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The pillowcase and perturbations of
traceless representations of knot groups

MATTHEW HEDDEN

CHRISTOPHER M HERALD

PAUL KIRK

We introduce explicit holonomy perturbations of the Chern–Simons functional on a 3–
ball containing a pair of unknotted arcs. These perturbations give us a concrete local
method for making the moduli spaces of flat singular SO.3/ connections relevant to
Kronheimer and Mrowka’s singular instanton knot homology nondegenerate. The
mechanism for this study is a (Lagrangian) intersection diagram which arises, through
restriction of representations, from a tangle decomposition of a knot. When one
of the tangles is trivial, our perturbations allow us to study isolated intersections
of two Lagrangians to produce minimal generating sets for singular instanton knot
homology. The (symplectic) manifold where this intersection occurs corresponds to
the traceless character variety of the four-punctured 2–sphere, which we identify with
the familiar pillowcase. We investigate the image in this pillowcase of the traceless
representations of tangles obtained by removing a trivial tangle from 2–bridge knots
and torus knots. Using this, we compute the singular instanton homology of a variety
of torus knots. In many cases, our computations allow us to understand nontrivial
differentials in the spectral sequence from Khovanov homology to singular instanton
homology.

57M27, 57R58, 57M25; 81T13

1 Introduction

Kronheimer and Mrowka have recently developed a variant of instanton homology for
knots in 3–manifolds [26; 25; 21] which they call singular instanton knot homology.
In [25], they construct a filtered chain complex whose total homology is the singular
instanton homology of a knot K � S3 , and whose spectral sequence has E2 page
the Khovanov homology of K . Inspired by early observations of similarities between
their theory and Khovanov homology, Lewallen [28] showed that for 2–bridge knots
the Khovanov homology is isomorphic to the homology of the variety of SU.2/ repre-
sentations of the fundamental group of the knot complement sending the meridian to
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a traceless matrix. For alternating knots, he showed that the Khovanov homology is
isomorphic to the homology of the subvariety of binary dihedral representations.

In fact for alternating knots the Khovanov and singular instanton homology groups are
isomorphic (with the Khovanov bigrading appropriately collapsed to a Z=4 grading), a
fact implied by the collapse of Kronheimer and Mrowka’s spectral sequence at the E2

page. In contrast, they show that there are nontrivial higher differentials in the spectral
sequence associated to the .4; 5/ torus knot [21, Section 11], and hence Khovanov and
instanton homology do not have the same rank, in general. (Rasmussen noticed that
the Khovanov homology of the .4; 5/ torus knot also has larger rank than its Heegaard
knot Floer homology groups. It is conjectured that there is a similar spectral sequence
in that context.) Zentner [41] showed that for some alternating pretzel knots there are
nonbinary dihedral traceless representations (in contrast to 2–bridge knots), so that for
these families one expects there to be nontrivial differentials in the singular instanton
chain complex.

To make sense of this expectation, we should recall that the chain complex from which
the instanton homology is computed is the Morse complex associated to a perturbation
of a particular Chern–Simons functional. This chain complex is Z=4 graded, and is
generated by certain gauge equivalence classes of perturbed-flat connections. These
connections live on an SO.3/ bundle on the complement of the link formed by adding
a small meridional circle H to K . The second Stiefel–Whitney class of the bundle is
Poincaré dual to an arc W connecting K and H , as in Figure 1. The unperturbed flat
moduli space can be identified with the conjugacy classes of SU.2/ representations
of the fundamental group of S3 n .K [H [W /, which take the meridians of K

and H to traceless matrices in SU.2/, and the meridian of W to the nontrivial central
element �1. A feature of these representation spaces is that, with the exception of
the unknot in S3 , they are never nondegenerate; the corresponding (unperturbed)
Chern–Simons functional is not Morse. Thus it is necessary to perturb the functional
to identify the generators of the instanton complex. A common method for perturbing
the Chern–Simons functional is through the use of so-called holonomy perturbations,
and such perturbations can be constructed quite generally in instanton Floer theories.
The use of such perturbations, however, obscures the connection between generators
of the instanton chain complex and representations of the fundamental group. In
particular, it would be desirable to be able to effectively estimate the rank of a reduced
instanton chain complex from a presentation of the fundamental group of the knot or
link complement. A general perturbation of the Chern–Simons functional will make
this estimation impossible.

The purpose of this article is to identify a certain perturbation explicitly and to use it to
identify generators of the reduced instanton chain complex. The main conceptual step
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Figure 1: A small segment of a knot K and the meridional circle H and
arc W used in the construction of the reduced singular instanton homology.

is to split a 3–manifold containing a knot along a Conway sphere; that is, a 2–sphere
which intersects the knot in four points. The sphere decomposes the knot into two
tangles, and determining generators of the instanton complex becomes an intersection
problem for two Lagrangians in the relevant character variety of the 4–punctured sphere.
The key to our result lies in picking a Conway sphere for which one of the associated
tangles is trivial, and constructing concrete local (and hence universal) perturbations in
this trivial piece.

It turns out (Proposition 3.1) that the relevant character variety for a 2–sphere with
four marked points, R.S2; fa; b; c; dg/, is a pillowcase, ie a topological 2–sphere
with four singular points, understood as the quotient of the torus by the hyperelliptic
involution or, equivalently, as the quotient of R2 :

R.S2; fa; b; c; dg/ŠR2=�; .; �/� .�;��/� . C 2�m; � C 2�n/:

We describe paths in R.S2; fa; b; c; dg/ by giving formulas for their lifts to R2 , eg
t 7! . .t/; �.t//. In terms of the pillowcase, our main results, Theorem 7.1 and
Corollary 7.2, state the following.

Theorem 1 Let A1[A2 � B3 be a pair of unknotted arcs in the 3–ball, H a small
meridian of A1 , and W an arc connecting H and A1 . Let P �B3n.A1[A2[H[W /

be the perturbation curve illustrated in Figure 9.

Given small perturbation data �D .P; �; f / (where �>0 and f is an odd, 2� –periodic
function, egf .ˇ/D sin.ˇ//, the perturbed reduced moduli space R

\
�.B

2;A1[A2/ is
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homeomorphic to a circle, and the image of the restriction map to the pillowcase

�W R\
�.B

2;A1[A2/!R.S2; fa; b; c; dg/

is an immersion, given by

�.ˇ/D . .ˇ/; �.ˇ//D .ˇC �f .ˇ/C �
2
; ˇ� �f .ˇ/C �

2
/; ˇ 2R=.2�Z/

as illustrated in Figure 10. As �! 0, this immersion limits to a generically two-to-one
map onto the diagonal arc  D � in the pillowcase.

A more precise statement can be found in the body of the paper. For all the results in
this article it suffices to take f .ˇ/D sin.ˇ/ in the perturbation data.

In Section 9 we treat the case corresponding to the unreduced instanton homology
I ].Y;K/. The counterpart of Theorem 7.1 in this context is Theorem 9.1, which states
in part, the following.

Theorem 2 With perturbation data � D .P1 [P2; �; sin.ˇ// supported on the two
curves P1 and P2 in Figure 11, the perturbed unreduced moduli space R

]
�.B

3;A1[A2/

is a disjoint union of two circles, parameterized by ˇ 2 R=.2�Z/ and i D 1; 2. The
restriction map of R

]
�.B

3;A1[A2/ to the pillowcase is an immersion, given by

�i.ˇ/D .��i.ˇ/C
�
2
CˇC � sinˇ;��i.ˇ/C

�
2
Cˇ� � sinˇ/; i D 1; 2;

where �1.ˇ/D arcsin.�1
2

sinˇ/ and �2.ˇ/D � � �1.ˇ/. As �! 0, this immersion
limits to a generically four-to-one map onto the diagonal arc  D � in the pillowcase.

Figure 12 illustrates the images in the pillowcase of the three curves, �1; �2 of
Theorem 2, and � of Theorem 1.

As alluded to above, a useful implication of these results is that it reduces the problem
of identifying generators of the singular instanton complexes for a knot K in a 3–
manifold Y to an intersection problem in the pillowcase. More precisely, consider a
3–ball which intersects .Y;K/ in a pair of unknotted arcs A1[A2 . Setting .Y0;K0/ WD

.Y nB3;K n .A1[A2//, we obtain a tangle decomposition

(1) .Y;K/D .Y0;K0/[.S2;fa;b;c;dg/ .B
3;A1[A2/:
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This decomposition yields, upon passing to the appropriate moduli spaces, an intersec-
tion diagram:

(2)

R.S2; fa; b; c; dg/

R.Y0;K0/

66

R
\
�.B

3;A1[A2/

ii

R
\
�.Y;K/

hh 55

The intersection R
\
�.Y;K/ parameterizes the generators of the chain complex defining

the instanton homology I \.Y;K/, provided this is a nondegenerate set. The unperturbed
space R\.Y;K/ is never nondegenerate, except for the unknot in S3 , in contrast to
other examples of this method in low-dimensional topology such as Casson’s invariant;
see Akbulut and McCarthy [1].

In the decomposition (1), the nontrivial part of the SO.3/ bundle and the perturbation �
needed to make the set R.Y;K/ nondegenerate has been placed entirely inside the
simple space B3 . Theorem 7.1 states that R

\
�.B

3;A1[A2/!R.S2; fa; b; c; dg/ is
a smooth immersion of a circle, and identifies the image precisely.

It follows that the problem of describing the set R\.Y;K/ of generators of the instanton
homology chain complex is reduced to understanding the space R.Y0;K0/ and its
restriction to the pillowcase, a problem that involves only the fundamental group of
the 2–stranded tangle complement Y0 nK0 and its peripheral structure. Indeed, for
simple knots like 2–bridge knots and torus knots, no further perturbations are needed.
For general knots only perturbations in the knot complement (which have been studied
in detail for a long time, see eg Herald [12]) are required.

With this understanding in place, we turn our attention to the problem of describing
R.Y0;K0/ and its image in the pillowcase R.S2; fa; b; c; dg/ for 2–bridge knots and
torus knots. More precisely, given a knot K in S3 and a 3–ball B3 meeting K in a
pair of unknotted arcs A1[A2 , the complement Y0 of this 3–ball is again a 3–ball
and contains the two-component tangle K0 D K n .A1 [ A2/. The moduli space
R.Y0;K0/ is identified with the space of conjugacy classes of SU.2/ representations
of �1.Y0 nK0/ which send meridians of K0 to traceless matrices. This space, and
its restriction to the pillowcase, turns out to be a very interesting tangle invariant. In
Section 10 we identify R.Y0;K0/ and its image in the pillowcase for rational tangles
(the tangles which glue with the trivial tangle to produce 2–bridge knots) and prove
the following theorem.
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Theorem 3 For the 2–bridge knot KDK.p=q/ and the 3–ball B3 � S3 meeting K

in a pair of unknotted arcs as in Figure 14, the space R.Y0;K0/ is an arc, and the
restriction R.Y0;K0/!R.S2; fa; b; c; dg/ is the embedding

.; �/D .qt; .q�p/t/; t 2 Œ0; ��:

Using Theorem 7.1 and Corollary 7.2 it follows that the set R
\
�.S

3;K/ is a union
of pairs of isolated nondegenerate points x`1

;x`2
, ` D 1; 2; : : : ; .p � 1/=2 and one

additional point ˛0 . In particular, we have that the chain complex CI\.S3;K/ for the
reduced instanton homology of K.p=q/ is generated by these 2..p� 1/=2/C 1D p

points. From [25] we know that all differentials are zero so that these points generate
the instanton homology. While the instanton homology of 2–bridge knots is easily
determined by the spectral sequence of [25], we find it interesting to be able to produce
an explicit complex with trivial differential (in contrast to the complex coming from
the spectral sequence which has many more generators than the rank of homology, or
the highly degenerate unperturbed character variety studied in [28]).

In Section 11 we analyze the corresponding representation spaces for tangles arising
from torus knots. These are more complicated than the spaces associated to 2–bridge
knots. For a particular tangle decomposition .Y0;K0/[ .B

3;A1[A2/ of the .p; q/
torus knot, the space R.Y0;K0/ can be identified with a certain singular semialgebraic
curve in R2 , cut out by a 2–variable polynomial determined entirely by the integers p; q

and r; s , where pr C qs D 1. We obtain several results (Theorems 11.1 and 11.3)
which give different descriptions of R.Y0;K0/ for torus knots. See Figure 19 for the
explicit example of the .3; 4/ torus knot, a knot whose instanton chain complex (for
all small enough perturbations) necessarily has a nontrivial differential. Our results
show that for torus knots a reduced singular instanton chain complex can be found
with j�.K/jC 1 generators, where �.K/ denotes the signature of K . Moreover, for
small generic holonomy perturbations this is the fewest possible generators, even if the
instanton homology has smaller rank.

The pillowcase arises in another context when studying the SU.2/ representation spaces
of knot complements: as the character variety �.T / of all SU.2/ representations of
the fundamental group of a torus. We will have occasion to use both incarnations,
R.S2; fa; b; c; dg/ and �.T /, of the pillowcase in this article. Indeed, our analysis of
R\.Y;K/ calls on the examination of the restriction from R.Y0;K0/ to the pillowcase
R.S2; fa; b; c; dg/, as well as the restriction of the full character variety �.Y;K/ (the
space of conjugacy classes of all representations of �1.Y nK/) to the pillowcase �.T /
associated to the peripheral torus.
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This latter context is familiar and can be found in many places in the literature, starting
with Klassen’s article [20], and, in the enlarged context of SL.2;C/ representation, as
the variety defined by the A–polynomial of a knot; see Cooper, Culler, Gillet, Long
and Shalen [7]. The interplay between these two manifestations of the pillowcase
is exploited in Section 12. We combine our results with the foundational theorems
of Kronheimer and Mrowka to calculate and tabulate the reduced instanton complex,
the Khovanov homology and the instanton homology for various families of torus
knots. In particular we give new examples of torus knots for which there are nontrivial
differentials in the instanton chain complex, examples for which there are many higher
nontrivial differentials in the spectral sequence, and non-2–bridge examples for which
all differentials in the chain complex are zero. For example, the spectral sequence for
the .5; 7/ torus knot drops in rank from 29 to 17 after the E2 page, and the spectral
sequence for the .13; 28/ torus knot collapses at Khovanov homology.

It is worth contrasting our approach with the one taken in Jacobsson and Rubin-
sztein [15], where a knot in S3 is described by a closed braid, and a Lagrangian
intersection picture is obtained by cutting along a 2n–punctured 2–sphere which
separates the braid from a trivial braid used to close it. The purpose of that article,
however, is to explore the symplectogeometric aspects of their setup, whereas our
emphasis is on singular instanton homology and its efficient computation.

Readers interested in a quick geometric overview of the contents of this article are
encouraged to examine Figures 9 and 10, which encapsulate the statement of Theorem 1.
Figures 11 and 12 illustrate Theorem 2. The reader is also encouraged to compare
Figures 4 and 15 corresponding to the trefoil knot, Figures 20 and 19 corresponding to
the .3; 4/ torus knot and Figures 6 and 17 corresponding to the knot 72 . These figures
illustrate how to determine generators of the singular instanton chain complexes of these
knots from the intersection of arcs of traceless and perturbed traceless representations
in the pillowcase.

Acknowledgements The first author gratefully acknowledges support from NSF grant
DMS-0906258, NSF CAREER grant DMS-1150872, and an Alfred P. Sloan Research
Fellowship. The third author gratefully acknowledges support from NSF grant DMS-
1007196.

2 Unit quaternions

In this section we establish notation and recall some basic facts about SU.2/. Identify
SU.2/ with the unit quaternions,

SU.2/D faC bi C cj C dk j a; b; c; d 2R; a2
C b2

C c2
C d2

D 1g:
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The inverse of a unit quaternion q D aC bi C cj C dk is equal to its conjugate
xqD a�bi �cj �dk. The Lie algebra of SU.2/ is identified with the purely imaginary
quaternions

su.2/D fbi C cj C dk j b; c; d 2Rg

with invariant inner product v � w D �Re.vw/. We denote the exponential map
su.2/! SU.2/ by q 7! eq . Let C.i /� SU.2/ denote the conjugacy class of i : this
is the 2–sphere of purely imaginary unit quaternions

C.i /D fbi C cj C dk j b; c; d 2R; b2
C c2

C d2
D 1g:

We also call C.i / the traceless unit quaternions, since they correspond to the traceless
2� 2 matrices in the usual description of SU.2/.

Notice that C.i / lies in the Lie algebra su.2/, and that as a subset of SU.2/ it is the
set of unit quaternions q 2 SU.2/ satisfying Re.q/D 0. Furthermore,

e�Q D cos.�/C sin.�/Q for � 2R; Q2
D�1 for Q 2 C.i /:

In particular, every nonzero vector in su.2/ can be uniquely written in the form tQ for
some t 2R>0;Q 2 C.i /. Every element of SU.2/ can be written in the form etQ for
some t 2 R;Q 2 C.i /; this representation is unique for SU.2/ n f˙1g if we choose
0< t < � .

We summarize a few well known and easily verified properties of the conjugation action
of SU.2/ on itself in the following proposition.

Proposition 2.1 Consider the action of SU.2/ on itself by conjugation.

(i) The stabilizer of any subgroup G � SU.2/,

Stab.G/D fa 2 SU.2/ j agxaD g for all g 2Gg;

can be one of the three types: f˙1g; fetQg for some Q 2 C.i /, or SU.2/
according to whether G is nonabelian, G is abelian but noncentral, or G is
contained in the center f˙1g.

(ii) Given a traceless unit quaternion Q 2 C.i / and t 2R, the conjugation action of
etQ on the 2–sphere C.i / of traceless unit quaternions is rotation about the axis
through Q of angle 2t .

(iii) If q is a unit quaternion and Q 2 C.i / is a traceless unit quaternion which
together satisfy �QD qQxq , then q is itself a traceless unit quaternion, and q

and Q are perpendicular, ie, Re.qQ/D 0.
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(iv) If Q1;Q2 2 C.i / and t1; t2 2R, then

Re.et1Q1et2Q2/D cos t1 cos t2� sin t1 sin t2 cos �;

where � denotes angle (in su.2/DR3 ) between Q1 and Q2 .

(v) If etQ1 and esQ2 commute, with Qi 2 C.i / and etQ1 ; esQ2 ¤ ˙1, then
Q1 D˙Q2 .

3 The pillowcase

In this section we introduce the pillowcase as a quotient space of R2 , and describe
how it arises as an SU.2/ character variety in two different ways.

3.1 The pillowcase as quotient of R2

Let G denote the split extension of Z2 by Z=2 where the generator � 2 Z=2 acts on
.m; n/ 2 Z2 by � � .m; n/D�.m; n/. Then G acts affinely on the plane R2 by

.m; n/ � .x;y/D .xC 2�m;yC 2�n/; � � .x;y/D .�x;�y/:

The quotient R2=G is called the pillowcase. The quotient map

(3) R2
!R2=G

is a branched cover, branched over four points with preimage the lattice .Z�/2 �R2

of points with nontrivial isotropy. The pillowcase is homeomorphic to a 2–sphere.

A fundamental domain for the action is the rectangle Œ0; ��� Œ0; 2�� (see Figure 2),
and the identifications along its boundary are

(4) .x; 0/� .x; 2�/; .0;y/� .0; 2� �y/; .�;y/� .�; 2� �y/:

Hence the moniker “pillowcase.” Taking the quotient in two steps, first by Z2 and
then by Z=2, exhibits the pillowcase as the quotient of the torus by the hyperelliptic
involution.

We will often describe a curve in the pillowcase in terms of a lift to R2 . A curve
may have different lifts, for example the straight line segments t 7! .2t; 3t/ and
t 7! .�2t;�3t C 4�/, t 2 Œ0; �

2
� define the same curve in the pillowcase.
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0

0 �

2�

Figure 2: The pillowcase: on the left is a fundamental domain for the action
of Z2 Ì Z=2 on R2 ; on the right is the pillowcase, obtained by performing
the identifications on the left. Topologically, the pillowcase is a 2–sphere.

3.2 The pillowcase as the SU.2/ character variety of the torus

The SU.2/ character variety of the 2–dimensional torus T is the space of conjugacy
classes of representations:

�.T /D f�W �1.T /! SU.2/g=conjugation:

If �; � 2 �1.T / denote generators, then to any pair .x;y/ 2R2 of real numbers one
can assign the conjugacy class of the representation

� 7! exi ; � 7! eyi ;

in �.T /. The resulting map R2 ! �.T / factors through the branched cover of
Equation (3) and induces a homeomorphism of the pillowcase with �.T /. Note that
the identification depends on the choice of generators �; �.

The representations which send � to a traceless matrix, ie to C.i /, correspond exactly
to the line x D �

2
, since e�i=2 D i . The line fx D �

2
g �R2 is sent to the circle in the

pillowcase:

(5) S.i /D f�W �1.T /! SU.2/ j �.�/D i ; �.�/D eyi
g

(For more details, see eg Kirk and Klassen [18].)
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3.3 The pillowcase as the traceless SU.2/ character variety of a four-
punctured 2–sphere

Consider a 2–sphere with four marked points, labelled a; b; c , and d , respectively, so
that the fundamental group �1.S

2 n fa; b; c; dg/ is presented (by abuse of notation) as

�1.S
2
n fa; b; c; dg/D ha; b; c; d j baD cdi

as indicated in Figure 3.

We denote by R.S2; fa; b; c; dg/ the space of conjugacy classes of homomorphisms
which take the loops at each puncture to a traceless quaternion:

R.S2; fa; b; c; dg/

D f�W ha; b; c; d j baD cdi ! SU.2/ j �.a/; �.b/; �.c/; �.d/ 2 C.i /g=conjugation:

The space R.S2; fa; b; c; dg/ is known to be a topological 2–sphere with four singular
points; see eg Lin [30, Lemma 2.1] and Heusener and Kroll [14, Lemma 4.1]. The
following proposition gives an explicit identification with the pillowcase, considered as
a quotient of R2 .

Proposition 3.1 There is a surjective quotient map

 W R2
!R.S2; fa; b; c; dg/

given by

 .; �/W a 7! i ; b 7! eki ; c 7! e�ki ; d 7! e.��/ki :

The map  factors through the branched cover of Equation (3) and induces a homeo-
morphism of the pillowcase with R.S2; fa; b; c; dg/. The four corner points correspond
to reducible noncentral representations, and all other points correspond to irreducible
representations.

Proof Given any .; �/ 2 R2 , the assignment a 7! i , b 7! eki , c 7! e�ki ,
d 7! e.��/ki satisfies baD cd , and hence  maps into R.S2; fa; b; c; dg/.

Any traceless representation �W �1.S
2nfa; b; c; dg/!SU.2/ can be conjugated so that

�.a/D i . Since e�t=2i .eti j /e.t=2/i D j , � can be further conjugated (fixing �.a/)
so that �.b/D cos. /i C sin. /j D eki for some  2 Œ0; ��.

Suppose that �.c/D c1i C c2j C c3k. Since q 2 SU.2/ lies in C.i / if and only if
Re.q/D 0, the equation

0D Re.�.d//D Re.�.c�1ba//D Re.�.c�1/.eki /i /D�c3 sin 
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ab

c d

Figure 3: A four-punctured sphere with boundary curves added that generate
its fundamental group (after choosing a base point near the barycenter of the
curves and arcs to the boundary).

implies that either sin  D 0 or else c3 D 0. If sin  D 0, then �.a/ D i and
�.b/D˙i , and hence � may be further conjugated by e�t=2i , fixing �.a/ and �.b/,
so that c3 D 0. So we may assume by conjugating that c3 D 0 in either case. Hence
�.c/D c1i C c2j D e�ki for some � 2 Œ0; 2��.

Therefore the map  W R2 ! R.S2; fa; b; c; dg/ is onto. It is easy to check that
 .1; �1/D  .2; �2/ if and only if .2; �2/D˙.1; �1/C .2�m; 2�n/, so that  
passes to a homeomorphism R2=G!R.S2; fa; b; c; dg/.

4 Representation spaces of knots

To a knot K in a 3–manifold Y with tubular neighborhood N.K/ we will assign
several spaces of conjugacy classes of SU.2/ representations. The notation “�” will
be used when we consider all conjugacy classes of representations of �1.Y nN.K//,
and “R” will be used when we restrict to those representations which send the meridians
of K into the conjugacy class of traceless unit quaternions C.i /.

4.1 All representations

First, let �.Y;K/ denote the space of conjugacy classes of all representations of
�1.Y nN.K// into SU.2/:

(6) �.Y;K/D f�W �1.Y nN.K//! SU.2/g=conjugation:

Restricting to the boundary of N.K/ yields a map

�.Y;K/! �.@N.K//:
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Choosing generators �K ; �K for �1.@N.K// gives an identification of �.@N.K//
with the pillowcase. In particular, if Y is a homology sphere we take the generators �K

to be the canonical (isotopy class of) meridian and �K the longitude arising as the
boundary of an oriented Seifert surface.

If Z is any 3–manifold containing a torus T DS1�S1�Z , restricting representations
yields a map from the character variety �.Z/ of (all) SU.2/ representations of �1.Z/

to the pillowcase:

(7) �.Z/! �.T /:

4.2 Traceless representations

Next, denote by R.Y;K/� �.Y;K/ the subset of conjugacy classes of representations
sending every meridian of K into C.i /. Note that all meridians of K are conjugate
since we are assuming that K is a knot rather than a link, and so any representation
sending a particular meridian �K 2 �1.Y n N.K// into C.i / takes all meridians
into C.i /. Hence

(8) R.Y;K/D f�W �1.Y nN.K//! SU.2/ j �.�K / 2 C.i /g=conjugation:

Given a pair �K ; �K of generators of �1.@N.K// with �K a meridian, then R.Y;K/

can be described as the preimage under the restriction �.Y;K/! �.@N.K// of the
circle S.i / of Equation (5).

If S2�Y is an embedded 2–sphere intersecting K transversely in four points a; b; c; d ,
we can restrict representations to S2 to obtain a map

(9) R.Y;K/!R.S2; fa; b; c; dg/;

which we consider as the traceless analogue of (7).

4.3 Adding an earring to avoid reducibles

The spaces �.Y;K/ and R.Y;K/ are stratified according to the three possible stabiliz-
ers of the constituent SU.2/ representations: f˙1g, S1 or SU.2/. To avoid singulari-
ties in moduli spaces arising from reducible connections, Kronheimer and Mrowka [25]
introduce an auxiliary construction which ensures that only the center f˙1g appears
as a stabilizer (actually their construction requires the use of connections in a nontriv-
ial SO.3/ bundle, with w2 dual to the arc W described below). Let us recall their
construction.

Fix a base point on K and identify N.K/ with the unit normal (disk) bundle of K .
Let H be the circle of radius 1

2
in the normal disk fiber containing the base point.
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Denote the link K [ H by K\ . Let W � Y be a radial arc in this normal disk
connecting K and H ; see Figure 1.

The boundary of a small tubular neighborhood of H is a torus which is punctured once
by the arc W . Thus for the appropriate choices of basings and orientation of loops,
the meridian �H and longitude �H of this torus satisfy Œ�H ; �H �D �W . Moreover,
since H is a small circle linking K , the longitude of H equals the meridian of K , ie
�H D �K . Thus Œ�K ; �H �D �W in �1.Y n .K

\[W //.

We will use R\.Y;K/ to denote the space of conjugacy classes of representations
�W �1.Y n .K

\ [W // ! SU.2/ which send the meridians �K ; �H of K and H

to C.i / and the meridian �W of the arc W to �1:

(10) R\.Y;K/D f�W �1.Y n .K
\
[W //! SU.2/

j �.�K /; �.�H / 2 C.i /; �.�W /D�1g=conjugation

When Y D S3 (or any homology sphere), there is a distinguished conjugacy class
˛ 2R\.Y;K/ which is characterized completely by the requirement that its restriction
to the complement of a (large) tubular neighborhood N.K/ of K containing H [W

is abelian. The representation ˛ can be uniquely conjugated to satisfy

(11) ˛.�K /D i ; ˛.�H /D j ; ˛.�W /D�1; ˛.�K /D 1:

Since the set of all conjugates of �K by loops in Y nN.K/ generate �1.Y nN.K//, ˛
sends each of these conjugates to i. The representation ˛ and its restriction to �1.Y n

N.K//, which will be denoted ˛�=2 , appear frequently below.

If Z � Y is a codimension-zero submanifold which contains K\[W , then there is
a restriction map R\.Y;K/!R\.Z;K/. For example, one can take Z DN.K/, a
tubular neighborhood of K large enough to contain H [W to get R\.N.K/;K/.

Proposition 4.1 The space R\.N.K/;K/ is homeomorphic to a circle, and every
representation in R\.N.K/;K/ is nonabelian. Moreover, the restriction map

R\.N.K/;K/! �.@N.K//

is injective, with image the vertical circle S.i / of Equation (5).

Proof Any representation in R\.N.K/;K/ may be conjugated so that �.�K /D i.
Since �.�K / commutes with �.�K / it follows that �.�K /D e`i for some `.

The relation Œ�.�K /; �.�H /�D �.�W /D�1 implies � is nonabelian and that �.�H /

is perpendicular to i (Proposition 2.1). Thus �.�H /D cos �j C sin �kD e�i j for
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some � . Further conjugation by e��i=2 fixes �.�K /D i and �.�K /D e`i but rotates
so that �.�H /D j.

Conversely, any choice of e`i 2 S1 defines a unique conjugacy class in R\.N.K/;K/

by sending �K to i, �K to e`i, �H to j, and �W to �1.

Note that we can think of K\ as obtained from K by forming the connected sum of K

with one component of a Hopf link whose components are spanned by the arc W .
Kronheimer and Mrowka also introduce a variant of this construction, which they
denote by K] , obtained by taking the disjoint union of K with a Hopf link rather
than the connected sum. This leads to a different representation space R].Y;K/; see
Section 9 below.

4.4 Gluing representations and the relation between the spaces R\.Y; K /

and R.Y; K /

The spaces R.Y;K/ are better known than R\.Y;K/. The relationship between the
two is that R\.Y;K/ maps to R.Y;K/ with fibers either a circle or a point depending
on the reducibility of the image. We make this precise in Proposition 4.3 below.

We first present a folklore description of the character variety of a free product with
amalgamation in terms of the character varieties of its pieces. To describe it, fix a
compact Lie group G and (for this section only) let H.�/ denote the functor which
takes a discrete group H to the space Hom.H;G/ and let �.�/ denote the functor
that takes H to Hom.H;G/=conjugation.

Suppose that the finitely presented group H is given a decomposition as a free product
with amalgamation H DA�S B . Then clearly

H.H /ŠH.A/�H.S/H.B/ WD f.�A; �B/ 2H.A/�H.B/ j �AjS D �BjSg:

The Lie group G acts diagonally by conjugation on H.H / with quotient �.H /, and
similarly for the subgroups A;B , and S . There is a surjective map

H.A/�H.S/H.B/! �.A/��.S/ �.B/ WD f.cA; cB/ 2 �.A/��.B/ j cAjS D cBjSg

which factors through �.H /. These form a diagram:

H.A/�H.S/H.B/
p1 //

p3

))

�.H /

p2ww
�.A/��.S/ �.B/

Geometry & Topology, Volume 18 (2014)



226 Matthew Hedden, Christopher M Herald and Paul Kirk

Let Stab.�/�G denote the centralizer of the image of a representation � :

(12) Stab.�/D fg 2G j �.x/D g�.x/g�1 for all xg

Lemma 4.2 Let .cA; cB/2 �.A/��.S/�.B/ and choose .�A; �B/2p�1
3
.cA; cB/ (so

that �AjS D �BjS ). Then the fiber p�1
2
.cA; cB/ is homeomorphic to the double coset

space
Stab.�A/nStab.�AjS /=Stab.�B/:

Remark Lemma 4.2 can be applied in situations when we consider representation
spaces and character varieties that place conjugation-invariant conditions on the value
that the representations take on specified elements in the groups H , A, B , and S . For
our purposes we will be interested in the traceless representations which arise in the
definition of R and R\ .

Proof of Lemma 4.2 Denote by �S the restriction of �A to S . We first identify the
fiber p�1

3
.cA; cB/ with a quotient of G � Stab.�S /. If .�0

A
; �0

B
/ 2 p�1

3
.cA; cB/ then

there are g1;g2 2 G so that .�0
A
; �0

B
/ D .g1�Ag�1

1
;g2�Bg�1

2
/. Since �0

A
and �0

B

agree on S , (as do �A and �B ) it follows that g�1
1

g2 2 Stab.�S /. Thus the map
G �Stab.�S /! p�1

3
.cA; cB/ taking .g; t/ to .g�Ag�1;gt�B.gt/�1/ is surjective.

Since p1 is surjective, it maps p�1
3
.cA; cB/ surjectively to p�1

2
.cA; cB/. Suppose that

.g; t/; .g0; t 0/ 2G �Stab.�S /. Then

p1.g
0�Ag0�1;g0t 0�B.g

0t 0/�1/D p1.g�Ag�1;gt�B.gt/�1/

if and only if there is an h 2G so that

.g0�Ag0�1;g0t 0�B.g
0t 0/�1/D .hg�A.hg/�1; hgt�B.hgt/�1/:

This is equivalent to g0�1hg 2 Stab.�A/ and .g0t 0/�1hgt 2 Stab.�B/. Writing
a D g0�1hg and b D .g0t 0/�1hgt we see that h D g0ag�1 and t 0�1at D b . It
follows that .g; t/ and .g0; t 0/ correspond to the same element of p�1

2
.cA; cB/ if and

only if there exist a 2 Stab.�A/ and b 2 Stab.�B/ so that t 0 D atb�1 .

We now use Lemma 4.2 to compare R.Y;K/ and R\.Y;K/. To do this, write

(13) .Y;K\
[W /D .Y nN.K/;∅/[@N.K / .N.K/;K\

[W /:

Suppose �A2�.Y;K/ and �B 2R\.N.K/;K/ map to the same point �S 2�.@N.K//.
Conjugate �B so that the restrictions of �A and �B to @N.K/ agree. Proposition 4.1
shows �B 2R\.N.K/;K/ has nonabelian image. Moreover, since �B.�K / 2 C.i /,
then the restriction �A to Y n N.K/ of any representation � 2 R\.Y;K/ lies in
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R.Y;K/� �.Y;K/. Furthermore, the restriction �S to the separating torus @N.K/ is
abelian but noncentral, since it sends the meridian �K into C.i /. Thus Stab.�S /ŠS1.

From Lemma 4.2 we conclude that the fiber of the restriction map

(14) R\.Y;K/!R.Y;K/��.@N.K //R\.N.K/;K/

over �A � �B is
Stab.�A/nS

1=f˙1g:

This is a single point if the restriction �A of � to Y nN.K/ has abelian image, and a
circle if the restriction has nonabelian image.

Proposition 4.1 asserts that the restriction map R\.N.K/;K/!�.@N.K// is injective.
This allows us to identify the restriction map of Equation (14) with the surjective map

(15) R\.Y;K/!R.Y;K/:

In summary, we have the following.

Proposition 4.3 Every representation in R\.Y;K/ has nonabelian image. The for-
getful map R\.Y;K/!R.Y;K/ is a surjection. The fiber over a conjugacy class �
is either a circle or a point, and this depends on whether � has nonabelian or abelian
image.

Lemma 4.2 is also useful when studying R\.Y;K/ via a decomposition of the pair
.Y;K/ along a four-punctured 2–sphere. Suppose that Y D Y1[S2 Y2 is a decompo-
sition of Y along a 2–sphere S2 � Y which intersects K in four points a; b; c; d . We
assume that H [W lies in the interior of Y2 . Then Lemma 4.2 allows us to identify
R\.Y;K/ as a fiber product of R.Y1;K1/ and R\.Y2;K2/ over the second pillowcase
R.S2; fa; b; c; dg/ (where each Ki DK\Yi is a union of two arcs). Precisely, there
is a restriction map

(16) R\.Y;K/!R.Y1;K1/�R.S2;fa;b;c;dg/R\.Y2;K2/

whose fiber over �1 � �2 is

Stab.�1/nStab.�S2/=Stab.�2/:

Now Stab.�2/D˙1, since H[W is contained in Y2 . The stabilizer of any nonsingular
point in the pillowcase R.S2; fa; b; c; dg/ is just the center ˙1, so the fiber of the
map in Equation (16) over a pair .�1; �2/ is a single point if the restriction to S2 is
not one of the four abelian conjugacy classes in R.S2; fa; b; c; dg/.
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However, at one of the four abelian conjugacy classes, the stabilizer is S1 , and hence
the fiber of the map in Equation (16) is

Stab.�1/nS
1;

which is a circle if �1 is nonabelian and a single point if �1 is abelian. In summary,
we have the following.

Proposition 4.4 Suppose that S2 � Y is a separating 2–sphere meeting the knot K

transversely in four points a; b; c; d and that H [W lies in Y2 . Restricting to the two
pieces in the decomposition Y D Y1[S2 Y2 gives a surjection

R\.Y;K/!R.Y1;K1/�R.S2;fa;b;c;dg/R\.Y2;K2/

whose fibers are single points, with the exception of the fibers over the nonabelian
representations in R.Y1;K1/ which restrict to one of the four abelian (corner) points
in R.S2; fa; b; c; dg/. The fiber above these latter points is a circle.

In the examples below we will take Y2 to be a 3–ball intersecting K in a pair of
unknotted arcs. We will explain, for torus and 2–bridge knots, how to choose the 3–
ball judiciously so that the restriction of every nonabelian representation in R.Y1;K1/

to R.S2; fa; b; c; dg/ avoids the corner points. The map of Proposition 4.4 then has
point fibers. Then a perturbation will be applied to make R\.Y2;K2/ generic, in the
sense that the fiber product in Proposition 4.4 has finitely many points, corresponding to
a finite intersection of R.Y1;K1/ and R\.Y2;K2/ in R.S2fa; b; c; dg/. These points
will provide a finite generating set for the reduced singular instanton chain complex.

5 Knots with simple representation varieties

Much is known about the spaces �.Y;K/ for various .Y;K/, starting with Klassen’s
influential article [20]. The image of �.S3;K/ in the pillowcase �.@N.K// is also a
well studied space: for example, it appears as part of the real locus of the A–polynomial
of [7]. The identification of the algebraic count of the intersections of this image with
the circle S.i / of Equation (5), corresponding to the line fxD �

2
g (and more generally

circles corresponding to the line fx D �g for � 2 Œ0; ��) with Levine–Tristram knot
signatures is explained in [30; 14] and Herald [13].
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Definition 5.1 We say a knot K in S3 has a simple representation variety, or
�.S3;K/ is generic if �.S3;K/ is homeomorphic to a 1–complex made out of:

(i) An arc of abelian representations, parameterized by

t 2 Œ0; �� 7! ˛t W �1.S
3
nN.K//!H1.S

3
nN.K//! SU.2/; ˛t .�K /D eti :

(ii) A finite number of smooth arcs of representations

ni W Œ0; 1�! Hom.�1.S
3
nN.K//;SU.2//; i D 1; : : : ; k;

whose interior points are nonabelian and whose endpoints ni.0/ and ni.1/ equal
˛si;0

and ˛si;1
for a pairwise distinct set of points s1;0 , s1;1 , s2;0 , s2;1; : : : ; sk;0 ,

sk;1 2 Œ0; ��.

(iii) A finite number of disjoint smooth circles

ci W S
1
� �.S3;K/; i D 1; : : : ;m;

of nonabelian representations disjoint from the arcs ˛t and ni .

(iv) The restriction map �.S3;K/! �.@N.K// restricts to an immersion on each
arc ˛t ; ni and each circle ci . This immersion is transverse to the circle S.i / of
representations which are traceless on the meridian (Equation (5)).

The points s1;0; s1;1; : : : ; sk;0; sk;1 are called bifurcation points, since they correspond
to places where the irreducible representations bifurcate from the abelian representations.
This implies that the roots of the Alexander polynomial of K which lie on the unit
circle are those of the form e2si;j i, and are simple and distinct [20; 13].

Not all knots have simple representation varieties, but the results of [12; 13] imply that
perturbation data (as explained below) � can be found so that the perturbed moduli
space ��.S3;K/ has the properties listed above. For small perturbations, the distinct
points s1;0; s1;1; : : : ; sk;0; sk;1 are close, but not necessarily equal to, the set of roots
of the Alexander polynomial.

5.1 Torus knots

All torus knots have simple representation varieties. In fact �.S3;Tp;q/ is a union of
an arc ˛t of abelian representations as described above, and .p� 1/.q� 1/=2 arcs of
nonabelian representations that limit to abelian representations at roots of the Alexander
polynomial [20]. We review some of the details.

The .p; q/ torus knot group has presentation hx;y j xp D yqi. In this presentation
�K D xsyr and �K D xp.xsyr /�pq where pr C qs D 1 (see eg Burde [5, Proposi-
tion 3.28]). The arc of conjugacy classes of abelian representations is parameterized by
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˛t .�K /D eti , t 2 Œ0; ��. In terms of the generators x and y we have ˛t .x/D eqti

and ˛t .y/D epti .

Since xp D yq is central, then any nonabelian representation � will send xp D yq

to ˙1. Hence x is sent to a pth root of ˙1 in SU.2/ and y is sent to a qth root
of ˙1. If � is conjugated so that �.�K / D emi for some m 2 R, then we have
that �.�K / D �.x

p�
�pq
K

/ D ˙e�pqmi . Hence the image of the nonabelian part of
�.S3;K/ in the pillowcase lies in the straight lines `D�pqmCk� (via the quotient
R2 ! �.T /, taking .m; `/ to the conjugacy class of �K 7! emi ; �K 7! e`i ). In
fact the images in the pillowcase are embedded arcs that start and end at ˛si

where
�K .e

2si i /D 0 (see [20, Theorem 19] and the discussion which follows its proof).

Each arc of nonabelian representations is completely determined by the choice of pth

and qth root of ˙1. Explicitly, given a pair a; b of integers of the same parity, then
the assignment

(17) x 7! ea�i=p; y 7! cos.b�=q/C sin.b�=q/.cos.u/i C sin.u/j /; u 2 Œ0; ��

defines an arc of representations whose projection to the space of conjugacy classes
is one-to-one. Conversely, given any representation � , �.x/ can be conjugated to
ea�i=p and �.y/ can be conjugated to eb�i=q for some choice of integers of the same
parity, and some choice of conjugating elements. It follows that any representation
can be conjugated to a unique point on the corresponding path of Equation (17): we
first conjugate � so that �.x/ has the desired image, and then further conjugate by
an element in the circle through �.x/ so that y has the form of (17). This sets up a
bijection between arcs of nonabelian representations and pairs .a; b/ of the same parity
satisfying 0< a< p and 0< b < q . For more details see [20, Theorem 1].

The endpoints of this arc are abelian, and hence lie on the arc ˛t . These endpoints
are determined by computing where they send �K . When uD 0 the pair .�K ; �K /

is sent to .e.as=pCbr=q/�i ; epr.a�b/�i /. Hence the endpoint with uD 0 equals ˛s0

where .s0; 0/ and ..as=pC br=q/�;pr.a� b/�/ in R2 map to the same point in the
pillowcase. Similarly one determines where the endpoint with uD � is sent.

These considerations suffice to show that all torus knots have simple representation
varieties and to completely determine �.S3;K/ and its image in the pillowcase. We
illustrate two examples.

The simplest example is the trefoil knot, ie the .2; 3/ torus knot. It has one arc of
nonabelian representations, attached to the arc of abelian representations at the points
s0 D �=6 and s1 D 5�=6, corresponding to the fact that �K .e

2si / D 0, i D 0; 1.
This arc of nonabelian representations is sent to an arc of slope �6 in the pillowcase.
Notice that the map �.S3;K/! �.@N.K// fails to be injective at precisely the two
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points in �.S3;K/ sent to the circle S.i / in the pillowcase (see Equation (5)). In
particular, R.S3;K/ consists of exactly two points, the abelian representation ˛�=2 ,
and the nonabelian representation corresponding to uD �=2.

2�

˛t

0

0 �

Figure 4: The character variety �.S3;T2;3/ and its image in the pillowcase

Next we consider the .3; 5/ torus knot. This knot has Alexander polynomial �K .t/D

t8�t7Ct5�t4Ct3�tC1. Thus �K.e
2si/D0 when siD�=15, 2�=15, 4�=15; 7�=15,

8�=15, 11�=15, 13�=15 and 14�=15. The corresponding ˛si
form the endpoints of

the four arcs of nonabelian representations, determined by the four possible choices
.a; b/D .1; 1/; .1; 3/; .2; 2/ and .2; 4/. One calculates that the first arc has endpoints
f˛�=15; ˛11�=15g, the second f˛7�=15; ˛13�=15g, the third f˛2�=15; ˛8�=15g, and the
fourth f˛4�=15; ˛14�=15g. The restriction �.S3;K/!�.@N.K// is far from injective,
although it is injective when restricted to each arc of nonabelian representations. In
this example, the space R.S3;K/ consists of five points: the abelian ˛�=2 , and four
other points, one interior to each of the nonabelian arcs. Two of these four points are
sent to the point in the pillowcase with (R2 ) coordinates .�=2; 3�=2/; the other two
are sent to the point with coordinates .�=2; �=2/. In particular, this implies that these
traceless representations are not binary dihedral, since the longitude is not sent to ˙1.
We illustrate this in Figure 5, where we have only drawn the image of the first arc in

Geometry & Topology, Volume 18 (2014)



232 Matthew Hedden, Christopher M Herald and Paul Kirk

the pillowcase for clarity. It intersects the circle S.i / (in the figure, the vertical line
 D �=2) in the point with coordinates .�=2; 3�=2/.

0

0 �

�

2�

Figure 5: The character variety �.S3;T3;5/ and part of its image in the pillowcase

The representation variety �.S3;K/ for K a general .p; q/ torus knot consists of an
arc ˛t of abelian representations and .p� 1/.q� 1/=2 arcs of nonabelian representa-
tions with distinct endpoints ˛si

on ˛t , parameterized by pairs of integers .ai ; bi/ in
Equation (17) above.

For the purposes of describing the image of each arc in the pillowcase, it is more
convenient to parameterize the paths by their endpoints, rather than the pairs .ai ; bi/.
Therefore �.S3;K/ for K any .p; q/ torus knot and its image in the pillowcase
�.@N.K// is completely described by the data consisting of the pair .p; q/ and an
additional .p � 1/.q � 1/=2 pairs .ci ; di/ (for i D 1; : : : ; .p � 1/.q � 1/=2 with
ci < di ) of integers determined by the requirement that the endpoints of the i th arc of
nonabelian representations are ci�

pq
and di�

pq
; these satisfy �K .e

.2ci�/=.pq// D 0 D

�K .e
.2di�/=.pq//. The pairs .ci ; di/ determine and are determined by the .ai ; bi/,

but the relationship is awkward to describe explicitly, and so we will use .ci ; di/ to
prescribe each arc of nonabelians.

The subvariety R.S3;K/ of �.S3;K/ contains j�.K/j=2C 1 points where �.K/
denotes the signature of K [30; 13; 14]. One of these points is ˛�=2 , the rest correspond
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to intersections of some of the arcs of nonabelian representations with the circle S.i /

of Equation (5).

The image of the arc of abelians ˛t in the pillowcase has slope 0, and each arc of
nonabelian representations maps to a line of slope �pq . Hence, once we know their
endpoints, we know how they map to the pillowcase. In particular, there is always one
abelian traceless representation ˛�=2 , and one nonabelian traceless representation for
each pair .ci ; di/ as above satisfying ci <

pq
2
< di .

For example, for the trefoil T2;3 , the data .ci ; di/ is just .1; 5/ and so R.S3;T2;3/ has
one abelian and one nonabelian traceless representation. For K D T3;5 , the data are

.1; 11/; .7; 13/; .2; 15/; .4; 14/;

and so R.S3;T3;5/ has one abelian and four nonabelian traceless representations, since
each corresponding interval contains 15

2
. The data clearly determines the information

in Figure 5.

In general, not every arc of nonabelian representations contains a point of R.S3;K/:
the inequality j�.K/j=2� .p� 1/.q� 1/=2 may be strict. For example, the data for
the .3; 7/–torus knot are

.1; 13/; .11; 17/; .5; 19/; .2; 16/; .4; 10/; .8; 20/;

and so the arcs determined by the pairs .11; 17/ and .4; 10/ do not contain traceless
representations. This corresponds to the fact that �=2D 4. Similarly, the data for the
.4; 9/–torus knot are

.1; 17/; .15; 33/; .23; 31/; .7; 25/; .2; 34/; .14; 22/; .6; 30/;

.10; 26/; .19; 35/; .3; 21/; .5; 13/; .11; 29/;

and �=2 D 8. It is known that the signature of a nontrivial torus knot is always
nonzero (see eg Kirk and Livingston [19]) from which it follows that R.S3;K/ always
contains at least one point on a nonabelian arc. A much deeper result is the theorem of
Kronheimer and Mrowka [22] that every nontrivial knot in S3 admits a nonabelian
traceless representation.

Applying Proposition 4.3 we conclude that for K the .p; q/ torus knot, R\.S3;K/

consists of one isolated point ˛ , corresponding to ˛�=2 , and j�.K/j=2 circles, one for
each irreducible traceless representation of �1.S

3 nK/.

5.2 2–bridge knots

We recall some facts about �.S3;K/ when K is a 2–bridge knot. Klassen [20]
identified the spaces �.S3;K/ for the twists knots. Building on work of Riley [37]
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(who considered SL.2;C/ representations), Burde [5] determined �.S3;K/ for all
2–bridge knots. In contrast to torus knots, the image of �.S3;K/ in the pillowcase is
not given by linear equations, but rather by more complicated polynomial equations.
However, we will give explicit (and linear) equations which determine the traceless
representation varieties R.S3;K/ and R\.S3;K/ for any 2–bridge knot in Section 10
below.

For the m–twist knot (this is the 2–bridge knot corresponding to the continued fraction
expansion Œ1; 1;m�), �.S3;K/ is a union of the arc ˛t of abelian representations, Œm

2
�

circles of nonabelian representations, and, if m is odd, one arc of nonabelian represen-
tations with endpoints on the arc ˛t corresponding to the two roots of the Alexander
polynomial on the unit circle. Each circle contributes two points to R.S3;K/, and the
arc of nonabelian representations (when m is odd) meets R.S3;K/ in one point. As
for all knots, the abelian representation ˛�=2 lies in R.S3;K/.

Thus, for K the m–twist knot, R.S3;K/ consists of one abelian representation, and
2Œm

2
� D m nonabelian representations if m is even, and 2Œm

2
�C 1 D m nonabelian

representations if m is odd. Using Proposition 4.3 it follows that R\.S3;K/ consists
of one isolated point ˛ and m circles.

For example, when K is the figure 8 knot, corresponding to mD 2, �.S3;K/ consists
of the arc ˛t of abelian representations and a disjoint circle of nonabelian represen-
tations. A construction of this circle and arc, together with an explicit description of
the image of �.S3;K/! �.@N / can be found in [18, Proposition 5.4]. From this
one concludes that R.S3;K/ consists of exactly three points: the arc ˛t contributes
the point ˛�=2 to R.S3;K/, and the circle contributes two points to R.S3;K/. This
identifies R\.S3;K/ as the union of an isolated point ˛ and two circles.

We illustrate the more complicated example of the m twisted double of the unknot when
mD5, this is the knot 72 in the knot tables. The space �.S3;K/ consists of two circles
and one arc of nonabelians, and the arc ˛t of abelians. The Alexander polynomial
is 3 � 5t C 3t3 , with roots .5˙

p
�11/=6 � e.0:1/2�i. The arc of nonabelians is

embedded, but the two circles of nonabelians are immersed in the pillowcase with one
transverse double point at .m; `/D .�

2
; 0/. The proof of these facts can be found in

Burde’s article [5].

In particular, the space R.S3;K/ contains six points: the abelian point ˛�=2 , the
midpoint of the arc of nonabelians, and two points on each of the two circles of
nonabelians. Each of these six points is mapped to the point .�

2
; 0/ in the pillowcase.

The space R\.S3;K/ thus consists of one isolated point ˛ corresponding to ˛�=2 via
Proposition 4.3 and five circles corresponding to the five nonabelian representations in
R.S3;K/.
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Figure 6: �.S3; 72/ and its image in the pillowcase

6 Traceless representations of certain tangles

Having established the presence of circles in R\.Y;K/ in Proposition 4.3, we are faced
with the problem that this set is never finite (except for the unknot) and yet should
give a generating set for the reduced instanton homology of .Y;K/, since it appears
as the critical set of the relevant Chern–Simons functional. The circles arise via the
mechanism of Lemma 4.2 because of the presence of the torus (ie the boundary of
the tubular neighborhood of K which contains H [W ) along which we can bend a
representation. Holonomy perturbations of the Chern–Simons functional (described
below) are used to correct this problem. We will show below that the circles can be
eliminated by using a holonomy perturbation that lies in a 3–ball intersecting K in two
unknotted arcs and containing H [W . Thus we turn our attention to the representation
spaces corresponding to a pair of arcs in a ball.

6.1 The space R.B3; A1 [ A2/

Consider the space of conjugacy classes of SU.2/ representations R.B3;A1[A2/ of
the complement of a pair of unknotted arcs in a 3–ball which send their meridians to
elements in C.i /, as illustrated in Figure 7. This corresponds exactly to the subspace
of R.S2; fa; b; c; dg/ consisting of those representations which satisfy �.a/D �.d/
and �.b/D �.c/.

We have the following simple observation.

Proposition 6.1 The space R.B3;A1[A2/ can be identified with the arc Œ0; �� via

a 7! i ; b 7! eki ; c 7! eki ; d 7! i ;
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for  2 Œ0; ��. The restriction map

R.B3;A1[A2/!R.S2; fa; b; c; dg/

is injective, with image the diagonal arc  .;  /,  2 Œ0; ��.

ab

c d

Figure 7: Two arcs in a 3–ball, .B3;A1[A2/

Proposition 6.1 is illustrated in Figure 8, where R.S2; fa; b; c; dg/ is represented as
an identification space obtained from the rectangle Œ0; ��� Œ0; 2��.

We now consider the space R\.B3;A1[A2/ consisting of conjugacy classes of SU.2/
representations which send a; b; c; d and h to C.i / and w to �1, where h denotes
the meridian of H and w the meridian to the arc W . As before, we may conjugate so
that (abusing notation)

aD d D i ; b D c D eki ; w D�1;

with  2 Œ0; ��. The relation Œxa; xh�D w D�1 implies that

hD e�i j

for some � .

Hence the image of the restriction R\.B3;A1[A2/!R.S2; fa; b; c; dg/ is equal to
the image R.B3;A1[A2/!R.S2; fa; b; c; dg/. Both are given by the arc  .;  /,
 2 Œ0; ��, as illustrated above. In the case of R\.B3;A1[A2/, however, the restriction
is not injective. In fact, there is a circle action on R\.B3;A1 [A2/ defined by the
parameter � . This action is free away from the two fixed points, which occur when
sin  D 0. The restriction map R\.B3;A1[A2/!R.S2; fa; b; c; dg/ factors through
the orbit map, which is just the map R\.B3;A1[A2/!R.B3;A1[A2/ that forgets h

and w . Summarizing, we have the following.
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0

0 �



R.B3;A1[A2/

Figure 8: The image of R.B3;A1 [ A2/ ! R.S2; fa; b; c; dg/ is the
arc � D  .

Proposition 6.2 R\.B3;A1[A2/ is a 2–sphere, corresponding to

a 7! i ; b 7! eki ; c 7! eki ; d 7! i ; h 7! e�i j ; w 7! �1;

for .; �/ 2 Œ0; �� � Œ0; 2��, cylindrical coordinates on S2 . The restriction to the
pillowcase

R\.B3;A1[A2/!R.S2; fa; b; c; dg/

has image the diagonal arc  .;  /,  2 Œ0; ��, and the fibers are circles parameterized
by � over the interior of the arc and a single point over each endpoint.

7 Perturbations

7.1 Holonomy perturbations of the Chern–Simons functional and its crit-
ical points

We recall some aspects of the definition and basic properties of instanton homology and
the related holonomy perturbations that we need. We provide the minimal description
needed for our purposes, and refer to the series of articles [26; 25; 21] for details.

Geometry & Topology, Volume 18 (2014)



238 Matthew Hedden, Christopher M Herald and Paul Kirk

To the triple .Y;K\;W /, Kronheimer and Mrowka assign singular bundle data P

which consists of an SO.3/ bundle over Y nK\ whose second Stiefel–Whitney class is
Poincaré dual to W , as well as a certain kind of O.2/ reduction near K[H . The sin-
gular bundle data in turn give rise to an affine space of SO.3/ connections C.Y;KIP /
which have a prescribed singularity near K\ , with tangent spaces identified with spaces
of bundle-valued 1–forms with appropriate behavior near K . The determinant one
gauge group G.Y;KIP / acts on C.Y;KIP /.

The Chern–Simons functional CSW C.Y;KIP /!R has the property that its gradient
vector field with respect to the L2 inner product on 1–forms is

.grad CS/B D��FB:

The critical points of the Chern–Simons functional therefore consist of flat singu-
lar SO.3/ connections. The gauge group G.Y;KIP / preserves the set of flat con-
nections. As explained in [25], the set of gauge equivalence classes of critical points,
C.Y;KIP /, is identified, via the holonomy, with R\.Y;K/.

Any critical point A of CS restricts to an honest flat connection on Y �N.K/. The
bundle is trivial over Y nN.K/ since W �N.K/ and hence the holonomy of A lifts
uniquely to SU.2/, giving a representation �AW �1.Y nN.K//! SU.2/ which sends
the meridians to traceless unit quaternions, ie �A 2R.Y;K/.

The reduced instanton homology I \.Y;K/ is the Morse–Floer homology of a Z=4
graded-chain complex CI\.Y;K/ associated to CS. The chain complex CI\.Y;K/
should therefore be generated by the set of gauge equivalence classes C.Y;KIP / of
critical points of CS, which are identified with R\.Y;K/. For any nontrivial knot K

in S3 , however, Kronheimer and Mrowka have proved [22] that there exist nonabelian
traceless SU.2/ representations. Thus Proposition 4.3 shows that R\.S3;K/ always
contains circles. Since the Morse complex of CS must be finitely generated in order
to define a sensible theory, we see that we must perturb CS to ensure that its critical
points are isolated and finite in number.

This is achieved by adding to CS a holonomy perturbation h� W C.Y;KIP / ! R.
The function h� is constructed from data consisting of a collection of embeddings
ei W S

1�D2!Y n.K\[W / and some conjugation invariant functions gi W SU.2/!R.
Following [26; 25], � D fei ;gig is called the perturbation data, and determines the
function h� W C.Y;KIP /!R by the formula

h�.A/D
X

i

Z
D2

gi.holS1�fxg.A//�.x/ d2x;
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where �.x/ is a (fixed) radially symmetric smooth cutoff function on D2 , and, given
x 2 D2 , holS1�fxg.A/ denotes the holonomy of A around the loop t 7! ei.e

ti ;x/,
t 2 Œ0; 2��.

Kronheimer and Mrowka consider more general perturbation functions, but these
functions suffice for our purposes. In fact, we will only require one embedding
eW S1 �D2! Y n .K\[W /, and the function g will be taken to be g.q/D � Re.q/
for some small � > 0.

Denote by Pj the image of ej , a solid torus. We will abuse terminology and call PJ

a perturbation curve. Denote by pj the meridian of Pj , ie the (suitably based) loop
ej .��@D

2/, and by j̀ a choice of longitude, eg ej .S
1��/. Let P D

F
j Pj . Denote

by �K ; �H ; �W (suitably based) meridians of K;H;W respectively.

Any critical point of CSCh� is the gauge equivalence class of a connection which is
flat outside the image P of the embeddings ei W S

1�D2! Y n .K\[W /. Therefore,
critical points of the perturbed functional CSCh� are identified with conjugacy classes
of representations �1.Y n .K [H [W [P //! SU.2/ which send the meridians
�K ; �H to C.i /, and �W to �1, and which also satisfy a certain constraint determined
by gj when restricted to the meridian and longitude of the j th boundary torus of P .

Lemma 61 of [12] identifies the constraint and shows that given any list of smooth
functions fj W R!R satisfying fj .�x/D�fj .x/ and fj is 2� periodic (for example,
fj .x/ D sin.x/), there exist gj as above so that the constraint on the j th boundary
torus is given by the perturbation condition:

If the representation �W �1.Y n .K[H [W [P //! SU.2/ takes the meridian and
longitude pj ; j̀ of the j th component of P to e�j Qj and e ǰ Qj respectively, for some
Qj 2 C.i /, then �j D fj . ǰ /.

We denote the space of conjugacy classes of such representations by R
\
�.Y;K/. Ex-

plicitly, R
\
�.Y;K/ is the space of SU.2/–conjugacy classes of representations

�W �1.Y n .K[H [W [P //! SU.2/

satisfying

(18)
�.�K /; �.�H / 2 C.i /; �.�W /D�1;

�j D fj . ǰ / when �.pj /D e�j Qj and �. j̀ /D e ǰ Qj :

We can apply similar constructions to �.Y;K/, the space of conjugacy classes of
all representations �1.Y n N.K// ! SU.2/. One can perturb using embeddings
ei W S

1 �D2 ! Y n N.K/; the resulting critical set is denoted by ��.Y;K/, and
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is identified with those representations �1.Y n .K [ P // ! SU.2/ satisfying the
constraints

(19) �j D fj . ǰ / when �.pj /D e�j Qj and �. j̀ /D e ǰ Qj

on each @Pj .

When P lies outside the tubular neighborhood N.K/ of K containing K\ [W ,
restriction defines a map R

\
�.Y;K/ ! ��.Y;K/ with image which we denote by

R�.Y;K/. Just as in the unperturbed case, the fibers of the restriction map

R\
�.Y;K/!R�.Y;K/

are circles over every representation with nonabelian image, and a point over every
representation with abelian image.

In particular, any choice of perturbation data �Dfei ;gig which make R
\
�.Y;K/ a finite

union of isolated points must include at least one perturbation curve P � Y n.K\[W /

which intersects the separating torus @N.K/ essentially and hence must link H [W

in some way. This observation motivates using the perturbation curve P in Figure 9.
However, before analyzing the effect of perturbing along P to turn circles into pairs of
isolated points, a discussion concerning the nondegeneracy of the space R

\
�.Y;K/ for

appropriate perturbations is in order.

7.2 Nondegeneracy

In Floer-type theories, the chain complexes are generated by critical points of a func-
tional defined on a configuration space, and the boundary operator is defined by counting
integral curves for the gradient of the functional that connect the critical points (so-
called “gradient flowlines”). The critical points of the functional form a moduli space.
In order to have a finitely generated complex, then, one must ensure that the number
of points in this space is finite. This can be achieved by the analogue of a slight
perturbation of a real-valued function on a finite-dimensional manifold to ensure that
its critical points are nondegenerate, and hence isolated (and finite in number if the
manifold is compact). In the infinite-dimensional setting, we likewise must perturb the
functional defining the Floer theory to achieve nondegeneracy of the Hessian. This can
be viewed as a first step in constructing a Floer theory.

To ensure that differentials are defined, and that the resulting homology is well defined,
however, requires more. Namely, we must have some form of transversality for
the moduli spaces of gradient flow lines connecting critical points of the functional.
Precise conditions depend on the context, and are usually subsumed under the terms
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“regularity” or “transversality.” For example, in finite dimensions a function f W M!R
is nondegenerate if it is a Morse function, and regularity adds the requirement that the
stable and unstable manifolds intersect transversally (which is usually referred to as the
Morse–Smale condition). In Floer theory for Lagrangian intersections, nondegeneracy
is typically achieved by a Hamiltonian isotopy of the Lagrangian submanifolds so that
they intersect transversally. Regularity is achieved by perturbing the almost complex
structure which defines the J–holomorphic curve equation satisfied by gradient flowlines
in the space of paths connecting the two Lagrangians. In the context of instanton
homology, nondegeneracy is expressed by the condition that the perturbed Chern–
Simons functional is Morse in a suitable infinite-dimensional sense.

A Lagrangian–Floer theory in the context of traceless character varieties of knot
complements in 3–manifolds has not yet been worked out and identified with singular
instanton knot homology. Providing such an identification is an instance of the Atiyah–
Floer Conjecture, which has been established in several other settings. In all known
cases critical points of the Chern–Simons functional are nondegenerate (ie Morse)
exactly when the corresponding Lagrangian intersections are transverse. This is proved
by identifying the kernel of the Hessian of the Chern–Simons functional at a critical
point with some form of de Rham cohomology, which is then related to transversality
of the Lagrangian submanifolds via the de Rham theorem and the Mayer–Vietoris
sequence.

To carry this out carefully below in our context would take us too far afield from the
intent of this article. We offer instead the following as a notion of nondegeneracy in
this article, which is adapted from Weil’s observation [40] that H 1.� I g/ is identified
with the tangent space at a smooth point of the character variety �.�;G/.

Given perturbation data � with the fj real analytic, the space R
\
�.Y;K/ is the orbit

space of the free SU.2/=˙ 1 D SO.3/ conjugation action on a real analytic variety.
This variety is constructed as follows.

Consider a finite presentation hG jRi of �1.Y n .K[H [W [P //. The presentation
defines a polynomial map F1W SU.2/G ! SU.2/R with preimage F�1

1
.1; 1; : : : ; 1/

parameterizing all homomorphisms �1.Y n .K[H [W [P //! SU.2/, in the usual
way.

Fixing three words in the generators representing the meridians �K ; �H and �W ,
a map F2W SU.2/G ! SU.2/ is defined by sending a G–tuple to the image of �W .
Then we have that F�1

2
.�1/ meets F�1

1
.1; 1; : : : ; 1/ in those homomorphisms sending

�K ; �H to perpendicular elements of C.i / and �W to �1. (We are assuming K is
a knot, not a link. In the case when K has n components and H links K1 , define
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F2W SU.2/G ! SU.2/ � Rn�1 by taking the last factors to be the value Re.�Ki
/,

i D 2; : : : ; n.)

Finally, for each perturbation curve Pj , we will let Gj W SU.2/! SU.2/ be the map
Gj .e

�Q/D efj .�/Q . The properties of fj imply that Gj is well defined. The meridian
and longitude pj ; j̀ of Pj , expressed as words in the generators G , give rise to a map
F3;j W SU.2/G! SU.2/ by F3;j D p�1

j Gj . j̀ /. The preimage of 1 precisely captures
the perturbation constraints (Equation (19)).

The product

F D F2 �F1 �

Y
j

F3;j W SU.2/G! SU.2/�SU.2/R �
Y
j

SU.2/

defines R
\
�.Y;K/ in the sense that

R\
�.Y;K/D F�1.1; 1; : : : ; 1/=SU.2/:

Thus R
\
�.Y;K/ is finite if and only if F�1.1; 1; : : : ; 1/ is a finite union of copies of

SO.3/ with SU.2/=˙ 1 acting freely.

A representation � whose conjugacy class lies in R
\
�.Y;K/ determines a point (which

we denote again by �) in F�1.1; 1; : : : ; 1/, by evaluating � on the elements of G . We
call � nondegenerate if is isolated in R

\
�.Y;K/ and the kernel of the differential dF�

is 3–dimensional, ie it is the tangent space to the orbit under the diagonal conjugation
action of SU.2/ on SU.2/G . (The fact that, for any G –tuple in the preimage, �K ; �H

are sent to noncommuting elements of SU.2/ implies that the stabilizer of the G –tuple
is f˙1g and the orbit is 3–dimensional.) We then call R

\
�.Y;K/ nondegenerate if it

is finite and all its points are nondegenerate.

Standard arguments show that the notion of nondegeneracy is unchanged by changing
the presentation. Indeed, any two finite have a common stabilization obtained by adding
generators and relations to each, and stabilization preserves nondegeneracy.

It will be clear from our constructions below that as a space of representations,
R
\
�.Y;K/ is a transverse intersection of two smooth 1–dimensional manifolds in a 2–

manifold, in two different ways corresponding to the two different pillowcase pictures.
One can show that transversality in these two contexts is equivalent, and equivalent to
nondegeneracy as defined above, and we will explore this issue in subsequent work.
In this sense we produce in Theorem 7.1 below (in concert with the results of [12]) a
perturbation which makes R

\
�.Y;K/ nondegenerate.

A more sophisticated approach is to recast this in the context of group cohomol-
ogy, which identifies the kernel of dF� with certain 1–cocycles and the tangents
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to the conjugation orbits with coboundaries, at least when the perturbation is trivial.
Then nondegeneracy is equivalent to the vanishing of H 1.Y n .K[H /I so.3/�/ (or,
if K has n components, the vanishing of the kernel of H 1.Y n .K[H /I so.3/�/!Ln

iD1 H 1.�Ki
I so.3/�/); see [26, Lemma 3.13] and also Gerard [11, Proposition 2.10].

For nontrivial perturbations similar conditions apply. The references show that non-
degeneracy in this cohomological sense is equivalent to the perturbed Chern–Simons
functional CSCh� having a nondegenerate Hessian at its critical points, and therefore
its critical points serve as generators for the instanton Floer complex defining I \.Y;K/.

To illustrate these ideas, we show that the distinguished representation ˛ 2R\.S3;K/,
defined in Equation (11), is nondegenerate.

Decompose S3 n .K [H [W / into S3 nN.K/ and N.K/ n .K [H [W / along
a torus T D @N.K/ as in Equation (13). Let �K ; �H ; �W denote the meridians of
K;H;W and �K the longitude of K . Then

�1.N.K/ n .K[H [W //D h�K ; �H ; �W ; �K j �W D Œ�K ; �H �; 1D Œ�K ; �K �i:

The representation ˛ restricts to the unique abelian representation on S3 n N.K/

sending the meridian �K (which generates H1.S
3 nN.K//) to i . The longitude �K

is sent to 1 since it maps to zero in H1.S
3 n N.K//. Finally, ˛ restricts to the

nonabelian representation

˛.�K /D i ; ˛.�H /D j ; ˛.�W /D�1; ˛.�K /D 1;

on N.K/ n .K[H [W /.

Hence (taking coefficients in su.2/ twisted by ˛ ),

H 0.S3
nN.K//DRDH 0.T /; H 0.N.K/ n .K[H [W //D 0:

Since ˛.�K /D ei�=2 satisfies �K .˛.�K /
2/¤ 0, H 1.S3 nN.K//D R (see [20])

and H 1.T /DR2 .

A straightforward calculation yields H 1.N.K/ n .K [H [W //D R4 and that the
restriction to H 1.T /D R2 is surjective. Indeed, given any pair of unit quaternions
.q1; q2/ near .i ; j / and a third unit quaternion q3 in the unique circle subgroup
through q1 , the assignment

(20) �K 7! q1; �H 7! q2; �W 7! Œq1; q2�; �K 7! q3;

gives a smooth 7–dimensional family of irreducible representations near ˛ on which
conjugation acts freely modulo ˙1, so that H 1.N.K/n.K[H[W // is 4–dimensional
and maps onto H 1.T /.
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The Mayer–Vietoris sequence then shows that H 1.S3 n .K[H [W //DR3 . Since
H 1.S3 n .K [H [W //Š ker dF1=B1 , where B1 denotes the tangent space to the
3–dimensional orbit through ˛ of the conjugation action (see eg [40]), it follows that
ker dF1 ŠR6 . The map SU.2/� SU.2/! SU.2/ taking a pair to their commutator
has �1 as a regular value, and hence the map F2 is a submersion near ˛ because the
quaternions q1; q2 of Equation (20) can be chosen arbitrarily near i ; j . This implies
that the kernel of d.F1�F2/ at ˛ is 6�3D 3 dimensional, so that ˛ is nondegenerate.
In particular, ˛ remains nondegenerate under small perturbations.

7.3 Perturbation in a 3–ball

Place a loop P inside B3 , linking A2 and H as illustrated in Figure 9. Use the standard
meridian-longitude framing of P to think of P as the image of an embedding of a solid
torus eW S1 �D2! B3 . Label the generators of �1.B

3 n .A1[A2[H [W [P //

by a; b; c; d; h; w , and p as indicated in the figure.

ab

c d

p

h
w

Figure 9: The local picture in the 3–ball where the perturbation occurs: the
holonomy perturbation occurs in the neighborhood of the blue circle.

Fix a smooth function f W R!R satisfying f .0/D0; jf .x/j�1, f .�x/D�f .x/, f
is 2� periodic and f .x/¤ 0 when x is not a multiple of � (it suffices for our purposes
to take f .x/D sin.x/). Note that f .n�/D 0 for integers n.

Fix an �� 0 and denote the data .P; f; �/ by � . Define the � –perturbed moduli space
R
\
�.B

3;A1[A2/ to be the space of conjugacy classes of SU.2/ representations which
send a; b; c; d and h to C.i /, w to �1, and which satisfy the perturbation condition.
Thus if the longitude �P D bh of the component P is sent to eˇQ and the meridian p

to e�Q for some Q 2 C.i /, then

� D �f .ˇ/:
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In particular, when � D 0, R
\
�.B

3;A1[A2/DR\.B3;A1[A2/.

The following is our main result. Its statement is perhaps best understood by examining
Figure 10.

Theorem 7.1 For all � > 0 small enough, the space R
\
�.B

3;A1[A2/ is homeomor-
phic to a circle, parameterized by ˇ 2R=2�Z by the assignment

�.ˇ/W a 7! i ; b 7! e.�=2CˇC�f .ˇ//ki ; c 7! e.�=2Cˇ��f .ˇ//ki ;

d 7! e�2�f .ˇ/ki ; h 7! �j e��f .ˇ/k; p 7! e�f .ˇ/k; w 7! �1:

Proof A straightforward calculation using the Seifert–Van Kampen theorem shows
that

�1.B
3
n .A1[A2[P [H [W //

is presented with generators a; b; c; d; w; h;p , and relations

(21) c D xpbp; d D xcba; Œbh;p�D 1; Œa xp; h�D .ha/w.xaxh/:

(The two commutator relations come from the tori which form the boundaries of the
tubular neighborhoods of P and H .)

Let R
\
�.B

3 nP;A1[A2/ denote the space of conjugacy classes of SU.2/ representa-
tions which send a; b; c; d; h to C.i / and w to �1, with no restrictions on where p

is sent.

Since a; b; c; d satisfy the same relation d Dxcba in �1.B
3n.A1[A2[P[H [W //

that is the defining relation in �1.S
2nfa; b; c; dg/, Proposition 3.1 implies that we may

assume up to conjugation that any representation satisfies (abusing notation slightly to
identify generators with their image in SU.2/)

aD i ; b D eki ; c D e�ki ; d D e.��/ki

for .; �/ 2 Œ0; ���R=.2�Z/. It will be convenient to relax this condition and assume

.; �/ 2R=.2�Z/�R=.2�Z/D S1
�S1

for most of this proof, and then determine which pairs of representations are equivalent
at the end of the argument.

Denote by QH the image of h, and let QP 2C.i / be a traceless unit quaternion so that
�P D bh is sent to eˇQP for some ˇ 2 Œ0; 2�/. Since p commutes with �P , it follows
that the representation sends p to e�QP for some angle � . The perturbation condition
implies that � D �f .ˇ/, but we’ll impose this condition last. For the moment, we
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assume � is small, so that j�j< �
2

. Note that QP is determined up to ˙1, unless �P

is sent to ˙1, in which case we may take QP to be any element of C.i /.

Summarizing what we have accomplished so far: any representation whose conjugacy
class lies in R

\
�.B

3;A1[A2/ can be conjugated so that

(22)
aD i ; b D eki ; c D e�ki ; d D e.��/ki ;

hDQH ; p D e�QP ; w D�1; �P D eˇQP ;

for some 6–tuple

(23) .; �;QH ;QP ; ˇ; �/ 2 Œ0; 2�/� Œ0; 2�/�C.i /�C.i /� Œ0; 2�/� .��
2
; �

2
/:

One obvious redundancy in this description is that we have .�; ˇ;QP / is equivalent to
.��; ˇC�;�QP /.

The relation xpbp D c implies that

(24) e��QP eki e�QP D e�ki :

Recall from Proposition 2.1 that the conjugation action of etQ on the 2–sphere C.i /

is rotation about the axis through ˙Q of angle 2t .

If ek ¤ e�k , then Equation (24) implies that QP lies on the great circle in C.i /

through k and e.C�/=2ki . This is because the only axes ˙Q for which the orbits of
rotation pass through both eki and e�ki lie on this great circle.

If ekDe�k , then e�QP stabilizes eki . When �¤0, this implies that QP D˙eki ,
so we have that either � D 0 (and QP is not constrained by this relation) or that
QP D˙eki D˙ sin.�

2
/e.C�/=2ki .

Hence, in any case,

(25) � D 0 and  D �; or QP D cos tkC sin te.C�/=2ki

for some t 2 Œ0; 2�/.

The relation hD xb�P implies that QH is determined by  , ˇ and QP by the equation

QH D�i e�keˇQP :
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Since Re.QH /D 0, using Equation (25) we see that when � ¤ 0,

0D Re.QH /D Re.�i e�keˇQP /

D Re.�i e�k.cosˇC sinˇ.cos tkC sin te.C�/=2ki ///

D sinˇ Re.�i e�k.cos tkC sin te.C�/=2ki //

D sinˇ sin t Re.�i e�ke.C�/=2ki /

D sinˇ sin t cos.��
2
/:

Hence

(26) 0D sinˇ sin t cos.��
2
/

Next, consider the relation Œa xp; h�D hawxaxhD�1, or, in terms of our chosen coordi-
nates,

Œi e��QP ;QH �D�1:

This equation can be rewritten, using the fact that if Q 2 C.i /, then Q�1 D�Q, as

i e��QP QH .i e��QP /�1
D�QH :

Part (iii) of Proposition 2.1 shows that i e��QP is itself a traceless unit quaternion, and
is perpendicular to QH . Hence

(27) 0D Re.i e��QP /D� sin � Re.i QP /

D� sin � Re.i .cos tkC sin te.C�/=2ki //

D sin � sin t cos
�C�

2

�
So far we have shown all SU.2/ representations of �1.B

3 n .A1[A2[P [H [W //

sending a; b; c; d; h into C.i /, and w 7!�1 can be conjugated to have the form in (22),
for a 6–tuple in (23); furthermore, either � D 0 and  D � , or we can express QP as

QP D cos tkC sin te..C�/=2/ki :

In the latter case, equations (26) and (27) must also hold.

Now assume that such a representation corresponds to the holonomy of a perturbed
flat connection on B3 n .A1[A2[H [W /. Then there is the additional condition
that � D �f .ˇ/, where f is an odd, 2� –periodic, function, whose zeroes occur only
at multiples of � . We will examine what this additional restriction implies about the
representations in R

\
�.B

3;A1[A2/.
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To begin, note that � D 0 if and only if sinˇ D 0. If � D sinˇ D 0, then the
representation is independent of QP 2 C.i /; in particular, in this case, we can assume
QP D˙k. We next examine the case that � ¤ 0 and sinˇ ¤ 0. In this case, either

sin t D 0; or cos
��C

2

�
D 0; cos

���
2

�
D 0:

(Note we are using the fact that � D 0 if and only if sin � D 0, since j�j< �
2

.)

Suppose cos.�C
2
/D 0 and cos.��

2
/D 0. Since  2 Œ0; 2�/ and � 2 Œ0; 2�/, there

are two solutions:
.; �/D .0; �/ or .�; 0/:

If .; �/ is equal to .�; 0/, then Equation (22) implies that aD i ; b D�i ; c D i . If
.; �/D .0; �/, then aD i ; bD i ; cD�i . The relation xpbpD c implies in either case
that e��QP i e�QP D�i . Proposition 2.1 then implies that e��QP is a traceless unit
quaternion, which is impossible since j�j< �

2
. Thus one of cos.�C

2
/ and cos.��

2
/

must be nonzero. It follows that if sinˇ ¤ 0, then sin t D 0. In particular, either
sinˇ¤ 0 and sin t must equal zero, or sinˇD 0 and we can assume sin t D 0 without
changing the representation. Hence we may assume that QP D �k for some � 2 f˙1g.

We’ve now seen that any representation whose conjugacy class lies in R
\
�.B

3;A1[A2/

can be conjugated so that

(28)
aD i ; b D eki ; c D e�ki ; d D e.��/ki ;

hD�i e.ˇ��/k; p D e�f .ˇ/�k; w D�1; �P D eˇ�k;

for some 4–tuple

(29) .; �; ˇ; �/ 2 Œ0; 2�/� Œ0; 2�/� Œ0; 2�/� f˙1g:

Since f .ˇC�/D�f .ˇ/, then we have that .; �; ˇ; �/ gives the same representation
as .; �; 2� � ˇ;��/ when ˇ > 0. When ˇ D 0, then ˇ D �ˇ . Hence we may
assume that � D 1, or more precisely, any representation whose conjugacy class lies in
R
\
�.B

3;A1[A2/ can be conjugated so that

(30)
aD i ; b D eki ; c D e�ki ; d D e.��/ki ;

hD�i e.ˇ�/k; p D e�f .ˇ/k; w D�1; �P D eˇk;

where so far, the angles ; �; ˇ could lie anywhere in Œ0; 2�/.

Finally, we determine what relations between the angles are necessary to satisfy the
perturbed flat equation.
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The relation xpbp D c implies that e��f .ˇ/keki e�f .ˇ/k D e�ki , which implies
e.�2�f .ˇ//k D e�k , so

(31) � �  � 2�f .ˇ/ .mod 2�/:

The relation Œa xp; h�D�1 gives

Œi e��f .ˇ/k;�i e.ˇ�/k �D�1

and so

�1D i e��f .ˇ/k.�i /e.ˇ�/ke�f .ˇ/k.�i /e�.ˇ�/ki D e2.�f .ˇ/Cˇ�/k:

Hence

(32)  � ˇC �f .ˇ/C �
2

mod �:

In other words, we either have

 � ˇC �f .ˇ/C �
2
.mod 2�/;

� � ˇ� �f .ˇ/C �
2
.mod 2�/;

(33)

or else

 � ˇC �f .ˇ/C 3�
2
.mod 2�/;

� � ˇ� �f .ˇ/C 3�
2
.mod 2�/:

(34)

These formulas give us two families of representations indexed by ˇ 2 Œ0; 2�/ whose
union maps surjectively to R

\
�.B

3;A1[A2/. These define parameterizations of two
smooth circles:

(35)

�.ˇ/W a 7! i �0.ˇ/W a 7! i

b 7! e.ˇC�f .ˇ//kj b 7! �e.ˇC�f .ˇ//kj

c 7! e.ˇ��f .ˇ//kj c 7! �e.ˇ��f .ˇ//kj

d 7! e�2�f .ˇ/ki d 7! e�2�f .ˇ/ki

h 7! �j e.��f .ˇ//k h 7! j e.��f .ˇ//k

p 7! e�f .ˇ/k p 7! e�f .ˇ/k

w 7! �1 w 7! �1

We next observe that the second circle of representations, �0 , is simply a conjugate of a
reparametrization of the first one, � . Indeed, from the odd symmetry of the function f ,
and the fact that conjugation by i sends j 7! �j and k 7! �k, a straightforward
calculation using (35) shows that i conjugates �0.2� �ˇ/ to �.ˇ/.
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Finally, we show that in the circle � , distinct values ˇ1; ˇ2 2 Œ0; 2�/ never give conju-
gate representations (which includes equal representations). Suppose that conjugation
by some g 2 SU.2/ sends �.ˇ1/ to �.ˇ2/. Then conjugation by g fixes i D �.ˇi/.a/,
so g D e�i for some � .

Considering the real part of the condition that g.�.ˇ1/.p//g
�1 D �.ˇ2/.p/, we

see that f .ˇ1/ D ˙f .ˇ2/. The equation f .ˇ1/ D f .ˇ2/ D 0 only occurs when
fˇ1; ˇ2g D f0; �g, by our assumptions about the function f . Then consideration
of the image of b shows gj g�1 D �j (so g D ˙i ), but the image of h gives the
contradictory condition that gj g�1 D j .

For any other pair of ˇ values, g.�.ˇ1/.p//g
�1 D �.ˇ2/.p/ is impossible unless

g 2 f˙1;˙i g. The cases g D˙1 imply �.ˇ1/D �.ˇ2/, which is easy to rule out by
considering the images of p and b .

If gD˙i , then �.ˇ2/.p/Dg.�.ˇ1/.p//g
�1 implies that f .ˇ2/D�f .ˇ1/. But then

�.ˇ2/.h/D g.�.ˇ1/.h//g
�1 implies that �f .ˇ2/D��f .ˇ1/C� .mod 2�/, which

is impossible given that �jf .x/j < �
2

. This shows that �.ˇ/, ˇ 2 Œ0; 2�/, represent
distinct conjugacy classes of representations.

2�

0

0 �


� �

Figure 10: The restriction to the pillowcase of the circle of perturbed trace-
less representations of the 3–ball containing a trivial tangle: the black arc in
the figure on the left is the image of the unperturbed traceless representations,
and the brown circle is the image of the perturbed traceless representations.

Theorem 7.1 allows us to determine the image R
\
�.B

3;A1[A2/!R.S2; fa; b; c; dg/,
as well as the properties of the limit of R

\
�.B

3;A1 [A2/! R.S2; fa; b; c; dg/ as
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�! 0. To emphasize the dependence on the parameter � , we write

R
\

.P;f;�/
.B3;A1[A2/Š f�

�.ˇ/ j ˇ 2R=2�Zg;

where �� denotes the circle of representations of Equation (35).

Theorem 7.1 shows that the circle fibers of the restriction R\.B3;A1 [ A2/ !

R.S2; fa; b; c; dg/ have been perturbed away to pairs of points in the restriction
R
\
�.B

3;A1[A2/!R.S2; fa; b; c; dg/. We make this more precise in the following
corollary.

Corollary 7.2 Given perturbation data � D .P; f; �/ with P as in Figure 9, the
restriction map to the pillowcase

R
\

.P;f;�/
.B3;A1[A2/!R.S2; fa; b; c; dg/

is an immersion of the circle f�.ˇ/ j ˇ 2 R=2�Zg for � > 0 small. Its image is the
image of the curve in R2 , ˇ 7! .ˇC �f .ˇ/C �

2
; ˇ� �f .ˇ/C �

2
/ under the canonical

projection of R2 to the pillowcase.

The limit
lim
�!0

R
\

.P;f;�/
.B3;A1[A2/�R\.B3;A1[A2/

is a circle consisting of those representations which send h to ˙j , ie those points with
� D˙�

2
in Proposition 6.2. Its projection to the pillowcase is a map from the circle

onto the diagonal ˇ 7! .ˇC �
2
; ˇC �

2
/, which is a two-to-one immersion except at the

corners when ˇ D �
2

and 3�
2

.

Proof The statements all follow immediately from the formulas of Theorem 7.1 except
possibly the fact that the circle f��.ˇ/g is immersed in the pillowcase when � > 0 is
small enough.

This follows from the fact that the smooth embedding

R!R2; ˇ 7! .ˇC �f .ˇ/C �
2
; ˇ� �f .ˇ/C �

2
/

avoids the branch points .�Z/�.�Z/ in the branched cover R2!R.S2; fa; b; c; dg/

of the pillowcase.

To see why this is true, recall that the branch points are the points f.�k; �`/ j k; `2Zg.
Suppose .ˇC �f .ˇ/C �

2
; ˇ� �f .ˇ/C �

2
/D .�k; �`/, then �f .ˇ/D �

2
.k � `/, and

hence kD ` and f .ˇ/D 0. But we also have ˇC �
2
D
�
2
.kC`/, so that ˇD �

2
.2`�1/

and hence f .ˇ/¤ 0, since f only vanishes for multiples of � .

Geometry & Topology, Volume 18 (2014)



252 Matthew Hedden, Christopher M Herald and Paul Kirk

Figure 10 illustrates the situation when f .x/D sin.x/ and � D 0:2. The immersed
brown circle (which by abuse of notation we also denote �) has one double point,
corresponding to the parameter values ˇ D 0; � . The black diagonal arc corresponds
to the image of the unperturbed moduli space, each point in the interior of the black
arc corresponding to a latitudinal circle in the 2–sphere R\.B3;A1 [A2/ and the
endpoints corresponding to the poles. As � shrinks towards 0, the circle approaches
the black curve, with pairs of points collapsing to a single point along the interior of
the arc. In the limit, the pair of distinct representations on each circle fiber over the
black curve are the two unperturbed representations of Proposition 6.2 sending h to j

and �j and which project to the given point on the black arc in the pillowcase.

Notice that the restriction map R
\
�.B

3;A1 [ A2/ ! R.S2; fa; b; c; dg/ is not an
embedding and encloses zero signed area in the pillowcase. This can presumably be
explained by the fact that the image has to lift to a Legendrian circle with respect to a
natural connection in a Chern–Simons U.1/ bundle over R.S2; fa; b; c; dg/ as in the
situation for closed surfaces; see Ramadas, Singer and Weitsman [35] and [12].

8 The intersection picture

The following corollary summarizes the results of Theorem 7.1 and Corollary 7.2 in a
statement that suggests an intersection picture corresponding to Diagram (2). Perturbing
along the unknotted curve P in a 3–ball corrects, in a manner which is independent
of the pair .Y;K/, for the problem that the unperturbed Chern–Simons functional is
never Morse.

Corollary 8.1 Suppose that K � Y is a knot and B3 � Y is a 3–ball intersecting K

transversally in two trivial arcs ADA1[A2 . Let .Y0;K0/ WD .Y nB3;K nA/.

Assume that R.Y0;K0/ is a smooth 1–manifold away from a finite number of points
and that the restriction to the pillowcase

R.Y0;K0/!R.S2; fa; b; c; dg/

is an immersion transverse to the arc � D  on the manifold points, and takes the
nonmanifold points outside a neighborhood of the arc � D  . Then for a small enough
choice of perturbation, the intersection in the pillowcase of R.Y0;K0/ and the circle �
is transverse, and hence the set R

\
�.Y;K/ is nondegenerate (and finite).

In complete generality, achieving the conditions on R.Y0;K0/ will also involve suitable
perturbations along curves in Y0 nK0 . One of our primary goals is to “combinato-
rialize” the instanton homology of a knot in terms of the intersection picture given
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by Diagram (2) and Corollary 8.1. In later work we will explore the calculation of
gradings, and explore differentials in terms of this picture. The reader should look at
Figures 15 and 16 below for an illustration of Corollary 8.1.

9 The unreduced case

Kronheimer and Mrowka construct two versions of their singular instanton homology
for .Y;K/. The first, reduced instanton homology I \.Y;K/, corresponds to taking the
connected sum K\ of K with a Hopf link and working with an SO.3/ bundle which
is nontrivial on the torus which separates the components of the Hopf link. For this
version of their theory, the critical set of the Chern–Simons functional is identified
with R\.Y;K/. For knots in S3 with simple representation varieties (or for all knots,
after applying a perturbation outside a neighborhood of K which contains H and W ),
R\.S3;K/ consists of one circle for each nonabelian point in the space R.S3;K/ of
traceless representations, and one nondegenerate isolated point corresponding to the
abelian representation in R.S3;K/. Theorem 7.1 then shows how to perturb along
one curve P to turn each circle into a nondegenerate pair of isolated points.

The second version, unreduced instanton homology I ].Y;K/, corresponds to taking the
disjoint union K] of K with a Hopf link H1[H2 rather than the connected sum. The
critical set of the corresponding Chern–Simons functional is R].Y ;K/DR\.Y ;K[H1/.
For knots in S3 with simple representation varieties (or for all knots, after further
perturbation), R].S3;K/ consists of a copy of SO.3/ for each nonabelian point in
the space R.S3;K/ of traceless representations, and one 2–sphere corresponding to
the abelian representation in R.S3;K/. This follows quickly from Lemma 4.2 by
decomposing along the 2–sphere separating the Hopf link from K , by similar but
easier versions of Propositions 4.3 and 4.4. In this section we prove a counterpart to
Theorem 7.1 for R].Y;K/ by using two perturbation curves.

Given a knot (or link) K in a 3–manifold Y , consider a 3–ball B3�Y intersecting K

in two unknotted arcs A1 [ A2 . Place the Hopf link H inside B3 and place an
arc W spanning the two components of the Hopf link, as shown by the black curves in
Figure 11.

As Kronheimer and Mrowka observe in [26; 25], every conjugacy class of represen-
tations which take the meridians of K and H to traceless matrices and the meridian
of W to �1 can be uniquely conjugated so that the two meridians of H are sent to i

and j respectively. This shows that the corresponding unperturbed representation
space R].Y;K/ is homeomorphic to the space zR.Y;K/ of all traceless representations
of �1.Y nK/ (not conjugacy classes). Since the orbits of the SU.2/ conjugation
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action on zR.Y;K/ have dimension greater than 1, R].Y;K/ is never finite. For
knots in S3 with simple representation varieties, R].Y;K/ is a disjoint union of a
2–sphere corresponding to the distinguished representation ˛ and a number of copies
of SO.3/D SU.2/=˙ 1.

Place two smaller 3–balls B3
1

and B3
2

in the interior of B3 as illustrated in Figure 11.
Denote their boundaries by S2

i D @B
3
i . Place a perturbation curve P1 inside B3

1
and

a second perturbation curve P2 inside B3
2

, as indicated. Label the various meridians
a; b; c; d;m; n, and p2 , as indicated.

b

c

a

d

m

n

p2

P2

P1

S2
1

S2
2

S2

Figure 11: The “]” construction and two perturbation curves: the black
Hopf link in the center and the arc connecting its components represents the
additional data defining the ] construction relevant to unreduced singular in-
stanton homology; the holonomy perturbation takes place in the neighborhood
of the blue circles P1 and P2 .

Fix � > 0, and choose the perturbation function for the curve P1 to be � sin.x/. For
the curve P2 , take the perturbation function 2� sin.x/. With this perturbation data �
in place, we obtain a space R

]
�.B

3;A1[A2/ and a restriction map to the pillowcase:

R]
�.B

3;A1[A2/!R.S2; fm; b; c; ng/

Let arcsinW Œ�1; 1�! Œ��
2
; �

2
� denote the inverse sine function and define two smooth

functions

�1W S
1
! Œ��

6
; �

6
�; �1.ˇ/D arcsin.�1

2
sin.ˇ//;

�2W S
1
! Œ5�

6
; 7�

6
�; �2.ˇ/D � � �1.ˇ/:

(36)
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The set f.ˇ; �/ 2 S1 � S1 j sinˇ D �2 sin �g is precisely the disjoint union of the
graphs of �1.ˇ/ and �2.ˇ/.

Theorem 9.1 The space R
]
�.B

3;A1[A2/ is the disjoint union of two circles, param-
eterized by ˇ 2R=.2�Z/ and i D 1; 2. These satisfy

m 7! i ; b 7! e��i .ˇ/ke.�=2CˇC� sinˇ/ki ; c 7! e��i .ˇ/ke.�=2Cˇ�� sinˇ/ki ;

n 7! e�2� sin.ˇ/ki ; a 7! e��i .ˇ/ki ; d 7! e.��i .ˇ/�2� sin.ˇ//ki :

In particular the restriction map R
]
�.B

3;A1[A2/!R.S2; fm; b; c; ng/ is given by

�i.ˇ/D .��i.ˇ/C
�
2
CˇC � sinˇ;��i.ˇ/C

�
2
Cˇ� � sinˇ/; i D 1; 2:

Proof Choose � 2R
]
�.B

3;A1[A2/. Theorem 7.1 applied to the sphere S2
1

implies
that � may be uniquely conjugated to a representation satisfying

a 7! i ; b 7! e.�=2CˇC� sin.ˇ//ki ; c 7! e.�=2Cˇ�� sin.ˇ//ki ; d 7! e�2� sin.ˇ/ki ;

for some ˇ 2 Œ0; 2�/. Proposition 3.1, applied to S2 (or S2
2

), then implies that there
exists a � 2 S1 so that

m 7! e�ki ; n 7! e.��2� sinˇ/ki :

The fundamental group �1.B
3
2
n .K[H [P2// is generated by a; d;p2;m; n subject

to the relations d D xp2ap2; n D xp2mp2 , and Œxam;p2� D 1. The longitude of P2 is
equal to xam, which is sent to

�i e�ki D e��k:

The perturbation condition for P2 then says that the meridian p2 is sent to e�2� sin.�/k .
The relation d D xp2ap2 then implies

e�2� sin.ˇ/ki D e2� sin.�/ki e�2� sin.�/k
D e4� sin.�/ki

so that (since � is small) sinˇ D�2 sin � . The relation nD xp2mp2 places the same
restriction sinˇ D�2 sin � . Thus � D �1.ˇ/ or � D �2.ˇ/.

Conversely, given any � satisfying sinˇ D�2 sin � , the assignment

a 7! i ; b 7! e.�=2CˇC� sin.ˇ//ki ; c 7! e.�=2Cˇ�� sin.ˇ//ki ;

d 7! e�2� sin.ˇ/ki ; m 7! e�ki ; n 7! e.��2� sinˇ/ki ; p2 7! e�2� sin.�/k;
(37)

uniquely defines a representation whose conjugacy class lies in R
\
�.B

3;A1[A2[H /.

Conjugating by e��=2k completes the proof.
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Figure 12 illustrates the image of the two circles of Theorem 9.1, as well as the circle
of Theorem 7.1. The red and green circles correspond to �1 and �2 , respectively,
from Theorem 9.1. The brown circle corresponds to the circle � of Theorem 7.1 and
Corollary 7.2. In this figure we used a moderately sized perturbation (� D :4) to
highlight the fact that these three circles map to three distinct (but close) immersed
circles in the pillowcase. It is straightforward to check that (just as in the case of �) for
i D 1; 2, the map �i W S

1!R.S2; fm; b; c; ng/ is an immersion with a single double
point corresponding to �i.0/D �i.�/. As �! 0, each circle limits to a generically
two-to-one map onto the diagonal arc  D � .

Figure 12: Illustrating Theorem 9.1: The theorem analyzes the perturbed
traceless representations of the ball from Figure 11. There are two circles, �1

and �2 , of such representations, and the figure shows their restriction to the
pillowcase. These are the red and green circles. Also shown (in brown) is the
image of the circle of representations � , from Theorem 7.1.

In particular, Corollary 8.1 has the following unreduced counterpart.

Corollary 9.2 Suppose that K � Y is a knot and B3 � Y is a 3–ball intersecting K

transversally in two trivial arcs ADA1[A2 .

Assume that R.Y0;K0/ D R.Y nB3;K nA/ is a smooth 1–manifold away from a
finite number of points and that the restriction to the pillowcase

R.Y0;K0/!R.S2; fa; b; c; dg/

is an immersion transverse to the arc � D  on the manifold points, and takes the non-
manifold points outside a neighborhood of the arc � D  (or that a suitable perturbation
in Y0 nK0 has been applied to achieve these conditions).

Then for a small enough choice of perturbation, the intersection in the pillowcase
of R.Y0;K0/ and each circle �1; �2 is transverse, and hence the set R

]
�.Y;K/ is

nondegenerate (and finite), and contains two points for each point of R
\
�.Y;K/.
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In particular, for knots in the 3–sphere with simple representation varieties, the 2–
sphere corresponding to the representation ˛�=2 is perturbed into a pair of isolated
points and each SO.3/ component is perturbed into four isolated points. This is the
unreduced counterpart to the fact that in the reduced case, the isolated representation ˛
perturbs to a nondegenerate isolated point and each circle perturbs to a pair of isolated
points.

For convenience, we will restrict our calculations in Section 12 below to the reduced
instanton chain complex CI\.Y;K/. By using Theorem 9.1, each calculation has its
unreduced counterpart, and in each case CI].Y;K/ has twice as many generators
as CI\.Y;K/.

10 Examples: 2–bridge knots

Now that we have worked out the perturbation picture inside the 3–ball, completing
the analysis of Diagram (2) is reduced to understanding the restriction map from
R.Y0;K0/ D R.Y nB3;K n .A1 [A2// to the pillowcase for various .Y;K/. We
explore this in detail for 2–bridge knots and torus knots in this and the following
section. In contrast to the analogous question for knot complements and the image of
their full representation varieties in the pillowcase as the character variety of the torus,
the situation is much simpler (in fact linear) for 2–bridge knots and complicated for
torus knots.

Consider the arcs A1.n/[A2.n/� B3 indicated in Figure 13, where n refers to the
number of half-twists (positive or negative according to the sign of n). Orient these
arcs arbitrarily and let a; b; c; d denote their oriented meridians as indicated.

n

ab

c d

'
:::

Figure 13: A box labeled “n” indicates n positive or negative crossings,
according to whether n> 0 or n< 0 .

It is straightforward to check that if �1.B
3 n .A1.n/[A2.n///! SU.2/ is a repre-

sentation given by

b 7! exki ; a 7! eyki ; c 7! ezki ; d 7! ewki ;
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then

(38)
�

x

y

�
D

�
1C n �n

n 1� n

��
z

w

�
:

Note that this formula holds with any choice of orientations of the arcs and choice of
sign of n.

Let a1; a2; : : : ; am be integers, with m odd, and define the rational number p=q with p

and q relatively prime by the continued fraction expansion

(39)
p

q
D a1C

1

a2C
1

a3C���

:

Consider the diagram of the 2–bridge knot K DK.p=q/ associated to this sequence
(see Burde and Zieschang [6]), with a 3–ball intersecting in unknotted arcs as indicated
in Figure 14. We assume p is odd so that K.p=q/ is a knot, not a link.

Our notational convention is that of Burde and Zieschang [6] and is consistent with the
convention that the 2–fold branched cover of K.p=q/ is L.p; q/, where L.p; q/ is
oriented as the quotient of S3 , in other words L.p; q/ is �p=q surgery on the unknot.
Some other authors use other conventions.

The complement S3 n .K[B3/ is homeomorphic to a 3–ball with two unknotted arcs
removed, and hence Proposition 6.1 implies that R.S3 nB3;K n .A1[A2// is an arc

�t W �1.S
3
n .K[B3//! SU.2/; t 2 Œ0; ��

determined by

�t .a
0/D i ; �t .b

0/D i ; �t .c
0/D etki ; �t .d

0/D etki ;

where a0; b0; c0; d 0 are illustrated in Figure 14.

Then �t .a/D i , and writing

�t .b/D eki ; �t .c/D e�ki ; �t .d/D e.��/ki ;

Equation (38) implies that

(40)

0@  .t/

�.t/

�.t/�  .t/

1ADM.�a1/N .a2/M.�a3/ � � �N .am�1/M.�am/

0@t

t

0

1A mod 2�;

where

M.a/D

0@1 0 0

0 1C a �a

0 a 1� a

1A ; N.a/D

0@1C a �a 0

a 1� a 0

0 0 1

1A :
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a2

�a1

�a3

�am

:::
:::

:::
:::

c0d 0 b0 a0

ab

c d

Figure 14: A tangle decomposition for a 2–bridge knot

Thus the path �t will restrict to a linear path in the pillowcase of the form

. .t/; �.t//D .mt; nt/; t 2 Œ0; ��

for some integers m; n. More precisely, this linear path in R2 projects to a path in
the pillowcase via the branched cover R2!R.S2; fa; b; c; dg/. We next show that
.m; n/D .q; q�p/.

Lemma 10.1 Let p; q be relatively prime nonzero integers and a1; a2; : : : ; am a
sequence giving the continued fraction expansion for p=q . Then the solution to
Equation (40) is

. .t/; �.t//D˙.qt; .q�p/t/:

Proof Note that

M.�am/

0@1

1

0

1AD
0@ 1

1� am

�am

1A :
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Suppose by induction that

M.�a3/N.a4/ � � �N.am�1/M.�am/

0@1

1

0

1AD
0@ s

s� r

�r

1A
for some relatively prime pair of integers r; s so that s

r
has continued fraction expansion

given by a3; a4; : : : ; am . Then

M.�a1/N.a2/ � � �M.�am/

0@1

1

0

1ADM.�a1/N.a2/

0@ s

s� r

�r

1A
D

0@ sC a2r

s� r C a2r � a1s� a1a2r

�a1s� a1a2r � r

1A :
Setting p0 D a1sC a1a2r C r and q0 D sC a2r it is easy to check that p0 and q0

are relatively prime and
p0

q0

D a1C
1

a2C
s
r

:

In particular, p0=q0 has continued fraction expansion given by a1; : : : ; am so that
.p0; q0/D˙.p; q/, and

M.�a1/N.a2/ � � �M.�am/

0@t

t

0

1AD˙t

0@ q

q�p

�p

1A :
The two paths

t 7! .qt; .q�p/t/; t 7! .�qt;�.q�p/t/; t 2 Œ0; ��;

are identical as maps to the pillowcase R.S2; fa; b; c; dg/DR2=�. Hence the sign
ambiguity in Lemma 10.1 does not affect the image in the pillowcase.

The intersection of the curve . .t/; �.t//D .qt; .q �p/t/, t 2 Œ0; �� with the curve
 D � in R.S2; fa; b; c; dg/ occurs at the pC1

2
points

(41) x` D
�
q 2�`

p
; .q�p/2�`

p

�
; `D 0; 1; : : : ; p�1

2
:

Note that the intersection point x0 corresponds to the distinguished representation ˛
of Equation (11).

Combining this observation with Proposition 6.2 and Lemma 4.2 one immediately
concludes with the following.
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Theorem 10.2 For the 2–bridge knot K D K.p=q/, the space R\.S3;K/ is a
union of circles and one isolated point ˛ , one circle for each intersection point x` ,
`D 1; 2; : : : ; p�1

2
with ˛ corresponding to x0 .

For perturbation data � as above, the space R
\
�.S

3;K/ is a union of pairs of isolated
nondegenerate points x`;1;x`;2 , `D 1; 2; : : : ; p�1

2
, and one additional nondegenerate

point ˛0 , corresponding to the intersections in R.S2; fa; b; c; dg/D Œ0; ��� Œ0; 2��=�

of the curve .qt; .q�p/t/, t 2 Œ0; �� with the circle f��.ˇ/g.

Proof The first assertion follows from Proposition 6.2 and Lemma 4.2. The second
then follows similarly from Corollary 7.2 and Lemma 4.2.

Note that if we consider the space zR.S3;K/ of traceless SU.2/ representations
of K (not modulo conjugation) then the same reasoning gives that for K DK.p=q/,
zR.S3;K/ is homeomorphic to the union of a 2–sphere (the conjugacy class of ˛ )

and p�1
2

copies of SO.3/D SU.2/=˙ 1 (the conjugacy classes of each x` ), giving
a different argument for the result of Lewallen [28, Theorem 2.4]. Since the spaces
zR.S3;K/ and R].S3;K/ are homeomorphic, Theorem 9.1 and Corollary 9.2 implies

that after perturbing along the two curves P1;P2 , R
]
�.S

3;K/ is the union of 4` points
x`;1;x`;2;x`;3;x`;4 , `D 1; 2; : : : ; p�1

2
and two additional points ˛0

1
; ˛0

2
.

2�

0

0 �


�

˛

˛0

c

x1

x2

Figure 15: R\ and R
\
� for

the trefoil

2�

0

0 �


�

˛

˛0 cx

x1

x2

cy

y2

y1

Figure 16: R\ and R
\
� for

the figure 8 knot
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We illustrate Theorem 10.2 in a few examples. Consider first the .2; n/ torus knot T2;n ,
corresponding to p=q D�n=1. Thus the restriction of . .t/; �.t// to the pillowcase
is parameterized by

t 2 Œ0; �� 7! .t; .nC 1/t/ 2 Œ0; ��� Œ0; 2��:

Figure 15 illustrates the case of the right handed trefoil knot, T2;3 DK.�3=1/, with
corresponding curve t 7! .t; 4t/. The unperturbed moduli space R\.S3;T2;3/ consists
of a isolated point ˛ and a circle c . The perturbed moduli space R

\
�.S

3;T2;3/ with
� D .P; sin.x/; �/, consists of three isolated representations, ˛0;x1;x2 . As �! 0,
˛0! ˛ and x1;x2 converge to a pair of antipodal points on the circle c . These three
points are the generators of the instanton knot homology chain complex of the trefoil.

As a further example Figure 16 illustrates the situation for K the figure 8 knot, which
can be expressed as K.�5=3/. This gives the curve t 7! .3t; 8t/. We conclude
that the unperturbed space R\.S3;K/ consists of a pair of circles cx; cy and the
isolated point ˛ . The perturbed moduli space (generating the instanton chain complex)
R
\
�.S

3;K/ contains five points, ˛0;x1;x2;y1;y2 .

�

2�

0

0 �


˛

˛0

x1

x2

y2

y1

z2

z1

w2

w1

v2

v1

Figure 17: R
\
� for the knot 72
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It is worth recalling that the 2–fold branched cover of K.p=q/ is L.p; q/, and hence the
fraction p=q does not uniquely determine KDK.p=q/. For example the figure 8 knot
can also be described as K.5=2/, and hence its character variety R.S3;K/ can also
be described as the intersection of .; �/D .2t;�3t/ with f D �g. This corresponds
to the fact that one can choose different (up to isotopy) 3–balls intersecting K in
two unknotted arcs, for the same reason that 3–manifolds admit different Heegaard
splittings.

Finally, Figure 17 illustrates the case when K D 72 D K.�11=5/. The restriction
R.S3nB3;Kn.A1[A2//!R.S2; fa; b; c; dg/ takes the arc to ..t/;�.t//D.5t;16t/.
The perturbed moduli space R

\
�.S

3;K/ contains 11 points,

˛0; x1; x2; y1; y2; z1; z2; w1; w2; v1; v2:

11 Examples: Torus knots

In contrast to the situation for the full character varieties �.S3;Tp;q/, the varieties of
traceless representations R.S3;Tp;q/ for torus knots are more complicated than those
for 2–bridge knots. We explore the situation in enough detail to establish that a 3–ball
intersecting a torus knot in 2 unknotted arcs can be found so that the restriction to the
pillowcase of any nonabelian representation in R.S3;Tp;q/ avoids the corners. We
then give a method to describe a 2–variable polynomial which cuts out the traceless
character variety of the complement of a 3–ball meeting a torus knot in two arcs.

Note that counting the points of R.S3;Tp;q/ can be done by looking at the intersections
of �.S3;Tp;q/ with the circle S.i / of Equation (5), or equivalently by computing the
signature of a torus knot. We establish that perturbing in a ball using Theorem 7.1
gives rise to a set of �.Tp;q/C 1 generators for the instanton complex CI\.S3;Tp;q/.

Figure 18 illustrates a .p; q/ torus knot Tp;q in S3 . We view S3 as q
r

and � s
p

Dehn
surgery on the two components of a Hopf link, where pr C qs D 1. The knot Tp;q

is isotopic to a curve parallel to the first component, a fact which can be verified
by identifying the parallel curve with a regular fiber in a Seifert fibering of S3 with
singular fibers of order p and q . In the figure, Tp;q has been isotoped so that it meets
a 3–ball in a pair of trivial arcs A1[A2 .

We wish to identify the space

R.Y0;K0/ WDR.S3
nB3;Tp;q n .A1[A2//

and its image in the pillowcase. Note that

.S3
nB3/ n .Tp;q n .A1[A2//D S3

n .B3
[Tp;q/:
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y

d

ab

c

x

q
r

�
s
p

Figure 18: A tangle decomposition for the .p; q/ torus knot

A straightforward calculation using the Wirtinger presentation shows �1.S
3n.B3[Tp;q//

has the presentation

hx;y; a; b; c; d j c D xxax; adxaD yxbxx xy;

1D Œy;xb�D Œx; dxay�D ys.xb/�p
D xq.dxay/r i

with x;y; a; b; c; d the generators illustrated in Figure 18.

A priori, it is clear that �1.S
3 n .B3[Tp;q// is a free group on two generators: up to

homotopy S3 n .B3[Tp;q/ is obtained by gluing two solid tori along a disk, just as a
torus knot complement is obtained by gluing two solid tori along an annulus. Word
manipulation in the presentation above, however, provides an explicit identification
with a free group on generators

AD .xb/qyr ; B D .dxay/�sxp:

Manipulating words shows that

As
D xb; Ap

D y; Br
D x; B�q

D dxay:
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Solving for a; b; c; d (using the relation dxaD xcb ) yields

aDAsCpBq�r ; b D B�r As; c D B�r AsCpBq
D B�r aBr ;

d D B�qAsBq�r
D B�.q�r/bBq�r :

(42)

Since �1.S
3 n .B3 [ Tp;q// is free on A and B , the assignment A 7!M;B 7! N

gives a representation for any pair M;N 2 SU.2/. A general such assignment will not
yield a traceless representation. However, writing the pair .M;N / as

M D euQ;N D evR; Q;R 2 C.i /; u; v 2 Œ0; ��;

then the corresponding representation determines a point in R.Y0;K0/ if and only if
the images of a and b

(43) M sCpN q�r ; N�r M s;

are traceless, or, equivalently, if and only if

(44) 0D Re.e.sCp/uQe.q�r/vR/; 0D Re.e�rvResuQ/:

Define

Vp;q;r;sDf.M ;N /2SU.2/�SU.2/ jM sCpN q�r
Di and N�r M s

Deki ;  2 Œ0;��g:

An analysis using Equation (43) leads to the following result.

Theorem 11.1 The assignment A 7!M;B 7!N induces a homeomorphism

Vp;q;r;s ŠR.S3
nB3;Tp;q n .A1[A2//DR.Y0;K0/:

For .M;N / 2 Vp;q;r;s , define  2 Œ0; �� and � 2 Œ0; 2�/ by

N�r M s
D eki ; N�r M sCpN q

D e�ki :

Then e.��/k DM pN q and the space R.S3;Tp;q/ is homeomorphic to the subset
of Vp;q;r;s consisting of those pairs .M;N / satisfying M pN q D 1.

The restriction to the pillowcase R.S3;Tp;q/!R.S2; fa; b; c; dg/ takes every non-
abelian representation to a nonabelian representation.

Finally, for suitable small perturbations, R
\
�.S

3;Tp;q/ contains j�.Tp;q/jC 1 nonde-
generate points.

Proof Let I denote the interval of traceless unit quaternions of the form eki

with  2 Œ0; �� and define F W SU.2/ � SU.2/ ! SU.2/ � SU.2/ by the formula
F.M;N /D .M sCpN q�r ;N�r M s/ so that Vp;q;r;s D F�1.fi g � I/.
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The pair .M;N / 2 Vp;q;r;s determines a representation which sends a to i and b

to a unit quaternion, say eki in I . Then c is sent to N�r aN r and d is sent to
N q�r bN q�r , so that c and d are sent to the conjugacy class C.i / of traceless unit
quaternions. This shows Vp;q;r;s maps into R.Y0;K0/.

The map is surjective since any representation in R.Y0;K0/ can be conjugated to
send a to i and b into I . If A and B are sent to noncommuting quaternions then the
resulting conjugacy class is uniquely determined.

If A;B are sent to commuting elements M;N , then .M sCpN q�r ;N�r M s/ D

.i ;˙i /, and hence M and N lie in the circle fe�i g, say M D e�1i ;N D e�1i .
Therefore

.i ;˙i /D
�
e..sCp/�1C.qCr/�2/i ; e.s�1�r�2/i

�
so that ..s C p/�1 C .q C r/�2/ D

�
2

and s�1 � r�2 D ˙
�
2

modulo 2� . Since
prCqsD1, these equations uniquely determine �1 and �2 modulo 2� , and hence M

and N are again uniquely determined, and so the map is a homeomorphism.

One computes

e.��/k D�eki e�ki D .N�r M s/�1N�r M sCpN q
DM pN q:

The space R.S3;Tp;q/ corresponds to those representations in R.Y0;K0/ satisfying
a D d and b D c . From Equation (42) we see that if A;B are sent to M;N , then
aD d and b D c precisely when M pN q D 1.

Suppose a representation in R.S3;Tp;q/ restricts to an abelian representation in the
pillowcase R.S2; fa; b; c; dg/. The representation is given by a pair .M;N /2Vp;q;r;s

satisfying M pN q D 1, and, since its restriction is abelian, Equation (42) gives

(45)
2i DM sCpN q�r ; �i DN�r M s;

�i DN�r iN r ; i DN�.q�r/.�i /N q�r

for some choice of sign � D˙1.

Hence

N�1i N DN�rp�qsiN rpCqs
D .N�r /pCs.N�.q�r//si .N .q�r//s.N r /pCs

D�2sCpi :

When �p D 1, N D e�i for some �. Then M DM prCqs D N�qr .N r�i /q and
so M and N commute, so that the representation is abelian.

We will show that �p D�1 is impossible. Suppose to the contrary that �p D�1, so
that � D�1 and p is odd. The equation N�1i N D�i implies that N is a traceless
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unit quaternion, and hence N 2D�1. Then �i DN�r iN r DN�.q�r/i N q�r imply
that r is odd and q is even. Since M p DN�q , it follows that M 2p D 1.

From Equation (45) we obtain

1D .�i /i DN�r M sM sCpN q�r
DN�r M 2sM pN qN�r

DN�r M 2sN�r
D�N�r M 2sN r

so that M 2sD�1. But then M 2DM 2.prCqs/DM 2qsD .�1/qD 1; a contradiction.
Hence �p ¤�1.

It follows from [13; 14] that R.S3;Tp;q/ contains j�.Tp;q/j=2 nonabelian repre-
sentations and one abelian representation. Since the restriction of any nonabelian
representation to the pillowcase avoids the corners, it corresponds to an intersection
point of the image Vp;q;r;s !R.S2; fa; b; c; dg/ with the interior of the arc  D � .
Applying Propositions 4.3, 4.4 and Theorem 7.1 we see that each nonabelian represen-
tation in R.S3;Tp;q/ gives rise to two nondegenerate points of R\.S3;Tp;q/ and the
representation ˛ gives one more nondegenerate point.

Theorem 11.1 does not give an explicit description of R.Y0;K0/ŠVp;q;r;s or its image
in the pillowcase in the same sense as for 2–bridge knots above. The space Vp;q;r;s is
complicated; in fact the map F W SU.2/�SU.2/! SU.2/�SU.2/ is not transverse to
the interval fi g � I ; we will see an example below where Vp;q;r;s is a singular variety.

We give a more explicit description of Vp;q;r;s in two different ways in Proposition 11.2
and Theorem 11.3 below. In Proposition 11.2 we prove that, for any p; q; r , and s ,
Vp;q;r;s contains an arc which maps to a straight line segment in the pillowcase. In
Theorem 11.3 we show that Vp;q;r;s is a semialgebraic set in R2 contained in the zero
set of a polynomial determined explicitly by the integers p; q; r; s . The method of
Theorem 11.3 lends itself easily to computer calculation and makes it easy describe
Vp;q;r;s in particular examples.

Write I for fi g � I , so that Vp;q;r;s D F�1.I/. The following result shows how to
construct a splitting of Vp;q;r;s! I , yielding a curve in Vp;q;r;s whose image in the
pillowcase is a straight line.

Proposition 11.2 There is a cross section sW I! Vp;q;r;s of the map F W Vp;q;r;s! I

whose image consists of binary dihedral representations. The image of s.I/ in the
pillowcase R.S2; fa; b; c; dg/ is a straight line segment.

If p and q are odd, or if p is even and q�2rD˙1, then the initial point s.i /Ds.e0ki /

is the restriction to .S3 nB3;Tp;q n .A1[A2// of the unique abelian traceless repre-
sentation of �1.S

3 nTp;q/.
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Proof Assume that q is odd by interchanging p and q if necessary. Fix  2 Œ0; ��.
We construct s.eki /. We consider three cases:

(1) p; r both odd

(2) p odd, r even

(3) p even

For the first case, p; q; r , and pC s are odd, and s and q� r are even. Set

s.eki /D ..�1/.pCsCq�r�1/=2i ; .�1/.s�r�1/=2eki /:

For the second case, p; q; s , and q� r are odd, and r;pC s are even. Set

s.eki /D ..�1/.r�sC1/=2eki ; .�1/.pCsCq�r�1/=2i /:

For the third case, q; s , and pC s are odd. Set

s.eki /D .e�ki ; e k/;

where

� D
q� r

q� 2r
 C

�.rp� qsC 2rsC q� 2r/

2.q� 2r/
;  D

1

q� 2r
 C

�p

2.q� 2r/
:

A calculation shows that in each of the three cases, F.s.eki //D .i ; eki /. Note that
in each case the generators are sent to the binary dihedral subgroup fe�kg [ fe�ki g

of SU.2/.

Denote s.eki / by .M. /;N. //. Then M.0/ and N.0/ commute so that the
corresponding representation is abelian. Moreover, when p and q are both odd, or
if p is even and q� 2r D˙1, M.0/pN.0/q D 1, so that this abelian representation
extends to a traceless abelian representation of �1.S

3 nTp;q/.

Theorem 11.1 implies that e.��/k DM p. /N q. /. For the three cases, we have

e.��/k DM p. /N q. /D

8<:
e�k case (1);
ek case (2);
eq=.q�2r/ke.�p.2q�2r//=.2.q�2r//k case (3);

so that in each case � is a linear function of  2 Œ0; ��.

We turn now to a different description of R.Y0;K0/Š Vp;q;r;s in terms of Chebyshev
polynomials. Theorem 11.3 below roughly says that if .M;N /D .euQ; evR/2Vp;q;r;s ,
then there exists a polynomial p.x;y/ so that p.cos u; cos v/D 0, and that conversely,
the zero set of this polynomial, subject to some inequalities (essentially jxj; jyj � 1),
parameterizes Vp;q;r;s .

Geometry & Topology, Volume 18 (2014)



The pillowcase and perturbations of traceless representations of knot groups 269

First, we return to Equation (44). Using Proposition 2.1 we may rewrite this as

0D cos..sCp/u/ cos..q� r/v/� sin..sCp/u/ sin..q� r/v/Q �R;

0D cos.su/ cos.�rv/� sin.su/ sin.�rv/Q �R;
(46)

where Q �R denotes the dot product of Q and R.

Thus, if we define zVp;q;r;s to be the set of pairs .M;N /D .euQ; evR/2SU.2/�SU.2/
satisfying (46), then zVp;q;r;s is in bijective correspondence with all representations (not
conjugacy classes) of traceless representations. Note that Vp;q;r;s �

zVp;q;r;s .

For each integer n, there exist (Chebyshev) polynomials Tn.x/ and Sn.x/ so that

(47) cos.nu/D Tn.cos u/; sin.nu/D sin uSn.cos u/:

Hence Equation (46) can be rewritten as

0D TsCp.cos u/Tq�r .cos v/� sin.u/ sin.v/SsCp.cos u/Sq�r .cos v/Q �R;

0D Ts.cos u/T�r .cos v/� sin.u/ sin.v/Ss.cos u/S�r .cos v/Q �R:
(48)

Substituting x D cos u;y D cos v , multiplying the first equation by Ss.x/S�r .y/, the
second by SsCp.x/Sq�r .y/ and subtracting yields the polynomial equation

(49) pp;q;r;s.x;y/

WD TsCp.x/Tq�r .y/Ss.x/S�r .y/�SsCp.x/Sq�r .y/Ts.x/T�r .y/D 0:

Thus the map
zVp;q;r;s!R2; .euQ; evR/ 7! .cos u; cos v/;

takes its image in the zero set of the polynomial pp;q;r;s.x;y/ of Equation (49).

Denote by Z the zero set of pp;q;r;s . For .x;y/ 2Z , the two ratios

(50)
TsCp.x/Tq�r .y/p

.1�x2/.1�y2/SsCp.x/Sq�r .y/
;

Ts.x/T�r .y/p
.1�x2/.1�y2/Ss.x/S�r .y/

;

are equal if neither denominator vanishes.

Denote by Z0 � Z the subset containing those points so that at least one of the
denominators in the ratios of (50) is nonzero, and if the other is zero, so is its numerator.
Define the function �.x;y/ on Z0 to be one of these two ratios, so that

�.x;y/D
TsCp.x/Tq�r .y/p

.1�x2/.1�y2/SsCp.x/Sq�r .y/
D

Ts.x/T�r .y/p
.1�x2/.1�y2/Ss.x/S�r .y/

for .x;y/ 2Z0 (and at least one of these ratios is defined).
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Denote by Z1 �Z the subset containing those points so that both denominators and
both numerators in the ratios of (50) are zero.

Call two pairs of quaternions .M;N / and .M 0;N 0/ conjugate if there exists g2SU.2/
so that .M 0;N 0/D .gMg�1;gNg�1/.

Theorem 11.3 Let pp;q;r;s.x;y/ be the polynomial defined above in Equation (49),
and let Z denote its zero set in R2 , and Z0;Z1 �Z the subsets defined above.

If .M;N /D .euQ; evR/ 2 Vp;q;r;s then pp;q;r;s.cos u; cos v/D 0, and the fiber of the
map

Vp;q;r;s!Z; .euQ; evR/ 7! .cos u; cos v/;

over a point .x;y/ 2Z is given as follows.

(i) If jxj< 1; jyj< 1, .x;y/ 2Z0 , and j�.x;y/j � 1, then the fiber over .x;y/ is a
single point, conjugate to .euQ; evR/, where uD arccos x; v D arccos y; and

QD i ; RD etki ; t D arccos.�.x;y//:

The corresponding point .; �/ in the pillowcase R.S2; fa; b; c; dg/ satisfies

cos  D�T2sCp.x/Tq�2r .y/C

q
.1�x2/.1�y2/S2sCp.x/Sq�2r .y/�.x;y/;

cos. � �/D Tp.x/Tq.y/�

q
.1�x2/.1�y2/Sp.x/Sq.y/�.x;y/:

(ii) If jxj< 1; jyj< 1, and .x;y/ 2Z1 , then the fiber over .x;y/ is an arc conjugate
to the arc t 7! .eui ; evetki /; t 2 Œ0; ��, where uD arccos x; v D arccos y .

The image . .t/; �.t// of this path in the pillowcase R.S2; fa; b; c; dg/ satisfies

cos  D�T2sCp.x/Tq�2r .y/C

q
.1�x2/.1�y2/S2sCp.x/Sq�2r .y/ cos t;

cos. � �/D Tp.x/Tq.y/�

q
.1�x2/.1�y2/Sp.x/Sq.y/ cos t:

(iii) If jxj � 1; jyj � 1, one of jxj; jyj equals 1, and .x;y/ 2Z1 , then the fiber over
.x;y/ is a single point.

The corresponding point .; �/ in the pillowcase R.S2; fa; b; c; dg/ satisfies

cos  D�T2sCp.x/Tq�2r .y/;

cos. � �/D Tp.x/Tq.y/:

(iv) In all other cases, the fiber is empty, ie .x;y/ is not in the image.
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Proof If .M;N /D .euQ; evR/ 2 Vp;q;r;s , then .u; v;Q;R/ satisfy (48), and hence
satisfy pp;q;r;s.x;y/D 0, where x D cos v;y D cos u. In particular, jxj � 1, jyj � 1.

If neither of the denominators in Equation (50) vanishes, then .x;y/ 2Z0 , jxj < 1,
jyj<1, and �.x;y/DQ�R and hence j�.x;y/j�1. If exactly one of the denominators
in Equation (50) vanishes, then (48) show its numerator also vanishes, thus .x;y/2Z0

and j�.x;y/j D jQ �Rj � 1. If .x;y/ 62 Z0 , then (48) show that both numerators
are zero, so that .x;y/ 2 Z1 . Moreover, Q �R can be any number in Œ�1; 1�, ie
Q �R D cos t for some t 2 Œ0; ��. By conjugating the pair .Q;R/ we may assume
QD i and RD etki . Thus the image of Vp;q;r;s!Z lies in Z0[Z1 and we have
established (iii).

Conversely, suppose that .x;y/ 2Z0 , jxj< 1; jyj< 1, and j�.x;y/j � 1. Let

uD arccos x; v D arccos y; t D arccos.�.x;y//; QD i ; RD etki :

Then .u; v;Q;R/ satisfy (48). Hence the pair .M 0;N 0/ D .euQ; evR/ satisfies
Equation (44), thus defining a traceless representation, which is uniquely conjugate to a
pair .M;N / 2 Vp;q;r;s by Theorem 11.1. Conjugation does not change u; v nor x;y .
Proposition 3.1 implies that there exists a unit quaternion which conjugates the triple

.e.pCs/uQe.q�r/vR; e�rvResuQ; epuQeqvR/ to .i ; eki ; e.��/k/:

Therefore,

� cos  D Re.e�rvResuQe.pCs/uQe.q�r/vR/; cos. � �/D Re.epuQeqvR/:

Using conjugation invariance and part (iv) of Proposition 2.1, these equations can be
rewritten as

(51)

� cos  D cos..2sCp/u/ cos..q� 2r/v/

� sin..2sCp/u/ sin..q� 2r/v/Q �R;

cos. � �/D cos.pu/ cos.qv/� sin.pu/ sin.qv/Q �R:

Substituting x and y transforms these to

� cos  D T2sCp.x/Tq�2r .y/�

q
.1�x2/.1�y2/S2sCp.x/Sq�2r .y/�.x;y/;

cos. � �/D Tp.x/Tq.y/�

q
.1�x2/.1�y2/Sp.x/Sq.y/�.x;y/;

establishing (i).

Suppose that .x;y/ 2Z1 and jxj � 1; jyj � 1. Then, for any t 2 Œ0; ��, define

uD arccos x; v D arccos y; QD i ; RD etki :
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Then .u; v;Q;R/ satisfy (48). Hence .M 0;N 0/D .euQ; evR/ satisfies Equation (44),
defining a traceless representation which is conjugate to a pair .M;N / 2 Vp;q;r;s by
Theorem 11.1. Conjugation does not change u; v;Q �R, nor x;y .

If jxj D 1, then u D 0 or � , so that .M 0;N 0/ D .˙1; evR/, which is conjugate
to .˙1; evi / 2 Vp;q;r;s , and in particular independent of t . Therefore the fiber of
Vp;q;r;s!Z1\fjxjD1g is a single point. If jyjD1, .M 0;N 0/D .eui ;˙1/D .M;N /

and so again the fiber of Vp;q;r;s!Z1\fjyj D 1g is a single point.

When jxj<1 and jyj<1, .M;N / is uniquely determined by .M 0;N 0/. The assertions
about cos  and cos. � �/ follow from Equation (51). Thus we have established (ii)
and (iii).

The statement of Theorem 11.3 is unfortunately somewhat technical, and does not
easily reveal the structure of R.Y0;K0/ and its image in the pillowcase. However, the
polynomials pp;q;r;s.x;y/ can be computed and their zero sets graphed using computer
algebra software. We present a few examples.

The .2; 2nC 1/ torus knots are particularly simple to understand in this context. Take
pD2; qD2nC1; rDnC1; sD�1. Then p2;2nC1;nC1;�1.x;y/Dx , and �.x;y/D0

along the arc x D 0;y 2 Œ�1; 1�. Theorem 11.3 then says that V2;2nC1;nC1;�1 is an
arc, and gives a parameterization by .euQ; evR/ where

uD arccos.0/D t D �
2
; v D arccos.y/ 2 Œ0; ��; QD i ; RD etki D j :

Conjugating .euQ; evR/D .i ; evj / by e�=4i e.�nv/=2j yields .M;N /D .envki ; evk/

which satisfies F.M;N / D .i ; e.��v/ki /, and hence parametrizes V2;2nC1;nC1;�1 .
Computing M 2N 2nC1 yields e.�C.2nC1/v/k and from Theorem 11.1 we see that
 D � � v and  � � D � C .2nC 1/v , so that � D .2nC 2/ mod 2� . This is the
same arc identified in the examination of 2–bridge knots in Section 10, and is also the
same arc produced by the cross section of Proposition 11.2 (note that q� 2r D�1).
Theorem 11.3 gives cos  D � cos v and cos. � �/ D � cos..2nC 1/v/. The first
equation implies  D � � v and the second that  � � D � ˙ .2nC 1/v , which
implies .1˙ .2nC 1// D � . So these equations are not quite sharp enough to give
� D .2nC 2/ .

We turn to the .3; 4/ torus knot. This knot is interesting because R.Y0;K0/ is singular
and, as we shall see below, the instanton complex CI\.S3;T3;4/ has a nontrivial
differential.

Take p D 3; q D 4; r D 3; s D�2. The polynomial p3;4;3;�2.x;y/ of Equation (49)
is computed, using Equation (47), as

p3;4;3;�2.x;y/D y.4 x2
C 4 y2

� 3/:
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We show that V3;4;3;�2 is the union of an arc and a circle that meet in two points.

The zero set of p3;4;3;�2 meets the set Z0 [Z1 of Theorem 11.3 in union of the
arc .x; 0/;x 2 Œ�1; 1� and the circle x2Cy2 D

3
4

. The endpoints .˙1; 0/ of the arc
lie in Z1 and fall under case (iii) of Theorem 11.3, and the rest of the points lie in
Z0 . Moreover, �.x;y/D xy=

p
.1�x2/.1�y2/, which is less than 1 on Z0 , so that

the map
V3;4;3;�2!Z \fjxj � 1; jyj � 1g

is a homeomorphism.

Applying Theorem 11.3 we see that the arc .x; 0/;x2 Œ�1; 1� has yD0 and �.x;y/D0,
so that vD tD �

2
and hence gives the arc .euQ; evR/D .eui ; j /, u2 Œ0; �� in zV3;4;3;�2 .

Conjugating by e��=4i e��=4ke�u=2i yields the arc .euk; e�uki /. This arc lies in
V3;4;3;�2 , since it is sent by F to the arc .i ; euki /. This is the arc identified in
Proposition 11.2 (after a change of notation, since we are taking p odd and q even
here; the condition q� 2r D˙1 transforms to pC 2s D˙1).

Since y D cos v D 0 along this arc and �.x; 0/D 0, Theorem 11.3 gives�
cos 

cos. � �/

�
D

�
�T1.x/T�2.y/

T3.x/T4.y/

�
D

�
cos u

cos.3u/

�
and so  Du and  �� D˙3u. Thus � D�2 or � D 4 . At the point xD 0, uD �

2

and so .euk; e�uki /D .k;�j /. Hence N�r M s D j D e�=2kj so that  D �
2

, and
M pN q D�kD e��=2k so that  � � D��

2
.

Hence at this point (and by continuity along the entire arc) � D�2 rather than 4 .
We denote this arc in V3;4;3;�2 by I0 , and consider it parameterized by  D u 2 Œ0; ��.

The circle 4x2C 4y2� 3D 0 lies entirely in Z0 , since �.x;y/ < 1 on this circle. It
intersects the arc I0 in the points .x;y/ D .˙

p
3=2; 0/ and since x D cos.u/ and

uD  , the intersection points occur when  D �
6

and 5�
6

. In particular V3;4;3;�2 is
singular, and so the map F W SU.2/�SU.2/! SU.2/�SU.2/ of Theorem 11.1 is not
transverse to i � I , in contrast to the case for .2; n/ torus knots.

We will now use Theorem 11.3 to find the image of the circle in the pillowcase. When
4x2C 4y2 D 3, then one calculates cos  D x and cos. � �/D�4x3C 3x . Since
cos.3 /D 4 cos2  C 3 cos  , this yields

cos. � �/D� cos 3;

so that � equals � C 4 or � � 2 . Since cos  D x D cos u and ;u 2 Œ�
6
; 5�

6
�, it

follows that uD  . From this one computes that at the points .x;y/D .0;˙
p

3=2/,
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 D �
2

and � D � , so that
� D � C 4:

The map of the circle to the pillowcase takes the pairs .x;y/ and .x;�y/ in this circle
to the same point. Thus we have proved the following.

Proposition 11.4 For the .3; 4/ torus knot, the space V3;4;3;�2ŠR.Y0;K0/ is home-
omorphic to the union of three arcs,

I0W Œ0; ��! V3;4;3;�2; I˙W Œ
�
6
; 5�

6
�! V3;4;3;�2;

where
I˙.

�
6
/D I0.

�
6
/; I˙.

5�
6
/D I0.

5�
6
/:

The arc I0 maps to � D �2 and each arc I˙ maps to the arc � D 4 C � in the
pillowcase.

The following (Figure 19) illustrates both the space V3;4;3;�1 and its image in the
pillowcase R.S2; fa; b; c; dg/.

�

2�

0

0 �


˛

˛0

y1

y2
x1; z1

x2; z2

I0

IC

I�

x1;x2

z1; z2

y2;y1 ˛0

Figure 19: R.Y0;T0/ and its image in the pillowcase for the (3,4) torus knot
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Notice that the images of IC , and I� in the pillowcase each intersect the arc � D 
(transversely) in one interior point, and I0 intersects � D  in two points, the dis-
tinguished representation ˛ at one corner and one interior point. This gives the
four traceless representations of the .3; 4/ torus knot. Perturbing as above we con-
clude that the instanton chain complex for T3;4 is generated by seven generators,
˛0;x1;x2;y1;y2; z1; z2 of the reduced instanton complex. Note that xi and zi are
mapped to the same point in the pillowcase. The representation labelled y lies on I0 ,
and hence by Proposition 11.2 corresponds to a binary dihedral representation.

The perturbation illustrated by the brown circle in Figure 19 corresponds to a small
choice of perturbation parameter � . Increasing � eventually moves the intersection
point labelled y2 past the singular point where IC and I� bifurcate from I0 . This
also creates two new intersection points, one each on IC and I� . This presumably
corresponds to an elementary expansion of the reduced instanton complex.

The reduced Khovanov homology of the .3; 4/ torus knot has rank 5, and since it
forms the E2 page of a spectral sequence converging to I \.S3;K/ (see Section 12),
one differential in CI\.S3;T3;4/ is nontrivial. Arguments involving the gradings as
in [25] suggest that the differential involves the generator coming from the abelian
representation.

We briefly list some other calculations. For the .4; 5/ torus knot, taking p D 4, q D 5,
r D 4, s D�3, we have

p4;5;4;�3.x;y/D x.16 y4
C 16 x2y2

� 20 y2
� 4 x2

C 3/;

�.x;y/D
xy

p
1�x2

p
1�y2

:

The intersection of the zero set of p4;5;4;�3.x;y/ with Z0 [Z1 is the union of an
arc (corresponding to x D 0) and a circle which meets the arc in two points. The zero
set of p4;5;4;�3.x;y/ contains two other components which lie outside the square
jxj � 1; jyj � 1 and hence do not contribute to V4;5;4;�3 , and so V4;5;4;�3 is the union
of a circle and an arc, and is homeomorphic to V3;4;3;�2 .

For the .3; 5/ torus knot, p3;5;2;�1.x;y/ D �8 y4 C 6 y2 � 2 x2 . Its zero set is a
figure 8 curve, ie an immersed circle with one double point, located at .0; 0/. Moreover,
in the notation of Theorem 11.3, .0; 0/ 2Z1 so that V3;5;2;�1 ŠR.Y0;T0/ is again
a union of a circle and an arc intersecting in two points, and is homeomorphic to
V3;4;3;�2 .

It is not clear from our description whether the image of R.Y0;K0/ in the pillowcase
is always contained in the union of straight lines for all .p; q/ torus knots, as is the case
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for .p; q/ equal to .2; n/ and .3; 4/. Further calculations reveal that the polynomials
pp;q;r;s can be quite complicated and their zero sets highly singular. This topic is
explored further in Fukumoto, Kirk and Pinzón-Caicedo [10], where examples are
given with nonlinear image.

12 Calculations of CI\.S 3; K /

In this section, we use our results to carry out some calculations of instanton homology.
To set the stage, observe that for a knot in a homology sphere with a simple represen-
tation variety, we have arranged that R

\
�.Y;K/ has 2k C 1 points, which we label

as ˛0 and ˇi;1; ˇi;2 , i D 1; : : : ; k . Here ˛0 corresponds to the perturbation of the dis-
tinguished isolated point ˛ 2R\.Y;K/ that restricts to the abelian representation ˛�=2
on Y nN.K/. For each i D 1; : : : ; k , the two points ˇi;j 2R

\
�.Y;K/ are those that

result from perturbing the circle of nonabelian traceless representations in R\.Y;K/

coming from ˇi 2R.Y;K/.

12.1 Summary of the results of Kronheimer and Mrowka

The generators of CI\.Y;K/ are the points of R
\
�.Y;K/ for some generic perturbation

data � . The differential on CI\.Y;K/ is defined using moduli spaces of singular
instantons on the cylinder Y � R. Though we suppress it from the notation, it is
important to emphasize that the chain group CI\.Y;K/ depends on the choice of
perturbation data � , and that the differential depends on additional perturbation data
on the cylinder. Generators of CI\.Y;K/ come equipped with a relative Z=4–grading.
This grading is determined by the spectral flow of the family of Hessians of the Chern–
Simons functional along a path of connections joining a pair of generators. A standard
argument shows that the gradings of ˇi;1 and ˇi;2 differ by 1 (after relabeling if
necessary). The relative grading is promoted to an absolute grading by defining a
grading difference associated to paths of connections on a cobordism of pairs from
.Y;K/ to .S3;U /, where U is the unknot, and normalizing the grading of the unique
point of R\.S3;U / [25, Proposition 4.4]. One can use a splitting theorem for spectral
flow (eg Atiyah, Patodi and Singer [2], Nicolaescu [32] and Daniel and Kirk [8]) as in
Boden, Herald, Kirk and Klassen [4] to compute the relative grading between a pair
generators that lie on the same path component in �.Y;K/. This is implicit in the
discussion in [21, Section 11].

In [25], Kronheimer and Mrowka define a different Z=4–graded chain complex for
knots in S3 whose homology is I \.S3;K/. To distinguish it from CI\.S3;K/ we
denote it by FCI\.S3;K/. This chain complex is filtered, and the associated spectral
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sequence has E2 page isomorphic to the reduced Khovanov homology of the mirror
image Km of K , E2 Š Khred.Km/. The spectral sequence is Z=4–graded, and
the bigrading on Khovanov homology determines the modulo 4 grading on the E2

page. Explicitly, a generator of Khred
i;j .K

m/ with quantum grading i and homological
grading j inherits the grading i�jC1 mod 4 in the E2 page [25, Section 8.1]. Note
that in that reference it is shown that a generator of unreduced Khovanov homology in
bigrading .i; j / determines a generator of unreduced instanton homology in bigrading
i � j � 1; a shift of 2 occurs when passing to reduced homology. Henceforth, the
Khovanov groups expressed with a single grading (eg Khred

i ) will refer to this modulo 4
grading.

The chain complex FCI\.S3;K/ is built from the hypercube of complete unoriented
resolutions of a diagram of K . Its construction relies on the fact that the singular
instanton homology groups of knots which differ by the unoriented skein relation
fit into an exact triangle. In general, this means that the rank of FCI\.S3;K/ will
be exponentially greater than the rank of any complex CI\.S3;K/ obtained by a
nondegenerate perturbation of the Chern–Simons functional. These considerations also
show that for each i 2 Z=4,

(52) rank FCI\i .S
3;K/� rank Khred

i .Km/� rank I \.S3;K/i :

Since the homology of CI\.S3;K/ equals I \.S3;K/, we have the obvious inequality

(53) rank CI\i .S
3;K/� rank I \.S3;K/i ; for each i 2 Z=4:

Kronheimer and Mrowka use excision for instanton homology to show that I \.S3;K/ is
isomorphic, as a Z=4 graded group, to the sutured instanton Floer homology KHI.K/;
see [25, Proposition 1.4]. This latter invariant was defined by Floer in [9] and revisited
in Kronheimer and Mrowka [24, Section 7]. It has the advantage of possessing an
additional Z grading, and the graded Euler characteristic with respect to this grading
equals the Alexander polynomial; see Kronheimer, and Mrowka [23] and Lim [29]. It
follows that if �K .t/D

P
i ai t

i denotes the Alexander polynomial, then

(54) rank I \.S3;K/�
X

i

jai j �

ˇ̌̌X
ai.�1/i

ˇ̌̌
D jdet.K/j:

On the other hand, the Euler characteristic of Khovanov homology equals the Jones
polynomial [17]

JK .q/D
X
i;j

.�1/j q�i rank Khred
i;j .K/:
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Thus, if we let JK .q/D
P

i biq
i , then we have

(55) rank Khred.K/�
X

i

jbi j � jJK .�1/j D jdet.K/j:

These inequalities are obviously useful for understanding the behavior of Kronheimer
and Mrowka’s spectral sequence. For instance, they immediately show that spectral
sequence collapses for all 2–bridge knots. This is because jdet.K/j equals the rank of
Khred.K/ for 2–bridge knots. More generally, the spectral sequence collapses for the
same reason for all alternating and quasialternating knots [17], Lee [27] and Manolescu
and Ozsváth [31]. Hence Equations (52), (54) and (55) imply that for these knots,
I \.S3;K/D Khred.Km/.

Similar facts hold for the unreduced theory I ].S3;K/. In particular the corresponding
spectral sequence has E2 term the unreduced Khovanov homology of K with its
bigrading appropriately reduced to a modulo 4 grading. Thus the calculations we
give below can be modified to handle the case of unreduced Khovanov homology and
I ].S3;K/. The corresponding chain complex CI].S3;K/ is generated by R

]
�.S

3;K/,
which, using the perturbations described in Theorems 7.1 and 9.1, has twice as many
points as R

\
�.S

3;K/.

12.2 Remarks on calculations

The calculations of reduced Khovanov homology we give below were obtained using
Dror Bar-Natans’ Knot theory Mathematica workbook [3]. We work over Q for the
remainder of the article.

Use the notation .a; b; c; d/ for the Z=4 graded vector space .Qa;Qb;Qc ;Qd /, so,
eg the rank in grading 2 is equal to c and in grading 3 is equal to d . More generally,
let .a; b; c; d/e denote the result of shifting .a; b; c; d/ to the right e slots, so eg
.0; 1; 2; 3/3 D .1; 2; 3; 0/D .Q;Q

2;Q3; 0/.

12.2.1 2–bridge knots Theorem 10.2 says that if K.p=q/ is a 2–bridge knot,
CI\.S3;K.p=q// is generated by jpj D jdet.K/j points. Thus for 2–bridge knots,

CI\.S3;K.p=q//D I \.S3;K/D Khred.Km/

and all differentials in CI\.S3;K.p=q// are zero, as are all higher differentials in
the spectral sequence from Khred.Km/ to I \.S3;K/. While these facts could be
deduced without the use of Theorem 10.2, it would be interesting to use these examples
to investigate what grading and differential information can be gleaned from the
intersection diagram (2).
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For example, Figures 15, 16 and 17 illustrate the trefoil DK.�3=1/, with Khred.Km/D

I \.K/D .1; 0; 1; 1/, the .2; 5/ torus knot DK.�5; 1/, with Khred.Km/D I \.K/D

.2; 1; 1; 1/, the figure 8 knot D K.�5=3/, with Khred.Km/ D I \.K/ D .1; 1; 2; 1/,
and the knot 72 DK.�11=5/, with Khred.Km/D I \.K/D .3; 2; 3; 3/.

12.2.2 Knots with simple representation varieties We illustrate one sample calcu-
lation; all the data below were obtained by the same method, which is the method
described in [21].

12.2.3 The .3;4/ torus knot The bigraded reduced Khovanov homology has Poin-
caré polynomial Khred.T m

3;4
/D q�7Cq�17t�5Cq�13t�4Cq�13t�3Cq�11t�2 . This

means that there is a generator of homology in bidegree .�7; 0/, one in .�17;�5/ etc.
The induced modulo 4 graded group has a generator in degree �7� 0C 1D�6� 2

mod 4, one in degree �17�.�5/C1�1, etc. Thus the Z=4 graded reduced Khovanov
homology has ranks equalling .2; 1; 1; 1/.

The character variety �.S3;T3;4/ is illustrated in Figure 20, and is determined by the
data (see Section 5.1)

.1; 7/; .5; 11/; .2; 10/:

There are four points in R.S3;T3;4/, labelled ˛;x;y; z in the figure.

˛

x

y

z

˛;y

x; z

Figure 20: �.S3;T3;4/ and its image in the pillowcase

In terms of R.S3;T3;4/ and its image in the other pillowcase R.S2; fa; b; c; dg/,
Proposition 11.2 shows that representations which lie on I0 send N q to 1, since qD 4.
Thus the two traceless representations labelled ˛ and y in Figure 20 correspond to
the two intersections of f� D  g with the arc I0 in Figure 19: the intersection at the
corner is ˛ and the nonabelian intersection in the interior of I0 is y . The remaining
two points, x and z lie on the intersection of IC and I� with f� D  g.
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From Theorem 7.1 and Corollary 7.2 we see that x;y and z each perturb to give two
generators for CI\.S3;T3;4/, which we label fx1;x2;y1;y2; z1; z2g. These arise by
perturbing a Morse–Bott critical circle, and hence the gradings satisfy gr.x1/�gr.x2/D

gr.y1/� gr.y2/D gr.z1/� gr.z2/D 1 (after perhaps reindexing).

The last generator ˛0 (the perturbation of ˛ ) contributes .1; 0; 0; 0/a to CI\.S3;T3;4/.
Thus we see that CI\.S3;T3;4/ is a direct sum of graded groups

CI\.S3;T3;4/D .1; 0; 0; 0/a˚ .1; 1; 0; 0/b.x/˚ .1; 1; 0; 0/b.y/˚ .1; 1; 0; 0/b.z/:

Using splitting theorems for spectral flow, such as those of [4] (see also the discussion
in [21]) one can see from Figure 20 that b.y/D b.x/C2 and b.z/D b.x/C4� b.x/.
Thus

CI\.S3;T3;4/D .1; 0; 0; 0/a˚ .2; 2; 1; 1/b;

where b D b.x/. The Alexander polynomial �K .t/ D t3 C 1=t3 � t2 � 1=t2 C 1.
The sum of the absolute value of its coefficients tells us the rank of I \.S3;T3;4/ is
at least 5, and hence I \.S3;T3;4/D Khred.T m

3;4
/D .2; 1; 1; 1/. Thus the rank of the

differential on the complex CI\.S3;T3;4/ is one, and the spectral sequence collapses
after the E2 page.

In this example, the representation labeled y is the only nonabelian binary dihedral
representations, and hence corresponds to the representation y of Figure 19.

12.3 The .2 ; n/ torus knots

For the .2; 2kC 1/ torus knots, there are k nonabelian arcs in �.S3;T2;2kC1/, and
these are nested. Each arc contains a traceless representation, and the signature of
T2;2kC1 equals �2k .

Therefore R
\
�.S

3;K/ consists of 2k C 1 points which correspondingly generate
CI\.S3;T2;2kC1/. Spectral flow considerations show that since the nonabelian arcs in
�.S3;T2;2kC1/ are nested, the grading difference from ˛ to each nonabelian point in
R.S3;K/ is successively b; bC 2; bC 4; : : : modulo 4 for some integer b . Hence

I \.S3;K/D CI\.S3;T2;2kC1/

D .1; 0; 0; 0/a.k/˚

kM
jD1

.1; 1; 0; 0/bC2j

D .1; 0; 0; 0/a.k/˚

(�
kC1

2
; kC1

2
; k�1

2
; k�1

2

�
b.k/

if k is odd,�
k
2
; k

2
; k

2
; k

2

�
if k is even.
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where a.k/ denotes the grading of the generator ˛0 , and b.k/ is some integer.

On the other hand, one can easily compute Khred.T m
2;2kC1

/ (eg, by the method of
Khovanov [16, Section 6.2]) to find

Khred.T m
2;2kC1/D .1; 0; 0; 0/˚

(�
k�1

2
; k�1

2
; kC1

2
; kC1

2

�
if k is odd,�

k
2
; k

2
; k

2
; k

2

�
if k is even.

One sees that these values are consistent with the possibility that a.k/D �.T2;2kC1/

mod 4 and b.k/D 3 for all k .

12.4 The .3; n/ torus knots

For the .3; n/ torus knots with n� 38, we have

CI\.S3;T3;n/D .1; 0; 0; 0/a.n/

˚

8̂̂̂̂
<̂
ˆ̂̂:
.2k; 2k; 2k; 2k/ if nD 6kC 1;

.2kC 1; 2kC 1; 2k; 2k/b.n/ if nD 6kC 2;

.2kC 2; 2kC 2; 2kC 1; 2kC 1/b.n/ if nD 6kC 4;

.2kC 2; 2kC 2; 2kC 2; 2kC 2/ if nD 6kC 5;

Khred.T m
3;n/D

8̂̂̂̂
<̂
ˆ̂̂:
.2kC 1; 2k; 2k; 2k/ if nD 6kC 1;

.2kC 1; 2k; 2kC 1; 2kC 1/ if nD 6kC 2;

.2kC 2; 2kC 1; 2kC 1; 2kC 1/ if nD 6kC 4;

.2kC 2; 2kC 1; 2kC 2; 2kC 2/ if nD 6kC 5:

For these knots, the sum of the absolute values of the coefficients of the Alexander
polynomial j�j equals the rank of the reduced Khovanov homology. The absolute
value of the signature j� j satisfies

j�.T3;n/jC 1D

�
j�.T3;n/j if nD 6kC 1; 6kC 2;

j�.T3;n/jC 2 if nD 6kC 4; 6kC 5:

Thus Khred.T m
3;n
/D I \.S3;K3;n/, and when nD 6kC1; 6kC2, there are no nonzero

differentials in the complex CI\.S3;T3;n/. When nD 6kC 4; 6kC 5, the rank of the
differential is one. In either case there are no nonzero differentials after the E2 page
in the Kronheimer–Mrowka spectral sequence. The data are consistent with the guess
a.n/D �.T3;n/ mod 4 and b.n/D 3. The unreduced Khovanov homology is known
for all .3; n/ torus knots; see Turner [38]. Presumably similar calculations could verify
the formulae above for all n.
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12.5 Other torus knots

Patterns for more complicated torus knots are not as obvious. But for fixed m, the rank
j� j C 1 of CI\.S3;Tm;n/ and the lower bound j�j grow linearly in n, whereas the
rank of Khred.Tm;n/ seems to be growing more quickly for m� 4.

The computations of CI\ for torus knots are done by computing their data in the
sense of Section 5.1, using the MAPLE computer algebra package. Some examples
were listed in Section 5.1. Table 1 includes the signature � and the sum of the
absolute values of the coefficients of the Alexander polynomial j�j. We write Aa

for .1; 0; 0; 0/a . Whenever CI\.K/ and I \.K/ differ the chain complex CI\.K/ has
nontrivial differential. Whenever Khred.K/ and I \.K/ differ the Kronheimer–Mrowka
spectral sequence has nontrivial higher differentials.

A torus knot which exhibits interesting CI\ is the .4; 5/ torus knot, with .ci ; di/

equal to
.1; 9/; .7; 17/; .2; 18/; .6; 14/; .11; 19/; .3; 13/:

The first and fourth arc do not contain traceless representations, and hence do not
contribute to CI\.S3;T4;5/. The remaining four arcs contain traceless representations,
and hence CI\.S3;T4;5/ is generated by 8C1D 9 elements. As explained in [21], this
example is remarkable because although the Khovanov homology also has 9 generators,
the gradings (CI\ D .3; 2; 2; 2/a and Khred

D .2; 1; 3; 3/) are incompatible with a
spectral sequence with no higher differentials. Since j�j D 7, it follows that the
differential on CI\.S3;T4;5/ has rank one. As mentioned in [21], this is not quite
enough to compute I \.S3;T4;5/, as both .2; 1; 2; 2/ and .1; 1; 3; 2/ are compatible.
In [21] they establish that I \.S3;T4;5/D .2; 1; 2; 2/ using the results of [23; 29] which
identify the coefficients of the Alexander polynomial with a kind of Euler characteristic
associated to the generalized eigenspaces of an operator �W KHI.K/!KHI.K/. If, as
seems likely, the grading of the generator ˛ occurs in degree �.K/ mod 4 (see below)
then this would also show that I \.S3;T4;5/D .2; 1; 2; 2/.

In the spectral sequence for T4;9 , the rank from the E2 page to the limit drops by
at least 8. For T5;7 , all differentials in CI\.S3;T5;7/ are zero, but in the spectral
sequence, the rank drops from 29 for the E2 page to 17 in the limit.

For T5;6 , the ranks of CI\.S3;T5;6/ and Khred.T m
5;6
/ are equal, but the gradings are

different so that the spectral sequence necessarily has higher differentials, and hence
CI\.S3;T5;6/ also has nontrivial differentials. For this knot, the knot Floer homology
group has rank equal to 9, and hence further examination of this knot may shed light
on the relationship between the three knot invariants.
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For the larger values of .p; q/ in Table 1, examples were chosen so that the Alexander
polynomial sufficed to conclude that CI\.S3;K/ has no higher differentials. This is
because j�.K/jC 1 equals j�j.

12.6 Speculation

The data calculated above are consistent with the conjecture that the generator ˛ of
CI\.K/ has grading equal to the signature �.K/ modulo 4. This is likely true, and
a proof should follow from the following outline. Push a Seifert surface for K into
the 4–ball and surger along half a symplectic basis. This yields a 4–manifold X

with boundary in which K bounds a disk D , such that ˛ extends to �1.X0/ where
X0 D X nN.D/. The signature of .X0; ˛/ gives the signature of K . Now glue in
.S1�D2/� Œ0; 1�, containing the surfaces .S1tH /� Œ0; 1� together with the singular
bundle data over W � Œ0; 1� (ie cross Figure 1 with an interval and glue it to X0 along
an annulus in D times an interval). This gives a flat singular cobordism from .S3;K/

to .S3;U /, where U denotes the unknot. The Fredholm index of this flat cobordism
(in the sense of [25, Proposition 4.4]) should be the signature of K by an excision
argument.

Note that it has been conjectured by Kronheimer and Mrowka [24, page 302] that the
sutured instanton homology groups of a knot defined in [24] are isomorphic to the
Heegaard knot Floer homology groups of Ozsváth and Szabó [33] and Rasmussen [36].
Since the sutured instanton homology groups have the same rank as I \.K/, this
conjecture would imply that I \.K/ has the same rank as the Heegaard knot Floer
homology groups. Denoted 1HFK .K/, these latter groups are known to satisfy

rk1HFK .K/D j�j

in the special case when K is a torus knot (or, more generally, when K is a so-called
L–space knot; see Ozsváth and Szabó [34, Theorem 1.2]). This would imply that all
the lower bounds for I \.K/ in Table 1 are attained, and hence the boundary operator
acting on our chain complex should have large rank, in general.

Looking at Table 1, one could also conjecture that b D 3 D �1 mod 4. This cor-
responds to a spectral flow along an arc of flat connections in �.S3;K/ starting
at the abelian flat connection ˛ traveling towards the trivial connection (ie ˛t as t

decreases from t D 1
2

in the notation of Definition 5.1) and changing branches into
the first irreducible arc encountered which meets S.i /. For general knots with simple
representation varieties b might be �1, according to the sign of the change in Levine–
Tristram signatures.
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Torus knot � j�j CI\.K/ Khred.Km/ I \.K/

(4,5) �8 7 .3; 2; 2; 2/a .2; 1; 3; 3/

(4,7) �14 11 Aa˚ .4; 4; 3; 3/b , .4; 4; 5; 4/ 11� rank� 15

(4,9) �16 13 .5; 4; 4; 4/a .7; 6; 6; 6/ 13� rank� 17

(4,11) �22 17 Aa˚ .6; 6; 5; 5/b .10; 9; 9; 9/ 17� rank� 23

(4,13) �24 19 .7; 6; 6; 6/a .12; 11; 13; 13/ 19� rank� 25

(4,15) �30 23 Aa˚ .8; 8; 7; 7/b .16; 16; 17; 16/ 23� rank� 31

(4,17) �32 25 Aa˚ .8; 8; 8; 8/ .21; 20; 20; 20/ 25� rank� 33

(4,19) �38 29 Aa˚ .10; 10; 9; 9/b .26; 25; 25; 25/ 29� rank� 39

(4,21) �40 31 Aa˚ .10; 10; 10; 10/ .30; 29; 31; 31/ 31� rank� 41

(4,23) �46 35 Aa˚ .12; 12; 11; 11/b .36; 36; 37; 36/ 35� rank� 47

(4,25) �48 37 Aa˚ .12; 12; 12; 12/ .43; 42; 43; 42/ 37� rank� 49

(5,6) �16 9 .5; 4; 4; 4/a .5; 3; 4; 5/ 9� rank� 15

(5,7) �16 17 .5; 4; 4; 4/a .8; 6; 7; 8/ .5; 4; 4; 4/a

(5,8) �20 19 .6; 5; 5; 5/a .9; 8; 9; 9/ 19� rank� 21

(5,9) �24 15 .7; 6; 6; 6/a .10; 10; 11; 10/ 15� rank� 25

(5,11) �24 17 .7; 6; 6; 6/a .15; 14; 14; 14/ 17� rank� 25

(5,12) �28 29 .8; 7; 7; 7/a .20; 19; 19; 19/ .8; 7; 7; 7/a

(5,17) �40 41 .11; 10; 10; 10/a .38; 36; 37; 38/ .11; 10; 10; 10/a

(5,22) �52 53 .14; 13; 13; 13/a .62; 61; 61; 61/ .14; 13; 13; 13/a

(5,117) �280 281 .71; 70; 70; 70/a ? .71; 70; 70; 70/a

(6,7) �18 11 Aa˚ .5; 5; 4; 4/b .7; 7; 9; 8/ 11� rank� 19

(7,16) �54 55 Aa˚ .14; 14; 13; 13/b ? Aa˚ .14; 14; 13; 13/b

(7,30) �102 103 Aa˚ .26; 26; 25; 25/b ? Aa˚ .26; 26; 25; 25/b

(9,11) �48 49 .13; 12; 12; 12/a ? .13; 12; 12; 12/a

(9,25) �112 111 .29; 28; 28; 28/a ? 111� rank� 113

(9,29) �128 129 .33; 32; 32; 32/a ? .33; 32; 32; 32/a

(11,24) �130 131 Aa˚ .33; 33; 32; 32/b ? Aa˚ .33; 33; 32; 32/b

(11,31) �168 169 .43; 42; 42; 42/a ? .43; 42; 42; 42/a

(13,15) �96 97 .25; 24; 24; 24/a ? .25; 24; 24; 24/a

(13,28) �180 181 .46; 45; 45; 45/a ? .46; 45; 45; 45/a

Table 1: Calculations for torus knots
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Much more ambitiously, one could hope that an Atiyah–Floer conjecture holds in this
context, which would describe how to calculate gradings and differentials from inter-
section diagrams in the pillowcase (and perhaps additional data internal to R.Y0;K0/).
Exploring this topic provides motivation for the problem of describing the spaces
R.Y0;K0/ and their image in the pillowcase for more general tangles than those that
arise from 2–bridge and torus knots. It would be interesting to relate our examples and
calculations to the approach of Wehrheim and Woodward as alluded to in [39].
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