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Minimal pseudo-Anosov translation lengths
on the complex of curves

VAIBHAV GADRE

CHIA-YEN TSAI

We establish bounds on the minimal asymptotic pseudo-Anosov translation lengths
on the complex of curves of orientable surfaces. In particular, for a closed surface
with genus g > 2 , we show that there are positive constants a1 < a2 such that the
minimal translation length is bounded below and above by a1=g

2 and a2=g
2 .

30F60, 32G15

1 Introduction

Let Sg;n be an orientable surface with genus g and n punctures. For simplicity,
we shall drop the subscripts and denote it by S . The complex of curves C.S/ is a
locally infinite simplicial complex whose vertices are the isotopy classes of essential,
nonperipheral, simple closed curves on S . A collection of vertices span a simplex if
the curves can be isotoped to be disjoint or minimally intersecting on S . Here, we will
assume that the surface S is nonsporadic, ie, the complexity �.S/D 3g� 3C n > 2.
For sporadic surfaces, the complex of curves C.S/ is either trivial or well-understood.

The mapping class group Mod.S/ is the group of isotopy classes of diffeomorphisms
of S . This group acts on C.S/ in the obvious way. Thurston classified the elements of
Mod.S/ into three types: finite order, reducible or pseudo-Anosov. Given a mapping
class f 2Mod.S/, its asymptotic translation length on C.S/ is defined to be

`C.f /D lim inf
j!1

dC.˛; f
j .˛//

j

where ˛ is a simple closed curve on S . The above limit remains unchanged when the
numerator is changed by an additive constant. Hence, by the triangle inequality for dC ,
the quantity `C.f / is independent of the choice of curve ˛ .

In [5], Masur and Minsky proved that f 2Mod.S/ is pseudo-Anosov if and only if
`C.f / > 0. In [2], Bowditch refined this, proving that the set of translation lengths of
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pseudo-Anosov elements is a subset of QC with bounded denominators. We denote
the minimal positive number in this set by

LC.Mod.S//Dminf`C.f / j f 2Mod.S/; pseudo-Anosovg

For closed surfaces, Farb, Leininger and Margalit [3] proved that when g > 2,

LC.Mod.S// <
4 log.2C

p
3/

g log.g� 1=2/
:

Here, we find a better upper bound for LC.Mod.S//. Moreover, we also show that a
lower bound of the same order holds. To be precise, we show:

Theorem 1.1 For closed surfaces with g > 2,

1

162.2g� 2/2C 30.2g� 2/
<LC.Mod.S//6 4

g2Cg� 4
:

The upper bound is established by bounding `C.f / in examples of pseudo-Anosov
maps and is not expected to be sharp. The examples we use are a subset of those
considered by Farb, Leininger and Margalit, but we obtain better bounds for `C.f /.
The proof of the lower bound follows the same approach as Masur and Minsky [5],
but by keeping track of more information, we obtain sharper bounds. The additional
information comes from the algorithm of Bestvina and Handel that constructs an
invariant train track for a pseudo-Anosov map.

The lower bound in Theorem 1.1 is a part of Theorem 5.1 in which we also prove a
lower bound for punctured surfaces. To be precise, when �.S/> 2 and n> 0 we show
that

1

18.2g� 2C n/2C 30.2g� 2C n/� 10n
<LC.Mod.S//:

At the end of the paper, we also discuss upper bounds for some families of punctured
surfaces.

Acknowledgements We thank Chris Leininger for suggesting the project, and numer-
ous discussions during the course of it. We thank the referee and the editor for helpful
comments.

2 The complex of curves

For a broad range of questions in Teichmüller theory and mapping class groups, the
coarse geometry of C.S/ plays a key role. See Minsky [6]. The curve complex C.S/
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is quasi-isometric to its 1–skeleton equipped with the path metric. The 1–skeleton is a
locally infinite graph. In [5, Proposition 4.6], Masur and Minsky showed that:

Proposition 2.1 For a nonsporadic surface S , there exists c > 0 such that, for any
pseudo-Anosov mapping class f and any simple closed curve ˛ in C.S/

dC.f
n.˛/; ˛/> cjnj

for all n 2 Z.

In particular, the proposition shows that the curve complex C.S/ has infinite diameter.
In the same paper, Masur and Minsky went on to show that the curve complex is
ı–hyperbolic in the sense of Gromov. Proposition 2.1 implies that pseudo-Anosov
mapping classes have “north-south” dynamics on C.S/, ie, they act as hyperbolic
elements on C.S/ and have an invariant quasiaxis.

A consequence of Proposition 2.1 is that for nonsporadic surfaces S , the minimal
asymptotic translation length LC.Mod.S// > 0. In fact, Bowditch showed that the
numbers `C.f / are rational with uniformly bounded denominators [2].

The following fact about the asymptotic lengths of iterates of f is useful for proving
bounds.

Lemma 2.2 For all integers m > 1, `C.f m/Dm`C.f /.

Proof From the definition of lim inf,

`C.f /D lim inf
j!1

dC.˛; f
j .˛//

j
6 lim inf

j!1

dC.˛; f
jm.˛//

j m

D
1

m
lim inf
j!1

dC.˛; f
jm.˛//

j
D

1

m
`C.f

m/:

To get the reverse inequality, we use the triangle inequality, followed by the fact that f
is an isometry of C.S/, ie,

dC.˛; f
jm.˛//6

mX
iD1

dC.f
.i�1/j .˛/; f ij .˛//DmdC.˛; f

j .˛//:

Hence `C.f m/6 m`C.f / and we are done.
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3 Train tracks

For a detailed discussion of train tracks, see Penner and Harer [9]. We summarize the
necessary definitions here.

A train track � on the surface is an embedded 1–dimensional CW complex with some
additional structure. The edges are called branches and the vertices are called switches.
The branches are smoothly embedded on the interiors, and there is a common point of
tangency to all branches meeting at a switch. This splits the set of branches incident
on a switch into two disjoint nonempty subsets, which can be arbitrarily assigned as
the incoming and outgoing branches at the switch. In [5], Masur and Minsky assume
all switches to have valence at least three. The particular results from [5] that we use
here hold more generally with valence at least two.

A train route is a regular smooth path in � . In particular, it traverses a switch only
by passing from an incoming edge to an outgoing edge or vice versa. A train track �
is carried by � , denoted by � � � , if there is a homotopy of the identity map of the
surface such that every train route in � is taken to a train route in � . In particular, this
means that � can be embedded in an � neighborhood of � . A simple closed curve is
carried by a train track if it is homotopic to a closed train route.

An assignment of nonnegative numbers, called weights, to the branches so that at every
switch, the sum of the incoming weights equals the sum of the outgoing weights is
called a transverse measure on the train track. A closed train route induces a counting
measure on � .

Following Masur and Minsky [5], we shall denote the set P .�/ to be the polyhedron of
transverse measures supported on � and let int.P .�//� P .�/ be the set of transverse
measures on � which induce positive weights on every branch of � . A simple closed
curve ˛ carried by � naturally induces a transverse measure supported on � , so by
abuse of notation ˛ 2 P .�/.

A train track is called large if all the complementary regions are polygons or once-
punctured polygons. A train track that has complementary regions ideal triangles or
once-punctured monogons is called maximal or complete. It is maximal in the sense
that it cannot be a subtrack of some other train track. The complementary regions of a
large train track are ideal in the sense that the internal angle at all their vertices is zero.
Hence, the vertices will be called cusps.

A train track � is called recurrent if there is a transverse measure which is positive on
every branch of � . A train track � is transversely recurrent if given a branch of � there
is a simple closed curve on S that crosses the branch and intersects � transversely and
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efficiently, ie the union of � and the simple closed curve has no complementary bigons.
A train track that is both recurrent and transversely recurrent is birecurrent.

A train track � fills � if it is carried by � and int.P .�//� int.P .�//. For recurrent
train tracks, this means that every branch of � is traversed by some branch of � .

For a large train track � , a train track � is called a diagonal extension of � if � is
subtrack of � , and each branch in � n � has its endpoints terminate in the cusps of
a complementary regions of � . Let E.�/ denote the set of all recurrent diagonal
extensions of � . It is obvious that this is a finite set. Following Masur and Minsky, set

PE.�/D
[

�2E.�/

P .�/

Further, let int.PE.�// be the set of measures in PE.�/ that are positive on every
branch of � .

We begin with a preliminary lemma of Masur and Minsky which will be useful in
Section 5; the proof of the lemma can be found in [5].

Lemma 3.1 [5] For large recurrent train tracks �; � , if � fills � , then any � 0 2E.�/

is carried by some � 0 2E.�/. In particular, there is the inclusion PE.�/� PE.�/.

The nesting lemma of Masur and Minsky

Given a set A in C.S/, let N1.A/ denote the 1–neighborhood of A in C.S/. In [5],
Masur and Minsky showed the following important result:

Lemma 3.2 (Nesting lemma) Let � be a large birecurrent train track. Then

N1.int.PE.�//� PE.�/:

In other words, if ˛ is a curve carried by a diagonal extension of � such that ˛ passes
through every branch of � , and ˇ is a curve disjoint from ˛ then ˇ is also carried by
some diagonal extension of � .

The original lemma in Masur and Minsky requires that � be birecurrent. We show
below that the hypothesis of transverse recurrence can be dropped. The proof here was
suggested by Chris Leininger.

Proof Let � be a large recurrent train track and let ˛ be a curve in int.PE.�//. Let
� be a diagonal extension of � carrying ˛ such that ˛ passes over every branch of � ,
ie, to get � we add to � only as many diagonals as necessary. Thus, ˛ 2 int.P .�//.
We claim:

Geometry & Topology, Volume 15 (2011)



1302 Vaibhav Gadre and Chia-Yen Tsai

Claim 1 Let ˇ be a curve disjoint from ˛ . Then, ˇ 2 PE.�/.

Proof For each branch b of � , denote by ˛.b/ the weight assigned to b by ˛ . Since
˛ 2 int.P .�//, the weights ˛.b/ > 0 for all b .

Consider � as an abstract train track. To each branch b , assign a rectangle R.b/,
of length 1 and width ˛.b/. Foliate each rectangle by the product foliations, ie, by
horizontal and vertical lines. The weights ˛.b/ satisfy the switch conditions. So the
rectangles glue along their widths in a consistent manner to give a neighborhood N
of � . See Figure 1.

Figure 1: Gluing rectangles

1

2

3

4

5

R.1/

R.2/

R.3/

R.4/

R.5/

The foliations also glue up to give a pair of singular foliations of N , which we continue
to call horizontal and vertical. The horizontal foliation is obtained from a cylinder
neighborhood of ˛ , foliated by leaves parallel to ˛ , and with parts of its boundary
glued together. In particular, we view ˛ as a leaf in the horizontal foliation of N . The
vertical foliations is by ties for � . The components of the boundary @N , are each
a finite union of arcs of singular leaves of the horizontal foliation, and correspond
precisely to the complementary polygons of � . In fact, N admits an embedding into
the surface S as a neighborhood of � .

The union of vertical sides of all rectangles is a union of leaves of the vertical foliation.
Denote this union as L. Let Z1; : : : ;Zu be the complementary polygons of � . The key
observation is that each Zi that has, say, k sides is contained in a unique 2k –gon Yi

whose sides in a cyclic order, are alternatively arcs of L and arcs of ˛ . For instance,
in Figure 2, the complementary region Zi is a quadrilateral. As shown in the picture
on the left, a side of Zi is a union of branches. The rectangles corresponding to the
branches are shown in the picture on the right. The dotted lines in the union of these
rectangles are the sides of the 2k –gon that are arcs of ˛ . Each of these arcs is a piece
of ˛ first encountered as we move out from Zi across its sides.

The surface S decomposes into a union of the even-gons and a set of rectangles
X1; : : : ;Xv . For each Xi , a pair of opposite sides are arcs of L, and the other pair of

Geometry & Topology, Volume 15 (2011)



Minimal pseudo-Anosov translation lengths on the complex of curves 1303

Figure 2: The 2k –gon

ZiZi

opposite sides are arcs of ˛ . Also, each Xi is contained in an original rectangle R.bi/,
and that R.bi/ contains no other Xk .

Keeping ˇ disjoint from ˛ , we isotope ˇ to minimize the number of intersection points
with L. By construction, each arc in ˇ nˇ\L has to be contained entirely in either a
single rectangle Xi or a single even-gon Yj , and must connect a L–side to another
L–side. An arc inside Xi connecting its L–sides traverses the branch bi . If an arc
in Yj connects consecutive L–sides in a cyclic order on the L–sides of Yj , then it
traverses a side of Zj , which is a union of branches of � . On the other hand, if an arc
in Yj connects nonconsecutive L–sides, then it traverses a diagonal of Zj .

It follows that ˇ is carried by a diagonal extension of � , proving the claim.

Diagonal extensions of � are also diagonal extensions of � . So, the claim implies that
ˇ 2 PE.�/, finishing the proof of Lemma 3.2.

4 The Bestvina–Handel algorithm

Definition 4.1 Given a pseudo-Anosov mapping class f 2Mod.S/, a train track �
is an invariant train track of f if � is large and recurrent, and f .�/� � .

The Bestvina–Handel train track The Bestvina–Handel algorithm takes as input
a punctured surface with a pseudo-Anosov map f and constructs an invariant train
track � for f . The algorithm extends to closed surfaces as follows: Given a pseudo-
Anosov map f of a closed surface, a singularity of the stable foliation has a finite orbit
under f . After puncturing the surface at these orbit points, the map f restricts to a
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pseudo-Anosov map of the punctured surface. Running the Bestvina–Handel algorithm
for the punctured surface yields a train track � that is also an invariant train track for
the closed surface. For details about the algorithm, we refer to Bestvina and Handel’s
paper [1]. Here, we present the features of the track � that we need in the proof of
Theorem 5.1.

(1) The branches of � are essentially of two types: real and infinitesimal. The reason
for this classification is that in passing from � to the associated Markov partition for
the stable foliation, only the real branches correspond to rectangles. For a surface with
punctures, the algorithm can be carried out such that the number r of real branches
of � is bounded above by 3j�.S/j, where �.S/ is the Euler characteristic of S . For a
closed surface, the number of singularities of a measured foliation is bounded above
by 2j�.S/j. This implies r 6 9j�.S/j for the number of real branches on a closed
surface S .

We also need an upper bound for the number of infinitesimal branches. By [1, Proposi-
tions 3.3.3 and 3.3.4], the number of valence–2 switches in a Bestvina–Handel train
track is at most twice the number of cusps. Furthermore, each valence–2 switch occurs
either between an infinitesimal branch and a real branch or between two infinitesimal
branches. The number of cusps is the largest when a train track is maximal, and is
equal to 6j�.S/j � 2n. This implies the crude upper bound 24j�.S/j � 8n for the
number of infinitesimal branches.

(2) Along with the track � , the algorithm gives a map � ! � taking switches to
switches, that is efficient in a certain sense. See [1, Lemma 3.1.2]. There is a homotopy
of S sending f .�/ into � such that the resulting map � ! � is the one above. By
abuse of notation, we will denote the map from � to itself also by f . Since f maps
switches to switches, there is an unambiguously defined transition matrix M with
entries corresponding to ordered pairs of branches in � such that the entry corresponding
to the pair .b1; b2/ counts the number of times f .b2/ passes over b1 . Also because
f maps switches to switches, the transition matrix for f k is M k .

Definition 4.2 A matrix M is nonnegative if every entry in it is nonnegative. A
nonnegative matrix M is

(a) irreducible if for any .i; j /, there exist a positive integer s such that M s has a
positive .i; j /–th entry.

(b) primitive if it is irreducible and nonnegative, and M s is a positive matrix for
some s .

Bestvina and Handel show that the r � r submatrix MR of M obtained by restricting
to the set of real branches R is irreducible. In fact, as will be clear in the proof of
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Lemma 4.3, MR is primitive. Additionally, for every infinitesimal branch in � , there
is a real branch such that some iterate of it passes over the infinitesimal branch.

With n denoting the number of punctures, set c0 D 162 and cn D 18 for all n> 0. A
consequence of the discussion above is:

Lemma 4.3 There is positive integer k < cn�.S/
2C 24j�.S/j � 8n such that for any

real branch b , the path f k.b/ passes over every branch of � .

Proof In [1], Bestvina and Handel show that the transition matrix M has the form

(4-1) M D

�
A B

0 MR

�
;

where A is a permutation matrix. In other words, f permutes the infinitesimal branches.

By the definition of irreducibility, some iterate .MR/
q has a positive diagonal entry.

In fact, irreducibility implies path connectivity of the (directed) adjacency graph G

associated to MR . Any directed path of length .r C 1/ in G must necessarily contain
a loop. Since Tr..MR/

q/ counts the number of loops of length q in G , it follows
that q 6 r . See Gantmacher [4] or Seneta [10]. From (4-1), it follows that the r � r

submatrix M
q
R of M q given by the restriction to R is .MR/

q , ie, M
q
R D .MR/

q .
The matrix M q is the transition matrix for the iterate f q which is pseudo-Anosov.
So M

q
R is still irreducible. By [11, Proposition 2.4] applied to M

q
R , we know that

.M
q
R/

2r is a positive matrix. In particular, MR is primitive.

If we set p D 2rq , then for any real branch b 2 R, the path f p.b/ passes over
all real branches. This implies that R � f .R/. Since every infinitesimal branch is
passed over by an iterate of some real branch, the inclusion is strict. By iterations,
we get the sequence of inclusions R � f .R/ � f 2.R/ � � � � , where the inclusion
remains strict as long as f jC1.R/ spreads over a larger set of infinitesimal branches
than f j .R/. Let i be the smallest positive integer such that the sequence stabilizes,
ie, f i.R/D f iC1.R/. Then f i.R/D � and the number i is bounded above by the
number of infinitesimal branches, which in turn is bounded above by 24j�.S/j � 8n.

Set k D pC i . Then, for any real branch b 2R, the path f k.b/ crosses all branches
of � . It remains to give an upper bound for k in terms of �.S/.

For a nonsporadic surface with punctures, 0< r 6 3j�.S/j. So we get the bound

k D pC i 6 2r2
C i 6 18�.S/2C 24j�.S/j � 8n:

For a nonsporadic closed surface, 0< r 6 9j�.S/j. So we get the bound

k D pC i 6 2r2
C i 6 162�.S/2C 24j�.S/j:
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(3) We shall regard a cusp of a complementary region of � as foldable, if the
branches b1 and b2 that flank it fold under some iterate, ie, if we orient b1 and b2

away from the cusp, there is some iterate such that the paths f j .b1/ and f j .b2/

starting from the same switch pass over the same initial branch b . By [1, Property (I2),
Section 4], the algorithm is carried out such that the branch b that they fold over is
always real. Let � 2E.�/, and let 
 be a simple closed curve carried by � . We have
the following lemma:

Lemma 4.4 If 
 does not pass over any real branch of � , then 
 is incident on a
foldable cusp.

Proof Suppose that 
 does not pass over any real branch of � and none of the cusps it
passes through are foldable. Any iterate of 
 must also have the same properties. But
then, the iterates cannot converge to the stable foliation of f , giving a contradiction.

5 Lower bounds

Theorem 5.1 When the complexity �.S/> 2,

LC.Mod.S// >
1

cn�.S/2C 30j�.S/j � 10n
;

where, as in Lemma 4.3, the constants are c0 D 162 and cn D 18 for n > 1.

Proof The idea is to combine Lemma 4.3 with the proof [5, Proposition 4.6] to obtain
a better lower bound.

For any pseudo-Anosov f 2Mod.S/, let � be the invariant train track of f constructed
by Bestvina and Handel. We shall show that after at most .6j�.S/j � 2nC k/ iterates
of f , where k is the number of iterates in Lemma 4.3, we get the nesting behavior in
the proof of Proposition 4.6 in [5]. This gives the lower bound for LC.Mod.S// as
stated.

For the track � , let B� be the set of the branches, and jB� j its cardinality. Let � 2E.�/.
By Lemma 3.1, PE.f .�//� PE.�/. So the image f .�/ is carried by some diagonal
extension � 0 2 E.�/. Moreover, f sends switches of � to switches of � 0 . Hence,
for each such pair .�; � 0/, the transition matrix M�;� 0 W RB� !RB�0 associated to f
is unambiguously defined. Without loss generality, we may assume that the last jB� j
coordinates correspond to B� . Then, the matrix M�;� 0 has the form

M�;� 0 D

�
� 0

� M

�
;
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where M is the transition matrix for � described in Lemma 4.3. For any diagonal
extension �0 2 E.�/, for any m > 0, we can construct a sequence of train tracks
�1; �2; : : : ; �m in E.�/ such that

f .�0/� �1; f .�1/� �2; : : : ; f .�m�1/� �m;

f m.�0/� �m:hence

Let M�j ;�jC1
W RB�j !RB�jC1 be the transition matrices of f associated to f .�j /�

�jC1 in the sequence, and let M�0;�m
W RB�m !RB�m be the transition matrix associ-

ated to f m . Because f maps switches to switches, the matrices satisfy

M�0;�m
DM�m�1;�m

�M�m�2;�m�1
� � � � �M�1;�2

�M�0;�1

D

�
� 0

� M

�
�

�
� 0

� M

�
� � � � �

�
� 0

� M

�
�

�
� 0

� M

�
D

�
� 0

� M m

�
:

Let �2P .�0/. We denote by f m.�/ the measure in P .�m/ given by the pushforward
of � by M�0;�m

. We now use Lemma 4.3 and Lemma 4.4 to prove the following
lemma:

Lemma 5.2 For any � 2 P .�0/, there exists some positive integer m such that
k 6 m 6 6j�.S/j�2nCk , where k is the number of iterates in Lemma 4.3, the measure
f m.�/ 2 P .�m/ is positive on every branch in B� , that is f m.�/ 2 int.PE.�//.

Proof We consider the simplest case first:

Case 1 Suppose � is positive on some real branch b in B� . By Lemma 4.3, the
transition matrix with respect to � , for f k has the form

M k
D

�
� yB

0 M k
R

�
;

where yB and M k
R are positive matrices. In particular, the image path f k.b/ passes

over every branch in B� . Hence, the measure f k.�/DM�0;�k
.�/ in P .�k/ is positive

on every branch in B� . The same reasoning applied to all integers m > k implies that
the measure f m.�/ DM�0;�m

.�/ is positive on every branch of B� , finishing the
proof of Lemma 5.2 in this case.

Case 2 Suppose � is not positive on any real branch. We shall show that in j 6
6j�.S/j�2n iterates the measure f j .�/DM�0;�j .�/ is positive on some real branch,
reducing us to Case 1. This is done in two steps: In Step 1, we show that Supp.�/
contains a diagonal d that is incident on a foldable cusp c . In Step 2, we show that
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the branches b1 and b2 that flank c , fold over a real branch b in j 6 6j�.S/j � 2n

iterates. Then f j .d/ also passes over b from which it follows that f j .�/ assigns
positive weight to b .

Step 1 Suppose � is positive on some simple closed curve 
 carried by �0 . By
Lemma 4.4, the curve 
 must be incident on a foldable cusp. Hence, Supp.�/ contains
a diagonal d that is incident on a foldable cusp c .

Step 2 Let b1 and b2 be the branches that flank c . Let j be the smallest iterate in
which b1 and b2 fold. By Part (3) of Section 4, the branch b that they fold over is
real. We claim that j 6 6j�.S/j � 2n. By an Euler characteristic calculation, the total
number of cusps is at most 6j�.S/j�2n. If b1 and b2 do not fold within 6j�.S/j�2n

iterates, then there is a foldable cusp c0 such that f a.c0/ D c0 for some iterate f a .
But then f ma.c0/D c0 for all positive integers m. Thus, c0 never gets folded giving a
contradiction. This proves the claim.

Combining this with Case 1, we conclude that for mD j Ck 6 6j�.S/j�2nCk , the
measure f m.�/ is positive on every branch in B� finishing the proof of Lemma 5.2.

Back to Theorem 5.1, Lemma 5.2 implies that for any �02E.�/, and for any �2P .�0/,

f w.�/ 2 int.PE.�//;

where w D 6j�.S/j � 2nC k . Hence,

(5-1) f w.PE.�//� int.PE.�//:

Now set �1 D � , and for each positive integer i > 1, let �i D f
iw.�/. The inclusion

(5-1) implies PE.�iC1/� int.PE.�i//. By Lemma 3.2, we get the nesting sequence:

P .�iC1/� int.PE.�i//�N1 .int.PE.�i///� PE.�i/� � � �

� int.PE.�1//�N1 .int.PE.�1///� PE.�1/

Choose ˛ 2 C.S/nPE.�1/ such that f w.˛/ 2 PE.�1/. Then f iw.˛/ is in PE.�i/ but
not in PE.�iC1/. Thus dC.f

iw.˛/; ˛/> i . Hence

`C.f
w/D lim inf

i!1

dC.f
iw.˛/; ˛/

i
> lim inf

i!1

i

i
D 1:

By Lemma 2.2, we have `C.f w/D w`C.f /. So

`C.f /> 1

w
>

1

cn�.S/2C 30j�.S/j � 10n
;

where c0 D 162 and cn D 18 for n > 1.
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6 Upper bound

Next, for a closed surface S , we prove an upper bound for LC.Mod.S// of the same
order.

Theorem 6.1 For a closed surface of genus g > 2,

LC.Mod.S//6 4

g2Cg� 4
:

Proof It is sufficient to find a pseudo-Anosov mapping class f such that `C.f / 6
4=.g2 C g � 2/. We show this for the pseudo-Anosov map of a closed surface of
genus g constructed by Penner in [8]. The Penner example is as follows: For the closed
surface of genus g in Figure 3, let f D �Tc1

T �1
b1

Ta1
, where Ta1

is a positive Dehn
twist along a1 , �.ai/D ai�1 , for i D 2; : : : ;g and �.a1/D ag and similarly for the
bi ’s and ci ’s.

a1

a2

a3

a4

a5

ag

ag�1

ag�2

ag�3

ag�4

ag�5

b1

b2

b3

b4

b5

bg

bg�1

bg�2

bg�3

bg�4

bg�5

c1

c2
c3

c4

c5
cg

cg�1

cg�2

cg�3cg�4

Figure 3: f D �Tc1
T �1

b1
Ta1
2Mod.S/
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Since `C.f / is independent of the initial choice of curve to apply iterations to, we
choose the curve ag and show that for some k > .g2Cg� 4/=2,

(6-1) dC.f
k.ag/; ag/6 2:

By the triangle inequality,

`C.f
k/D lim inf

j!1

dC.f
jk.ag/; ag/

j
6 lim inf

j!1

2j

j
D 2;

and by Lemma 2.2,

`C.f /6 2

k
6 4

g2Cg� 4
:

For g D 2, let k D 1 > .22C 2� 4/=2 D 1 and notice that f .a2/ D a1 . Since a1

and a2 are disjoint, dC.f .a2/; a2/D 1< 2, and we are done.

For a sequence of curves ˛r 2 fai ; bi ; cig
g
iD1

such that ˛1 [ � � � [ ˛k is connected,
we denote the regular neighborhood of the union ˛1[ � � � [˛k by N .˛1 � � �˛k/. To
show (6-1) in general, the key idea is as follows: Suppose that f j is the smallest
iterate in which f j .ag/ is spread over k “holes”. Then it takes waiting time .gC 1/

for the images to sweep over .kC 2/ holes. In other words, f j.gC1/ is the smallest
iterate in which the image of ag sweeps over .kC 2/ holes. To be precise, among the
neighborhoods defined above, we keep track of which is the “smallest” one containing
the image of ag .

In first .g� 1/ iterates ag gets rotated till it becomes a1 , ie, f g�1.ag/D a1 . In two
iterates that follow,

f g.ag/�N .agbgcg/ , f gC1.ag/�N .cgag�1bg�1cg�1/:

In the same manner, continuing the iterations, notice that

f 2.gC1/.ag/�N .cgbg�1cg�1ag�2bg�2cg�2bg�3cg�3/:

f 3.gC1/.ag/�N .cgbg�1cg�1ag�2bg�2cg�2 � � � ag�4bg�4cg�4bg�5cg�5/:

We observe that after each f gC1 iterates the subscript for c rightmost inside N
decreases by 2. In other words, it requires .gC1/ iterates to increase the “complexity”
of the image of ag by 2. Here, we abbreviate notation by setting N .cg�cg�2iC1/ to be
N .cgbg�1cg�1ag�2bg�2cg�2 � � � ag�2iC2bg�2iC2cg�2iC2bg�2iC1cg�2iC1ag�i/.
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f gC1.ag/�N .cg � cg�1/;Then,

f 2.gC1/.ag/�N .cg � cg�3/

f 3.gC1/.ag/�N .cg � cg�5/
:::

f b.g�1/=2c.gC1/.ag/�N .cg � cg�2b.g�1/=2cC1/:

f g�1
�
f b.g�1/=2c.gC1/.ag/

�
�N

�
��1.cg � cg�2b.g�1/=2cC1/b3c3b2c2

�
;Finally,

where the inclusion is into a smaller neighborhood if g is even.

Notice N
�
��1.cg � cg�2b.g�1/=2cC1/b3c3b2c2

�
, and so f g�1

�
f b.g�1/=2c.gC1/.ag/

�
is disjoint from a1 , and of course a1 and ag are disjoint. Hence

dC.ag; f
k.ag//6 2;

where

k D .g� 1/C
jg� 1

2

k
.gC 1/> 2.g� 1/C .g� 2/.gC 1/

2
D

g2Cg� 4

2
:

More generally, as described in [11, Appendix 5.2], a method similar to [8] constructs
pseudo-Anosov homeomorphisms of certain punctured surfaces from pseudo-Anosov
homeomorphisms of closed surfaces. We start with the Penner pseudo-Anosov map f
of the closed surface Sg . We add in punctures in some or all of the complementary
regions according to the criteria of [7, Theorem 3.1]. Then, the restriction of f is a
pseudo-Anosov on the punctured surface. A proof similar to Theorem 6.1 provides
upper bounds on LC.Mod.Sg;n// of the order 1=�.Sg;n/

2 . We list the cases in which
we get 1=�.Sg;n/

2 type upper bounds:
(1) For punctured tori with n even, we use the example in [11, Appendix 5.1].
(2) For g > 5 and nD g� 1 or 2g� 2, we use [11, Example 3, Appendix 5.2].
(3) For g > 3 and n 6 4, we use of [11, Example 2, Appendix 5.2].
(4) For g > 2 and n D 1, 2, g , g C 1 or g C 2, we use Penner’s example in

Theorem 6.1, puncturing the surface at the appropriate points.

In some cases, the upper bound can be of the order of 1=j�.Sg;n/j. For example, when
g D 2 and n is varying, the example of [11, Section 4] gives the bound

LC.Mod.Sg;n//6 20

n� 4
;

for all n > 4. We propose the following conjecture:

Conjecture 6.2 For fixed g > 2 and n varying, LC.Mod.Sg;n// is of the order of
1=j�.Sg;n/j as n!1.

Geometry & Topology, Volume 15 (2011)
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