
msp
Geometry & Topology 17 (2013) 235–272

Combinatorial group theory and
the homotopy groups of finite complexes

ROMAN MIKHAILOV

JIE WU

For n> k � 3 , we construct a finitely generated group with explicit generators and
relations obtained from braid groups, whose center is exactly �n.S

k/ . Our methods
can be extended to obtain combinatorial descriptions of homotopy groups of finite
complexes. As an example, we also give a combinatorial description of the homotopy
groups of Moore spaces.

55Q40, 55Q52; 18G30, 20E06, 20F36, 55U10, 57M07

1 Introduction

Homotopy groups of spheres play a central role in the algebraic topology. The tra-
ditional approaches to understanding homotopy groups of spheres include Adams
spectral sequence, EHP–sequences, Toda secondary operations, J –homomorphisms,
connections between homotopy theory and cobordisms etc.

A description of homotopy groups of the 2–dimensional sphere in terms of combinatorial
group theory was discovered by the second author in 1994 and given in his thesis [22],
with a published version in [24]. In this article we give a combinatorial description
of the homotopy groups of k –dimensional spheres with k � 3. The description is
given by identifying the homotopy groups as the center of a quotient group of the self
free products with amalgamation of pure braid groups by certain canonical subgroups
(Theorem 2.2; see Section 2 for the explicit construction). Our methods can be extended
to obtain combinatorial descriptions of homotopy groups of finite complexes. As an
example, we also give a combinatorial description of the homotopy groups of Moore
spaces.

We follow earlier approaches in the use of simplicial groups to study these questions.
The notions of simplicial sets and simplicial groups have been widely studied since
they were introduced in the early of 1950s when D Kan established the foundational
work for simplicial homotopy theory [13; 14]. Various important results have been
achieved by studying simplicial groups. For instance, a special case of the Adams
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spectral sequence can be obtained from the lower central series of Kan’s construction
[4] for computing homotopy groups. The results of the paper [24] produced surprising
connections between group theory, group ring theory, homotopy and low-dimensional
topology. For example, the authors and Passi applied homotopy groups of spheres
to describe the subgroups determined by ideals in group rings in [18]. The results
from [24] play a central role in connecting the homotopy groups of S2 with Brunnian
braids on the disk and sphere in the paper [3] by Berrick, Cohen, Wong and Wu. The
main result in [24] was generalized by Ellis and Mikhailov in [11] by studying a van
Kampen-type theorem for higher homotopy groups. Serious study of Brunnian braids
by the authors along with Bardakov and Vershinin [1], and Li and Wu [16] introduced
the notion of symmetric commutator subgroups in determining the group of Brunnian
braids on surfaces S for S 6D S2 or RP2 . By using this notion together with the
embedding theorem due to Cohen and Wu in [7, Theorem 1.2] as well as the Whitehead
Theorem on free products with amalgamation of simplicial groups (Kan and Thurston
[15, Proposition 4.3]), we are able to control the Moore boundaries of our simplicial
group models for the loop spaces of spheres and Moore spaces using a different cone
derived from the pure braid complex, which leads to our results.

In this paper we exhibit new connections between homotopy theory and group theory.
The braids enter this context in the following three important ways:

(1) The contractible property of the simplicial group AP� introduced by Cohen and
Wu in [7; 8] with n–simplices given by the .nC 1/–strand pure braid group
plays an essential role for determining the homotopy type of simplicial groups
given by the free product with amalgamations of copies of AP� .

(2) The Moore chains and the Moore boundaries of free products with amalgama-
tions of copies of AP� can be determined, where the simplicial group G was
technically introduced in Section 4.4 as a free simplicial group deformation of
AP� (forgetting defining relations) for the determination of the Moore chains
and Moore boundaries.

(3) The homotopy groups of higher dimensional spheres can be described in terms
of free product with amalgamations of AP� .

The article is organized as follows. In Section 2, we recall the description of the
homotopy groups of the 2–dimensional sphere from [24] and formulate the main results
of this paper. In particular, the complete description of groups such that their centers
are homotopy groups is given. In Section 3, we study free products with amalgamation
of simplicial groups. In some cases, these products present simplicial models for loop
spaces of homotopy push-out spaces. In Section 4, for k � 3, we construct simplicial
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groups such that their geometrical realization is homotopy equivalent to the loops on the
k –dimensional sphere. There is a natural way to describe Moore boundaries of these
simplicial groups and this description is a key point in the proof of Theorem 2.2, which
we give in Section 4. In Section 5, we consider triple free products with amalgamation
of simplicial braid groups and construct simplicial models for loop spaces for Moore
spaces. For k� 3, we give a description of a finitely generated group such that its center
is the nth homotopy group of the k –dimensional Z=q–Moore space (Theorem 5.4).
Section 6 is about 3–dimensional Moore spaces. In this case, the simplicial models for
loop spaces of Moore spaces can be simplified. We prove Theorem 2.3 in Section 6.

2 Preliminaries and formulations of main results

Recall briefly the combinatorial description of ��.S2/ from [22; 24]. Let

Fn D hx0;x1; : : : ;xn j x0x1 � � �xni

be the one-relator group generated by x0; : : : ;xn with the defining relation x0 � � �xnD

1. (Note that Fn is a free group of rank n with a basis given by fx1; : : : ;xng.) Let
RiDhxii

Fn be the normal closure of xi in Fn for 0� i �n. We can form a symmetric
commutator subgroup

ŒR0;R1; : : : ;Rn�S D
Y

�2†nC1

Œ: : : ŒR�.0/;R�.1/�; : : : ;R�.n/�;

where the symmetric group †nC1 acts on f0; 1; : : : ; ng. The symmetric group †nC1

permutes the indices of the subgroups Ri . There is an action of the braid group BnC1 on
FnDhx0;x1; : : : ;xn jx0x1 � � �xni by the Artin representation, which induces an action
of BnC1 on the quotient group Fn=ŒR0;R1; : : : ;Rn�S . By Wu [25, Theorem 1.2], the
center of Fn=ŒR0;R1; : : : ;Rn�S is exactly given by the fixed set of the pure braid group
PnC1 action on Fn=ŒR0;R1; : : : ;Rn�S for n� 3. This gives an explicit subgroup of
Fn with a set of generators that can be understood by taking a collection of iterated
commutators. By [24, Theorem 1.4], we have the following combinatorial description
of ��.S2/.

Theorem 2.1 For n� 1, there is an isomorphism

�nC1.S
2/Š

R0\ � � � \Rn

ŒR0; : : : ;Rn�S

This quotient group is isomorphic to the center of the group Fn=ŒR0;R1; : : : ;Rn�S .

Geometry & Topology, Volume 17 (2013)



238 Roman Mikhailov and Jie Wu

The groups Fn=ŒR0;R1; : : : ;Rn�S can be defined using explicit generators and rela-
tions. This situation is very interesting from the group-theoretical point of view: we
do not know how to describe the homotopy groups ��.S2/ in terms of generators
and relations, but we can describe a bigger group whose center is exactly ��.S2/.
Philosophically speaking, the center is the most elementary natural, characteristic
Abelian subgroup of a group. There is a lot of work on centers of groups. For example,
people have studied the question of how to realize a given Abelian group as the center
of a finitely generated or finitely presented group; see Baumslag [2] and Houcine [12].
For a group H , we denote it center by Z.H /. Centers of groups appear in different
places of low-dimensional homotopy theory. For example, let G be a group with trivial
center. Then there is a natural isomorphism

�3.†K.G; 1//ŠZ.G˝G/;

where G˝G is the non-Abelian tensor square in the sense of Brown and Loday [5].
Let K be a 2–dimensional cell complex, K1 its 1–skeleton; then there is a natural
isomorphism

�2.K/ŠZ.�2.K;K
1//:

It has been the concern of many people whether one can give a combinatorial description
of the homotopy groups of higher dimensional spheres, ever since Theorem 2.1 was
announced in 1994. Technically the proof of this theorem was obtained by determining
the Moore boundaries of Milnor’s F ŒK�–construction [19] on the simplicial 1–sphere
S1 , which is a simplicial group model for �S2 . A canonical approach is to study
Milnor’s construction F ŒSk �' �SkC1 for k > 1. Although there have been some
attempts by Zhao and Wang [26] to study this question using F ŒSk �, technical difficul-
ties arise in handling Moore boundaries of F ŒSk � in a good way, and combinatorial
descriptions of the homotopy groups of higher dimensional spheres using the simplicial
group model F ŒSk � would be very messy.

In this article, we give a combinatorial description of ��.Sk/ for any k � 3 by using
the free product with amalgamation of pure braid groups. Our construction is as follows.
Given k � 3, n� 2, let Pn be the n–strand Artin pure braid group with the standard
generators Ai;j for 1� i < j � n. We construct a (free) subgroup Qn;k of Pn from
cabling as follows. Our cabling process starts from P2 DZ generated by the 2–strand
pure braid A1;2 .

Step 1 Consider the 2–strand pure braid A1;2 . Let �i be .k�1/–strand braid obtained
by inserting i parallel strands into the tubular neighborhood of the first strand
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of A1;2 and k � i � 1 parallel strands into the tubular neighborhood of the
second strand of A1;2 for 1� i � k � 2.1

Step 2 Let ˛k D Œ: : : ŒŒ�
�1
1
; �1�

�1
2
�; �2�

�1
3
�; : : : ; �k�3�

�1
k�2

; �k�2� be a fixed choice of
.k � 1/–strand braid, which is a nontrivial .k � 1/–strand Brunnian braid.2

Step 3 By applying the cabling process as in Step 1 to the element ˛k , we insert
parallel strands into the tubular neighborhood of the strands of ˛k in any
possible way to obtain n–strand braids. As the order in which the strands
are inserted is arbitrary, there are

�
n�1
k�2

�
ways of doing this. Label the

�
n�1
k�2

�
n–strand braids obtained in this way by yj for 1� j �

�
n�1
k�2

�
.

Let Qn;k be the subgroup of Pn generated by yj for 1� j �
�

n�1
k�2

�
. Now consider

the free product with amalgamation

Pn �Qn;k
Pn:

Namely this amalgamation is obtained by identifying the elements yj in two copies
of Pn . Let Ai;j be the generators for the first copy of Pn and let A0i;j denote the
generators Ai;j for the second copy of Pn . Let

Ri;j D hAi;j ;A
0
i;j i

Pn�Qn;k
Pn

be the normal closure of Ai;j ;A
0
i;j in Pn �Qn;k

Pn . Let

ŒRi;j j 1� i < j � n�S D
Y

f1;2;:::;ngDfi1;j1;:::;it ;jt g

Œ: : : ŒRi1;j1
;Ri2;j2

�; : : : ;Rit ;jt
�

be the product of all commutator subgroups such that each integer 1� j � n appears
as one of indices at least once. Our main theorem is as follows:

Theorem 2.2 Let k � 3. The homotopy group �n.S
k/ is isomorphic to the center of

the group
.Pn �Qn;k

Pn/=ŒRi;j j 1� i < j � n�S

for any n if k > 3 and any n 6D 3 if k D 3.

Note The only exceptional case is k D 3 and nD 3. In this case, �3.S
3/DZ while

the center of the group is bigger than Z.

1The braids �i were introduced in [7; 8] with notation of xi . A formula for �i in terms of the Ai;j

Artin’s generators was given in [7, Formula 1 in the proof of Lemma 2.2].
2For a group G and g; h 2G , we use the notation Œg; h� WD g�1h�1gh .
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The center of the group .Pn �Qn;k
Pn/=ŒRi;j j 1 � i < j � n�S is in fact given by

Brunnian words in the following sense: Let xdk W Pn ! Pn�1 be the operation of
removing the k th strand for 1� k � n. A Brunnian braid means an n–braid ˇ such
that xdkˇD 1 for any 1� k � n. Namely, ˇ becomes a trivial braid after removing any
one of its strands. This notion can be canonically extended to free products of braid
groups. In other words, we have a canonical operation xdk W Pn �Pn! Pn�1 �Pn�1

given by removing the k th strand. A Brunnian word in Pn � Pn means a word w
such that xdkw D 1 for any 1 � k � n. It can be seen from our techniques that the
Brunnian words in Pn �Pn are exactly given by the symmetric commutator subgroup
ŒRi;j j 1� i < j � n�S . However the question on determining Brunnian words in free
products of braid groups with amalgamations becomes very tricky. The question here is
about the self free product of Pn with the amalgamation given by the subgroup Qn;k .
It is straightforward to check that the strand-removing operation xdk maps Qn;k into
Qn�1;k and so the removing operation xdk W Pn �Qn;k

Pn! Pn�1 �Qn�1;k
Pn�1 is a

well-defined group homomorphism. From our construction of simplicial groups given
by free products with amalgamation, the Brunnian words in Pn �Qn;k

Pn are exactly
the Moore cycles in our simplicial group model for �Sk and, from Theorem 2.2, the
center

Z..Pn �Qn;k
Pn/=ŒRi;j j 1� i < j � n�S /Š �n.S

k/

is exactly given by the Brunnian words in Pn �Qn;k
Pn modulo the subgroup

ŒRi;j j 1 � i < j � n�S . One important point concerning Brunnian words of the
self free product with amalgamation of Pn is that the homotopy groups �n.S

k/ can
be given as quotient groups of Brunnian subgroups for any k � 3.

Mark Mahowald asked in 1995 whether one can give a combinatorial description of the
homotopy groups of the suspensions of real projective spaces. In this article, we also
give a combinatorial description of the homotopy groups of Moore spaces as the first
step for attacking Mahowald’s question. Let M.Z=q; k/ be the .kC 1/–dimensional
Moore space. Namely M.Z=q; k/DSk[q ekC1 is the homotopy cofibre of the degree
q map Sk ! Sk . If k � 3, we give a combinatorial description of ��.M.Z=q; k//
given as the centers of quotient groups of threefold self free product with amalgamation
of pure braid groups, which is similar to the description given in Theorem 2.2. (The
detailed description will be given in Section 5.) This description is less explicit then
the one given in Theorem 2.2, but it leads to combinatorial descriptions of homotopy
groups of finite complexes from iterated self free products with amalgamations of pure
braid groups.

For the homotopy groups of 3–dimensional Moore spaces, there is an explicit combi-
natorial description that deserves to be described here as it arises in certain divisibility
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questions concerning braids. Let �1; : : : ; �n�1 be n–strand braid obtained by cabling
A1;2 as described in Step 1 of the construction for the group Qn;k . It was proved
in [7] that the subgroup of Pn generated by �1; : : : ; �n�1 is a free group of rank
n� 1 with a basis given by �1; : : : ; �n�1 . Let Fn�1 D h�1; : : : ; �n�1i � Pn be the
subgroup generated by �1; : : : ; �n�1 . Given an integer q , since Fn�1D h�1; : : : ; �n�1i

is free, there is a group homomorphism �qW Fn�1 ! Fn�1 such that �q.�j / D �
q
j

for 1� j � n� 1. Now we form a free product with amalgamation by the push-out
diagram

Fn�1
� - Pn

Fn�1

�q

?

\

- Pn ��q
Fn�1

?

namely the group Pn ��q
Fn�1 , which is the free product given by identifying the

subgroup Fn�1 with the subgroup of Fn�1 generated by �q
1
; : : : ; �

q
n�1

in a canonical
way. Let yj denote the generator �j for Fn�1 as the second factor in the free product
Pn ��q

Fn�1 for 1� j � n� 1. Let

R1 D hy1i
Pn��q Fn�1 ; Rj D hyj�1y�1

j i
Pn��q Fn�1 ; Rn D hyn�1i

Pn��q Fn�1

be the normal closure of y1;yj�1y�1
j ;yn�1 in Pn��q

Fn�1 , respectively, for 2� j �

n� 1. Let
Rs;t D hAs;t i

Pn��q Fn�1

be the normal closure of As;t in Pn ��q
Fn�1 for 1 � s < t � n. Define the index

set Index.Rj /D fj g for 1� j � n and Index.Rs;t /D fs; tg for 1� s < t � n. Now
define the symmetric commutator subgroup

ŒRi ;Rs;t j 1� i � n; 1� s < t � n�S D
Y

f1;2;:::;ngD
tS

jD1

Index.Cj /

Œ: : : ŒC1;C2�; : : : ;Ct �;

where each Cj DRi or Rs;t for some i or .s; t/.

Theorem 2.3 The homotopy group �n.M.Z=q; 2// is isomorphic to the center of the
group

.Pn ��q
Fn�1/=ŒRi ;Rs;t j 1� i � n; 1� s < t � n�S

for n 6D 3.
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Note For the exceptional case nD 3, �3.M.Z=q; 2// is contained in the center but
the equality fails.

3 Free products with amalgamation on simplicial groups

Let �W G! G0 and  W G! G00 be group monomorphisms. Then we have the free
product with amalgamation G0 �G G00 . More precisely G0 �G G00 is the quotient group
of the free product G0 �G00 by the normal closure of the elements �.g/ .g/�1 for
g 2G . The group G0 �G G00 has the universal property that the following diagram

G �
� - G0

G00

 

?

\

- G0 �G G00
?

is a pushout diagram in the category of groups. Let G0DhX 0 jR0i and G00DhX 00 jR00i

be presentations of the groups G0 and G00 , respectively. Let X be a set of generators
for the group G . Then the group G0 �G G00 has a presentation

G0 �G G00 D hX 0;X 00 jR0; R00; �.x/ .x/�1 for x 2X i:

In particular, if X 0 , X 00 , R0 , R00 and X are finite sets, then G0 �G G00 is a finitely
presented group with a presentation given as above. The notion of free product with
amalgamation can be canonically extended to the category of simplicial groups.

Recall that a simplicial group G consists in a sequence of groups G D fGngn�0 with
face homomorphisms di W Gn ! Gn�1 and degeneracy homomorphisms si W Gn !

GnC1 for 0� i � n such that the following simplicial identities hold:

(1) �–identity: didj D dj diC1 for i � j

(2) Degeneracy Identity: sisj D sjC1si for i � j

(3) Mixing Relation:

disj D

8<:
sj�1di if i < j

id if i D j ; j C 1

sj di�1 if i > j C 1

A simplicial homomorphism f W G!G0 consists in a sequence of group homomor-
phisms f Dffng with fnW Gn!G0n such that dG0

i fnDfn�1dG
i and sG0

i fnDfnC1sG
i
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for 0� i � n. A simplicial monomorphism f W G!G0 means a simplicial homomor-
phism f D ffng such that each fnW Gn!G0n is a monomorphism. Similarly we have
the notion of simplicial epimorphism.

For a simplicial group G , recall that the Moore chain complex N�G is defined by

NnG D

n\
iD1

Ker.di W Gn!Gn�1/

with the differential given by the restriction of the first face d0jW NnG!Nn�1G . The
Moore chain complex functor has the following important properties. For a simplicial
set X , let jX j denote its geometric realization.

Proposition 3.1 The following statements hold:

(1) Let G be any simplicial group. Then there is a natural isomorphism

Hn.N�GI d0j/Š �n.jGj/

for all n.

(2) Let f W G!G0 be a simplicial homomorphism. Then f is a simplicial monomor-
phism (epimorphism) if and only if

N.f /W NqG �!NqG0

is a monomorphism (epimorphism) for all q .

(3) A sequence of simplicial groups

1!G0!G!G00! 1

is short exact if and only if the corresponding sequence of Moore chain complexes

1!N�G
0
!N�G!N�G

00
! 1

is short exact.

Proof Assertion (1) is the classical theorem of John Moore; see the survey paper by
Curtis [10]. Assertion (2) is given in Quillen’s book [20, Lemma 5, 3.8].

(3) By [3, Proposition 4.1.4], the Moore chain functor is an exact functor. We show
that the inverse statement is also true. Namely if 1!N�G

0!N�G!N�G
00! 1 is

short exact, then 1!G0!G!G00! 1 is short exact. By assertion (2), G0!G is a
simplicial monomorphism and G!G00 is a simplicial epimorphism. From Conduché’s
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decomposition theorem of simplicial groups [9], the composite G0!G!G00 is trivial
and so G0 is mapped into Ker.G!G00/. Since

N�.G
0/ŠN�Ker.G!G00/D Ker.N�G!N�G

00/;

G0! Ker.G!G00/ is an isomorphism by assertion (2) and the result follows.

Let ZnG D
Tn

iD0 Ker.di W Gn! Gn�1/ �NnG be the Moore cycles and let BnG D
d0.NnC1G/� ZnG be the Moore boundaries. By assertion (1), the homotopy group
�n.jGj/ is given by ZnG=BnG .

The construction of free product with amalgamation on simplicial groups is given
in the same way. Let �W G ! G0 and  W G ! G00 be simplicial monomorphisms.
Then G0 �G G00 is a simplicial group where each .G0 �G G00/n is the free product
with amalgamation of G0n �Gn

G00n for the group homomorphisms �nW Gn!G0n and
 nW Gn!G00n . The face homomorphisms are (uniquely) determined by the pushout
property:

Gn
�

�n - G0n

G00n
-

�

 
n

-

G0n �Gn
G00n

-

Gn�1

dG
i

?
�

�n�1 - G0n�1

di
G0

i

?

G00n�1

dG00

i

?
-

�

 
n
�

1

-

G0n�1 �Gn�1
G00n�1

d
G0�GG00

i

?
-

Similarly the degeneracy homomorphisms are (uniquely) determined by the pushout
property. The uniqueness of the induced face and degeneracy homomorphisms forces
the simplicial identities to hold for d

G0�GG00

i and s
G0�GG00

j and so G0 �G G00 becomes
a simplicial group. If we write the elements w in

.G0 �G G00/n DG0n �Gn
G00n

in terms of words as a product of elements from G0n or G00n , then d
G0�GG00

i .w/ is given
by applying dG0

i or dG00

i to the factors of w . Similarly we can compute degeneracy
homomorphism s

G0�GG00

i on .G0 �G G00/n in the same manner.
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There is a classifying space functor from the category of simplicial groups to the category
of simplicial sets, denoted by xW , with the property that the geometric realization of
xW .G/ is a classifying space of the geometric realization of the simplicial group G .

We refer to Curtis’s paper [10] for the detailed construction of the functor xW .

An important property of free product with amalgamation on simplicial groups is that
the classifying space of G0 �G G00 can be controlled. This property is a simplicial
consequence of the classical asphericity result of J H C Whitehead [21, Theorem 5]
in 1939 and the formal statement of the following theorem was given in Kan and
Thurston’s paper [15, Proposition 4.3].

Theorem 3.2 (Whitehead Theorem) Let �W G!G0 and  W G!G00 be simplicial
monomorphisms. Then the classifying space SW .G0 �G G00/ is the homotopy push-out
of the diagram:

SW G
SW � - SW G0

push

SW G00

SW  

?
- SW .G0 �G G00/

?

4 Description of homotopy groups of spheres and proof of
Theorem 2.2

In this section, we are going to construct a simplicial group model T .Sk/ for �Sk ,
k � 3, by using pure braid groups. From this, we are able to give a combinatorial
description of the homotopy group �q.S

k/ for general q .

4.1 Milnor’s F ŒK �–construction on spheres

Let K be a simplicial set with a fixed choice of base-point sn
0
x0 2Kn . Milnor [19]

constructed a simplicial group F ŒK� where F ŒKn� is the free group generated by Kn

subject to the single relation that sn
0
x0 D 1. The face and degeneracy homomorphisms

on F ŒK� are induced by the face and degeneracy functions on K . An important
property of Milnor’s construction is that the geometric realization jKj of F ŒK� is
homotopy equivalent to �†jKj. (Note that in Milnor’s paper [19], K is required to
be a reduced simplicial set. This result actually holds for any pointed simplicial set by
a more general result [23, Theorem 4.9].)

Geometry & Topology, Volume 17 (2013)



246 Roman Mikhailov and Jie Wu

We are interested in specific simplicial group models for �SkC1 and so we start by
considering the simplicial k –sphere Sk . Recall that the simplicial k –simplex �Œk�
can be defined explicitly as follows:

�Œk�nDf.i0; i1; : : : ; in/ j 0� i0� i1� � � � � in� kg with di W �Œk�n!�Œk�n�1

given by removing the .i C 1/st coordinate and si W �Œk�n!�Œk�nC1 given by
doubling the .i C 1/st coordinate for 0� i � n.

Let �kD .0; 1; : : : ; k/2�Œk�k and let @�Œk� be the simplicial subset of �Œk� generated
by the faces d0�k ; : : : ; dk�k . Namely @�Œk� is the smallest simplicial subset of �Œk�
containing di�k for 0� i � k . Let Sk D�Œk�=@�Œk�. Then the geometric realization
jSk j is homeomorphic to the standard k –sphere Sk . As a simplicial set, Sk

n D f�g

for n< k and

(4-1)

Sk
n D f�; .i0; i1; : : : ; in/ j 0� i0 � i1 � � � � � in � k

with f0; 1; : : : ; kg D fi0; i1; : : : ; ingg

D f�; sjn�k
sjn�k�1

� � � sj1
�k j 0� j1 < j2 < � � �< jn�k � n� 1g

for n� k . In the first description above, it is required that each 0� j � k appears at
least once in the sequence .i0; : : : ; in/. In this description, we can describe the faces
and degeneracies by removing-doubling coordinates where we identify the sequence
.i0; : : : ; in/ to be the base-point if any one of 0� j � k does not appear in .i0; : : : ; in/.
In the second description, we can use the simplicial identities to describe the faces and
degeneracies on Sk .

By applying Milnor’s construction to Sk , we obtain the simplicial group F ŒSk � '

�SkC1 with F ŒSk �n a free group of rank
�

n
k

�
. The generators for F ŒSk �n are given

in formula (4-1) with � D 1.

4.2 The simplicial group AP�

There is a canonical simplicial group arising from pure braid groups systematically
investigated in [3]. We are only interested in classical Artin pure braids and so we
follow the discussion in [7]. Let APn D PnC1 with the face homomorphism

di W APn D PnC1 �! APn�1 D Pn

given by removing the .iC1/st strand of .nC1/–strand pure braids and the degeneracy
homomorphism

si W APn D PnC1 �! APnC1 D PnC2

given by doubling the .i C 1/st strand of .nC 1/–strand pure braids for 0 � i � n.
Then AP� forms a simplicial group. Let Ai;j , 1 � i < j � nC 1, be the standard
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generators for APn D PnC1 . Then the face operations in the simplicial group AP� are
defined as follows:

(4-2) dt .Ai;j /D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

Ai�1;j�1 if t C 1< i;

1 if t C 1D i;

Ai;j�1 if i < t C 1< j ;

1 if t C 1D j ;

Ai;j if t C 1> j:

And the degeneracy operations are defined as follows:

(4-3) st .Ai;j /D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

AiC1;jC1 if t C 1< i;

Ai;jC1 �AiC1;jC1 if t C 1D i;

Ai;jC1 if i < t C 1< j ;

Ai;j �Ai;jC1 if t C 1D j ;

Ai;j if t C 1> j:

Observe that AP1 D P2 Š Z is generated by A1;2 with d0A1;2 D d1A1;2 D 1. The
representing simplicial map

fA1;2
W S1
�! AP�

with f�1
DA1;2 extends uniquely to a simplicial homomorphism

‚W F ŒS1� �! AP�:

The following embedding theorem plays an important role for our constructions of
simplicial group models for the loop spaces of spheres and Moore spaces.

Theorem 4.1 [7, Theorem 1.2] The simplicial homomorphism

‚W F ŒS1� �! AP�

is a simplicial monomorphism.

4.3 Simplicial group models for �S k with k� 3

Assume that k � 3. Let ˛ 2 F ŒS1�k�2 such that

(1) ˛ 6D 1 and

(2) dj˛ D 1 for all 0� j � k � 2, that is, ˛ is a Moore cycle.

(Note: We do not assume that ˛ induces a nontrivial element in �k�2.F ŒS
1�/ D

�k�1.S
2/. There are many choices for such an ˛ . We will give a particular choice of
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˛ with braided instructions later. For a moment ˛ is given by any nontrivial Moore
cycle.) The representing simplicial map

f˛W S
k�2
�! F ŒS1�

extends uniquely to a simplicial homomorphism

zf˛W F ŒS
k�2� �! F ŒS1�

by the universal property of Milnor’s construction.

Lemma 4.2 Let k � 3 and let ˛ 6D 1 2 F ŒS1�k�2 be a Moore cycle. Then the map

zf˛W F ŒS
k�2� �! F ŒS1�

is a simplicial monomorphism.

Proof Let G D zf˛.F ŒS
k�2�/ be the image of zf˛ . Then G is a simplicial subgroup

of F ŒS1�. Since F ŒS1�q is a free group, Gq is free group for each q . The statement
will follow if we can prove that the simplicial epimorphism

zf˛W F ŒS
k�2� �!G

is a simplicial monomorphism. Observe that since each F ŒSk�2�q is a free group,
which is residually nilpotent, it suffices to show that the morphism of the associated
Lie algebras induced from the lower central series

L. zf˛/W L.F ŒS
k�1�/ �!L.G/

is a simplicial isomorphism. For each q , since both F ŒSk�2�q and Gq are free groups,
their associated Lie algebras are the free Lie algebras generated by their Abelianizations.
Thus it suffices to show that

zf ab
˛ W F ŒS

k�2�ab
DK.Z; k � 2/ �!Gab

is a simplicial isomorphism.

Note that the Moore chain complex of K.Z; k � 2/ is given by

NqK.Z; k � 2/D

�
0 if q 6D k � 2;

Z if q D k � 2:

Since zf ab
˛ W K.Z; k � 2/!Gab is a simplicial epimorphism,

N. zf ab
˛ /W NqK.Z; k � 2/ �!NqGab
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is an epimorphism for any q by Proposition 3.1. It follows that NqGabD0 for q 6Dk�2.
For q D k � 2, we have Nk�2Gab DGk�2 D h˛i Š Z with

N. zf ab
˛ /W Nk�2K.Z; k � 2/Š Z �!Nk�2Gab

Š Z

an isomorphism from the definition of f˛ . Thus

N. zf ab
˛ /W NF ŒSk�2�ab

�!NGab

is an isomorphism. By Proposition 3.1, zf ab
˛ W F ŒS

k�2�ab DK.Z; k � 2/ �!Gab is a
simplicial isomorphism. This finishes the proof.

Now, by Theorem 4.1 and Lemma 4.2, the composite

�˛W F ŒS
k�2�

zf-̨ F ŒS1�
‚- AP�

is a simplicial monomorphism. Define the simplicial group T .Sk I˛/ to be the free
product with amalgamation defined by the diagram

F ŒSk�2�
�˛ - AP�

AP�

�˛

?
- T .Sk

I˛/D AP� �F ŒSk�2� AP�
?

Theorem 4.3 Let k � 3 and let ˛ 6D 1 2 F ŒS1�k�2 be a Moore cycle. Then the
geometric realization of the simplicial group T .Sk I˛/ is homotopy equivalent to �Sk .

Proof By Theorem 3.2, the classifying space SW T .Sk I˛/ is the homotopy push-out of

SW F ŒSk�2�' Sk�1 - SW AP�

SW AP�
?

- SW T .Sk
I˛/

?

By [7, Theorem 1.1] (the complete proof is given in [8]), AP� is a contractible simplicial
group and so SW AP� is contractible. It follows that

SW T .Sk
I˛/' Sk

and hence the result.
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4.4 Some technical lemmas

Recall (see Magnus, Karrass and Solitar [17, p. 288–289]) that a bracket arrangement
of weight n in a group G is a map ˇnW Gn ! G , which is defined inductively as
follows:

ˇ1
D idG ; ˇ2.a1; a2/D Œa1; a2�

for any a1; a2 2G . Suppose that the bracket arrangements of weight k are defined for
1� k < n with n� 3. A map ˇnW Gn!G is called a bracket arrangement of weight
n if ˇn is the composite

Gn
DGk

�Gn�k ˇk �ˇn�k
- G �G

ˇ2
- G

for some bracket arrangements ˇk and ˇn�k of weight k and n� k , respectively,
with 1� k < n. For instance, if nD 3, there are two bracket arrangements given by
ŒŒa1; a2�; a3� and Œa1; Œa2; a3��.

Let Rj be a sequence of subgroups of G for 1 � j � n. The fat commutator sub-
group ŒŒR1;R2; : : : ;Rn�� is defined to be the subgroup of G generated by all of the
commutators

ˇt .gi1
; : : : ;git

/;

where

(1) 1� is � n,

(2) fi1; : : : ; itg D f1; : : : ; ng, that is each integer in f1; 2; � � � ; ng appears as at least
one of the integers is ,

(3) gj 2Rj ,

(4) ˇt runs over all of the bracket arrangements of weight t (with t � n).

For convenience, let ŒŒR1��DR1 .

The symmetric commutator subgroup ŒR1;R2; : : : ;Rn�S defined by

ŒR1;R2; : : : ;Rn�S D
Y
�2†n

Œ: : : ŒR�.1/;R�.2/�; : : : ;R�.n/�;

where Œ: : : ŒR�.1/;R�.2/�; : : : ;R�.n/� is the subgroup generated by the left iterated
commutators

Œ: : : ŒŒg1;g2�;g3�; : : : ;gn�

with gi 2R�.i/ . For convenience, let ŒR1�S DR1 . From the definition, the symmetric
commutator subgroup is a subgroup of the fat commutator subgroup. In fact they are
the same subgroup by the following theorem, provided that each Rj is normal.
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Lemma 4.4 [16, Theorem 1.1] Let Rj be any normal subgroup of a group G with
1� j � n. Then

ŒŒR1;R2; : : : ;Rn��D ŒR1;R2; : : : ;Rn�S :

One can determine the Moore chains and boundaries for the self free products of AP�
with a help of the Kurosh theorem on the structure of subgroups of free products.
However, in order to get this description, we will use another method. We construct
a simplicial free group G as follows: For each n� 0, the group Gn is the free group
generated by xi;j for 1� i < j � nC1. The face and degeneracy operations are given
by formulae (4-2) and (4-3), where we replace Ai;j by xi;j . It is straightforward to
check that the simplicial identities hold. Thus we have a simplicial group G .

Now we are going to determine the Moore chains and Moore cycles of the free products
of G . Let J be an index set and let G�J D �˛2J G.˛/, where each G.˛/ is a copy of
G indexed by an element ˛ 2 J . For each group G.˛/n D Gn , let xi;j .˛/ denote the
generator xi;j for 1 � i < j � nC 1. From the definition, G�Jn D �˛2J G.˛/n is a
free group with a basis given by fxi;j .˛/ j 1� i < j � nC 1; ˛ 2 J g.

A basic word in the group G�Jn means one of the elements xi;j .˛/
˙1 for some ˛ 2 J

and so 1� i < j � nC 1. Let

w D ˇt .xi1;j1
.˛1/

˙1;xi2;j2
.˛2/

˙1; : : : ;xit ;jt
.˛t /

˙1/

be a t –fold iterated commutator on basic words, where the bracket ˇt .� � � / is any
bracket arrangement. Define

Index.w/D fi1; j1; i2; j2; : : : ; it ; jtg � f1; 2; : : : ; nC 1g:

(Note: In our definition, Index.w/ is only well-defined for commutators with entries
from basic words.)

For each pair 1� i < j � nC 1, let

RJ
i;j D hxi;j .˛/ j ˛ 2 J iG

�J

be the normal closure of the elements xi;j .˛/, ˛ 2 J , in the group G�J . For a subset
T � f1; 2; : : : ; nC 1g, define

RŒT �D
Y

T�fi1;j1;i2;j2;:::;it ;jt g

Œ: : : ŒRi1;j1
;Ri2;j2

�; : : : ;Rit ;jt
�

to be the product of the iterated commutator subgroup of Ri;j such that each number
in T occurs at least once in the indices of Ri;j . (Here if t D 1, then we let commutator
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subgroup ŒRi1;j1
�DRi1;j1

by convention.) In the case that T D f1; 2; : : : ; nC1g, we
denote

ŒRi;j j 1� i < j � nC 1�S

by RŒ1; 2; : : : ; nC 1�.

Lemma 4.5 Let G�J be the self free product of G over a set J . Then:

(1) The Moore chains are NnG�J DRŒ2; 3; : : : ; nC 1�.

(2) The Moore cycles are ZnG�J DRŒ1; 2; 3; : : : ; nC1�D ŒRi;j j1� i <j �nC1�S .

(3) The Moore boundaries are

BnG�J D ZnG�J DRŒ1; 2; 3; : : : ; nC 1�D ŒRi;j j 1� i < j � nC 1�S :

Proof For assertions (1) and (2), the direction

RŒ2; 3; : : : ; nC 1��NnG�J and RŒ1; 2; 3; : : : ; nC 1�� ZnG�J

can be easily checked as follows. From equation (4-2), we have dkxi;j .˛/ D 1 for
˛ 2 J if kC 1D i or j . Thus

Ri;j � Ker.dk W G�Jn ! G�Jn�1/

if kC 1D i or j . Thus

Œ: : : ŒRi1;j1
;Ri2;j2

�; : : : ;Rit ;jt
��NnG�J D

n\
kD1

Ker.dk W G�Jn ! G�Jn�1/

if f2; 3; : : : ; nC 1g � fi1; j1; i2; j2; : : : ; it ; jtg since each dk , 1 � k � n, sends one
of entries Ris ;js

in this (iterated) commutator subgroup to the trivial group. It follows
that RŒ2; 3; : : : ; nC 1��NnG�J . Similarly RŒ1; 2; : : : ; nC 1��ZnC1G�J . Thus the
main point is to prove that

(4-4) NnG�J �RŒ2; 3; : : : ; nC 1� and ZnG�J �RŒ1; 2; : : : ; nC 1�:

If nD 1, then RŒ2�DRŒ1; 2�D G�J
1

because G�J
1

is generated by x1;2.˛/ for ˛ 2 J .
In this case, the identity that N1G�J D Z1G�J DRŒ2�DRŒ1; 2�D G�J

1
holds. Thus

we may assume that n� 2.

We first consider the last face operation

dnW G�Jn �! G�Jn�1:
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Let Kn D Ker.dnW G�Jn ! G�J
n�1

/. From equation (4-2),

dn.xi;j .˛//D

�
1 if 1� i < j D nC 1;

xi;j .˛/ if 1� i < j � n:

Observe that the basis of G�Jn is given by the disjoint union of the basis of G�J
n�1

with
the set fxi;nC1.˛/ j 1 � i < nC 1; ˛ 2 J g. By [24, Proposition 3.3], a basis for the
free group Kn is given by the subset Xn of G�Jn consisting of all of the following
iterated commutators on basic words

(4-5) w D Œ: : : ŒŒxi;n.˛0/;x
�1

i1;j1
.˛1/�;x

�2

i2;j2
.˛2/�; : : : ;x

�t

it ;jt
.˛t /�;

where

(1) t � 0 (Here if t D 0, then w D Œxi;n.˛0/�D xi;n.˛0/.)

(2) �s D˙1 for 1� s � t ,

(3) 1� is < js � n for 1� s � t ,

(4) ˛s 2 J for 0� s � t and

(5) the word x
�1

i1;j1
.˛1/x

�2

i2;j2
.˛2/ � � �x

�t

it ;jt
.˛t / is an irreducible word in the group

G�J
n�1
� G�Jn .

Next we consider the face operation dk restricted to Kn for 0 � k < n. From the
�–identity dkdn D dn�1dk for 1� k � n� 1, we have the commutative diagram of
short exact sequence of groups

(4-6)

Kn D F.Xn/ � - G�Jn

dn-- G�Jn�1

Kn�1 D F.Xn�1/

dk jKn

?
� - G�Jn�1

dk

?
dn�1-- G�Jn�2

dk

?

for 1 � k � n� 1. Consider dkw for w 2 Xn . From equation (4-2), dkxi;n.˛/ is
given by the following table:

dk

0@ x1;n.˛/ � � � xk�1;n.˛/ xk;n.˛/ xkC1;n.˛/ � � � xn�1;n.˛/

# # # # #

x1;n�1.˛/ � � � xk�1;n.˛/ 1 xk;n�1.˛/ � � � xn�2;n�1.˛/

1A
We now start to prove statement (4-4). Let

Xn.k/D fw 2Xn j kC 1 2 Index.w/g
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for 0 � k � n� 1. If w 2 Xn.k/, then dkw D 1 as dk sends one of the entries in
the commutator w to 1. Let w 2Xn XXn.k/ be written as in (4-5). Then i 6D kC 1

and k C 1 62 fi1; j1; : : : ; it ; jtg. From the above table, dkxi;n.˛0/ D xi;n�1.˛0/ for
i < kC 1 and xi�1;n�1.˛0/ for i > kC 1. For other entries x

�s

is ;js
.˛s/, we have

dk.x
�s

is ;js
.˛s//D

8̂<̂
:

x
�s

is�1;js�1
.˛s/ if kC 1< is;

x
�s

is ;js�1
.˛s/ if is < kC 1< js;

x
�s

is ;js
.˛s/ if kC 1> js:

Observe that

dk W fxi;j .˛/ j˛2J; 1� i<j �n and kC1 6D i; j g!fxi;j .˛/ j˛2J; 1� i<j �n�1g

is a bijection. The restriction of dk in the subgroup

dk jW F.xi;j .˛/ j ˛ 2 J; 1� i < j � n and kC 1 6D i; j / �! G�Jn�2

is an isomorphism. Since the word

x
�1

i1;j1
.˛1/x

�2

i2;j2
.˛2/ � � �x

�t

it ;jt
.˛t /2F.xi;j .˛/ j˛ 2J; 1� i < j � n and kC1 6D i; j /

is irreducible, the word

dk.x
�1

i1;j1
.˛1/x

�2

i2;j2
.˛2/ � � �x

�t

it ;jt
.˛t //

D .dkxi1;j1
/�1.˛1/.dkxi2;j2

/�2.˛2/ � � � .dkxit ;jt
/�t .˛t /

is irreducible in G�J
n�2
� G�J

n�1
. It follows that dkw 2Xn�1 for each w 2Xn XXn.k/

and the function

dk W Xn XXn.k/ �!Xn�1

is a bijection. This allows us to apply the algorithm in [24, Section 3] to

dk jW Kn D F.Xn/ �!Kn�1 D F.Xn�1/

for 0� k � n� 1 in diagram (4-6) and so, by [24, Theorem 3.4], the Moore chains

NnG�J D
n�1\
kD1

Ker.dk jW Kn!Kn�1/

are generated by certain iterated commutators

(4-7) w D ˇt .xi1;j1
.˛1/

˙1;xi2;j2
.˛2/

˙1; : : : ;xit ;jt
.˛t /

˙1/
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with f2; 3; : : : ; nC 1g 2 Index.w/ and the Moore cycles

ZnG�J D
n�1\
kD0

Ker.dk jW Kn!Kn�1/

are generated by certain iterated commutators

(4-8) w D ˇt .xi1;j1
.˛1/

˙1;xi2;j2
.˛2/

˙1; : : : ;xit ;jt
.˛t /

˙1/

with f1; 2; : : : ; nC 1g 2 Index.w/. (Note: The commutator w in (4-7) or (4-8) may
not be in the standard form from left to right.) Since each entry xis ;js

.˛s/
˙1 belongs

to Ris ;js
, the commutator w in (4-7) or (4-8) lies in the fat commutator subgroup

ŒŒRi1;j1
;Ri2;j2

; : : : ;Rit ;jt
�� and so, by Lemma 4.4,

w 2
Y
�2†t

Œ: : : ŒRi�.1/;j�.1/ ;Ri�.2/;j�.2/ �; : : : ;Ri�.t/;j�.t/ ��RŒs; sC 1; : : : ; nC 1�;

where s D 2 in the case of (4-7) and s D 1 in the case of (4-8). This finishes the proof
of statement (4-4) and hence assertions (1) and (2).

(3) By assertion (2),

ZnG�J D
Y

f1;2;:::;nC1g�fi1;j1;i2;j2;:::;it ;jt g

Œ: : : ŒRi1;j1
;Ri2;j2

�; : : : ;Rit ;jt
�:

From equation (4-2), we have d0xiC1;jC1.˛/D xi;j .˛/ for 1 � i < j � nC 1 and
˛ 2 J . Thus

d0.RiC1;jC1/DRi;j

for 1� i < j � nC 1. Given a factor Œ: : : ŒRi1;j1
;Ri2;j2

�; : : : ;Rit ;jt
� in ZnG�J with

f1; 2; : : : ; nC 1g � fi1; j1; i2; j2; : : : ; it ; jtg, we have

d0.Œ: : : ŒRi1C1;j1C1;Ri2C1;j2C1�; : : : ;RitC1;jtC1�/

D Œ: : : ŒRi1;j1
;Ri2;j2

�; : : : ;Rit ;jt
�:

Since f2; 3; : : : ; nC2g� fi1C1; j1C1; i2C1; j2C1; : : : ; itC1; jtC1g, the subgroupY
f1;2;:::;nC1g�

fi1;j1;i2;j2;:::;it ;jt g

Œ: : : ŒRi1C1;j1C1;Ri2C1;j2C1�; : : : ;RitC1;jtC1��NnC1G�J

with

d0

� Y
f1;2;:::;nC1g�

fi1;j1;i2;j2;:::;it ;jt g

Œ: : : ŒRi1C1;j1C1;Ri2C1;j2C1�; : : : ;RitC1;jtC1�

�
D ZnG�J :
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It follows that ZnG�J � BnG�J . Assertion (3) follows and this finishes the proof.

The following lemma states that RŒ1; 2; : : : ; nC 1� can be given by the product of a
finite collection of commutator subgroups.

Lemma 4.6 The subgroup RŒ1; 2; : : : ; nC 1� of G�Jn is the product of the following
commutator subgroups

Œ: : : ŒRi1;j1
;Ri2;j2

�; : : : ;Rit ;jt
�;

where

(1) fi1; j1; i2; j2; : : : ; it ; jtg D f1; 2; : : : ; nC 1g and

(2) fi1; j1; i2; j2; : : : ; it ; jtg X fip; jpg 6D f1; 2; : : : ; nC 1g for any 1� p � t .

Proof Let H be the product of the commutator subgroups given in the statement.
Clearly H �RŒ1; 2; : : : ; nC 1�. Now consider the factor

Œ: : : ŒRi1;j1
;Ri2;j2

�; : : : ;Rit ;jt
�

with f1; 2; : : : ; nC1g D fi1; j1; i2; j2; : : : ; it ; jtg in RŒ1; 2; : : : ; nC1�. If there exists
1� p � t such that

fi1; j1; i2; j2; : : : ; it ; jtg X fip; jpg D f1; 2; : : : ; nC 1g;

since Œ: : : ŒRi1;j1
;Ri2;j2

�; : : : ;Rip�1;jp�1
� is normal, we have

ŒŒ: : : ŒRi1;j1
;Ri2;j2

�; : : : ;Rip�1;jp�1
�;Rip;jp

�� Œ: : : ŒRi1;j1
;Ri2;j2

�; : : : ;Rip�1;jp�1
�:

(If p D 1, then we use ŒRi1;j1
;Ri2;j2

��Ri2;j2
:) It follows that

Œ: : : ŒRi1;j1
;Ri2;j2

�; : : : ;Rit ;jt
�� Œ: : : ŒRi1;j1

;Ri2;j2
�; : : : ; yRip;jp

; : : : ;Rit ;jt
�

with fi1; j1; i2; j2; : : : ; it ; jtg X fip; jpg D f1; 2; : : : ; n C 1g. Consider the factor
Œ: : : ŒRi1;j1

;Ri2;j2
�; : : : ; yRip;jp

; : : : ;Rit ;jt
�. By repeating the above process for re-

moving surplus entries, we have

Œ: : : ŒRi1;j1
;Ri2;j2

�; : : : ;Rit ;jt
��H

and hence the result.

The following simple result is well-known and follows from the structure of normal
forms of free products with amalgamation (for the proof see, for example, [12]):

Lemma 4.7 Let GDG1�AG2 be a free product with amalgamation such that G1¤A

and G2 ¤A. Then Z.G/�Z.A/.
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4.5 Proof of Theorem 2.2

We use our simplicial group model T .Sk ; ˛/ for �Sk . Consider the construction of
the subgroup Qn;k of Pn . By the definition of the simplicial group AP� , the iterated
degeneracy operations on AP1 D P2 are given by the cabling and so the elements
x1; : : : ;xk�2 in Step 1 are the canonical basis for the subgroup

‚.F ŒS1�k�2/� APk�2 D Pk�1:

Since dixi D dixiC1 for 1� i � k�3 and d0x1D dk�2xk�2D 1, we have di˛k D 1

for 0� i � k � 2. It follows that ˛k is a Moore cycle in F ŒS1�k�2 with ˛k 6D 1. The
elements yj , 1� j �

�
n�1
k�2

�
, are standard basis for the subgroup

�˛k
.F ŒSk�2�n�1/� APn�1 D Pn

since they are obtained by cabling on ˛k . It follows that

Pn �Qn;k
Pn D

�
AP� �F ŒSk�2� AP�

�
n�1
D T .Sk

I˛k/n�1:

Theorem 2.2 is a special case of the following slightly more general statement.

Theorem 4.8 Let k � 3 and let ˛ 6D 1 2 F ŒS1�k�2 be a Moore cycle. Then the
simplicial group T .Sk I˛/'�Sk has the following properties:

(1) In the group T .Sk I˛/n�1 D Pn �F ŒSk�2�n�1
Pn , the Moore boundaries

Bn�1T .Sk
I˛/D ŒRi;j j 1� i < j � n�S :

(2) The homotopy group �n.S
k/Š �n�1.�Sk/Š �n�1.T .Sk I˛// is isomorphic

to the center of the group

T .Sk
I˛/n�1=Bn�1T .Sk

I˛/D .Pn �F ŒSk�2�n�1
Pn/=ŒRi;j j 1� i < j � n�S

for any n if k > 3 and any n 6D 3 if k D 3.

Proof (1) By definition, the simplicial group T .Sk I˛/ is given by the free product
with amalgamation AP� �F ŒSk�2� AP� . Thus T .Sk I˛/ is a simplicial quotient group
of the free product AP� �AP� . Let G be the simplicial group given in Section 4.4.
Then AP� is a simplicial quotient group of G . It follows that there is a simplicial
epimorphism

gW G �G -- T .Sk
I˛/:

By Proposition 3.1,

N.g/D gjW Nn.G �G/ �!Nn.T .Sk
I˛//
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is an epimorphism and so:

Bn�1.T .Sk
I˛//D d0.Nn.T .Sk

I˛///

D d0.g.Nn.G �G///
D g.d0.Nn.G �G///
D g.Bn�1.G �G//

Assertion (1) follows from Lemma 4.5.

(2) Case I k > 3 Since T .Sk I˛/q D PqC1 �F ŒSk�2�q
PqC1 is a free product with

amalgamation, the center

Z.T .Sk
I˛/q/�Z.F ŒSk�2�q/D f1g

for q � k�1 by Lemma 4.7. For qD k�2, then Z.T .Sk I˛/k�2/�F ŒSk�2�k�2D

h˛i D Z by Lemma 4.7. Since ˛ is Moore cycle, ˛ is a Brunnian braid in Pk�1 .
Recall that the center of Pk�1 is given by the full-twist braid �2 (Chow [6]) with the
property that, by removing any one of the strands of �2 , it becomes a generator for
the center of Pk�1 and di�

2 6D 1 for k > 3. Since ˛ is a Brunnian braid, any power
˛m 62Z.Pk�1/ for m 6D 0. It follows that

˛m
62Z.Pk�1 �F ŒSk�2�k�2

Pk�1/

for m 6D 0. Thus Z.T .Sk I˛/k�2/D f1g. For q < k�2, T .Sk ; ˛/q is a free product
and so Z.T .Sk ; ˛/q/D f1g, where for the low cases, T .Sk I˛/1 D P2 �P2 is a free
group of rank 2 and T .Sk I˛/0 D f1g. Thus the center Z.T .Sk I˛/q D f1g for all
q � 0. It follows from [24, Proposition 2.14] that

�q.T .Sk
I˛//ŠZ.T .Sk

I˛/q=Bq.T .Sk
I˛//

for q � 1. This isomorphism also holds for q D 0 because T .Sk I˛/0 D f1g.

Case II k D 3 By the same arguments as above, we have Z.T .S3I˛/q/D f1g for
q � 2. By [24, Proposition 2.14], we have

(4-9) �q.T .S3
I˛//ŠZ.T .S3

I˛/q=Bq.T .S3
I˛//

for q�3. We only need to check that this isomorphism also holds for the cases qD0; 1.
(The case that qD 2 is the exceptional case, which is excluded in the statement.) When
qD 0, both sides are trivial groups. Consider the case qD 1. Note that AP1DP2ŠZ
is generated by A12 . Since ˛ is not trivial, it is given by a nontrivial power of A12 .
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Let ˛ DAm
12

for some m 6D 0. Then T .S3I˛/1 is given by the pushout diagram:

P2 D Z
m- P2 D Z

P2 D Z

m

?
- T .S3

I˛/1

?

Since R1;2 D hA1;2;A
0
1;2
iT .S

3I˛/1 D T .S3; ˛/1 because T .S3I˛/1 is generated by
A1;2 and A0

1;2
, we have

B1.T .S3
I˛//D T .S3

I˛/1

and so

Z.T .S3
I˛/1=B1.T .S3

I˛//D T .S3
I˛/1=B1.T .S3

I˛/D f1g:

On the other hand,

�1.T .S3
I˛//D �1.�S3/D �2.S

3/D f1g:

Thus the isomorphism (4-9) holds for q D 1. This finishes the proof.

Example 4.9 In this example, we discuss the exceptional case by determining the
center of the group

G D .P3 �F ŒS1�2
P3/=ŒRi;j j 1� i < j � 3�S ;

where ˛ D Am
1;2

with some m 6D 0. By definition, the subgroup F ŒS1�2 � P3 is
generated by x1D s1˛3D .A1;3A2;3/

m and x2D s0˛3D .A1;2A1;3/
m . Thus the free

product with amalgamation P3 �F ŒS1�2
P3 is given as the quotient group of P3 �P3

by the new relations:

(4-10) .A1;3A2;3/
m
D .A01;3A02;3/

m and .A1;2A1;3/
m
D .A01;2A01;3/

m:

Consider the subgroup ŒRi;j j 1� i < j � 3�S of P3 �F ŒS1�2
P3 . Observe that

ŒA1;2;A1;3�; ŒA1;2;A2;3�; ŒA1;3;A2;3� 2 ŒRi;j j 1� i < j � 3�S ;

and the subgroup hA1;2;A1;3;A2;3i is Abelian in G . Similarly the subgroup
hA0

1;2
;A0

1;3
;A0

2;3
i is Abelian in G . Thus .A0

1;2
A0

1;3
/m D .A0

1;2
/m.A0

1;3
/m in G and

from equation (4-10)

.A01;2/
m
D .A1;2/

m.A1;3/
m.A01;3/

�m:

Geometry & Topology, Volume 17 (2013)



260 Roman Mikhailov and Jie Wu

It follows that A0
1;2

commutes with A1;2 since A1;2 commutes with .A1;2/
m , .A1;3/

m

and .A0
1;3
/m . From this, we conclude that .A0

1;2
/m 2Z.G/ because A0

1;2
commutes

with all of the generators for G . Similarly

.A1;2/
m; .A1;3/

m; .A2;3/
m; .A01;3/

m; .A02;3/
m
2Z.G/:

Thus the subgroup

(4-11) H D h..A1;2/
m; .A1;3/

m; .A2;3/
m; .A01;2/

m; .A01;3/
m; .A02;3/

m
i �Z.G/:

Let

G0 D .Z.A1;2/=m�Z.A01;2/=m/� .Z.A1;3/=m�Z.A01;3/=m/

�.Z.A2;3/=m�Z.A02;3/=m/

and let �W P3 �P3!G0 be the canonical quotient homomorphism defined by sending
generators to generators. Then

�.x1/D �.x2/D 1:

Moreover �.ŒRi;j j 1 � i < j � 3�S / D 1 with �.H / D 1 and so � induces an
epimorphism x� in the following diagram:

P3 �P3
�-- G0 D .Z=m�Z=m/� .Z=m�Z=m/� .Z=m�Z=m/

G=H:

q

??

x�

--

On the other hand, the group homomorphism

Z.A1;2/�Z.A01;2/ �!G=H

factors through the quotient Z.A1;2/=m�Z.A0
1;2
/=m. Similarly there are canonical

group homomorphisms from Z.A1;3/=m�Z.A0
1;3
/=m and Z.A1;2/=m�Z.A0

1;2
/=m

to G=H . Since the subgroups hA1;2;A
0
1;2
i, hA1;3;A

0
1;3
i and hA2;3;A

0
2;3
i commute

with each other in the group G , there is a group epimorphism

 W G0!G=H

such that x� ı D idG0 since all of generators of G=H lie in the image of  . It follows
that

G=H ŠG0 D .Z=m�Z=m/� .Z=m�Z=m/� .Z=m�Z=m/:
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Since Z.G0/D f1g, Z.G=H /D f1g and so

Z.G/�H:

Together with equation (4-11), we have Z.G/DH Š Z˚4 .

5 Description of homotopy groups of the Moore spaces
M.Z=q;k/ with k� 3

In this section, we give an explicit combinatorial description of the homotopy groups of
the Moore spaces M.Z=q; k/ with k � 3. This description highlights our methodology
for giving combinatorial descriptions of homotopy groups using free products of braid
groups.

5.1 An embedding of F ŒS k�1� into T .S kI˛/ for Moore boundaries ˛

Let z̨ 2Nk�1F ŒS1� with d0 z̨ 6D 1. We are going to construct a simplicial monomor-
phism F ŒSk�1�! T .Sk I d0 z̨/, which is also a homotopy equivalence.

Let
fz̨W �Œk � 1� �! F ŒS1�

be the representing map of the element z̨ with fz̨.�k/ D z̨ , where �k D .0; 1; : : : ;

k � 1/ 2 �Œk � 1�. Let ƒ0Œk � 1� be the simplicial subset of �Œk � 1� generated by
dj�k�1 for j > 0 and let

x�Œk � 1�D�Œk � 1�=ƒ0Œk � 1�:

Since dj z̨ D 1 for j > 0, the simplicial map fz̨ factors through the simplicial quotient
x�Œk � 1�. Let

(5-1) xfz̨W x�Œk � 1� �! F ŒS1�

be the resulting simplicial map with xfz̨.�k�1/ D z̨ . By the universal property of
Milnor’s construction, there exists a unique simplicial homomorphism

(5-2) �z̨W F Œx�Œk � 1�� �! F ŒS1�

such that �z̨jx�Œk�1� D
xfz̨ .

Lemma 5.1 The simplicial group F Œx�Œk � 1�� is contractible and the map

�z̨W F Œx�Œk � 1�� �! F ŒS1�

is a simplicial monomorphism.
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Proof Recall [10] that the geometric realization j�Œk � 1�j is the standard .k � 1/–
simplex �k�1 and jƒ0Œk�j is the union of all faces of �k�1 except the first face. Thus
both j�Œk�1�j and jƒ0Œk�j are contractible and so is j x�Œk�1�jD j�Œk�1�=ƒ0Œk�1�j.
It follows that

jF Œx�Œk � 1��j '�†j x�Œk � 1�j

is contractible.

The proof of the statement regarding �z̨ is similar to that of Lemma 4.2. The image
�z̨.F Œx�Œk � 1��/ is a simplicial free group because it is a simplicial subgroup of the
simplicial free group F ŒS1�. Following the lines in the proof of Lemma 4.2, for
checking that �z̨W F Œx�Œk � 1��! �z̨.F Œx�Œk � 1��/ is a simplicial monomorphism, it
suffices to show that

N� ab
z̨
W N�F Œx�Œk � 1��ab

�!N��z̨.F Œx�Œk � 1��/

is an isomorphism. This follows directly from the computations that

NqF Œx�Œk � 1��ab
D

8<:
Z.�k�1/ if q D k � 1;

Z.d0�k�1/ if q D k � 2;

0 otherwise;

Nq�z̨.F Œx�Œk � 1��/ab
D

8<:
Z.z̨/ if q D k � 1;

Z.d0 z̨ D ˛/ if q D k � 2;

0 otherwise,

and �z̨.�k�1/D z̨ .

Now from the above lemma, the simplicial monomorphism

�˛W F ŒS
k�2� �! AP�

is given by the composite:

F ŒSk�2� �
�- F Œx�Œk � 1�� �

�z̨- F ŒS1� �
‚- AP�

It follows that ‚ ı �z̨W F Œx�Œk � 1��! AP� induces a simplicial monomorphism

(5-3) F Œx�Œk � 1���F ŒSk�2� F Œ
x�Œk � 1�� � - AP� �F ŒSk�2� AP�

which is a homotopy equivalence by Theorem 3.2. Let � 0
k�1

denote the element �k�1

in second copy of F Œx�Œk � 1�� in the free product with amalgamation

F Œx�Œk � 1���F ŒSk�2� F Œ
x�Œk � 1��:

Let
zk�1 D �k�1.�

0
k�1/

�1
2
�
F Œx�Œk � 1���F ŒSk�2� F Œ

x�Œk � 1��
�
k�1

:
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Then zk�1 is a Moore cycle because

dj zk�1 D dj�k�1.dj�
0
k�1/

�1
D 1

for j > 0 in F Œx�Œk � 1���F ŒSk�2� F Œ
x�Œk � 1�� and

d0zk�1 D d0�k�1.d0�
0
k�1/

�1
D 1

since d0�k�1 D d0�
0
k�1

lies in the amalgamated subgroup F ŒSk�2�. Let

fzk�1
W Sk�1

! F Œx�Œk � 1���F ŒSk�2� F Œ
x�Œk � 1��

be the representing map of zk�1 and let

zfzk�1
W F ŒSk�1� �! F Œx�Œk � 1���F ŒSk�2� F Œ

x�Œk � 1��

be the simplicial homomorphism induced by fzk�1
.

Lemma 5.2 Let zfzk�1
be defined as above. Then:

(1) zfzk�1
is a simplicial monomorphism.

(2) zfzk�1
is a homotopy equivalence.

Proof (1) Observe that

F Œx�Œk � 1���F ŒSk�2� F Œ
x�Œk � 1��D F Œx�Œk � 1�[ x�Œk � 1��

is a simplicial free group, where x�Œk � 1� [ x�Œk � 1� is the simplicial union by
identification d0�k�1 with d0�

0
k�1

. Assertion (1) follows from the lines of the proof
of Lemma 4.2.

(2) Since

zfzk�1
W F ŒSk�1�'�Sk

�! F Œx�Œk � 1���F ŒSk�2� F Œ
x�Œk � 1��'�Sk

is a simplicial homomorphism, it is a loop map. Thus it suffices to show that zfzk�1

induces an isomorphism

zfzk�1�W �k�1.F ŒS
k�1�/Š Z - �k�1.F Œx�Œk � 1���F ŒSk�2� F Œ

x�Œk � 1��/Š Z:

Note that:

�k�1.F Œx�Œk � 1���F ŒSk�2� F Œ
x�Œk � 1��/Š �k�1.F Œx�Œk � 1�[ x�Œk � 1��ab/
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Now the Moore chain complex of F Œx�Œk � 1�[ x�Œk � 1��ab is given by

NqF Œx�Œk � 1�[ x�Œk � 1��ab
D

8<:
Z.�k�1/˚Z.� 0

k�1
/ ifq D k � 1;

Z.d0�k�1 D d0�
0
k�1

/ ifq D k � 2;

0 otherwise.

Thus �k�1.F Œx�Œk�1�[ x�Œk�1��ab/ is generated by �k�1��
0
k�1

, which is the image
of zk�1 in the Abelianization F Œx�Œk � 1�[ x�Œk � 1��ab . It follows that

zfzk�1�W �k�1.F ŒS
k�1�/ - �k�1.F Œx�Œk � 1���F ŒSk�2� F Œ

x�Œk � 1��/

is an isomorphism and hence the result.

5.2 Description for ��.M.Z=q;k// with k� 3

With the preparation in the previous subsection, we can now construct a simplicial
group model for �M.Z=q; k/ with k � 3. Let ˛ 2Zk�1F ŒS1� be a Moore cycle with
˛ 6D 1 and let z̨ 2Nk�1F ŒS1� be a Moore chain such that d0 z̨ 6D 1. From Lemma 5.2
together with isomorphism (5-3), there is a simplicial monomorphism

ız̨W F ŒS
k�1� �! T .Sk

I d0 z̨/;

which is a homotopy equivalence. Let

F Œq�W F ŒSk�1� �! F ŒSk�1�

be the simplicial homomorphism such that

F Œq�.x/D xq

for x 2 Sk�1 � F ŒSk�1�. Clearly F Œq� is a simplicial monomorphism. Now define
the simplicial group T .M.Z=q; k/I˛/ to be the free product with amalgamation:

F ŒSk�1� �
ı˛ ıF Œq� - T .Sk

I d0 z̨/

AP�

�˛

?

\

- T .M.Z=q; k/I z̨; ˛/D T .Sk
I d0 z̨/�F ŒSk�1� AP�

?

The construction of ız̨ ıF Œq� is explicitly given as follows:

Regard z̨ as in k –strand braid through the embedding ‚W F ŒS1�!AP� . Let z̨0

be a copy of z̨ for the second copy of AP� in the free product with amalgamation:

T .Sk
I d0 z̨/D AP� �F ŒSk�2� AP�

Geometry & Topology, Volume 17 (2013)



Combinatorial group theory and the homotopy groups of finite complexes 265

Let �k�1 be the non-degenerate element in Sk�1
k�1

. Then

ız̨ ıF Œq�W F ŒSk�1�! T .Sk
I d0 z̨/

is the unique simplicial homomorphism such that ı.�k�1/ D .z̨.z̨
0/�1/q . In

the language of braids, ız̨ ıF Œq�.F ŒSk�1�/ is the subgroup of T .Sk I d0 z̨/D

AP� �F ŒSk�2� AP� generated by the cablings of .z̨.z̨0/�1/q in the self free
product with amalgamation of braid groups.

One interesting point in the simplicial group

T .M.Z=q; k/I z̨; ˛/D .AP� �F ŒSk�2� AP�/�F ŒSk�1� AP�

is that we identify the qth power .z̨.z̨0/�1/q 2 AP� �F ŒSk�2� AP� with ˛ 2 AP� . So
the cablings of ˛ have qth roots in T .M.Z=q; k/I z̨; ˛/.

Theorem 5.3 Let ˛ 2 Zk�1F ŒS1� be a Moore cycle with ˛ 6D 1 and let z̨ 2
Nk�1F ŒS1� be a Moore chain such that d0 z̨ 6D 1. Then the simplicial group

T .M.Z=q; k/I z̨; ˛/

is homotopy equivalent to the loop space �M.Z=q; k/ of the Moore space. Moreover
the canonical inclusion

T .Sk
I d0 z̨/ � - T .M.Z=q; k/I z̨; ˛/

is homotopic to the looping of the inclusion Sk ,!M.Z=q; k/.

Proof By Theorem 3.2, the classifying space SW .T .M.Z=q; k/I z̨; ˛// is given by
the homotopy push-out

Sk
SW .ız̨ ıF Œq�/- Sk

' SW .Sk
I d0 z̨/

�
?

- SW .T .M.Z=q; k/I z̨; ˛//:
?

Since

SW .ız̨ ıF Œq��/W �k.S
k/Š �k�1.F ŒS

k�1�/ �! �k.S
k/Š �k�1.T .Sk

I d0 z̨//

is of degree q , SW .T .M.Z=q; k/I z̨; ˛//'M.Z=q; k/. Observe that the right column
of the above diagram is homotopic to the inclusion of the bottom cell Sk ,!M.Z=q; k/.
The assertions follow.
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Let Ai;j ;A
0
i;j and A00i;j be copies of Ai;j for generators for Pn in the free product

with amalgamation

T .M.Z=q; k/I z̨; ˛/n�1 D .Pn �F ŒSk�2�n�1
Pn/�F ŒSk�1�n�1

Pn

and let Ri;j be the normal closure of Ai;j ;A
0
i;j and A00i;j in T .M.Z=q; k/I z̨; ˛/n�1 .

Theorem 5.4 Let k � 3. Let ˛ 2 Zk�1F ŒS1� be a Moore cycle with ˛ 6D 1 and
let z̨ 2 Nk�1F ŒS1� be a Moore chain such that d0 z̨ 6D 1. Then �n.M.Z=q; k// is
isomorphic to the center of the group

..Pn �F ŒSk�2�n�1
Pn/�F ŒSk�1�n�1

Pn/=ŒRi;j j 1� i < j � n�S

for any n.

Proof Since T .M.Z=q; k/I z̨; ˛/ is a simplicial quotient group of G � G � G , the
Moore boundaries

Bn�1T .M.Z=q; k/I z̨; ˛/D ŒRi;j j 1� i < j � n�S

by Lemma 4.5. Observe that the group .Pm �F ŒSk�2�m�1
Pn/ �F ŒSk�1�m�1

Pm has
trivial center by Lemma 4.7. The assertion follows from [24, Proposition 2.14].

Remark 5.5 An explicit choice of ˛ and z̨ can be given. For instance, we can choose

˛kC1 D Œ: : : ŒŒ�
�1
1 ; �1�

�1
2 �; �2�

�1
3 �; : : : ; �k�2�

�1
k�1; �k�1�

in Theorem 2.2 as a k –strand Brunnian braid and choose

z̨k D Œ: : : Œ�1�
�1
2 ; �2�

�1
3 �; : : : ; �k�2�

�1
k�1; �k�1�

as a k –strand quasi-Brunnian braid in the sense of [7], ie, a braid which becomes trivial
after deleting any strand except possibly for the first strand. Here the �i are elements
of Pk described in the introduction (see Step 1, page 2). Then we obtain an explicit
simplicial group model T .M.Z=q; k/I z̨k ; ˛kC1/ for �M.Z=q; k/.
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6 Description of the homotopy groups of Moore spaces
M.Z=q; 2/ and proof of Theorem 2.3

Let T .M.Z=q; 2// be the free product with amalgamation by the following diagram:

F ŒS1� �
F Œq� - F ŒS1�

AP�

‚

?

\

- T .M.Z=q; 2//D AP� �F ŒS1� F ŒS
1�

?

By Theorem 3.2, there is a homotopy push-out

S2
' SW F ŒS1� �

xF Œq�' Œq�- S2
' SW F ŒS1�

SW AP� ' �

‚

?

\

- SW T .M.Z=q; 2//
?

and so SW T .M.Z=q; 2/'M.Z=q; 2/. Namely T .M.Z=q; 2// is a simplicial group
model for �M.Z=q; 2/.

For each n, the homomorphism

F Œq�W F ŒS1�n�1 D Fn�1 �! F ŒS1�n�1 D Fn�1

is the homomorphism �q described in Theorem 2.3. Thus as a group

T .M.Z=q; 2//n�1 D Pn ��q
Fn�1:

We give an more explicit description of the group T .M.Z=q; 2//n�1 using degeneracy
operations. Let fxj gjD1;:::;n�1 be the set of generators for Fn�1 D F ŒS1�n�1 as the
second factor in the free product Pn ��q

Fn�1 for 1 � j � n � 1. (Note: In the
introduction to Theorem 2.3, we write yj for xj .) As an element in F ŒS1�n�1 ,

xj D sn�2 � � � sjC1sj sj�2sj�3 � � � s1s0�1

for 1� j � n� 1. The group T .M.Z=q; 2//n�1 is the quotient group of Pn �Fn�1

by the relation
sjC1sj sj�2sj�3 � � � s1s0A1;2 D x

q
j
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for 1� j � n�1, where sjC1sj sj�2sj�3 � � � s1s0A1;2 is the cabling of A1;2 as in the
picture in the introduction.

Let z1 D x1 , zn D xn�1 and zi D xix
�1
i�1

, for i D 2; : : : ; n � 1. Now let Ri D

hzii
Pn��q Fn�1 be the normal closure of zi in Pn ��q

Fn�1 for 1 � i � n and let
Rs;t DhAs;t i

Pn��q Fn�1 be the normal closure of As;t in Pn��q
Fn�1 for 1� s< t �n.

Define the index set Index.Rj / D fj g for 1 � j � n and Index.Rs;t / D fs; tg for
1� s < t � n. Now define the symmetric commutator subgroup

ŒRi ;Rs;t j 1� i � n; 1� s < t � n�S D
Y

f1;2;:::;ngD
tS

jD1

Index.Cj /

Œ: : : ŒC1;C2�; : : : ;Ct �

where each Cj DRi or Rs;t for some i or .s; t/.

Theorem 6.1 (Theorem 2.3) The homotopy group �n.M.Z=q; 2// is isomorphic to
the center of the group

.Pn ��q
Fn�1/=ŒRi ;Rs;t j 1� i � n; 1� s < t � n�S

for any n> 3.

Proof The proof is similar to that of Theorem 2.2. It is easy to see that the group
T .M.Z=q; 2//m D PmC1 ��q

Fm has the trivial center for m� 2. From [24, Proposi-
tion 2.14], �m.T .M.Z=q; 2///Š �mC1.M.Z=q; 2// is isomorphic to the center of
T .M.Z=2//m=BmT .M.Z=q; 2// for m� 3. Thus the key point is to show the Moore
boundaries

Bn�1T .M.Z=q; 2//D ŒRi ;Rs;t j 1� i � n; 1� s < t � n�S :

We construct a simplicial group zF by zFn�1 generated by the letters z1; : : : ; zn with
face operation

dj zk D

8<:
zk if k < j C 1;

1 if k D j C 1;

zk�1 if k > j C 1;

and degeneracy operations

sj zk D

8<:
zk if k < j C 1;

zjC1zjC2 if k D j C 1;

zkC1 if k > j C 1;

for 0 � j � n � 1. Then zF is a simplicial group with a simplicial epimorphism
f W zF ! F ŒS1� by sending the letter zj of zFn�1 to the element zj 2 F ŒS1�n�1 . Let
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gW G! AP� be the canonical simplicial epimorphism. Then we have the simplicial
epimorphism:

G � zF -- AP� �F ŒS1� -- T .M.Z=q; 2//

Observe that Ker.dnW .G � zF /n! .G � zF /n�1/ is the normal closure of the elements
xi;nC1; znC1 . By repeating the arguments in the proof of Lemma 4.5, we have

Bn�1.G � zF /D ŒRi ;Rs;t j 1� i � n; 1� s < t � n�S

and hence the result.

Example Consider the case nD 3. The group

G D .P3 ��q
F2/=ŒRi ;Rs;t j 1� i � 3; 1� s < t � 3�S

is given by generators x1;x2; a12; a13; a23 and the following relations:

x
q
1
D a12a13; x

q
2
D a13a23;

ŒŒx
g1

1
;x

g2

2
�;x1�D ŒŒx

g1

1
;x

g2

2
�;x2�D 1; g1;g2 2G

Œa
g
12
; a13�D Œa

g
12
; a23�D Œa

g
13
; a23�D 1; g 2G

Œx
g
1
; a23�D Œ.x1x�1

2 /g; a13�D Œx
g
2
; a12�D 1; g 2G

Presenting a13; a23 via generators x1;x2; a12 , we get the following 3–generator pre-
sentation of G :

ŒŒx
g1

1
;x

g2

2
�;x1�D ŒŒx

g1

1
;x

g2

2
�;x2�D 1; g1;g2 2G

Œa
g
12
; a�1

12 x
q
1
�D Œa

g
12
;x
�q
1

a12x
q
2
�D Œ.a�1

12 x
q
1
/g;x

�q
1

a12x
q
2
�D 1; g 2G

Œx
g
1
;x
�q
1

a12x
q
2
�D Œ.x1x�1

2 /g; a�1
12 x

q
1
�D Œx

g
2
; a12�D 1; g 2G

Straightforward computations show that G is a 3–generator nilpotent group of class 2,
given by generators x1;x2; a12 and relations:

Œa12;x2�D Œa12;x
q
1
�D Œx

q
1
;x

q
2
�D Œx1; a12x

q
2
�D Œx1x�1

2 ; a�1
12 x

q
1
�D1; ŒŒG;G�;G�D1

It follows that the order of the element Œx1;x2� is .2q; q2/ in G . The center of
G is bigger than the subgroup generated by Œx1;x2�, since a

q
12

lies in the center.
Denote Z1 D ha12;x1i

G ; Z2 D ha12;x1x�1
2
iG ; Z3 D hx2i

G . The homotopy group
�3M.Z=q; 2/ is given now as the intersection

Z1\Z2\Z3 Š Z=.2q; q2/:
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