : : ; 7, the weights xi and yi correspond to faces
that can be identified based on how they intersect the bounding boxes. In the resolutions
for L with d 2 S , however, the region labeled by x7 is always included in the same
component as that for x4 , while the region labeled by y7 in the resolutions for L0 with
e 2 S is always in the same component as y1 . Thus, defining ˆ by xi! yi , i ¤ 1; 4,
x1! y1Cy7 , and x4! y4Cy7 will be a chain isomorphism from the subcomplex
with e 2 S (the “bottom” in Figure 9) to that with d 2 S (the “bottom” in Figure 8).

We would like to extend ˆ to an isomorphism of the whole complex. However,
without alteration ˆ is not a chain isomorphism on the summands where d 62 S (the
“top” diagrams in the middle of Figure 8), nor will it correctly map the connecting
homomorphism in the mapping cone for L to that for L0 . However,

L
fS jd 62Sg V.LS /

is isomorphic to the complex for a diagram with only d resolved, so that a local
RII–move can be performed. A similar observation holds for e and L0 . Consequently,
repeating the cancellations performed in the proof of RII–invariance will simplify the
top layer (as is done in [4]) to a deformed complex DL .

However, after the simplifications of the upper layer, we obtain a complex DL in the
upper layer which is the perturbed complex from the proof of RII invariance, and a new
map to Vd (see Figure 8). This map comes from states, s , in Vc2

mapped to Vc1c2

whose image is then canceled. In particular, let Kc2Ic1
W Vc2

! Vc1c2
be the Khovanov

map. If we write
Kc2Ic1

.s/D
X

aj tj 2 Vc1c2
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we see that Kc2Ic1
.s/ is the image of

P
aj .tj ˝vC/ under the canceling isomorphism

from Vc1
, where vC is the generator assigned to the local circle in the diagram for Vc1

and we use the same decorations on the local arcs for each term of K.s/. After this
cancellation, the boundary of s is perturbed by the image of Kc2Ic1

.s/ under the
vertical differential @V added to the image under the Khovanov map Kc1Id , ie by

x7

�X
aj .tj ˝ v�/

�
CKc1Id

�X
aj .tj ˝ vC/

�
:

Since merging a C circle does not change any of the decorations on the arcs, the
second term is just

P
aj tj 2 Vc1;d , under the identification of generators, and is thus

the image under the Khovanov surface map arising from adding a one-handle to the
two leftmost arcs in the diagram for Vc2

. Since s already maps to Kc2Id .s/ 2 Vc2;d ,
the @s consists of a sum

@Vc2
.s/CG.s/Cx7

�X
aj .tj ˝ v�/

�
;

where G is the sum of Khovanov maps Kc2Id CKc1Id . This sum is exactly the sum
of Khovanov maps obtained from the analogous argument for RIII–invariance for
Khovanov homology found in [4], and are known to be equal to the corresponding
maps found from simplifying the diagrams for L0 . In particular, there is no dependence
on the weights and thus these maps will remain equal under the application of ˆ.

In canceling the map V ! Vc1
, the term x7.

P
aj .tj ˝ v�// will be the image of

x7.
P

aj tj / 2 V where we again use the same decorations on local arcs to identify the
generators. This perturbs the boundary map again to give

@Vc2
.s/CG.s/Cx7.K∅Id CK∅Ic2

/ ıJ ıKc2Ic1
.s/;

where J is the identification of Vc1;c2
with V from the diagrams being isotopic.

Regrouping gives�
@Vc2

.s/Cx7.K∅Ic2
ıJ ıKc2Ic1

/.s/
�
CG.s/Cx7.K∅Id ıJ ıKc2Ic1

/.s/:

The first sum in parentheses is the perturbed differential on Vc2
arising in the proof

of RII–invariance. The last term is x7 times the Khovanov map for the surface which
attaches two 1–handles to the diagram with three vertical lines. This surface is depicted
in Figure 8 above the corresponding arrow. The gray lines indicate where the cores of
the 1–handles will project to. A similar argument for the diagram in Figure 9 produces
an analogous result. The surface map is likewise depicted in the figure. Due to the gray
lines being isotopic in the two diagrams, the corresponding surfaces are isotopic, while
preserving boundaries. Thus, the Khovanov maps for these surfaces are the same [4].
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Consequently, the three maps composing the connecting homomorphism of the mapping
cone will be identified: the two maps DL ! Vd;c1

;Vd;c2
will be identified with

DL0 ! Ve;c1
;Ve;c2

because they are Khovanov maps which do not depend on the
formal variables, and the last map DL! Vd will be identified with DL0! Ve because
ˆ.x7/D y7 and the planar isotopy identified the Khovanov maps. It remains to see
that ˆ also identifies the perturbed complexes DL and DL0 . These are depicted as
edge weighted diagrams in Figure 10.

If we distribute the edge weightings in each diagram of Figure 10, we obtain the
following local contributions to the vertical strips:

Left diagram Right diagram
I x1Cx7 y1

II x2Cx7Cx6 y2Cy7Cy6

III x3Cx7Cx5 y3Cy7Cy5

IV x4 y4Cy7

It is straightforward to check that ˆ taking xi!yi , i ¤ 1; 4, x1!y1Cy7 and x4!

y4Cy7 will map the terms in the left column to those in the right column. Thus, ˆ maps
the vertical differentials in DL to the corresponding differential in DL0 . Consequently,
after simplifying the top layers, ˆ is a isomorphism of the whole complex, built out
of an automorphism of the coefficient rings. Since the simplifications themselves
are chain homotopy equivalences, and the automorphism is a chain isomorphism, the
two-complexes are (stably) chain homotopy equivalent.

x1

x2

x3

x4

x5

x6x7

x7 y1

y2

y3

y4

y7y5

y6

y7

I II III IV I II III IV

Figure 10

5 The spanning tree deformation of CKH�.L; FL/

In the remaining sections we will work over the field FL , the field of fractions of PL .
The complex CKH�u.L/ is defined over FL , and the arguments for invariance transfer
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directly. Thus the homotopy equivalence class of CKH�u.L/ is invariant up to changes
of marked point. Over FL , however, we will be able to show the invariance under
changes of marked point as well. In fact, the complex as a whole can be deformed
using Lemma 4.3 into CT�.L/ as defined in Section 1.8 . We start by deriving the
form in the introduction, and then prove the irrelevance of changes in the marked point.

Theorem 5.1 The complex CT�.L/ is homotopy equivalent to CKH�u.L;FL/.

Proof For S � CR.L/ with jS j D i , the complex, V.LS / is of the form FL˝VC2
˝

� � �˝VCk.S/
, where k � 1 and C1 is the marked circle. Since these complexes are over

a field, the homology of the tensor product is the tensor product of the homologies.
Since ŒCi � is invertible for all i we have @Ci

is an isomorphism from FLvC to FLv� .
Recall that O.L/ is the set of S � CR.L/ such that the associated resolution LS

consists of a single circle. We can decompose CKH�u.L;FL/ into a direct sum of three
pieces

K0 D

M
S2O.L/

V.LS /;

KC Š
M

S 62O.L/

zv0˝ v
2
C˝VC3

˝ � � �˝VCk.S/
;

K� Š
M

S 62O.L/

zv0˝ v
3
�˝VC2

˝ � � �˝VCk.S/
:

Then the differential induces an isomorphism KC!K� since it contains a term

v0˝ v
2
C˝W

�ŒC2�
���! v0˝ v

2
�˝W

which is an isomorphism of vector spaces, and which is the only map preserving the
value of jS j with this image. Consequently, we can cancel KC and K� through this
map, leaving K0 .

We now compute the differential map which results from the cancellation of KC
and K� . Since K0 consists of single circle resolutions, the only generator for the chain
group V.LS /f.jS j; jS j/g occurs in Khovanov bigrading .jS j; jS j/ (for the unshifted
complex). If we start with a single circle resolution S , then for there to be a nontrivial
term in the deformed complex supported on another single circle resolution S 0 we will
have �i D�j D jS 0j� jS j, where .�i; �j / is the change in the Khovanov bigrading.
Note that any nontrivial contribution to the perturbed boundary map must increase
ı D 2i � j only by 2 since ı is a grading and we canceled terms in the differential.
Consequently, 2�i ��j D 2 as well, and thus jS 0j � jS j D 2.
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To compute the differential, note that to get a single circle resolution S 0 with jS 0j �
jS j D 2 and S 0 > S it must be that S 0nS D fc1; c2g. Both resolutions S [fc1g and
S [fc2g must have two circles in their diagrams. Then LS[fci g

DC�[C i
2

, where C�

is the marked circle, and changing the resolution on the other crossing merged C i
2

into C� . Now consider the image @KHv
S
0

in

V.LS[fc1g
/Š v

S;i
0
˝ .FLvC˚FLv�/:

In each resolution S [ fcig, we have @KH.v
S
0
/ D vS;i

0
˝ v� which is canceled by

.1=ŒC i
2
�/.vS;i

0
˝ vC/. Doing this for both c1 and c2 results in

@pertvS
0 D

�
1

ŒC 1
2
�
C

1

ŒC 2
2
�

�
vS 0

0

which is easily seen to agree with the differential for CT�.L/ described in the intro-
duction.

We can interpret this complex in terms of a checkerboard coloring of the regions in the
diagram L. The Tait graphs for L are two planar graphs, one for each color. The black
Tait graph has the black colored regions as vertices. Each crossing c of L provides an
edge joining the vertices containing the two diagonally opposite black quadrants at c .
We will usually draw the black Tait graph embedded in the union of the black regions
and the projection of L (see Figure 11). The white Tait graph is defined similarly, using
the white regions as vertices and all the crossings to provide edges. The colors will be
used only to identify the graph, and will not otherwise be prescribed. Let S � CR.L/

such that LS is a single circle. At each crossing c the resolution bridges either the two
black quadrants or the two white quadrants. If we let T be the subset of CR.L/ which
bridge opposite black quadrants, we can consider the corresponding edges in the black
Tait graph. The subgraph formed by these edges is a deformation retract of the union
of the black regions in LS , which is a disc. Consequently, T determines a subtree
of the black Tait graph, which is necessarily spanning since there is only one disc.
Identically, the subset of CR.L/ where the resolution LS bridges the white quadrants
can be identified with a (dual) spanning tree for the white Tait graph. Furthermore, we
will take the white and black regions on either side of the marked point, p 2 L, as
roots for the Tait graphs, and thus for all the spanning trees.

On the other hand, given a partition of CR.L/ into two sets T and T 0 with T de-
termining a spanning tree for the black Tait graph and T 0 a dual spanning tree for
the white Tait graph, we can resolve L so that the edges in T correspond to those
crossings where the resolution bridges black quadrants, and the edges of T 0 correspond
to those crossings where the resolution bridges the white quadrants. The resulting
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diagram LS will consist of a single circle (note that S must then be determined by
which crossings are resolved according to the rule in the introduction). Consequently,
there is a one-to-one correspondence between spanning trees for the black Tait graph
of a link projection and the generators of CT�.L/. For an illustration, see Figure 11.
We will often use these trees as generators spanning the chain groups.

Figure 11: The dual spanning trees for the white and black Tait graphs on the
left correspond to the single circle resolution diagram on the right.

Note also that when we change the resolution at a crossing c1 of a single circle
resolution, we cut off either a black disc region from the black disc or a white disc
region from the white disc. To get back to a single circle resolution changing the second
crossing c2 must rejoin these. Switching the order of the crossing changes — and thus
changing the resolution at c2 first followed by changing it at c1 — will cut off a disc
of the opposite color and rejoin it.

With this deformation equivalent complex in hand, we can resolve the difficulties
surrounding invariance with respect to the choice of basepoint.

Lemma 5.2 Let .L;p/ and .L;p0/ be two marked projections of L which differ
only in the marked point. Then there is a field isomorphism I W FL! FL such that
CTp.L/˝I FL is isomorphic to CTp0.L/. In short, the stable isomorphism class of
CT�.L/ does not depend upon the choice of marked point on L.

Proof of Lemma 5.2 Suppose the black face abutting the old marked point, p , is sB

and the black face abutting the new marked point, p0 , is s0
B

(these could be the same).
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Suppose similarly that sW is the white face abutting the old marked point and s0
W

is the white face abutting the new one. For the black faces there are two cases to
consider for any two generators T 2 Oi.L/ and T 0 with T 0 2 OiC2.T;L/. Let
T < b < T 0 where b alters the resolution on the arc crossing a black face. Recall from
the introduction that there is the disk B

p
T;T 0

in the diagram for b whose interior and
boundary are disjoint from the marked point p .

(1) If both sB and s0
B

are in the same region of Lb , B
p
T;T 0

is the same as B
p0

T;T 0
,

and neither contains sB or s0
B

.

(2) If each of the two circles in Lb contains one of sB and s0
B

, then

B
p0

T;T 0
D BnB

p
T;T 0

;

where B is the union of all the black faces. Furthermore, we have that ŒBp0

T;T 0
�

contains a single xsB
summand and ŒBp

T;T 0
� contains a single xs0

B
summand.

A similar pattern holds for the white faces if we let W be the union of all the white
faces. We will define a field isomorphism of FL by taking

xs0
B
! xs0

B
C ŒB�;

xs0
W
! xs0

W
C ŒW �;

xj ! xj when j ¤ s0B; s
0
W :

In the first case above, ŒBp
T;T 0

� is fixed by this automorphism, and equals ŒBp0

T;T 0
�. In

the second case, ŒBp
T;T 0

�D xs0
B
C ŒB

p
T;T 0
nfs0

B
g� is mapped to

xs0
B
C ŒB�C ŒB

p
T;T 0
nfs0Bg�D ŒB�C ŒB

p
T;T 0

�D ŒBnB
p
T;T 0

�D ŒB
p0

T;T 0
�:

Thus the coefficient of T 0 in @p
i;L

coming from the black regions is mapped, under the
automorphism, to the coefficient of T 0 in @p0

i;L
defined from the black regions. Mutatis

mutandis, the result also holds for the white regions.

Thus, at this point we have established that CT�.L/, up to stable homotopy equivalence,
is a link invariant, and thus its homology is also a link invariant.

6 Verifying @2 D 0 for the spanning tree differential without
reference to Khovanov homology

One can prove that CT�.L/ is a chain complex directly from the explicit represen-
tation of its differential, and without the circuitous route through twisted Khovanov
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homology. This is done in the next proposition, which serves as a good introduction
to the combinatorial complexities we avoided (somewhat) by using twisted Khovanov
homology. It is easy to also prove invariance under the Reidemeister I moves directly
from the definition of CT�.L/. It is also possible to directly prove invariance under the
RII move, although this is a substantially more involved combinatorial proof. However,
the author has not been able to prove RIII invariance without using twisted Khovanov
homology. For now we content ourselves with proving, directly from the definition,
that the boundary map for CT�.L/ really is a differential.

Proposition 6.1 For the map @L we have @2
L
� 0.

Proof of Proposition 6.1 Let T 2Oi.L/. Take p , the marked point, and move it to
infinity. Then we may think of the single circle in LT as the y –axis in the plane and
the arcs from the resolutions as semicircles whose ends lie on this axis, and which are
wholly contained either in x � 0 or x � 0. We may choose the black region inside LT

to correspond to the set x � 0. The endpoints of each arc c cut the y –axis into three
segments: the segment unbounded towards ˙1, and 
 .c/, the bounded segment.

a0 Wa0

a Wa

LT

c

Bc0

c0

Figure 12: The arcs a and a0 are peers for the diagram LT . The arcs c

and c0 are parallel. The arc a0 interleaves with both c and c0 , while a

interleaves only with c . Thus this configuration is in Case IV of the proof of
Proposition 6.1. The regions Wa and Wa0 , as used in the proof, are drawn on
the left. The region Bc0 is the darker gray region on the right. It includes Bc .

Definition 6.2 Two disjoint arcs c1 and c2 in x � 0 will be called parallel if 
 .c2/�


 .c1/, or vice-versa. If 
 .c1/\ 
 .c2/D∅ then we will call the arcs peers. An arc c

in x � 0 and an arc a in x � 0 will be said to interleave if 
 .a/\ 
 .c/ ¤ ∅ but

 .a/ 6� 
 .c/ and 
 .c/ 6� 
 .a/.
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The configuration of the resolution diagram along the y –axis and the preceding defini-
tion are illustrated in Figure 12.

To show that @2 D 0 we compute

@2T D
X

T 02OiC4.T;L/

� X
T 0>Tr>T

hT 0;Tr ihTr ;T i

�
T 0;

where the inner sum is over Tr 2OiC2.T;L/. We will show, for each T 0 2OiC4.L/,
that the inner summation equals zero in FL . Each term in this sum corresponds to four
arcs, each coded with a 0, on the diagram for T considered in R2 , two arcs in x � 0

and two in x � 0. Let these arcs be fa; a0g and fc; c0g respectively. Then each Tr

in the summation corresponds to two interleaved arcs, far ; cr g with ar 2 fa; a
0g and

cr 2 fc; c
0g. We now forget the remainder of the arcs and concentrate only on these

configurations.

We will analyze configurations in the following cases: there is a labeling of the arcs in
the white region as a and a0 and the arcs in the black region as c and c0 such that

(I) a does not interleave with either c or c0 ;

(II) each of fa; cg,fa0; c0g, fa0; cg and fa; c0g interleave;

(III) fa; cg and fa0; c0g interleave, but fa; c0g and fa0; cg do not;

(IV) fa; cg and fa0; c0g and fa0; cg interleave, but fa; c0g does not.

The remaining cases can be obtained by either by switching the roles of a0 and a, c0

and c , in the interleaving of the last case, or by arguing by symmetry between the
white and black regions. Note, however, that there are actually several different types
of configurations which can occur in Case IV, although the argument we give applies
to all of them. We now analyze each of the cases.

Case I When a does not interleave with either c or c0 , resolving a results in a new
circle component which cannot be rejoined to the other components by resolving along
either c or c0 . Consequently, the result of resolving all four arcs is not a single circle,
and there is no contribution to @2

L
.

Case II When a and a0 each interleave with both c and c0 : if either a and a0 are
parallel or c and c0 are parallel, then resolving along all four arcs does not result in a
single circle resolution, T 0 , and thus this case does not contribute to @2

L
T . To see this,

suppose c and c0 are parallel and 
 .c0/� 
 .c/. Their mutual resolution results in a
new circle component between the two arcs, which intersects the y –axis in segments
s D 
 .c/n
 .c0/. The endpoints of a cannot be on the segments in s : if there were an
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endpoint in one of the segments, then for a and c0 to interleave, the other endpoint
would need to be in 
 .c0/, but then a and c would not interleave. The same argument
applies to a0 . Consequently, resolving along a and a0 does not affect the new circle
component and T 0 is not a single circle. By symmetry, if a and a0 are parallel then
this case does not contribute to @2 . So assume that c and c0 are peers. Since a and a0

interleave both, a must have an endpoint in 
 .c/ and in 
 .c0/ as these segments are
disjoint. So must a0 , and since a and a0 are disjoint they will have to be parallel. Thus,
one or both pairs fa; a0g or fc; c0g are parallel and this case does not contribute to @2

L
.

Case III In this case, the arc pairs fa; cg and fa0; c0g are independent. Let Tr be
the result of resolving along fa; cg and T 0r be the result of resolving along fa0; c0g.
If c and c0 are peers, then BT;Tr

and BT;T 0r
are disjoint. If we have resolved c

and then resolve c0 , the region cut off is the same as if we resolve T along c0 , ie
BTr ;T 0 D BT;T 0r

. Likewise BT 0r ;T 0
D BT;Tr

. By symmetry, the same argument holds
for a and a0 when they are peers. Now suppose c and c0 are parallel with 
 .c0/� 
 .c/.
Then BT;T 0r

� BT;Tr
. If we resolve first along fa; cg, then we rejoin BT;Tr

to the
unbounded black region, without affecting the region cut out by the arc c0 since the
endpoints of a do not intersect 
 .c0/. Consequently, ŒBTr ;T 0 � D ŒBT;T 0r

� since the
formal variables are unchanged. Furthermore, if we first resolve fa0; c0g, since a0

does not interleave c , one endpoint of a0 is in 
 .c0/ and the other is in 
 .c/n
 .c0/.
Thus the region BT;T 0r

is rejoined to BT;Tr
nBT;T 0r

by a0 , so that ŒBT 0r ;T 0
�D ŒBT;Tr

�.
A similar argument applies to the white regions. Considerations of this type for
each of the possible peer/parallel configurations yields that ŒBT;Tr2

�D ŒBTr1
;T 0 � and

ŒBTr2
;T 0 �D ŒBT;Tr1

�, and likewise ŒWT;Tr2
�D ŒWTr1

;T 0 � and ŒWTr2
;T 0 �D ŒWT;Tr1

�, and
it is straightforward to see that the contribution to h@2

L
T;T 0i coming from these arc

pairs cancels in the summation.

Case IV This case is illustrated in Figure 13. Let Wa will be the white, bounded
region of R2n.LT [ a/, and similarly for Wa0 . Likewise Bc and Bc0 will be the
bounded, black region cut out by the arc. Let Tr result when resolving fa; cg, T 0r
result when resolving fa0; c0g and Ts result when resolving fa0; cg. For each of these
circles, resolving the remaining two arcs results in the same circle T 0 . There are several
possible cases to consider.

(1) For T ! Tr ! T 0 : first we cut off region Bc and Wa when changing from T

to Tr . Since a interleaves with c , but not with c0 , Bc is rejoined to the same
component of fx � 0gnc0 as it was cut from. Consequently, resolving c0 on Tr

cuts off a region with formal representative ŒBc0 �. Meanwhile, resolving c joins
the region Wa to:
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(a) Wa0 in the case that a and a0 are peers; when resolving a0 we will cut off
a region with formal area ŒWa�C ŒWa0 �;

(b) the unbounded white region if a and a0 are parallel with 
 .a/ � 
 .a0/;
thus resolving a0 will cut off the region between a0 and a which has formal
area ŒWa0 �� ŒWa�. Since we are working in characteristic two, this equals
ŒWa�C ŒWa0 �;

(c) Wa0 in the case that a and a0 are parallel with 
 .a0/� 
 .a/; resolving a0

will cut off the region between a and a0 with area ŒWa�� ŒWa0 � which is
the same as ŒWa�C ŒWa0 �.

For all three cases the contribution to @2
L

is�
1

ŒBc �
C

1

ŒWa�

��
1

ŒBc0 �
C

1

ŒWa�CŒWa0 �

�
:

�
�

1
ŒBC �
C

1
ŒWa0 �

�
�
�

1
ŒBC �CŒBc0 �

C
1

ŒWa�CŒWa0 �

�

�
�

1
ŒBC �
C

1
ŒWa�

�
�
�

1
ŒBc0 �
C

1
ŒWa�CŒWa0 �

�

�
�

1
ŒBc0 �
C

1
ŒWa0 �

�
�
�

1
ŒBc �CŒBc0 �

C
1

ŒWa�

�

Figure 13: Illustration of why @2 D 0 for the arcs in Figure 12, as in Case IV
of Proposition 6.1
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(2) For T ! T 0r ! T 0 : First we cut off Bc0 and Wa0 . By a similar argument as
above, the exact configuration of parallel and peer arcs for a and a0 and c and c0

will not matter. So we can do the calculation when each pair of arcs is peer. This
results in the contribution�

1

ŒBc0 �
C

1

ŒWa0 �

��
1

ŒBc �CŒBc0 �
C

1

ŒWa�

�
:

(3) For T !Ts!T 0 : first we cut off Bc and Wa0 . Again we can do the calculation
only for the peer case and get�

1

ŒBc �
C

1

ŒWa0 �

��
1

ŒBc �CŒBc0 �
C

1

ŒWa�CŒW 0a�

�
:

We will now combine fractions, multiply, and simplify. To aid us, note that

1

XY
C

1

X.XCY /
C

1

Y .XCY /
D
.XCY /CY CX

XY .XCY /
D 0

in FL for any nonzero elements X and Y we choose. Observe that in the products
above, if we take only those terms using for the black regions we obtain such a sum
with X D Bc and Y D Bc0 . Likewise if we take only those terms involving the white
regions, we get such a sum with X DWa and Y DWa0 . So we only need to consider
the sum of the cross-terms

1

ŒWa� ŒBc0 �
C

1

ŒBc �.ŒWa�CŒWa0 �/
C

1

ŒWa0 �.ŒBc �CŒBc0 �/

C
1

ŒBc0 � ŒWa�
C

1

ŒWa0 �.ŒBc �CŒBc0 �/
C

1

ŒBc �.ŒWa�CŒW 0a�/
:

However, these come in canceling pairs, so the sum of the three products is zero.

Consequently, for each of the four cases we have
P

T 0>Tr>T hT
0;Tr ihTr ;T i D 0, and

thus @2
L
D 0.

7 Results for mirrors and connected sums

We record two results which facilitate the calculation of the homology for knots and
links built out of mirrors and connected sums. We then do a calculation which identifies
the homology exactly for the class of quasialternating links. The results precisely reflect
those for other knot homology theories.

Theorem 7.1 Let L be an oriented link and xL be the mirror of L. Then HTi.L/Š
HT�i.xL/.
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Proof Let L be a diagram for L and xL be the mirror diagram. We can use the
same set of regions in forming FL and FxL , and can thus identify the coefficient fields.
Furthermore, nC.xL/ D n�.L/ and n�.xL/ D nC.L/. Every resolution T 2 Oi.L/

corresponds to a resolution xT 2OjCR.L/j�i.xL/ where c 2 T for the resolution of L

corresponds to c 62 xT for the resolution of xL. A tree T 0 2OiC2.T;L/ corresponds to
a tree xT 0 2OjCR.L/j�i�2.xL/ and xT 2OjCR.L/j�i. xT

0; xL/. Thus xT can appear in @xL xT
0 .

T 0DT [fc1; c2g with c1; c2 62T corresponds to xT 0D xT nfc1; c2g, or xT D xT 0[fc1; c2g

with c1; c2 62
xT 0 . When these alterations are performed the same two regions will be

cut off, B xT 0; xT D BT;T 0 and W xT 0; xT DWT;T 0 , and thus

h@LT;T 0i D h xT ; @xLT 0i:

Consequently, the differential @xL corresponds to the cohomology differential @�
L

. Thus
the unshifted cohomology for L in degree i is isomorphic to HTjCR.L/j�i

u .xL/. Since
we are working with coefficients in a field, we have

HTi.L/Š HTiCnC.L/
u .L/Š HTjCR.L/j�.iCnC.L//

u .xL/Š HTn�.L/�i
u .xL/

Š HT�iCnC.xL/
u .xL/Š HT�i.xL/:

This completes the proof.

Theorem 7.2 Let L1 , L2 be two nonsplit oriented links, and let LDL1 #L2 , in some
manner. Then

HTk.L/Š
M

iCjDk

HTi.L1/˝HTj .L2/;

where Š denotes stable equivalence.

Proof Let L be a standard connect sum diagram in the plane for L, where the portion
of L with x < 0 is a diagram for L1 with an arc removed and the portion of L with
x > 0 is a diagram for L2 . We will choose our marked point for L to lie on one
of the two arcs intersecting x D 0. For L1 and L2 , we choose the marked point
to lie on the removed arc. Let the regions for L1 correspond to x1; : : : ;xk and the
regions for L2 correspond to y1; : : : ;yl . The regions x1 and y1 should correspond
to the bounded regions abutting the marked points. We will ignore the unbounded
region in all diagrams, as it will always abut the marked point, and thus not play a
role in the calculations. In the diagram for L, there are kC l � 1 regions which we
will label z1; z2; : : : ; zk ; : : : ; zlCk�1 . The region z1 corresponds to x1C y1 , while
zi � xi for 2 � i � k and zi � yi�kC1 for kC 1 � i � l C k � 1 (where � means
corresponds to the “same” region). These identifications will be implicitly used in the
stable equivalence.
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If we color black the bounded region abutting the basepoint in each diagram, then BL

is BL1
and BL2

fused at their basepoint. Every spanning tree in BL is thus the fusion
of a spanning tree for BL1

and BL2
. As ı and nC will both add under connect sums,

if T 2 Oi.L1/ and T 0 2 Oj .L2/ then T # T 0 2 OiCj .L/. To compute @.T # T 0/

we need to consider trees in BL where we have removed one edge of T # T 0 , and
reconnected the resulting pieces with an edge of BLn.T # T 0/. If the removal occurs
in BL1

, we have a disconnected component in fx < 0g. There are no edges which
cross xD 0, so the replacement must also occur with an edge from BL1

nT . The same
argument applies if the edge removed occurs in fx > 0g. These are precisely the trees
which occur in either @L1

.T / or @L2
.T 0/. Furthermore, due to the placement of the

basepoints, if we measure all coefficients using zi ’s, then all the coefficients will also
be the same as the connect sum only altered the region abutting the basepoint. Thus
@L.T #T 0/D @L1

.T /#T 0CT #@L2
.T 0/ (where we extend # linearly). Consequently,

the chain complex for L is the tensor product of chain complexes for L1 and L2 .
Since we are working over a field, the result follows.

8 The Euler characteristic

8.1 The Göritz matrix of L (following [9])

This section recalls some results concerning the signature and determinant of a link,
which will be useful in the following sections.

Let L be an oriented link diagram and color the elements of FL with the colors black
and white, in checkerboard fashion. Let W D fW0; : : : ;Wng � FL be the nC 1

faces which are colored white. To each crossing c 2 CR.L/ we assign a value �.c/
according to:

�.c/DC1 �.c/D�1

In addition, using the orientation we can assign a chirality: �.c/ D C1 for positive
crossings and �.c/D�1 for negative crossings. Finally, crossings will be called Type I
if �.c/�.c/D�1 and Type II if �.c/�.c/DC1.

Let

�.L/D
X

c of Type II

�.c/; g.Wi ;Wj /D�
X

c2 xWi\
xWj

�.c/; g.Wi/D�
X
j¤i

g.Wi ;Wj /:
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The Göritz matrix of L is the matrix G.L/ with Gij .L/Dg.Wi ;Wj / for 0� i¤j �n

and Gii.L/D g.Wi/ for 1� i � n. The matrix G can be used to compute both the
signature, �.L/ and determinant det.L/ (where the right-handed trefoil is taken to
have � D�2) using

(1) the Gordon–Litherland formula �.L/D sign.G.L//��.L/,

(2) det.L/D j det.G.L//j.

If L is a connected, reduced alternating diagram, then there is a simpler formulation.
Checkerboard-color the diagram so that every crossing is incompatible with the black
regions. Then �.L/D n� nC , where n is as above.

8.2 Computing the Euler characteristic

Theorem 8.1 For L, an oriented link in S3 , let

P .ı/D
X
i2Z

rkFL
.HTi.L//ıi :

Then det.L/D jP .i/j, where i D
p
�1.

Proof Let L be a diagram for L, checkerboard color the faces of L, and let

R.ı/D
X
i2Z

rkFL
CTiCnC.L/.L/ı

i

be the Poincaré polynomial for the (shifted) chain groups. Then jR.i/j D jP .i/j and
the Euler characteristic can be determined from the chain groups. This is a sum over
all the spanning trees for the white Tait graph WL .

Let VL and EL be the number of vertices and edges in WL . The Kirchoff matrix–
tree theorem (see Kauffman [7, page 129]) can be used to compute det.L/ from the
spanning trees of WL . We will work in the ring ZŒı˙1�. Label each edge in WL

with �.c/DC1 if �.c/DC1 for the corresponding crossing c in L. Label the edge
with �.c/D ı if �.c/D�1 for the corresponding crossing. To each spanning tree T

of WL , let wT be the product of the labels attached to those edges in T . Then the
matrix–tree theorem asserts that X

T2trees.WL/

wT D detŒA�11 ;

where ŒA�11 is the .1; 1/–minor of the matrix VL �VL formed by the matrix A using
the elements
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� Aij D�
P

c2Wi\Wj

�.c/, the sum of labels of edges between vertices i and j ,

� Aii D�
P

j¤i

Aij .

Call the resulting polynomial Q.ı/.

If we specify ı ! 1 then the determinant above computes the number of maximal
spanning trees for WL [7]. However, if we set ı D �1, then the matrix A is the
Göritz matrix, which has determinant, up to sign, equal to det.L/. Consequently,
jQ.�1/j D det.L/. We now relate the polynomial Q.ı/ to the polynomial R.ı/.

First, we gather some statistics for WL , the white Tait graph for L. We let

� n0 be the number of crossings where �.c/D�1,
� ze.L/ equal n0�VLC 1,
� �.L/ equal ze.L/� nC.L/.

For a spanning tree T in WL , let k be the number of edges in T corresponding to
�DC1 crossings. In Q.ı/ the tree T contributes ık . We relate this ti the ı–grading
of the generator in CT�.L/. First, these crossings are the ones which must be resolved
using a 1–resolution in the single circle resolution corresponding to T . However, to
obtain ı.T / we must also count the number of 1–resolutions on edges not in T . There
are VL�1 edges in T , and thus .VL�1/�k edges in T which correspond to �D�1

crossings. Outside of T there are n0� .VL� 1/C k edges corresponding to �D�1

crossings. Since these edges are not included in the tree T , the corresponding crossing
must use a 1 resolution in the single circle resolution determined by T . Thus, T

contributes ık � ın0�VLC1Ck D ı2k � ıze.L/ to the polynomial
P

rk CTi.L/ı
i for the

unshifted complex. Consequently, this polynomial equals ıze.L/Q.ı2/. Shifting alters
the powers of ı by multiplying by ı�nC.L/ , and thus we obtain the polynomial R.ı/

for the shifted complex:
R.ı/D ı�.L/Q.ı2/:

We now plug in ı D i and take the complex modulus. This produces jR.i/j D
j.i/�.L/Q.�1/j D det.L/. The conclusion then follows from jR.i/j D jP .i/j.

9 The skein exact sequence

9.1 A long exact sequence

Let c 2 CR.L/ be as depicted in Figure 14. We have labeled the regions abutting this
crossing x1;x2;x3 and x4 . A priori some of these could be equal: x1 could equal x3
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or x2 could equal x4 . If so, one of the resolutions of L at this crossing will result in a
disconnected diagram. For the moment, we require that all four regions be distinct, ie
that both the 0–resolution and the 1–resolution at c result in connected link diagrams.

x1

x2

x3

x4

y1 y2 y3

z2

z1

z4

L L0 L1

Figure 14

Theorem 9.1 Let L0 and L1 be the diagrams found by resolving L using the c 62 S

and c 2 S rules, respectively. Then

CT�.L/ŠMC
�

CT�.L0/˝FL0
FL

�c
�! CT�.L1/˝FL1

FL

�
;

where:

� FL0
acts on FL by y1! x1 , y3! x3 , and y2! x2C x4 and FL1

acts by
z1! x1Cx3 , z2! x2 , and z4! x4 .

� If T 2Oi.L0/ then

�c.T /D
X

T 02OiC1.L1/

h xT ; xT 0iFL
T 0;

where T 0 is a single circle resolution of L1 , xT and xT 0 are the corresponding
single circle resolutions in O.L/, and xT 0 differs from xT at c and one other
crossing.

Proof CT�.L/ can be decomposed along those resolutions xT with c 62 xT and c 2 xT ,
CT�.L/Š C i

0
˚C i

1
. Those xT with c 62 xT are in one-to-one correspondence with the

single circle resolutions T of L0 . Likewise, those xT 0 with c 2 xT 0 provide single
circle resolutions T 0 for L1 . If we consider @L we can decompose into three parts
@0˚@01˚@1 , where @0 counts those pairs xT ! xT 0 which have c 62 xT ; xT 0 , @1 counts
those pairs xT ! xT 0 which have c 2 xT ; xT 0 and @01 counts pairs xT ! xT 0 which have
c 62 xT but c 2 xT 0 . Then .C0; @0/ Š CT�.L0/˝FL0

FL , where the tensor product
arises because two of the formal variables for L, x2;x4 occur in the same region
in L0 . Using the dissection results, we see that this only changes the coefficient
field. Likewise, .C1; @1/ Š CT�.L1/˝FL1

FL . The map �c comes from @01 , and
its form is readily described from that of the differential, @L . Lastly, we verify the
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shift in gradings: note that C0 Š CT�.L0/ with no shift, since c 62 xT has no effect
on ı . However, C1 Š CT�.L1/Œ1� since c 2 xT implies that the grading on CT�.L1/,
where no resolution occurs, will be shifted up when considered in CT�.L/. Namely,
C i

1
Š CTi�1.L1/. Since @L increases ı by 2, this is the correct shift for a mapping

cone.

Proposition 9.2 Given a crossing c in a link diagram L, there is a long exact sequence

(5) � � �!HTi�1
u .L1/˝FL!HTi

u.L/!HTi
u.L0/˝FL

�c;�

��!HTiC1
u .L1/˝FL!� � � :

When L is oriented and c is a positive crossing, then if e D nC.L/� nC.L1/ (for any
orientation on L1 ), then

(6) � � � ! HTiCe�1.L1/˝FL! HTi.L/! HTiC1.L0/˝FL

�c;�

��! HTiCeC1.L1/˝FL! � � � :

On the other hand, if c is negative, let f D nC.L/� nC.L0/. Then

(7) � � � ! HTi�1.L1/˝FL! HTi.L/! HTiCf .L0/˝FL

�c;�

��! HTiC1.L1/˝FL! � � � :

Proof The exact sequence (5) is an immediate consequence of the description of
CT�.L/ as a mapping cone, using standard homological algebra. To verify (6) assume
that c is positive. We will adjust subscripts to account for the shifting of HT�u.L/ by
Œ�nC.LC/�:

� � � ! HTiCnC�1
u .L1/˝FL! HTiCnC

u .L/! HTiCnC
u .L0/˝FL

�c;�

��! HTiCnCC1
u .L1/˝FL! � � � ;

� � � ! HTiCnC.L1/Ce�1
u .L1/˝FL! HTi.L/! HTiCnC.L0/C1

u .L0/˝FL

�c;�

��! HTiCnC.L1/CeC1
u .L1/˝FL! � � � ;

� � � ! HTiCe�1.L1/˝FL! HTi.L/! HTiC1.L0/˝FL

�c;�

��! HTiCeC1.L1/˝FL! � � � :

When c is negative, we proceed as before:

� � � ! HTiCnC�1
u .L1/˝FL! HTiCnC

u .L/! HTiCnC
u .L0/˝FL

�c;�

��! HTiCnCC1
u .L1/˝FL! � � � :
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But now nC.L/D nC.L1/ since we resolve a negative crossing. Furthermore, if we
orient L0 we may compute f D nC.L/� nC.L0/ and

� � � ! HTiCnC.L1/�1
u .L1/˝FL! HTi.L/! HTiCnC.L0/Cf

u .L0/˝FL

�c;�

��! HTiCnC.L1/C1
u .L1/˝FL! � � � ;

� � � ! HTi�1.L1/˝FL! HTi.L/! HTiCf .L0/˝FL

�c;�

��! HTiC1.L1/˝FL! � � � :

This concludes the proof.

9.2 Quasialternating links

The skein exact sequence allows us to compute the spanning tree homology of quasial-
ternating links as in [9]. Recall that a link L is called quasialternating if it is in the
set Q, the smallest set of links such that:

� The unknot is in Q.

� If L has a diagram L containing a crossing c such that the two resolutions
at c , L0 and L1 represent links L0;L1 2Q with det.L/D det.L0/C det.L1/,
then L 2Q.

Alternating links are quasialternating, and det.L/ > 0 when L is quasialternating.

Theorem 9.3 If L is a quasialternating link with a connected diagram, HTi.L/Š 0

when i ¤ �.L/ and has rank det.L/ when i D �.L/.

Proof In [9], C Manolescu and P Ozsváth prove the identical result for Khovanov
homology using the following:

Lemma 9.4 (Manolescu and Ozsváth) Suppose that det.Lv/, det.Lh/ > 0 and
det.LC/D det.Lv/C det.Lh/. Then

�.Lv/� �.LC/D 1;

�.Lh/� �.LC/D e0;

where e0 D n�.Lh/� n�.LC/.

Exactly the same argument proves the result for the spanning tree homology.
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This result is especially simple for links admitting alternating, connected diagrams.
Pick a nonsplit, reduced diagram L for the link. Checkerboard-color the faces of L

so that the white regions are joined at a crossing c in any resolution S , where c 2 S .
Suppose there are nW C 1 white faces. Thus, for each tree T representing a generator
for CT�.L/ we have ı.T /D nW since there are .nW C 1/� 1 edges in any spanning
tree of WL , and each edge in T receives a 1 resolution while each edge not in T

receives a 0 resolution. Consequently, every tree T occurs in a single grading, and
@L D 0. Therefore, the homology is supported in only one grading, and has rank equal
to the number of spanning trees for WL . It is well known that the number of spanning
trees of WL is equal to det.L/. Furthermore, by the result of Gordon and Litherland,
we may compute the signature of L by �.L/D nW �nC.L/D ı.T /�nC.L/. This is
the grading for T in HT�.L/. Consequently, all the homology is in the grading given
by �.L/.
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