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Commutative ring objects in pro-categories
and generalized Moore spectra

DANIEL G DAVIS

TYLER LAWSON

We develop a rigidity criterion to show that in simplicial model categories with a com-
patible symmetric monoidal structure, operad structures can be automatically lifted
along certain maps. This is applied to obtain an unpublished result of M J Hopkins
that certain towers of generalized Moore spectra, closely related to the K.n/–local
sphere, are E1–algebras in the category of pro-spectra. In addition, we show that
Adams resolutions automatically satisfy the above rigidity criterion. In order to carry
this out we develop the concept of an operadic model category, whose objects have
homotopically tractable endomorphism operads.

55P43, 55U35; 18D20, 18D50, 18G55

1 Introduction

One of the canonical facts that distinguishes stable homotopy theory from algebra is the
fact that the mod 2 Moore spectrum does not admit a multiplication. There are numerous
consequences and generalizations of this fact: there is no Smith–Toda complex V .1/

at the prime 2; the Smith–Toda complex V .1/ does not admit a multiplication at
the prime 3; the mod 4 Moore spectrum admits no multiplication which is either
associative or commutative; the mod p Moore spectrum admits the structure of an
A.p� 1/–algebra but not an A.p/–algebra; and so on. (A discussion of the literature
on multiplicative properties of Moore spectra can be found in Thomason [42, A.6],
while multiplicative properties of V .1/ can be found in Oka [30]. The higher structure
on Moore spectra plays an important role in Schwede [37].)

These facts and others form a perpetual sequence of obstructions to the existence of
strict multiplications on generalized Moore spectra, and it appears to be the case that
essentially no generalized Moore spectrum admits the structure of an E1–algebra.

Despite this, the goal of the current paper is to show the following:
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104 Daniel G Davis and Tyler Lawson

For any prime p and any n � 1, let fMI gI be a tower of generalized Moore spectra
of type n, with homotopy limit the p–complete sphere (as in Hovey and Strick-
land [27, 4.22]). Then fMI gI admits the structure of an E1–algebra in the category
of pro-spectra.

Roughly, the multiplicative obstructions vanish when taking the inverse system as
a whole (by analogy with the inverse system of neighborhoods of the identity in a
topological group).

This statement is due to Mike Hopkins, and it is referenced in Rognes [35, 5.4.2].
Mark Behrens gave a proof that the tower admits an H1 structure, based on Hopkins’
unpublished argument, in [6]. As discussed in [3, 2.7], Ausoni, Richter and Rognes
worked out a version of Hopkins’ statement for the pro-spectrum fku=p�g��1 for any
prime p as an object in the category of pro-ku–modules. (Here, ku is the connective
complex K–theory spectrum.)

It has been understood for some time that the K.n/–local category should, in some
sense, be a category with some pro-structure. For example, as in Hovey [22, Section 2],
if X is any spectrum, then

LK.n/.X /' holim
I

.LnX ^MI /I

ie the K.n/–localization of X is the homotopy limit of the levelwise smash product
in pro-spectra of LnX with the tower fMI gI . In applications, the Morava E–theory
homology theory E.k; �/�.�/ defined below is often replaced by the more tractable
completed theory which again involves smashing with the pro-spectrum fMI gI :

E.k; �/_� .X /D ��
�
LK.n/.E.k; �/^X /

�
Š ��

�
holim

I
.E.k; �/^X ^MI /

�
:

(For example, see the work of Goerss, Henn, Mahowald and Rezk [20, Section 2],
Hovey [24] and Rezk [34].) Thus, in some sense our goal is to establish appropriate
multiplicative properties of this procedure.

We give several applications of our results. Let n� 1 and let p be a fixed prime. As in
Rezk [32], let FG be the category that consists of pairs .k; �/, where k is any perfect
field of characteristic p and � is a height n formal group law over k . The morphisms
are pairs .r; f /W .k; �/! .k 0; � 0/, where r W k 0 ! k is a ring homomorphism and
f W �! r�.� 0/ is an isomorphism of formal group laws.

By Goerss and Hopkins [21] (see also Goerss [19, 2.7]), the Goerss–Hopkins–Miller
Theorem says that there is a presheaf

EW FGop
�! SpE1 ; .k; �/ 7!E.k; �/;

Geometry & Topology, Volume 18 (2014)



Commutative ring objects in pro-categories and generalized Moore spectra 105

where SpE1 is the category of commutative symmetric ring spectra and

E.k; �/� ŠW .k/Ju1; : : : ;un�1KŒu˙1�:

Here W .k/ is the ring of Witt vectors of the field k , each ui has degree zero, and the
degree of u is �2. The E1–algebra E.k; �/ is a Morava E–theory, whose formal
group law is a universal deformation of � . In Section 6 we show that each E.k; �/

lifts to the E1–algebra fE.k; �/^MI gI in the category of pro-spectra.

Also, in Section 7 we show that various completions that are commonly employed in
homotopy theory also have highly multiplicative structures. In particular, these include
classical Adams resolutions. This has the amusing consequence that, in homotopy
theory, the completion of a commutative ring object with respect to a very weak notion
of an ideal (whose quotient is only assumed to have a left-unital binary operation)
automatically inherits a commutative ring structure.

It should be noted that some care is required in the definition of an E1–algebra
structure when working with pro-objects. In this paper, we use a definition in terms
of endomorphism operads in simplicial sets: an E1–algebra structure is a map from
an E1–operad to the endomorphism operad of the pro-object. If X D fx˛g˛ is a
pro-object, note that this does not define maps of pro-objects

f.E†n/C ^†n
.x˛/

^n
g˛ �!X:

Roughly, the issue is that the levelwise smash product only commutes with finite
colimits in the pro-category. In particular, it does not represent the tensor of pro-objects
with spaces; see Isaksen [28, Section 4.1].

The starting point for the proof that Moore towers admit E1 structures is the following
algebraic observation.

Proposition 1.1 Suppose that R is a commutative ring, S is an R–module, and e 2S

is an element such that the evaluation map HomR.S;S/! S is an isomorphism. Then
S admits a unique binary multiplication such that e2D e , and under this multiplication
S becomes a commutative R–algebra with unit e .

The proof consists of iteratively applying the adjunction

HomR.S
˝Rn;S/Š HomR.S

˝R.n�1/;HomR.S;S//

to show that a map S˝Rn! S is equivalent to a choice of image of e˝n ; existence
shows that e˝ e 7! e determines a binary multiplication, and uniqueness forces the
commutativity, associativity and unitality properties. In particular, this applies whenever
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106 Daniel G Davis and Tyler Lawson

S is the localization of a quotient of R. One notes that, while this proof only requires
studying maps S˝Rn! S for n� 3, it is implicitly an operadic proof.

This proof almost carries through when S is the completion of R with respect to an
ideal m. However, in this case the topology on R^m needs to be taken into account. The
tensor product over R needs to be replaced by a completed tensor product of inverse
limits of modules, which does not have a right adjoint in general. However, when
restricted to objects which are inverse limits of finitely presented modules, smallness
gives the completed tensor product a right adjoint (cf Bauer [5, B.3]).

The paper follows roughly this line of argument, mixed with the homotopy theory of
pro-objects developed by Isaksen and Fausk [28; 18].

Unfortunately, the “levelwise” tensor product for pro-objects does not usually have
a right adjoint. This means that the constructions of model categories of rings and
modules, from Schwede and Shipley [39] and Hovey [23, Section 4], do not apply in
this circumstance. Understanding these homotopical categories should be a topic worth
further investigation.

Outline

We summarize the portions of this paper not previously described. Our work begins in
Section 2 by collecting definitions and results on the homotopy theory of operads and
spaces of operad structures on objects. A more detailed outline is at the beginning of
that section.

In Section 3 we flesh out the proof outlined in the introduction. In model categories
with amenable symmetric monoidal structure, as well as a weak variant of internal
function objects, certain “rigid” maps automatically allow one to lift algebra structures
uniquely from the domain to the target.

Section 4 assembles together enough of the homotopy theory of pro-objects to show
that pro-dualizable objects behave well with respect to a weak function object, allowing
the results of Section 3 to be applied. To obtain the main results of this section, we
place several strong assumptions on the behavior of filtered colimits with respect to the
homotopy theory. In particular, we require that filtered colimits represent homotopy
colimits and preserve both fibrations and finite limits. The main reason for restricting
to this circumstance is that we need to gain homotopical control over function spaces of
the form limˇ colim˛ Map.x˛;yˇ/, as well as other function objects. (Functors such
as Map.� ;y/ are rarely assumed to have good behavior on towers of fibrations.)

Section 5 verifies all these necessary assumptions in the case of modules over a
commutative symmetric ring spectrum. (The category of modules over a commutative
differential graded algebra is Quillen equivalent to such a category.)

Geometry & Topology, Volume 18 (2014)



Commutative ring objects in pro-categories and generalized Moore spectra 107

The main result of the paper appears in Section 6, which shows (Theorem 6.3) that
a tower of generalized Moore spectra (constructed by Hovey and Strickland based
on previous work of Devinatz, Hopkins and Smith) automatically obtains an E1–
algebra structure from the sphere. This is then applied to show that certain chromatic
localizations of the sphere, as well as all the Morava E–theories E.k; �/, are naturally
inverse limits of highly multiplicative pro-objects.

Section 7 carries out the aforementioned study of multiplicative structure on comple-
tions.

Notation and assumptions

As various model categories of pro-objects are very large and do not come equipped
with functorial factorization, there are set-theoretic technicalities. These include being
able to define either derived functors or a homotopy category with the same underlying
object set. We refer the reader to Dwyer, Hirschhorn, Kan and Smith [13] (eg Section 8)
for one solution, which involves employing a larger universe in which one constructs
equivalence relations and produces canonical definitions which can be made naturally
equivalent to constructions in the smaller universe.

For a functor F with source a model category, the symbol LF (resp. RF ) will be
used to denote the derived functor, with domain the homotopy category of cofibrant-
fibrant objects, when F takes acyclic cofibrations (resp. acyclic fibrations) to weak
equivalences. For inline operators such as ˝, this will be replaced by a superscript.
We use Œ� ;� � to denote the set of maps in the homotopy category.

The generic symbol ? denotes a monoidal product, while ˝ is reserved for actual
tensor products and categories tensored over simplicial sets.

For a pro-object X , we will often write an isomorphic diagram using lowercase symbols
fx˛g˛ without comment.
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108 Daniel G Davis and Tyler Lawson

2 Operads

In this section, we will discuss some background relating to operads and their actions.
In essence, we would like to establish situations where we have a model category D
supporting enough structure so that objects of D have endomorphism operads, and we
would like to ensure that these endomorphism operads are invariant under both weak
equivalences and appropriate Quillen equivalences.

This requires us to dig our way through several layers of terminology.

Endomorphism objects are functorial under isomorphisms. Our goal is to produce
“derived” endomorphism objects which are functorial under weak equivalences. While
our attention is turned towards endomorphism operads, the methods apply when we
have a very general enriching category V . We give a functorial construction of derived
endomorphism objects in V –monoids, which mostly relies on an SM7 axiom, in
Section 2.1. As a side benefit, we obtain a definition of endomorphism objects for
diagrams which will prove necessary later.

We then turn our attention to the construction of endomorphism operads. By its very
nature, this requires our category to carry a symmetric monoidal structure, a model
structure, and an enrichment in spaces, and all of these must obey compatibility rules.
This presents us with a significant number of adjectives to juggle. We study this
compatibility in Section 2.2, finally encoding it in the notion of an operadic model
category.

The motivation for operadic model categories is the ability to extend our enrichment,
from simplicial sets under cartesian product to symmetric sequences under the compo-
sition product. The work of Section 2.1 then produces derived endomorphism operads.
To ensure that these constructions make sense in homotopy theory, we show that they
are invariant under an appropriate notion of operadic Quillen equivalence.

Once this is in place, in Section 2.4 we are able to study a space parametrizing O–
algebra structures on a fixed object, and be assured that if O is cofibrant it is an invariant
under equivalences of the homotopy type and equivalences of the model category.

In this paper, operads are assumed to have symmetric group actions, and no assumptions
are placed on degrees 0 or 1. We will write Com for the commutative operad, which
is terminal among simplicial operads and consists of a single point in each degree.

Both the definitions and the philosophy here draw heavily from Rezk [31].
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2.1 Enriched endomorphisms

In this section we assume that V is a monoidal category with a model structure, and
that D is a model category with a V –enriched structure. For a; b 2 D we write
V– MapD.a; b/ for the enriched mapping object.

We assume that the following standard axiom holds.

Axiom 2.1 (SM7) Given a cofibration i W a � b and a fibration pW x � y in D , the
map

V– MapD.b;x/ �! V– MapD.a;x/�V– MapD.a;y/ V– MapD.b;y/

is a fibration in V , which is acyclic if either i or p is.

Write V– Mon for the category of monoids in V . For an object c 2 D , we have a
V –endomorphism object V– EndD.c/ 2 V– Mon.

Definition 2.2 A map in V– Mon is a fibration or a weak equivalence if the underlying
map is a fibration or weak equivalence in the category V .

This definition may or may not come from a model structure on the category of
V –monoids. However, under amenable circumstances it makes sense to form the
localization of V– Mon with respect to the weak equivalences.

Our goal is to prove that endomorphism objects are functorial in weak equivalences, at
least on the level of homotopy categories (Theorem 2.11). To construct this functor, it
is useful to first note that the subcategory of isomorphisms in the homotopy category
of D is naturally equivalent to a category formed by a restricted localization.

Lemma 2.3 Let M be a model category and A�M be the subcategory of acyclic
fibrations between cofibrant-fibrant objects. Then the natural functor

A�1A �! ho.M/w;

from the groupoid completion to the subcategory of isomorphisms in the homotopy
category of M, is fully faithful and essentially surjective.

Remark 2.4 The dual result clearly holds for inverting acyclic cofibrations.

Proof Any object in M is equivalent to a cofibrant-fibrant one, so the functor is
obviously essentially surjective.
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Let x;y be cofibrant-fibrant objects in M, and consider the map x! x � .
Q
f y/,

where the product is indexed by weak equivalences f W x ! y . We can factor this
map into an acyclic cofibration x! Qx followed by a fibration, and for any such weak
equivalence f this yields a diagram in M of the form

x

D

��

// � // Qx

�

zzzz
����

�

$$ $$
x x � .

Q
f y/oooo // // y:

This shows that A�1A ! ho.M/w is full. Moreover, all maps in the homotopy
category are realized in A�1A by the inverse of the map Qx � x followed by a map
Qx � y . Therefore, to complete the proof it suffices to show that right homotopic
acyclic fibrations Qx! y become equal in A�1A.

Let y � z � y � y be a path object for y , with p0;p1W z � y the component
projections (which are acyclic fibrations). Let hD z �y z , with the product taken over
p0 on both factors, and j0; j1W h � z the component projections. The maps p1j0

and p1j1 make the object h into another path object for y . However, we have an
identity of acyclic fibrations p0j0 D p0j1 , and so in the category A�1A we have
p1j0 D p1j1 .

Definition 2.5 For a small category I , the functor category DI is a V –enriched
category, with V– MapDI .F;G/ described by the equalizer diagram

V– MapDI .F;G/ //
Y

i

V– MapD.F.i/;G.i//
////
Y
i!j

V– MapD.F.i/;G.j //:

In the particular case where I is the poset f0< 1g and DI is the category of arrows
Ar.D/, we will abuse notation by writing V– MapD.f;g/ as an enriched mapping
object between two morphisms f and g of D . Similarly, in the case where J is the
poset f0 < 1 < 2g and DJ is the category of composable pairs of arrows of D , for
J –diagrams

. �
f
! �

f 0

! � / and . �
g
! �

g0

! � /

we will similarly write V– MapD..f
0; f /; .g0;g// as an enriched mapping object.

Remark 2.6 When V– MapDW Dop �D! V preserves limits, we can say more. For
Reedy categories I , the category DI then inherits a V –enriched Reedy model structure
that satisfies an SM7 axiom. (Compare Angeltveit [1], which assumes a symmetric
monoidal closed structure on V .)
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For maps f W a! b and pW x! y in D , the categorical equalizer V– MapD.f;p/
can be alternatively described in V as a fiber product

V– MapD.a;x/�V– MapD.a;y/ V– MapD.b;y/:

This makes the following proposition a straightforward consequence of the SM7 axiom.

Proposition 2.7 (cf Dwyer and Hess [12, 6.6]) Suppose that in D , f W a! b is a
map with cofibrant domain and pW x � y is a fibration between fibrant objects. Then:

� The map V– MapD.f;p/! V– MapD.b;y/ is a fibration.

� If p is an acyclic fibration, then the map V– MapD.f;p/! V– MapD.b;y/ is
an acyclic fibration.

� If p is an acyclic fibration and f is a weak equivalence between cofibrant objects,
then the map V– MapD.f;p/! V– MapD.a;x/ is a weak equivalence.

Restricting to the case where f and p coincide, we deduce the following consequences
for endomorphisms.

Corollary 2.8 Suppose that in D , f W x � y is an acyclic fibration between fibrant
objects. If x is cofibrant, then the map V– EndD.f / ! V– EndD.y/ is an acyclic
fibration in V– Mon, and if both x and y are cofibrant, then the map V– EndD.f /!
V– EndD.x/ is a weak equivalence in V– Mon.

Similar analysis yields the following.

Proposition 2.9 Suppose that in D , a
f
�! b

g
�!c are maps between cofibrant objects

and x
p

� y
q

�z are fibrations with z fibrant. Then:

� The map V– MapD..g; f /; .q;p//! V– MapD.g; q/ is a fibration.

� If p is an acyclic fibration, the map V– MapD..g;f /; .q;p//! V– MapD.g; q/
is an acyclic fibration.

� If p and q are acyclic fibrations and g is a weak equivalence, then the following
maps are weak equivalences:

V– MapD..g; f /; .q;p// �! V– MapD.f;p/;

V– MapD..g; f /; .q;p// �! V– MapD.gf; qp/:
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Corollary 2.10 Suppose that in D , f W x � y and gW y � z are acyclic fibrations
between cofibrant-fibrant objects. Then the map V– EndD..g; f //!V– EndD.g/ is an
acyclic fibration in V– Mon, and the following maps are weak equivalences in V– Mon:

V– EndD..g; f // �! V– EndD.f /;

V– EndD..g; f // �! V– EndD.gf /:

Theorem 2.11 Suppose that the category of V –monoids has a homotopy category
ho.V– Mon/. Then there is a derived functor

RV– EndDW ho.D/w �! ho.V– Mon/w

from isomorphisms in the homotopy category of D to isomorphisms in the homotopy
category of V –monoids.

This lifts the composite of the antidiagonal

ho.D/w �! ho.D/op
� ho.D/

with the functor
RV– MapDW ho.D/op

� ho.D/ �! ho.V/:

The monoid V– EndD.c/ represents the derived homotopy type in ho.V– Mon/ on
cofibrant-fibrant objects.

Remark 2.12 In the case of the mapping space between two objects in a model cate-
gory, this is most easily accomplished using the Dwyer–Kan [14] simplicial localization
(generalized by Dundas [11]). This constructs a simplicially enriched category, with
the correct mapping spaces, where the weak equivalences have become isomorphisms.

However, as natural transformations can only be recovered in the simplicial localization
using simplicial homotopies, study of the interaction between the symmetric monoidal
structure and simplicial localization would require extra work. The shortest path is
likely through 1–category theory, which would take us too far afield.

Proof of 2.11 Let A�D be the category of acyclic fibrations between cofibrant-fibrant
objects of D . By Lemma 2.3, it suffices to define the functor A! ho.V– Mon/w .

For an acyclic fibration f W x ! y in A, Corollary 2.8 gives a diagram of weak
equivalences

V– EndD.x/
�
 � V– EndD.f /

�
�! V– EndD.y/
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in V– Mon, representing a composite map in ho.V– Mon/w . For a composition g ıf

we apply Corollary 2.10 to obtain a commutative diagram

V– EndD..g; f //

vv �� ((
V– EndD.f /

�� ((

V– EndD.gf /

vv ((

V– EndD.g/

vv ��
V– EndD.x/ V– EndD.y/ V– EndD.z/

of weak equivalences in V– Mon, which shows that the resulting assignment respects
composition.

By replacing D with the category Ar.D/ of arrows in D , equipped with the projective
model structure, we obtain the following consequence of Theorem 2.11.

Proposition 2.13 Suppose that the category of V –monoids has a homotopy category
ho.V– Mon/. Then there is a derived functor

RV– EndDW ho.Ar.D//w �! ho.V– Mon/w;

from isomorphisms in the homotopy category of Ar.D/ to isomorphisms in the homo-
topy category of V –monoids, together with natural transformations

RV– EndD.x/ �RV– EndD.f / �!RV– EndD.y/

for f W x! y .

The monoid V– EndD.f / represents the derived homotopy type in ho.V– Mon/ on
fibrations between cofibrant-fibrant objects.

2.2 Tensor model categories

First, we recall interaction between a monoidal structure and a model category structure.

Recall that the pushout product axiom for cofibrations in a model category with monoidal
product ? says that if f W x! y and f 0W x0! y0 are cofibrations, then the pushout
map

.y ? x0/qx?x0 .x ? y0/ �! y ? y0

is a cofibration, and is a weak equivalence if either f or f 0 is.

The following definition is from Fausk and Isaksen [18, 12.1] (though see Remark 2.15).
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Definition 2.14 A tensor model category is a model category D equipped with a
monoidal product that

� satisfies the pushout product axiom for cofibrations,

� takes the product with an initial object in either variable to an initial object, and

� preserves weak equivalences when either of the inputs is cofibrant.

If D is further equipped with a symmetric tensor structure, D is a symmetric tensor
model category.

Remark 2.15 Note that the second component makes this more restrictive than [18,
12.1]. Because the product with an initial object is always initial, the pushout product
axiom implies that the monoidal product preserves cofibrant objects.

By analogy with the definition of a (lax) monoidal Quillen adjunction (Schwede and
Shipley [40, 3.6]), we have the following.

Definition 2.16 Suppose that D and D0 are tensor model categories. A tensor Quillen
adjunction is a Quillen adjoint pair of functors

LW D � D0 WR;

together with a lax monoidal structure on R, such that

� for any cofibrant objects x;y2D , the induced natural transformation L.x?y/!

L.x/?0L.y/ is a weak equivalence, and

� for some cofibrant replacement Ic of the unit I of D , the induced map L.Ic/!I0

is a weak equivalence.

We refer to this as a symmetric tensor Quillen adjunction if the functor R is lax
symmetric monoidal, and a tensor Quillen equivalence if the underlying adjunction is
a Quillen equivalence.

The definition below is based on Fausk and Isaksen [18, 12.2].

Definition 2.17 A simplicial tensor model category is a simplicial model category D
equipped with a monoidal product such that

� this structure makes D into a tensor model category,
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� there are choices of natural isomorphisms

K˝x Š x ? .K˝ I/;

K˝x Š .K˝ I/? x;

for x 2 D and K a finite simplicial set which are compatible with the unit
isomorphism, and

� the functor MapD.I;� / is a right Quillen functor.

(Here ˝ denotes the tensor of objects of D with simplicial sets from the simplicial
model structure, and MapD denotes the simplicial mapping object.) In this case, we
say that the monoidal structure on D is compatible with the simplicial model structure.

A simplicial symmetric tensor model category is a simplicial tensor model category
such that the composite natural isomorphism

x ? .K˝ I/ŠK˝x Š .K˝ I/? x

is the natural symmetry isomorphism.

We will freely make use of phrases such as “simplicial (symmetric) tensor Quillen
adjunction/equivalence” to indicate tensor Quillen adjunctions with an appropriate lift
to a lax monoidal simplicial Quillen adjunction.

Remark 2.18 We note that several situations occur where the Quillen functors in
question are each the identity functor, viewed as a Quillen functor between two distinct
tensor model structures on the same monoidal category. In this circumstance, the extra
axioms for a tensor Quillen equivalence or a simplicial symmetric Quillen equivalence
are trivially satisfied.

Remark 2.19 The Yoneda embedding ensures that, for any finite K and L and any
x , .K �L/˝x ŠK˝ .L˝x/. Compatibility then implies that this is isomorphic to
.K˝ I/? .L˝ I/? x . These can be used to obtain well-behaved maps

MapD.x;y/�MapD.x
0;y0/ �!MapD.x ? x0;y ? y0/:

If the tensor structure is symmetric, this map is equivariant with respect to the symmetry
isomorphisms.

Remark 2.20 The following are equivalent.

(1) The unit object I is cofibrant in D .

(2) The functor MapD.I;� /, from D to simplicial sets, is a right Quillen functor.
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(3) The functor .�/˝ I , from simplicial sets to D , is a left Quillen functor.

(4) The functor .�/˝ I , from simplicial sets to D , preserves cofibrations.

Evidently each implies the next. To complete the equivalence, we take the cofibration
∅�� and tensor with I , which (again, checking the Yoneda embedding) is naturally
isomorphic to the map from an initial object of D to I .

It is unsatisfying to make the assumption that the unit is cofibrant, but it will ensure
homotopical control on endomorphism operads. It may be dropped if we are willing to
define operads without an object parametrizing 0–ary operations, but this significantly
complicates the proof of Proposition 2.27.

The hypotheses of a simplicial tensor model category are designed to ensure that the
monoidal structure can produce a reasonably-behaved multicategorical enrichment, and
hence reasonably-behaved endomorphism operads.

For the sake of brevity in this paper we employ the following shorthand, with the
implicit understanding that it demonstrates a prejudice towards simplicial sets.

Definition 2.21 An operadic model category is a simplicial symmetric tensor model
category. An operadic Quillen adjunction is a simplicial symmetric tensor Quillen
adjunction, and if the underlying adjunction is a Quillen equivalence we refer to it as
an operadic Quillen equivalence.

We now relate these to operads in the ordinary sense.

Recall that a symmetric sequence is a collection of simplicial sets fX.n/gn�0 equipped
with actions of the symmetric groups †n . There is a model structure on symmet-
ric sequences whose fibrations and weak equivalences are collections of equivariant
maps X.n/! Y .n/ which satisfy these properties levelwise (ignoring the action of
the symmetric group). The category of symmetric sequences has a (nonsymmetric)
monoidal structure ı, the composition product, whose algebras are operads; eg see
Markl, Shnider and Stasheff [29].

The main reason for introducing the concept of an operadic model category is the
following proposition.

Proposition 2.22 Let V be the category of symmetric sequences of simplicial sets.
Then for an operadic model category D , the definition

V– MapD.x;y/D fMapD.x
?n;y/gn

makes D into a V –enriched category satisfying the SM7 axiom.
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Proof This is a straightforward consequence of the structure on D , though it requires
Remarks 2.15 and 2.20.

Remark 2.23 In particular, for a map f W x ! y in D , the endomorphism operad
V– EndD.f / is the symmetric sequence which, in degree n, is the pullback of the
diagram

MapD.x
?n;x/ �!MapD.x

?n;y/ �MapD.y
?n;y/:

Remark 2.24 While operadic model categories have natural V –enrichments, operadic
Quillen adjunctions do not automatically yield V –enriched adjunctions, except in a
homotopical sense, unless both adjoints are strong monoidal.

2.3 Model structures on operads

The model structure on the category of symmetric sequences lifts to one on the category
of operads in simplicial sets, with fibrations and weak equivalences defined levelwise;
see Berger and Moerdijk [8, 3.3.1].

This extends to a simplicial model structure. This exact statement does not appear to
be in the immediately available literature. However, it can be obtained using either one
of the following two approaches.

� Rezk’s thesis constructs a simplicial model structure on operads with weak equiv-
alences and fibrations defined levelwise under an equivariant model structure [31,
3.2.11], extending a simplicial model structure on symmetric sequences. The method
of proof extends to the Berger–Moerdijk model structure, with weak equivalences
and fibrations defined to be ordinary nonequivariant weak equivalences and fibrations,
by discarding some of the generating cofibrations and generating acyclic cofibrations.
(This does not alter Rezk’s [31, Proposition 3.1.5], the main technical tool for proving
the result, which uses the existence of a functorial levelwise fibrant replacement for
simplicial operads as in Schwede [36, B2].)

� Alternatively, we can use the fact that operads can be expressed algebraically.
There is a functor which takes an N –graded set X D fXng and produces the free
operad O.X / on X (which can be expressed in terms of rooted trees with nodes
appropriately labelled by elements of X ). The functor O is a monad on graded sets
whose algebras are discrete operads. It also commutes with filtered colimits, which
makes it a multisorted theory in the terminology of Rezk [33]. One can then apply
[33, Theorem 7.1] to obtain the desired simplicial model structure on the category of
simplicial O–algebras, ie operads in simplicial sets.
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2.4 Spaces of algebra structures

In this section, we assume that D is an operadic model category, viewed as a model
category enriched in symmetric sequences of simplicial sets.

From this point forward, we will drop the enriching category from some of the notation
as follows. For an object x 2D , the endomorphism operad EndD.x/ is the symmetric
sequence which, in degree n, is the simplicial set MapD.x

?n;x/. Similarly, for a map
f W x! y in D , we have the endomorphism operad EndD.f /.

Definition 2.25 For a cofibrant operad O and a cofibrant-fibrant object x 2 D , the
space of O–algebra structures on x is the space of operad maps

Mapoperad.O;EndD.x//:

For a map �W x! y between cofibrant-fibrant objects in D , the space of O–algebra
structures on � is the space of operad maps

Mapoperad.O;EndD.�//:

Equivalently, this is the space of pairs of O–algebra structures on x and y making �
into a map of O–algebras.

Corollary 2.26 If O is a cofibrant operad, a weak equivalence f W x! y between
cofibrant-fibrant objects in D determines an isomorphism in the homotopy category
between the spaces of O–algebra structures on x and y .

Proof By Theorem 2.11, we find that the operads EndD.x/ and EndD.y/ are canoni-
cally equivalent in the homotopy category of operads, and the spaces of maps from O
are equivalent.

Proposition 2.27 Let f W I � If be a fibrant replacement for the unit object of D .
Then the space of E1–algebra structures on If compatible with the multiplication on
I is contractible.

Proof The map I � If is an acyclic cofibration between cofibrant objects. The
enrichment of the opposite category Dop gives rise to a dual formulation of Corollary 2.8,
and specifically implies that the map EndD.f /! EndD.I/ is an acyclic fibration.

Let E be a cofibrant E1–operad (a cofibrant replacement for Com), and fix the map
E ! Com! EndD.I/ coming from I being the unit. Then the space of lifts in the
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diagram
EndD.f /

�
����

// EndD.If /

E

77

// EndD.I/

is contractible. However, via the map E! EndD.If /, these lifts precisely parametrize
E1–algebra structures on If which are compatible with the multiplication on I .

Finally, we note that endomorphism operads are invariant under certain Quillen equiva-
lences.

Proposition 2.28 Suppose that LW D�D0 WR is an operadic Quillen adjunction. Then
for any cofibrant-fibrant objects y 2D and x 2D0 with an equivalence f W y!Rx ,
there is a map in the homotopy category of operads from EndD0.x/ to EndD.y/.

If, in addition, this adjunction is an operadic Quillen equivalence, this map is an
isomorphism in the homotopy category of operads.

Proof Using Proposition 2.7, we may assume that the equivalence f is an acyclic
fibration.

Since R has a simplicial lift which is lax symmetric monoidal, we obtain a natural map

EndD0.x/ �! EndD.Rx/

of operads. By Corollary 2.8, we have an acyclic fibration EndD.f /
�� EndD.Rx/.

The composite

EndD0.x/ �! EndD.Rx/
�� EndD.f / �! EndD.y/

provides the desired map in the homotopy category of operads.

Now we further assume that the adjunction is an operadic Quillen equivalence. Form
the pullback

OD EndD.f /�EndD.Rx/ EndD0.x/:

The map O! EndD0.x/ is a weak equivalence. To complete the proof it therefore
suffices to show that the map O! EndD.y/ is a weak equivalence.

In degree n, O is the pullback of the diagram

MapD.x
?n;x/� MapD.x

?n;Ry/ MapD0.y
?n;y/;
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so it suffices to show that the right-hand map is an equivalence. However, this map is
the composite

MapD0.y
?n;y/ �!MapD0..Lx/?n;y/ �!MapD0.L.x

?n/;y/ŠMapD.x
?n;Ry/:

The first of these maps is an equivalence because y is cofibrant-fibrant and Lx is
cofibrant, while the second is an equivalence because L.x?n/! .Lx/?n is an equiva-
lence in D0 between cofibrant objects (by definition of a tensor Quillen adjunction).

3 Algebra structures on rigid objects

In this section we assume that D is an operadic model category. Our goal is to prove a
rigidity result (Theorem 3.5) allowing us to lift algebra structures, as mentioned in the
introduction. In order for this to be ultimately applicable to pro-objects, we will first
need to develop a theory which applies when the tensor structure carries something
weaker than a right adjoint.

3.1 Weak function objects

Definition 3.1 A weak function object for the homotopy category ho.D/ is a functor

Fweak.� ;� /W ho.D/op
� ho.D/ �! ho.D/

equipped with a natural transformation of functors

R MapD.x ?L y; z/ �!R MapD.x;F
weak.y; z//

in the homotopy category of spaces. For specific x , y and z such that this map is an
isomorphism in the homotopy category of spaces, we will say that the weak function
object provides an adjoint for maps x ?L y! z .

Example 3.2 Suppose the tensor model category D is closed, and use FD.x;y/

to denote the internal function object in D . Then for any x cofibrant in D , the
functor .�/?xW D!D is a left Quillen functor, the adjoint FD.x;� /W D!D is the
corresponding right Quillen functor, and these determine an adjunction on the homotopy
category. It follows that given arbitrary x and y in ho.D/, if Fweak.x;y/ is defined to
be the image of FD.xc ;yf /, where xc and yf are cofibrant and fibrant representatives
of x and y respectively, then D has a weak function object that provides an adjoint
for x ?L y! z for all x;y; z 2 ho.D/.
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Remark 3.3 We have the following consequences of Definition 3.1.

� Substituting x D I , we obtain a natural transformation

R MapD.y; z/ �!R MapD.I;F
weak.y; z//:

� Substituting xD z and yD I , the image of the natural isomorphism x?L I!x

is a homotopy class of map x! Fweak.I;x/. If this is a natural isomorphism,
we refer to the weak function object as unital.

� Given a map f W x! x0 between objects, the natural transformation of functors

Fweak.x0;� / �! Fweak.x;� /

will be referred to as the map induced by f and denoted by f � . Similarly, the
natural transformation

Fweak.� ;x/ �! Fweak.� ;x0/

will be denoted by f� .
� If the weak function object provides an adjoint for Fweak.y; z/?L y! z , the

identity self-map of Fweak.y; z/ lifts to a natural evaluation map in the homotopy
category of D : Fweak.y; z/?L y! z .

3.2 Rigid objects

Definition 3.4 Suppose that D has a weak function object. A map �W x! y in the
homotopy category of D is rigid if the map

��W Fweak.y;y/ �! Fweak.x;y/

is a weak equivalence.

Theorem 3.5 Suppose that �W x! y is a rigid map in ho.D/. In addition, suppose
that for any n;m� 0, the weak function object provides adjoints for

.x?Ln ?L y?Lm/?L x �! y;

.x?Ln ?L y?Lm/?L y �! y:

Then the map of operads R EndD.�/!R EndD.x/ is an equivalence.

In particular, if O is a cofibrant operad and x is equipped with a homotopy class of
O–algebra structure � W O!R EndD.x/, the homotopy fiber over � of the map

R Mapoperad.O;R EndD.�// �!R Mapoperad.O;R EndD.x//

is contractible.
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Proof By Corollary 2.8 we can represent � by a fibration �W x � y between cofibrant-
fibrant objects in D . This implies that the iterated tensor powers x?n and y?n are
also cofibrant by Remark 2.15 (with nD 0 true by assumption on D ).

We then apply the rigidity of � and the adjoints provided by the weak function object
to find that in the diagram of spaces

MapD.x
?n ? y?.mC1/;y/

.1?�?1/� //

�

��

MapD.x
?.nC1/? y?m;y/

�

��
R MapD.x

?n ? y?m;Fweak.y;y//
� // R MapD.x

?n ? y?m;Fweak.x;y//;

the top map is a weak equivalence. In particular, we find by induction that

.�?n/�W MapD.y
?n;y/ �!MapD.x

?n;y/

is a weak equivalence for all n. (Moreover, the source and target of .�?n/� represent
derived function spaces.)

The endomorphism operad EndD.�/ is the symmetric sequence which, in degree n, is
the pullback of the diagram

MapD.x
?n;x/� MapD.x

?n;y/
�
 MapD.y

?n;y/:

In each degree EndD.�/.n/ is a homotopy pullback of the above diagram because one of
the maps is a fibration. As the other map in this diagram is an equivalence and simplicial
sets are right proper, we find that the “forgetful” map of operads EndD.�/! EndD.x/
is a levelwise weak equivalence as desired.

For any O–algebra structure � W O ! EndD.x/, EndD.�/ ! EndD.x/ is a weak
equivalence. This implies that the homotopy fiber over � is contractible, or equivalently
that the space of homotopy lifts in the diagram

EndD.�/

�

��
O //

;;

EndD.x/

is contractible as well.

As a consequence of Proposition 2.27, we have the following.
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Corollary 3.6 Suppose �W I! y is a rigid map in ho.D/, and that for any n� 0 the
weak function object provides adjoints for the maps

y?Ln ?L y �! y;

y?Ln ?L I �! y:

For any cofibrant E1–operad E , the space of extensions to an action of E on y making
� into an E1–algebra map is contractible.

4 Pro-objects

We first recall the basics on pro-objects in a category C .

Definition 4.1 For a category C , the pro-category pro–C is the category of cofiltered
diagrams X D fx˛g˛ of objects of C , with maps X ! Y D fyˇgˇ defined by

Hompro–C.X;Y /D lim
ˇ

colim
˛

HomC.x˛;yˇ/:

For two cofiltered systems X and Y indexed by the same category, a level map X!Y

is a natural transformation of diagrams; any map is isomorphic in the pro-category to a
level map, by Artin and Mazur [2, Appendix 3.2].

A map X!Y of pro-objects satisfies a property essentially levelwise if it is isomorphic
to a level map such that each component x˛! y˛ satisfies this property.

Remark 4.2 For any cofiltered index category J , there exists a final map I ! J

where I is a cofinite directed set (for example, see Edwards and Hastings [15, 2.1.6]).
This allows us to replace any pro-object by an isomorphic pro-object indexed on a
cofinite directed set.

4.1 Model structures

We now recall the strict model structure on pro-objects from Isaksen [28].

Definition 4.3 [28, 3.1, 4.1, 4.2] Suppose C is a model category. A map X ! Y in
pro–C is:

� a strict weak equivalence if it is an essentially levelwise weak equivalence;

� a strict cofibration if it is an essentially levelwise cofibration;
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� a special fibration if it is isomorphic to a level map fx˛! y˛g˛ indexed by a
cofinite directed set such that, for all ˛ , the relative matching map

x˛ �! . lim
ˇ<˛

xˇ/�limˇ<˛ yˇ y˛

is a fibration;

� a strict fibration if it is a retract of a special fibration.

Remark 4.4 If I is cofinite directed, the category of I–diagrams admits an injective
model structure (equivalently, a Reedy model structure) where weak equivalences and
cofibrations are defined levelwise (see Hovey [23, 5.1.3] and Edwards and Hastings [15,
Section 3.2]). In this structure, the fibrations are precisely those maps satisfying the
condition in the definition of a special fibration, and fibrant objects are also levelwise
fibrant.

By Remark 4.2, every pro-object X can be reindexed to an isomorphic pro-object
X 0 indexed by a cofinite directed set. There is then a levelwise acyclic cofibration
X 0!Xf where Xf is an injective fibrant diagram, and hence represents a strict fibrant
replacement; in addition, there is an injective fibration Xc!X 0 which is a levelwise
weak equivalence, where Xc is levelwise cofibrant, which represents a strict cofibrant
replacement.

Theorem 4.5 [28, 4.15] If C is a proper model category, then the classes of strict
weak equivalences, strict cofibrations and strict fibrations define a proper model struc-
ture on pro–C .

If C has a simplicial enrichment, we can extend this notion to the category pro–C .

Definition 4.6 [28, Section 4.1] Let C be a simplicial model category. For objects
X and Y in pro–C , we define the mapping simplicial set by

Mappro–C.X;Y /D lim
ˇ

colim
˛

MapC.x˛;yˇ/:

For X 2 pro–C , the tensor and cotensor with a finite simplicial set K are defined
levelwise, and for arbitrary K using limits and colimits in the pro-category.

Remark 4.7 As stated in the introduction, it is important to remember that limits and
colimits of pro-objects cannot be formed levelwise (even for systems of level maps).
In particular, for infinite complexes K the levelwise tensor and cotensor generally do
not represent the tensor and cotensor in pro–C .
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Theorem 4.8 [28, 4.17] If C is a proper simplicial model category, then the strict
model structure on pro–C is also a simplicial model structure.

Theorem 4.9 (Fausk and Isaksen [17, 6.4]) Suppose LW C � D WR is a Quillen
adjunction between proper model categories. Then the induced adjunction of pro-
categories fLgW pro–C � pro–D WfRg is a Quillen adjunction. If the original adjunction
is a Quillen equivalence, then so is the adjunction on pro-categories.

Corollary 4.10 If LW C �D WR is a simplicial Quillen adjunction between proper sim-
plicial model categories, then the induced Quillen adjunction fLgW pro–C�pro–D WfRg
lifts to a simplicial Quillen adjunction between the pro-categories.

Proof Applying limˇ colim˛ to the natural isomorphism

MapC.x˛;Ryˇ/ŠMapD.Lx˛;yˇ/

extends the adjunction to a simplicial adjunction.

Proposition 4.11 Suppose C is a proper simplicial model category. For levelwise
cofibrant X and levelwise fibrant Y in pro–C with strict fibrant replacement Yf , the ho-
motopically correct mapping simplicial set Mappro–C.X;Yf / is a natural representative
for the homotopy type

holim
ˇ

hocolim
˛

R MapC.x˛;yˇ/:

Proof Using the fact that X is strict cofibrant, Fausk and Isaksen [18, 5.3] show that
Mappro–C.X;Yf / is weakly equivalent to

holim
ˇ

colim
˛

MapC.x˛;yˇ/:

Because X is levelwise cofibrant and Y is levelwise fibrant, the mapping spaces
MapC.x˛;yˇ/ are representatives for the derived mapping spaces. Finally, in simplicial
sets, filtered colimits are always representatives for homotopy colimits because filtered
colimits preserve weak equivalences.

4.2 Tensor structures

Definition 4.12 (Fausk and Isaksen [18, Section 11]) Suppose C has a monoidal
operation ? with unit I . The levelwise monoidal structure on pro–C is defined so that
for X;Y 2 pro–C indexed by I and J respectively, the tensor X ?Y is the pro-object
fx˛ ? yˇg˛�ˇ indexed by I �J . The unit is the constant pro-object I .
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Remark 4.13 Note that this tensor structure on pro–C is almost never closed, even
when the tensor structure on C is, as the levelwise tensor usually does not commute
with colimits (including infinite coproducts) in either variable. However, the constant
pro-object f∅g is initial in the pro-category, and is preserved by the levelwise tensor
product if it is preserved by ?.

Proposition 4.14 [18, 12.7, 12.3] If C is a proper tensor model category, then the
strict model structure on pro–C is also a tensor model category under the levelwise
tensor structure.

If, in addition, C is an operadic model category, the levelwise tensor structure on pro–C
makes pro–C into an operadic model category.

Proposition 4.15 Suppose LW C�D WR is a tensor Quillen adjunction between proper
tensor model categories. Then the induced adjunction fLgW pro–C � pro–D WfRg is a
tensor Quillen adjunction, which is symmetric if the original Quillen adjunction is.

Proof By Theorem 4.9, the pair fLg and fRg form a Quillen adjunction. For pro-
objects X and Y , the maps Rx˛?Ryˇ!R.x˛?yˇ/ assemble levelwise to a natural
lax monoidal structure for the functor fRg on pro-objects, and the induced natural
transformations for fLg are also computed levelwise. If X and Y are cofibrant objects
of pro–C , we may choose levelwise cofibrant models which make the conditions of
Definition 2.16 immediate.

Combining this with Corollary 4.10, we obtain the following.

Corollary 4.16 If LW C � D WR is an operadic Quillen adjunction between proper op-
eradic model categories, then the induced Quillen adjunction fLgW pro–C�pro–D WfRg
is an operadic Quillen adjunction.

4.3 Function objects

For the remainder of Section 4, we will suppose that C is a proper operadic model
category whose monoidal product is symmetric monoidal closed. Specifically, there
is a cofibrant unit object I , and for objects x;y 2 C we have a product x ? y and an
internal function object FC.x;y/.

Definition 4.17 (Fausk [16, 9.14]) There is a functor

Fpro–C W .pro–C/op
� pro–C �! pro–C
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defined by
Fpro–C.X;Y /D fcolim

˛
FC.x˛;yˇ/gˇ;

equipped with a natural transformation

Mappro–C.X ? Y;Z/ �!Mappro–C.X;Fpro–C.Y;Z//

given by the composite

lim



colim
˛�ˇ

MapC.x˛ ? yˇ; z
 /
Š
�! lim



colim
˛

colim
ˇ

MapC.x˛;FC.yˇ; z
 //

�! lim



colim
˛

MapC.x˛; colim
ˇ

FC.yˇ; z
 //:

Remark 4.18 In particular, the case X D fIg produces a natural isomorphism

Mappro–C.I;Fpro–C.Y;Z//ŠMappro–C.Y;Z/:

Remark 4.19 The functor Fpro–C does not generally act as an internal function object,
in large part due to the presence of the colimit in the definition.

4.4 Homotopical properties of function objects

We continue the assumptions of Section 4.3 on C .

Proposition 4.20 Suppose that filtered colimits preserve fibrations, represent ho-
motopy colimits and commute with finite limits in C . Then the function object
Fpro–C.X;Y / satisfies the following properties.

(1) For a fixed Y 2 pro–C and a cofiltered index category I , Fpro–C.� ;Y / takes
finite colimits in CI to finite limits in pro–C .

(2) For a fixed X 2 pro–C and a cofiltered index category I , Fpro–C.X;� / takes
finite limits in CI to finite limits in pro–C .

(3) The function object satisfies an SM7 axiom: for any strict cofibration i W A � B

and strict fibration pW X � Y in pro–C , the induced map

Fpro–C.B;X / �! Fpro–C.B;Y /�Fpro-C.A;Y /Fpro–C.A;X /

is a fibration, which is a strict equivalence if either i or p is.

Proof (1) For a finite diagram J ! CI , the colimit as a diagram of pro-objects is
computed by the colimit in CI , by Artin and Mazur [2, Appendix 4.2]. By assumption,
the natural morphisms

colim
˛

lim
j

FC.x
j
˛ ;yˇ/ �! lim

j
colim
˛

FC.x
j
˛ ;yˇ/

Geometry & Topology, Volume 18 (2014)



128 Daniel G Davis and Tyler Lawson

are isomorphisms for all ˇ , so we find that the natural map

Fpro–C.colim
j

X j ;Y / �! lim
j

Fpro–C.X j ;Y /

is an isomorphism.

(2) The proof of this item is identical to that of the previous one.

(3) We note that the statement is preserved by retracts in p , and so we may assume
that pW X � Y is a special fibration. We can choose level representations for i and p

with several properties:

� The map i is a levelwise cofibration fa˛ � b˛g˛ .

� The map i is a levelwise acyclic cofibration if i is a strict equivalence (Isaksen
[28, 4.13]).

� The map p is indexed by a cofinite directed set.

� The maps from xˇ to Mˇ D yˇ �lim
<ˇ y
 .lim
<ˇ x
 / defined by p are
fibrations.

� The fibrations xˇ � Mˇ are weak equivalences if p is a strict equivalence [28,
4.14].

The pushout product axiom in C is equivalent to the internal SM7 axiom. Hence for
all ˛ and ˇ , we find that the map

FC.b˛;xˇ/ �! FC.b˛;Mˇ/�FC.a˛;Mˇ/ FC.a˛;xˇ/

is a fibration, and is a weak equivalence if i or p is a strict equivalence. Using the fact
that FC preserves limits in the target variable, this says that the natural map

FC.b˛;xˇ/ �!Z˛;ˇ � lim

<ˇ

Z˛;


�
lim

<ˇ

FC.b˛;x
 /
�

is a fibration which is trivial if i or p is, where

Z˛;
 D FC.b˛;y
 /�FC.a˛;y
 /FC.a˛;x
 /

is the component of the fiber product in degree 
 .

Taking colimits in ˛ , which commutes with the fiber product and preserves fibrations
by assumption, we obtain a level representation of the map

Fpro–C.B;X / �! Fpro–C.B;Y /�Fpro-C.A;Y / Fpro–C.A;X /

by a special fibration. Since filtered colimits represent homotopy colimits, they preserve
weak equivalences, and so this is a levelwise equivalence if i or p is a strict equivalence,
as desired.
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Remark 4.21 This actually proves that the SM7 map of Fpro–C already provides a
special fibration or special acyclic fibration if the original map p is a special fibration
or special acyclic fibration.

Corollary 4.22 Under the assumptions of Proposition 4.20, we have the following
consequences.

(1) For fibrant Y 2 pro–C , Fpro–C.� ;Y / preserves weak equivalences between
cofibrant objects.

(2) For cofibrant X 2 pro–C , Fpro–C.X;� / preserves weak equivalences between
fibrant objects.

(3) The functor Fpro–C.� ;� / descends to a well-defined weak function object
Fweak.� ;� / for the homotopy category of cofibrant-fibrant objects of pro–C .

Proof By Ken Brown’s lemma (for example, see Hovey [23, 1.1.12]), to prove the
first item it suffices to prove that Fpro–C.� ;Y / takes acyclic cofibrations to weak
equivalences. This follows by applying the SM7 property to an acyclic cofibration
X !X 0 and the fibration Y !�.

The second item follows exactly as in the previous case by applying the SM7 property
to an acyclic fibration. The final item is then a direct consequence.

The following proposition allows us to gain homotopical control on function objects
from the associated pro-objects in the homotopy category.

Proposition 4.23 Suppose that filtered colimits preserve fibrations, represent homo-
topy colimits and commute with finite limits in C . Then given levelwise cofibrant
X and levelwise fibrant Y in pro–C with fibrant replacement Y 0 , the induced map
Fpro–C.X;Y /!Fpro–C.X;Y 0/ is a weak equivalence. The representative Fpro–C.X;Y 0/
for the homotopically correct weak function object Fweak.X;Y 0/ is a representative
for the homotopy type ˚

hocolim
˛

RFC.x˛;yˇ/
	
ˇ
:

Proof This argument closely follows Fausk and Isaksen [18, 5.3]. By assumption X

is strict cofibrant, and by reindexing we may assume that Y is indexed by a cofinite
directed set I and still levelwise fibrant. The index category I is a Reedy category,
so we may choose a Reedy fibrant replacement Y ! Y 0 which is a levelwise weak
equivalence so that the maps y0

ˇ
! lim
<ˇ y0
 are fibrations. In particular, y0

ˇ
is always

fibrant.
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The levelwise properties imply that the function objects FC.x˛;yˇ/ are representatives
for the derived function objects, and that the maps FC.x˛;yˇ/!FC.x˛;y

0
ˇ
/ are weak

equivalences.

As in the proof of part (3) of Proposition 4.20, the homotopically correct function
object fcolim˛ FC.x˛;y

0
ˇ
/gˇ is levelwise equivalent to fcolim˛ FC.x˛;yˇ/gˇ . Since

colimits represent homotopy colimits, we obtain the desired result.

4.5 Pro-dualizable objects

Continuing the assumptions of Section 4.3, we now begin to study dualizability.

Definition 4.24 For an object x2ho.C/, the dual Dx is the function object RFC.x; I/.
The map Dx ?L x! I is the evaluation pairing.

Given y 2 ho.C/, the adjoint to the map Dx?L x?L y!y is a natural transformation
Dx ?L y! RFC.x;y/. The object x 2 ho.C/ is dualizable if this map is a natural
isomorphism of functors on ho.C/.
An object X 2 ho.pro–C/ is pro-dualizable if it is isomorphic in the homotopy category
to a cofiltered diagram of objects whose images in the homotopy category are dualizable.

Remark 4.25 We follow Hovey and Strickland [27] in using the term dualizable,
rather than the term strongly dualizable from Hovey, Palmieri and Strickland [25].

The following are immediate consequences of the definitions.

Proposition 4.26 The unit I is dualizable. Dualizable objects are closed under the
tensor in ho.C/, and pro-dualizable objects are closed under the levelwise tensor in
ho.pro–C/.

Suppose that the unit object I is compact, in the sense that the functor R MapC.I;� /
commutes with filtered homotopy colimits. Then the natural equivalence

R MapC.x;y/'R MapC.I;Dx ?L y/

implies that R MapC.x;� / commutes with filtered homotopy colimits. We then have
the following result, which is similar in spirit to the earlier results by Bauer [5, B.3, (2)]
and by Fausk [16, 9.15].

Proposition 4.27 Suppose that filtered colimits preserve fibrations, represent ho-
motopy colimits and commute with finite limits in C . In addition, suppose that
R MapC.I;� / commutes with filtered homotopy colimits. Let X 2 ho.pro–C/ be
pro-dualizable. Then, for any Y and Z in ho.pro–C/, the weak function object Fweak

provides an adjoint to the map X ?L Y !Z (see Definition 3.1).
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Proof Without loss of generality, we can lift X to a pro-object represented by a
diagram which is levelwise cofibrant and dualizable. Similarly, we choose lifts of Y to
a strict cofibrant diagram and Z to a special fibrant diagram, which in particular is
levelwise fibrant.

Combining Propositions 4.11 and 4.23, the natural transformation

Mappro–C.X ?L Y;Z/ �!Mappro–C.X;F
weak.Y;Z//

is naturally represented by the map of homotopy types

holim



hocolim
˛;ˇ

R MapC.x˛ ? yˇ; z
 /

�! holim



hocolim
˛

R MapC
�
x˛; hocolim

ˇ
RFC.yˇ; z
 /

�
:

As R MapC.x˛;� / commutes with filtered homotopy colimits, this reduces to the
adjunction R MapC.x˛ ? yˇ; z
 /ŠR MapC.x˛;FC.yˇ; z
 //.

Combining this with Theorem 3.5, we have the following result.

Theorem 4.28 Suppose that filtered colimits preserve fibrations, represent homotopy
colimits and commute with finite limits in C . In addition, suppose that R MapC.I;� /
commutes with filtered homotopy colimits. Let �W X ! Y in ho.pro–C/ be a rigid
map between pro-dualizable objects. If X is an algebra over a cofibrant operad O , then
there exists an O–algebra structure on Y , compatible with �, which is unique up to
homotopy.

5 Symmetric spectra and filtered colimits

In this section, we verify several conditions on model categories of interest in this
paper. In particular, we show that the “base category” of symmetric spectra is a proper
operadic model category, and hence, has an associated model category of pro-objects
that is operadic. Also, we show that this base model structure satisfies several required
assumptions from Section 4.

We write Sp for the category of symmetric spectra in simplicial sets described in Hovey,
Shipley and Smith [26]. For R a ring object in Sp , we write SpR for the category of
R–modules. We will follow Schwede [38] (which uses the term “absolute flat stable”)
in using the term flat stable model structure for what is called the R–model structure
in Shipley [41].

The properties of filtered colimits preserving fibrations, preserving weak equivalences
and commuting with finite limits are true in the category of simplicial sets, and are
inherited by several categories based on diagrams of them.
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Proposition 5.1 Let R be a commutative ring object in Sp . Under the flat stable
model structure, the category SpR is a proper monoidal model category under ^R

with a compatible simplicial enrichment and cofibrant unit. In this category, filtered
colimits represent homotopy colimits, commute with finite limits and preserve fibrations.
Mapping spaces out of R commute with filtered homotopy colimits.

Remark 5.2 As in [41, 2.8], the identity functor is a Quillen equivalence between the
ordinary stable model structure and the flat stable model structure. By Remark 2.18, the
flat stable and ordinary stable model structures are essentially equivalent for considering
operadic structures.

Proof By [41, 2.6, 2.7], the flat stable model structure makes SpR a proper monoidal
model category. The simplicial enrichment is tensored and cotensored, with the tensor
compatible by definition.

The adjoint of the pushout product axiom implies that the internal function objects
FR.� ;� / obey an SM7 axiom in the flat stable model structure on R–modules. To
conclude that the simplicial enrichment satisfies the SM7 axiom, it suffices to note that
MapR.X;Y / is the degree zero portion of the function spectrum FR.X;Y /, and that
the functor taking an R–module to its degree zero portion is a right Quillen functor
(with adjoint R^ .�/).

As this model category is cofibrantly generated, and the generating cofibrations and
acyclic cofibrations A � B have source and target which are compact, filtered colimits
automatically preserve fibrations (cf Behrens and Davis [7, 5.3.1]).

Filtered colimits and finite limits in SpR are formed levelwise in the category of pointed
simplicial sets. In particular, filtered colimits commute with finite limits and preserve
level equivalences.

Given a diagram fXigi in SpR indexed by a cofinite directed set I , the homotopy
colimit is the left derived functor of colimit, and is formed by taking the colimit of a
cofibrant replacement fX 0i gi! fXigi in the projective model structure on I–diagrams.
As the classes of cofibrations coincide in the projective model structures on I–diagrams
for the flat level and flat stable model structures on SpR , and similarly for the classes
of acyclic fibrations, the above cofibrant replacement is, objectwise, a level equivalence.
The natural map colimi X 0i ! colimi Xi is then a filtered colimit of level equivalences;
it is therefore a level equivalence, and hence a stable equivalence.

The functor MapR.R;� / is the zeroth space functor, which commutes with homotopy
colimits.
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6 Towers of Moore spectra

In this section we will show that there are towers of Moore spectra admitting an E1
structure. We will deduce from this the existence of E1 structures on pro-spectrum
lifts of the K.n/–local spheres, the telescopic (T .n/–local) spheres and the Morava
E–theories E.k; �/.

Throughout this section we fix a prime p .

Theorem 6.1 (Hovey and Strickland [27, 4.22]) For any integer n � 1, there is a
tower fMI gI of generalized Moore spectra of type n under S such that, for all finite
spectra Z of type greater than or equal to n, the natural map

Z �! fZ ^MI gI

is an isomorphism of pro-objects in the homotopy category of spectra.

Any two such towers are isomorphic as pro-objects in the homotopy category.

We will refer to any such tower fMI gI of generalized Moore spectra under S as a
Moore tower.

Corollary 6.2 For any Moore tower fMI gI , the unit map S! fMI gI is rigid (see
3.4) in the homotopy category of pro-spectra.

Proof By Proposition 4.23 it suffices to show that for any I , the natural map

hocolim
J

F.MJ ;MI / �!MI

is an equivalence.

The dual of MI is still finite of type n, and so the natural map

DMI �! fDMI ^MJ gJ

becomes an isomorphism of pro-objects in the homotopy category. Taking duals, we
find that

fF.MJ ;MI /gJ �!MI

becomes an isomorphism of ind-objects in the homotopy category. In particular, this
map expresses the domain as being ind-constant in the homotopy category, and so the
induced map

hocolim
J

F.MJ ;MI / �!MI

is a weak equivalence, as desired.
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Theorem 6.3 Any Moore tower admits the structure of an E1–algebra.

For n� 1, let K.n/ and T .n/ denote a Morava K–theory of height n and the mapping
telescope of a vn –self-map of a type n complex. Then the K.n/–local and T .n/–local
spheres lift to the E1–algebras fLK.n/S^MI gI and fLT .n/S^MI gI in the category
of pro-spectra.

Proof As Moore towers are pro-dualizable, the first statement is obtained by applica-
tion of Corollary 3.6 and Proposition 4.27.

By smashing a Moore tower with the constant pro-objects LK.n/S and LT .n/S , each
of which is an E1–algebra (since localizations of S are E1–algebras in spectra), and
noting that the inverse limit is still the K.n/–local or T .n/–local sphere, we obtain
the second statement.

Since E.k; �/ is K.n/–local and an E1–algebra in spectra, the argument for the
second part of the above theorem gives the following result.

Corollary 6.4 Let n � 1, let k be any perfect field of characteristic p , and let �
be any height n formal group law over k . Then E.k; �/ lifts to the E1–algebra
fE.k; �/^MI gI in the category of pro-spectra, functorially in .k; �/.

7 Nilpotent completions

In this section, we roughly follow Bousfield [9, Section 5] in defining nilpotent resolu-
tions, though we have been influenced by Carlsson [10] and Baker and Lazarev [4].

To recap assumptions, in this section the category C is

� an operadic model category,
� whose monoidal structure is closed,
� whose underlying model category is proper, and
� whose filtered colimits preserve fibrations, realize homotopy colimits, and com-

mute with finite limits.

Finally, we now add the assumption that

� the underlying model category is stable.

As a result, ho.C/ has the structure of a tensor triangulated category.

The main example in mind is the category of modules over a commutative symmetric
ring spectrum.

Geometry & Topology, Volume 18 (2014)



Commutative ring objects in pro-categories and generalized Moore spectra 135

Definition 7.1 (cf [9, 3.7]) Suppose E is an object in ho.C/. The category Nil.E/
of E–nilpotent objects is the smallest subcategory of ho.C/ containing E which is
closed under isomorphisms, cofiber sequences, retracts and tensoring with arbitrary
objects of ho.C/.

In other words, Nil.E/ is the thick tensor ideal of ho.C/ generated by E , or equivalently
the thick subcategory generated by objects of the form .E ?L x/ for x 2 ho.C/.

Definition 7.2 (cf [9, 5.6]) For an element E in ho.C/, an E–nilpotent resolution
of y 2 ho.C/ is a tower fwsgs of objects under y such that

(1) ws is in Nil.E/ for all s � 0, and

(2) for any E–nilpotent object z , the map hocolims RFC.ws; z/!RFC.y; z/ is a
weak equivalence.

Remark 7.3 The second condition is preserved by cofiber sequences, isomorphisms,
and retracts in z , and so it suffices to show it for objects of the form .E ?L x/ for
x 2 ho.C/.

Remark 7.4 Suppose that the category ho.C/ has a collection of dualizable generators
pi . To check that a tower is an E–nilpotent resolution, it suffices to check that the
maps �

pi ; hocolim
s

RFC.ws; z/
�
�! Œpi ;RFC.y; z/�

are isomorphisms, or equivalently that the maps

colim
s

Œws;Dpi ?L z� �! Œy;Dpi ?L z�

are isomorphisms. However, since z is E–nilpotent, so is Dpi ?L z , and therefore it
suffices to check that the map

colim
s

Œws; z� �! Œy; z�

is an isomorphism for all E–nilpotent z as in Bousfield’s definition.

Given an E–nilpotent resolution fwsgs of an object y , we can lift it to a map in pro–C
from the constant pro-object y to a representing tower fwsgs . We will casually refer
to a map of towers fyg ! fwsgs in C as an E–nilpotent resolution if the domain
is constant with value y and the image of the range in the homotopy category is an
E–nilpotent resolution of y . We will view C as embedded in the category of towers in
C so that we may abuse notation by writing this as a map y! fwsgs .
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Proposition 7.5 If �W y!W and �0W y!W 0 are two E–nilpotent resolutions of y

in C , then the map Fweak.W;W 0/!Fweak.y;W 0/ is a strict equivalence. In particular,
the map � in pro–C is rigid.

Proof We may assume without loss of generality that y is cofibrant and that the towers
W D fwsgs and W 0D fw0tgt are levelwise cofibrant-fibrant in C . By Proposition 4.23,
the map Fweak.W;W 0/ ! Fweak.y;W 0/ is homotopy equivalent to a map of pro-
objects ˚

hocolim
s

FC.ws; w
0
t /gt �! fFC.y; w

0
t /
	

t
:

As each w0t is E–nilpotent, the maps hocolims FC.ws; w
0
t /! FC.y; w

0
t / are weak

equivalences. Therefore, the associated map of towers Fweak.W;W 0/!Fweak.y;W 0/

is a levelwise equivalence.

Any two E–nilpotent resolutions are therefore pro-isomorphic in the homotopy category
ho.pro–C/. We therefore will often casually refer to a map in the pro-category y!y^

E
,

from the constant object y to an E–nilpotent resolution, as the E–nilpotent completion
of y .

Definition 7.6 (cf Hovey and Strickland [27, 4.8]) A �–ring is an object E 2 ho.C/
equipped with a map I!E and a multiplication E ?L E!E which is left unital.

Proposition 7.7 If the object E is a �–ring in ho.C/ and y 2 C , there exists an
E–nilpotent resolution of y . If E and y are dualizable, then there exists a resolution
which is pro-dualizable.

Proof We apply the standard techniques to provide a canonical “Adams resolution”
of y as follows. First form a fiber sequence J ! I!E in ho.C/. The maps

J?L.nC1/
�! I ?L J?Ln

Š J?Ln

construct a tower of tensor powers of J . We then define I=J n as the cofiber of the
composite map J?Ln! I?Ln Š I .

For an arbitrary object y , to show that the tower

f.I=J n/?L ygn

is an E–nilpotent resolution of y , it suffices to show that for any object x 2 ho.C/ the
map

hocolim
n

RFC..I=J
n/?L y;E ?L x/ �!RFC.y;E ?L x/
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is a weak equivalence. Taking fibers, it suffices to show that

hocolim
n

RFC.J
?Ln ?L y;E ?L x/

is trivial. However, the �–ring structure on E implies that any map from J?Ln ?L y

to E ?L x automatically lifts to a map from E ?L J?Ln ?L y , and thus restricts to
the trivial map from J?L.nC1/?L y .

Dualizable objects are closed under cofiber sequences and tensor products by Hovey,
Palmieri and Strickland [25, 2.1.3], and so if E and y are dualizable this tower is
pro-dualizable.

Theorem 7.8 Suppose that E is a dualizable �–ring in ho.C/, and y 2 C is an
algebra over a cofibrant operad O . Then there exists a unique O–algebra structure on
the E–nilpotent completion y^

E
which is compatible with y .

Proof This is obtained by applying Theorem 3.5, the hypotheses of which are verified
by Propositions 7.7, 7.5 and 4.27.

Remark 7.9 When Theorem 7.8 is applied to the category of modules over E.k; �/

(where E.k; �/ is any Morava E–theory, as defined in Section 1) with dualizable
�–ring given by the associated 2–periodic Morava K–theory, we recover the E1–
structure on E.k; �/ in the category of pro-spectra. However, this construction does
not respect the action of the extended Morava stabilizer group G.k; �/DAutFG.k; �/,
the automorphism group of .k; �/ in the category FG . One could also apply this
method to the smash product of a �–ring with E.k; �/, LE.n/S , LK.n/S or LT .n/S .
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