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The sutured Floer homology polytope

ANDRÁS JUHÁSZ

In this paper, we extend the theory of sutured Floer homology developed by the
author [13; 14]. We first prove an adjunction inequality and then define a poly-
tope P .M; 
 / in H 2.M; @M IR/ that is spanned by the Spinc –structures which
support nonzero Floer homology groups. If .M; 
 / .M 0; 
 0/ is a taut surface
decomposition, then an affine map projects P .M 0; 
 0/ onto a face of P .M; 
 /;
moreover, if H2.M /D 0 , then every face of P .M; 
 / can be obtained in this way
for some surface decomposition. We show that if .M; 
 / is reduced, horizontally
prime and H2.M /D 0 , then P .M; 
 / is maximal dimensional in H 2.M; @M IR/ .
This implies that if rk.SFH.M; 
 // < 2kC1 , then .M; 
 / has depth at most 2k .
Moreover, SFH acts as a complexity for balanced sutured manifolds. In particular,
the rank of the top term of knot Floer homology bounds the topological complexity
of the knot complement, in addition to simply detecting fibred knots.

57M27; 57R58

1 Introduction

Heegaard Floer homology is an invariant of closed oriented three-manifolds defined by
Ozsváth and Szabó in [19]. It comes in four different flavors: bHF , HFC , HF� and
HF1 . This was extended to an invariant HFK of knots by Ozsváth and Szabó in [18],
and independently by Rasmussen in [23]. Later, Ozsváth and Szabó [21] generalized
bHFK to an invariant bHFL of links in S3 . For a knot K in S3 , the group bHFK .K/

splits as a direct sum
L

i;j2Z
bHFKj .K; i/, and has a homological Z–grading. For

each i 2 Z, the Euler characteristic of bHFK�.K; i/ is equal to the i –th coefficient ai

of the Alexander–Conway polynomial �K .t/ of K .

It is a classical result that for a knot K in S3 the polynomial �K .t/ gives a lower
bound on the genus of K in the following sense:

g.K/�maxf i 2 Z W ai ¤ 0 g:

Ozsváth and Szabó in [17] showed that knot Floer homology actually detects the genus
of K :

g.K/Dmaxf i 2 Z W bHFK .K; i/¤ 0 g:
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The proof of this striking result uses Gabai’s theory of sutured manifolds [4; 7; 8], the
Eliashberg–Thurston theory of confoliations [2], the contact invariant and cobordism
maps in Heegaard Floer homology, symplectic semifillings and Lefschetz pencils.

The theory of sutured manifolds was developed by Gabai in [4] in order to study the
existence of taut foliations on 3–manifolds. Sutured manifolds are oriented 3–manifolds
with boundary, together with a set of oriented simple closed curves, called sutures, that
divide the boundary into a plus and a minus part. They can be thought of as cobordisms
between compact oriented surfaces with boundary. Gabai also defined an operation on
sutured manifolds, called sutured manifold decomposition. It consists of cutting the
manifold along a properly embedded oriented surface R, and adding one side of R to
the plus, and the other side to the minus part of the boundary. He showed that a sutured
manifold carries a taut foliation if and only if there is a sequence of decompositions
that results in a product sutured manifold (essentially a trivial cobordism). The theory
of sutured manifold decompositions was generalized by Honda, Kazez and Matić [11]
to study tight contact structures on 3–manifolds, and was called convex decomposition
theory.

In [13], I introduced sutured Floer homology, in short SFH, which is an invariant of
balanced sutured manifolds. SFH is an invariant of three-manifolds with boundary and
generalizes bHF ; bHFK and bHFL . The balanced condition is not very restrictive, since
in Proposition 3.14 we show that every open taut sutured manifold that has at least one
suture on each boundary component is balanced.

I used SFH in [14] to give a more elegant and direct proof of the fact that knot Floer
homology detects the genus of a knot. That proof only relies on Gabai’s theory of
sutured manifolds and the following two results. First, if R is a Seifert surface of a
knot K in S3 , then

bHFK .K;g.R//Š SFH.S3.R//;

where S3.R/ is the sutured manifold complementary to R; see [14, Theorem 1.5].
Secondly, by [14, Theorem 1.3], if we decompose a sutured manifold .M; 
 / along
a “nice” surface and get the sutured manifold .M 0; 
 0/, then SFH.M 0; 
 0/ is a direct
summand of SFH.M; 
 /. We will refer to this as “the decomposition formula”. If
R is of minimal genus, then S3.R/ is taut, so by [4] there is a sequence of nice
decompositions that ends in a product. The SFH of a product is Z, so the decomposition
formula implies that SFH.S3.R// contains a Z direct summand.

For a Seifert surface R, even though SFH.S3.R// is isomorphic to the top term
of knot Floer homology, it carries an extra Spinc –grading. Note that for a sutured
manifold .M; 
 /, the set of Spinc –structures Spinc.M; 
 / is an affine space over
H 2.M; @M /ŠH1.M /. In the present paper, we study this extra grading on SFH, and
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how it behaves under sutured manifold decompositions. Using our results, we show
that the top term of knot Floer homology carries deep topological information about
the knot complement. In particular, we have the following, which is a special case of
Corollary 7.8.

Theorem 1 Suppose that K is a knot in S3 , and

rk
� bHFK .K;g.K//

�
< 2kC1:

Then the sutured manifold S3.K/ complementary to K has depth d.S3.K//� 2kC1.
In particular, if k D 0, then K is fibred.

Here the depth of a sutured manifold is the minimal number of decompositions needed
to get a product sutured manifold.

Ozsváth and Szabó conjectured that knot Floer homology detects fibred knots in the
sense that bHFK .K;g.K//ŠZ if and only if K is fibred. This was proved by Ghiggini
in [9] for genus one knots, and proceeds along the lines of the Ozsváth–Szabó proof
of bHFK .K;g.K// ¤ 0, using deep symplectic and contact topology. Building on
Ghiggini’s work, Ni proposed a proof of the general case in [15], using an alternative
version of sutured Floer homology (without the Spinc –grading), and a restricted version
of the decomposition formula for horizontal surfaces and separating product annuli.
Shortly after this, in [14] I presented a more direct proof of the fibred knot conjecture,
only using SFH and the general decomposition formula. This starts out with an
observation of Gabai [6] that a knot K is fibred if and only if S3.R/ is a product
sutured manifold, where R is a minimal genus Seifert surface for K . So the problem
can be reduced to the question whether SFH detects product sutured manifolds. Later,
it turned out that the last part of the proof in [15] had a gap due to an incorrect reference
to Cooper and Long [1] concerning characteristic product regions. In [14], I borrowed
Ni’s last argument to conclude my proof, so [14] has the same gap. Ni filled in this
gap in [16]. In the present paper, I correct and generalize [14] by eliminating the
use of characteristic product regions. My approach is completely different from that
of [16]. Instead, I only use reduced sutured manifolds, ones in which every product
annulus is parallel to a suture. Since in [14] I also proved the decomposition formula
for nonseparating product annuli, it is enough to work with reduced sutured manifolds.
The introduction of the SFH polytope makes the proof very transparent, and makes it
possible to get a much sharper result, namely Theorem 1.

For a sutured manifold .M; 
 /, the Spinc –structures that support nonzero Floer ho-
mology groups span a polytope P .M; 
 / in H 2.M; @M IR/. This polytope is well
defined up to translations. A major tool in this paper is the adjunction inequality,
Theorem 4.1.
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Theorem 2 (Adjunction inequality) Suppose that the sutured manifold .M; 
 / is
strongly balanced, and fix a trivialization t 2 T .M; 
 /. Let S �M be a nice decom-
posing surface. If a Spinc –structure s 2 Spinc.M; 
 / satisfies

h c1.s; t/; ŒS � i< c.S; t/;

then SFH.M; 
; s/D 0.

Here c.S; t/ is a purely topological quantity, and we show that the above inequality
can be rearranged to get a Thurston–Bennequin type inequality. In Theorem 4.5, we
use the adjunction inequality to extend the decomposition formula [14, Theorem 3.11]
to disconnected decomposing surfaces.

In Proposition 4.13 and Corollary 4.15, we establish a relationship between decomposi-
tions of .M; 
 / and faces of P .M; 
 /, and show that if H2.M /D 0, then every face
of P .M; 
 / corresponds to a well-groomed surface decomposition. More concretely,
Theorem 5.11 implies that if .M; 
 / S .M 0; 
 0/ is a taut surface decomposition,
then there is an affine map from H 2.M 0; @M 0IR/ to H 2.M; @M IR/ which projects
P .M 0; 
 0/ onto a face of P .M; 
 /. This map is a translate of the dual of the map
H1.M

0/!H1.M / induced by the embedding M 0 ,!M . If S is a disk, then this
projection is actually an isomorphism. So we see how Spinc –structures split under
surface decompositions. This, for example, implies a result of Gabai [5] that if a sutured
manifold is disk decomposable, then it can be decomposed into a product using a single
(not necessarily connected) surface, and if 
 is connected, then it carries a taut foliation
of depth at most one.

From now on, we are going to suppose that .M; 
 / is a taut balanced sutured manifold
which satisfies the condition H2.M / D 0. The condition H2.M / D 0 is not very
restrictive, since it is satisfied by any sutured manifold complementary to a connected
surface in a rational homology 3–sphere; furthermore, it is preserved by nice surface
decompositions. And the most studied sutured manifolds are exactly the ones which
are complementary to a Seifert surface of a knot or a link.

Theorem 6.1 is one of the main results of this paper.

Theorem 3 Suppose that H2.M /D 0, and the sutured manifold .M; 
 / is balanced,
taut, reduced and horizontally prime. Then

dim P .M; 
 /D dim H 2.M; @M IR/D b1.M /D b1.@M /=2:

In particular,
rk.SFH.M; 
 //� b1.@M /=2C 1:
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This result fills in the gap in [14], and makes further generalizations possible. Using
this, we prove Proposition 7.6:

Theorem 4 Suppose that .M; 
 / is a taut balanced sutured manifold such that
H2.M /D 0 and rk.SFH.M; 
 // < 2kC1 for some integer k � 0. Then the depth of
.M; 
 / is at most 2k .

The proof proceeds by induction on k . One has to first decompose .M; 
 / along a
maximal set of product annuli to make it reduced. Then P .M; 
 / becomes maximal
dimensional in its ambient space. There is a Spinc –structure s that is a vertex of
P .M; 
 /, and such that rk.SFH.M; 
; s// < 2k . Furthermore, we saw that there is a
decomposition .M; 
 / S .M 0; 
 0/ such that SFH.M 0; 
 0/Š SFH.M; 
; s/. So we
can apply the induction hypotheses to .M 0; 
 0/ to see that it has depth at most 2k � 2.
In particular, this illustrates how the rank of SFH can be used to measure the complexity
of balanced sutured manifolds, and to perform inductive proofs using it. It is worth
comparing it to the complexity defined by Gabai in [4] to show the existence of sutured
manifold hierarchies.

Theorem 4 implies Theorem 1, since if we decompose the knot complement S3.K/

along a minimal genus Seifert surface R, then we get the taut balanced sutured manifold
S3.R/ with rk.SFH.M; 
 // < 2kC1 .

The sutured manifold .M; 
 / constructed in Example 7.5 has the following surprising
property: the polytope P .M; 
 / consists of a single point, even though .M; 
 / is hor-
izontally prime and is not a product. This example also illustrates that decompositions
along product annuli can change the sutured Floer homology polytope, while the rank
of SFH remains unchanged. So we always need to make our sutured manifold reduced
by cutting along product annuli before we can decrease the rank of SFH by another
sutured manifold decomposition.

In Section 8, we define a function y on H2.M; @M IR/ that is a seminorm, except
that y.c/ and y.�c/ might be different. The dual unit norm polytope of y is exactly
�P .M; 
 /. Moreover, y is nondegenerate if .M; 
 / is reduced and horizontally
prime. Using this norm, we can view Corollary 4.11 as an extension of a theorem of
Ozsváth and Szabó [22] that link Floer homology detects the Thurston norm of the link
complement. We will prove in [3] that if we symmetrize y , we get a seminorm that
gives a lower bound on the seminorm defined by Scharlemann in [24], but is different
from it.

Finally, we compute the sutured Floer homology of any sutured manifold .M; 
 / such
that M � S1 �D2 . This illustrates some of the techniques developed in this paper,
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and will be used in future computations. For further examples of P .M; 
 /, including
whole families where M is a genus two handlebody, we refer the reader to [3]. In [10],
we show how the sutured Floer homology polytope can be used to distinguish Seifert
surfaces up to isotopy.
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2 Sutured manifolds

To get an in depth introduction to the theory of sutured manifolds and surface decom-
positions, we recommend reading Gabai’s original papers [4; 7; 8]. For the reader’s
convenience, let us review the most important definitions and results here.

Notation 2.1 Throughout this paper, we are going to use the following notation. If K

is a submanifold of the manifold M , then N.K/ denotes a regular neighborhood of K

in M and ŒK� is the homology class represented by K . If A is a set, then jAj is the
cardinality of A. If X is a topological space, then jX j is the number of components
of X .

Definition 2.2 A sutured manifold .M; 
 / is a compact oriented 3–manifold M

with boundary together with a set 
 � @M of pairwise disjoint annuli A.
 / and
tori T .
 /. Furthermore, the interior of each component of A.
 / contains a suture, ie,
a homologically nontrivial oriented simple closed curve. We denote the union of the
sutures by s.
 /.

Finally every component of R.
 / D @M n Int.
 / is oriented. Define RC.
 / (or
R�.
 /) to be those components of @M n Int.
 / whose normal vectors point out of
(into) M . The orientation on R.
 / must be coherent with respect to s.
 /, ie, if ı is a
component of @R.
 / and is given the boundary orientation, then ı must represent the
same homology class in H1.
 / as some suture.
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Definition 2.3 A sutured manifold .M; 
 / is called balanced if M has no closed
components, �.RC.
 //D�.R�.
 //, and the map �0.A.
 //!�0.@M / is surjective.

Definition 2.4 A sutured manifold .M; 
 / is taut if M is irreducible and R.
 / is
incompressible and Thurston norm minimizing in H2.M; 
 /. For the definition of the
Thurston norm, we refer the reader to Thurston’s paper [25].

Definition 2.5 Let .M; 
 / be a sutured manifold. A decomposing surface is a properly
embedded oriented surface S in M such that no component of @S bounds a disk in
R.
 / and no component of S is a disk D with @D � R.
 /. Moreover, for every
component � of S \ 
 one of (1)–(3) holds:

(1) � is a properly embedded nonseparating arc in 
 such that j�\ s.
 /j D 1.

(2) � is a simple closed curve in an annular component A of 
 in the same homology
class as A\ s.
 /.

(3) � is a homotopically nontrivial curve in a torus component T of 
 , and if ı is
another component of T \S , then � and ı represent the same homology class
in H1.T /.

Then S defines a sutured manifold decomposition

.M; 
 / S .M 0; 
 0/;

where M 0 DM n Int.N.S// and


 0 D .
 \M 0/[N.S 0C\R�.
 //[N.S 0�\RC.
 //;

RC.

0/D ..RC.
 /\M 0/[S 0C/ n Int.
 0/;

R�.

0/D ..R�.
 /\M 0/[S 0�/ n Int.
 0/;

where S 0C (S 0� ) is the component of @N.S/\M 0 whose normal vector points out of
(into) M 0 .

Definition 2.6 Let .M; 
 / be a balanced sutured manifold. A surface decomposition
.M; 
 / S .M 0; 
 0/ is called groomed if for each component V of R.
 / one of the
following holds:

� S \V is a union of parallel, coherently oriented, nonseparating simple closed
curves.

� S \ V is a union of arcs such that for each component ı of @V we have
jı\ @S j D jh ı\ @S ij, where h ı\ @S i is the algebraic intersection number of
ı and @S .
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A surface decomposition is called well groomed if for each component V of R.
 / the
intersection S \V is a union of parallel, coherently oriented, nonseparating simple
closed curves or arcs.

The following definition is motivated by [4, Lemma 3.8].

Definition 2.7 Let .M; 
 / be a balanced sutured manifold. We say that a class
z 2H2.M; @M / is well groomed if @z ¤ 0 in H1.@M / and the following hold.

(1) For each nonplanar component V of R.
 / and each component � of @V we
have h z; � i D 0.

(2) For each planar component V of R.
 / there exist at most two components �1

and �2 of @V such that h z; �i i ¤ 0 for i D 1; 2.

Note that z 2H2.M; @M / is well groomed if and only if �z is well groomed. Using
this terminology [4, Lemma 3.8] can be stated as follows.

Lemma 2.8 Let .M; 
 / be a balanced sutured manifold. Then there exists a well
groomed class in H2.M; @M /.

Lemma 2.9 Let .M; 
 / be a taut balanced sutured manifold and z 2H2.M; @M / a
well groomed homology class. Then there is a well groomed surface decomposition
.M; 
 / S .M 0; 
 0/ such that ŒS �D z and .M 0; 
 0/ is taut.

Proof This lemma follows from the last argument in the proof of [8, Lemma 3.4]
which goes as follows. By [7, Lemma 0.7], there is a groomed surface S which gives a
taut decomposition and ŒS �D z . Now [4, Lemma 3.9] implies that if V is a component
of R.
 /, then S \V is homologous to a set of parallel curves. Finally, an application
of [7, Lemma 0.6] yields the desired well groomed surface.

Definition 2.10 Let .M; 
 / be a sutured manifold. A product annulus in .M; 
 / is
an annulus A properly embedded in M such that @A�R.
 /, @A\RC.
 /¤∅, and
@A\R�.
 / ¤ ∅. A product disk is a disk D properly embedded in M such that
@D \ 
 consists of two essential arcs in 
 . Product disks and product annuli detect
where a sutured manifold is locally a product. .M; 
 / is a product sutured manifold if
M DR� I , 
 D @R� I , RC.
 /DR� f1g, and R�.
 /DR� f0g.

Lemma 2.11 Let .M; 
 / be a sutured manifold such that M is irreducible and R.
 /

is incompressible. If A is a compressible product annulus in .M; 
 /, then there is a
cylinder D2 � I �M such that AD @D2 � I and D2 � @I �R.
 /.
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Proof Suppose that a simple closed curve in A bounds a disk in M but it does not
bound a disk in A. Then both a� DA\R�.
 / and aC DA\RC.
 / bound disks
in M . Since R.
 / is incompressible, both a� and aC bound disks D� and DC in
R.
 /, respectively. But M is irreducible, hence the embedded sphere D�[A[DC
bounds a 3–ball in M . This 3–ball can be identified with D2� I such that it satisfies
the stated properties.

Definition 2.12 We say that a balanced sutured manifold .M; 
 / is reduced if every
incompressible product annulus A in .M; 
 / is ambient isotopic to a component of 

such that @A stays in R.
 / throughout. Call a product disk D inessential if there is
an ambient isotopy of D into 
 which fixes D\ 
 , and essential otherwise.

Lemma 2.13 Let .M; 
 / be a reduced sutured manifold such that M is irreducible
and R.
 / is incompressible. Then exactly one of the following holds.

(1) Every product disk in .M; 
 / is inessential.

(2) .M; 
 / is homeomorphic to .†� I; @†� I/, where † is a sphere with either
two or three open disks removed.

Proof In this proof we implicitly use the following observation several times. Suppose
that the product annulus A�M n 
 is ambient isotopic to a component 
 0 of 
 such
that @A stays in R.
 / throughout. Then there is a submanifold C � I inside M such
that C is an annulus, @C � I DA[ 
 0 and C � @I �R.
 /.

Suppose that .M; 
 / contains an essential product disk D . We distinguish two cases
depending on whether the two arcs of D \ 
 lie in the same component of 
 . First
suppose that there is a single component 
0 of 
 which contains D\ 
 . Denote the
closures of the components of @N.
0[D/\ Int.M / by A1 and A2 . Then the product
annuli A1 and A2 both have to be incompressible, otherwise by Lemma 2.11 the
product disk D would by inessential. Furthermore, neither A1 nor A2 can be ambient
isotopic to 
0 , else again D would be inessential. Thus there are components 
1 and

2 of 
 , both distinct from 
0 and from each other, such that Ai is ambient isotopic
to 
i for i D 1; 2. It follows that .M; 
 / is the product .†�I; @†�I/, where † is a
sphere with three open disks removed.

Now suppose that there are components 
0 and 
1 of 
 such that D \ 
i ¤ ∅ for
i D 0; 1. Let A be the closure of @N.
0[
1[D/\ Int.M /. If the product annulus A

is compressible, then by Lemma 2.11 we are in case (2) with † being a sphere with
two open disks removed. Otherwise A is ambient isotopic to a component 
2 of 

different from 
0 and 
1 , and hence we are again in case (2) with † being a sphere
with three open disks removed.
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On the other hand, if (2) holds, then .M; 
 / is reduced, but it contains an essential
product disk.

Definition 2.14 A 3–manifold pair is a pair .M;T /, where M is a 3–manifold with
boundary and T � @M is a subsurface with boundary. A compact 3–manifold pair
.M;T / is said to be irreducible if M is irreducible and T is incompressible.

Next we recall [12, Proposition V.1.6].

Proposition 2.15 For each compact, irreducible 3–manifold pair .M;T /, there is a
number h.M;T / with the following property. Let W �M be a two-sided, incom-
pressible surface having more than h.M;T / components and such that @W �T . Then
either

(1) W has a T –parallel component, or

(2) W has two components which are parallel in .M;T /.

Proposition 2.16 Let .M; 
 / be a sutured manifold such that M is irreducible and
R.
 / is incompressible. Then there is a decomposition .M; 
 / A.M 0; 
 0/ such
that A is a union of pairwise disjoint incompressible product annuli and .M 0; 
 0/ is
reduced.

Proof Using the terminology of [12] the 3–manifold pair .M;R.
 // is irreducible,
thus we can apply Proposition 2.15 to get a number h.M;R.
 //. Note that a product
annulus cannot be R.
 /–parallel since its two boundary components lie in different
components of R.
 /. So we can recursively construct a maximal set of pairwise
disjoint incompressible product annuli A1; : : : ;An such that for ADA1[� � �[An no
two components of 
 [A are parallel in .M;R.
 //. Indeed, n� h.M;R.
 //� j
 j

for such an A, thus the recursion has to terminate in finitely many steps.

Decomposing .M; 
 / along a maximal A the resulting .M 0; 
 0/ is reduced. Indeed,
an incompressible product annulus C 0 in .M 0; 
 0/ which is not parallel to 
 0 gives
rise to a product annulus C in .M; 
 / which is not parallel to any component of 
 [A.
We show that C is incompressible. Indeed, if C was compressible, then @C \RC.
 /

would bound a disk D in RC.
 /. Since C 0 is incompressible @A\D ¤∅, thus A

would also be compressible, a contradiction. But the existence of such a C contradicts
the maximality of A.
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Definition 2.17 Let .M; 
 / be a balanced sutured manifold. A decomposing surface
S �M is called a horizontal surface if

(i) S is open and incompressible,

(ii) @S � 
 and @S is isotopic to @RC.
 /,

(iii) ŒS �D ŒRC.
 /� in H2.M; 
 /,

(iv) �.S/D �.RC.
 //.

We say that .M; 
 / is horizontally prime if every horizontal surface in .M; 
 / is
parallel to either RC.
 / or R�.
 /.

Proposition 2.18 Let .M; 
 / be a balanced sutured manifold. Then there is a surface
decomposition .M; 
 / H .M 0; 
 0/ such that every component of H is a horizontal
surface and .M 0; 
 0/ is horizontally prime.

Proof Apply Proposition 2.15 to the 3–manifold pair .M; 
 /.

3 Sutured Floer homology and Spinc –structures

Sutured Floer homology is an invariant of balanced sutured manifolds defined in [13].
It is constructed in a way analogous to ordinary Heegaard Floer homology.

Definition 3.1 A sutured Heegaard diagram is a tuple .†;˛;ˇ/, where † is a com-
pact oriented surface with boundary and ˛ and ˇ are two sets of pairwise disjoint
simple closed curves in Int.†/.

Every sutured Heegaard diagram .†;˛;ˇ/ uniquely defines a sutured manifold .M; 
 /

using the following construction. Let ˛D f˛1; : : : ; ˛m g and ˇ D fˇ1; : : : ; ˇn g. Let
M be the 3–manifold obtained from †� I by attaching 3–dimensional 2–handles
along the curves ˛i�f0g and ǰ �f1g for i D 1; : : : ;m and j D 1; : : : ; n. The sutures
are defined by taking 
 D @†� I and s.
 /D @†� f1=2g.

Let .†;˛;ˇ/ be an admissible sutured Heegaard diagram defining a balanced sutured
manifold .M; 
 /. (For the definition of admissibility see [13, Definition 3.11], it
means that every nonzero periodic domain has both positive and negative coefficients.)
Then j˛j D jˇj, denote this number by d . After an appropriate choice of a generic
almost complex and a symplectic structure on Symd .†/, we can apply the Lagrangian
Floer homology machinery to the Lagrangian submanifolds T˛ D ˛1 � � � � �˛d and
TˇDˇ1�� � ��ˇd of Symd .†/. This way we obtain a chain complex whose homology
SFH.M; 
 / depends only on the homeomorphism type of .M; 
 /. For the details see
my paper [13]. Now we recall [13, Corollary 3.12].
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Lemma 3.2 Let .M; 
 / be a balanced sutured manifold such that H2.M /D 0. Then
every balanced diagram defining .M; 
 / is admissible.

Next we review the definition of a Spinc structure on a balanced sutured manifold
.M; 
 /, which was introduced in [13]; also see my paper[14]. Note that in a balanced
sutured manifold none of the sutures are tori. Fix a Riemannian metric on M .

Notation 3.3 Let v0 be a nowhere vanishing vector field along @M that points into M

along R�.
 /, points out of M along RC.
 /, and on 
 it is the gradient of a height
function s.
 /� I ! I . The space of such vector fields is contractible.

Definition 3.4 Let v and w be nowhere vanishing vector fields on M that agree with
v0 on @M . We say that v and w are homologous if there is an open ball B � Int.M /

such that vj.M nB/ is homotopic to wj.M nB/ through nowhere vanishing vector
fields rel @M . We define Spinc.M; 
 / to be the set of homology classes of nowhere
vanishing vector fields v on M such that vj@M D v0 .

Remark 3.5 By obstruction theory, Spinc.M; 
 / forms an affine space over

H 2.M; @M /ŠH1.M /:

For s1; s2 2 Spinc.M; 
 /, their difference s1� s2 2H 2.M; @M / can be described as
follows. Choose a triangulation T of M , and pick a Riemannian metric on M . For
i D 1; 2, represent si by a section wi of the unit tangent bundle STM of M such
that wi j@M D v0 . Let skj .M / denote the j –skeleton of M . Since �j .S

2/D 0 for
j D 0; 1, we can homotope w1 rel @M such that w1jsk1.M /D w2jsk1.M /.

Let � be a two-simplex of the triangulation T . Fix an arbitrary trivialization of the
S2 –bundle STM j�. Then w1j� and w2j� can be viewed as maps from � to S2 .
By gluing � and �� along their boundary, we get a map w1�w2W S

2!S2 . Consider
the cochain o defined by the formula

o.�/D Œw1�w2� 2 �2.S
2/Š Z:

If � � @M , then o.�/ D 0 as w1j� D w2j�, so o 2 C 2.M; @M /. In fact, o is a
cocycle, and its cohomology class is s1�s2 . This is the first obstruction to homotoping
w1 to w2 rel @M . If it is zero, w1 and w2 are homotopic over sk2.M / rel @M .

Alternatively, we can describe s1� s2 as follows. Fix a trivialization of TM . In this
trivialization, we can view w1 and w2 as maps from M to S2 . Let p 2 S2 be a
common regular value of w1 and w2 . Then w�1

1
.p/�w�1

2
.p/ is a one-cycle since

w1j@M D w2j@M , and it represents the Poincaré dual of s1� s2 in H1.M /.
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Proposition 3.6 Let .M; 
 / be a sutured manifold such that M is open and the map
�0.
 /!�0.@M / is surjective. Then Spinc.M; 
 /¤∅ if and only if every component
of M is balanced.

Proof It is sufficient to prove the proposition for M connected. First suppose that
Spinc.M; 
 /¤∅, and let s be an arbitrary element. Recall from [13, Definition 4.4]
that c1.s/ is defined as the Euler class of the oriented 2–plane field v? , where v is an
arbitrary vector field representing s. Let i W @M ,!M denote the embedding and let
ı D c1.v

?
0
/. Then i�.c1.s//D ı , thus

hı; Œ@M � i D h i�.c1.s//; Œ@M � i D hc1.s/; i�.Œ@M �/i D 0

since the cycle @M represents zero in H2.M IZ/. On the other hand, v?
0
jRC.
 /D

TRC.
 / and v?
0
jR�.
 /D�TR�.
 /, so

h ı; Œ@M � i D �.RC.
 //��.R�.
 //:

Thus .M; 
 / is balanced.

Now suppose that .M; 
 / is balanced. Let f be a Morse function as in the proof
of [13, Proposition 2.13]. Then the vector field grad.f /j@M D v0 , the number d of
index 1 and 2 critical points of f agree, and f has no index 0 or 3 critical points.
Choose d pairwise disjoint balls in M , each containing exactly one index 1 and one
index 2 critical point of f . Then we can modify grad.f / on these balls so that we
obtain a nowhere zero vector field on M such that vj@M D v0 . This shows that
Spinc.M; 
 /¤∅.

Definition 3.7 Let .M; 
 / be a balanced sutured manifold and .†;˛;ˇ/ a balanced di-
agram defining it. To each x2T˛\Tˇ we assign a Spinc structure s.x/2Spinc.M; 
 /

as follows. Choose a Morse function f on M compatible with the given balanced
diagram .†;˛;ˇ/. Then x corresponds to a multitrajectory 
x of grad.f / connecting
the index one and two critical points of f . In a regular neighborhood N.
x/ we
can modify grad.f / to obtain a nowhere vanishing vector field v on M such that
vj@M D v0 . We define s.x/ to be the homology class of this vector field v .

Definition 3.8 We call a sutured manifold .M; 
 / strongly balanced if for every
component F of @M the equality �.F \RC.
 //D �.F \R�.
 // holds.

The following is [14, Proposition 3.4].

Proposition 3.9 The vector bundle v?
0

over @M is trivial if and only if .M; 
 / is
strongly balanced.
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Notation 3.10 If the sutured manifold .M; 
 / is strongly balanced, then let T .M; 
 /

denote the set of trivializations of v?
0

.

Definition 3.11 Suppose that .M; 
 / is a strongly balanced sutured manifold. Let
t 2 T .M; 
 / and s 2 Spinc.M; 
 /. Then we define

c1.s; t/ 2H 2.M; @M IZ/

to be the relative Euler class of the vector bundle v? with respect to the trivialization t .
In other words, c1.s; t/ is the obstruction to extending t from @M to a trivialization
of v? over M .

Lemma 3.12 Suppose that .M; 
 / is a strongly balanced sutured manifold. Let
d W H 1.@M /! H 2.M; @M / be the coboundary map in the cohomology long exact
sequence of the pair .M; @M /. If s 2 Spinc.M; 
 / and t1; t2 2 T .M; 
 /, then

c1.s; t1/� c1.s; t2/D d.t1� t2/:

Proof Fix a nowhere vanishing vector field v on M representing the Spinc –structure s

and also fix a triangulation of M . The circle bundle Sv? over M will be denoted
by E . A trivialization t 2 T .M; 
 / can be considered to be a section of Ej@M , and
by definition c1.s; t/ is the obstruction to extending t from @M to M . More precisely,
choose an arbitrary extension of t to the one-skeleton of M . Then the value of a
cocycle o.E; t/ representing c1.s; t/ on a two-simplex � is the homotopy class of
t j@� in �1.S

1/Š Z obtained after trivializing Ej�.

Given the sections t1 and t2 of E over @M , we can homotope them to coincide
on the zero-skeleton of @M . Then we can choose a common extension of t1 and
t2 to sk1.M / n sk1.@M /, where ski denotes the i –skeleton. The cohomology class
t1� t2 2H 1.@M IZ/ is represented by the cocycle o.t1; t2/. The value of o.t1; t2/ on
an edge � of sk1.@M / is the homotopy class of t1 in �1.S

1/ in the trivialization of
Ej� given by t2 .

Let � be a two-simplex of sk2.M /. Then h o.E; t1/� o.E; t2/;� i is the difference
of the sections t1j@� and t2j@� in a trivialization of Ej�. But t1 and t2 agree on
@� n @M , so

h o.E; t1/� o.E; t2/;� i D h o.t1; t2/; @�\ @M i:

Thus for a relative 2–chain c 2 C2.M; @M / we have

h o.E; t1/� o.E; t2/; c i D h o.t1; t2/; @c \ @M i;

proving that c1.s; t1/� c1.s; t2/D d.t1� t2/.
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Lemma 3.13 Let .M; 
 / be a strongly balanced sutured manifold, and pick a trivial-
ization t 2 T .M; 
 /. If s1; s2 2 Spinc.M; 
 /, then

c1.s1; t/� c1.s2; t/D 2.s1� s2/:

Proof We use the description of s1� s2 given in Remark 3.5, and the description of
c1.s; t/ in the proof of Lemma 3.12. So fix a triangulation of M , and representatives
wi of si for i D 1; 2 that agree on sk1.M /. Furthermore, fix an extension of t over
sk1.M /. Then the cocycle o2C 2.M; @M / represents s1�s2 , while oiDo.Sw?i ; t/2

C 2.M; @M / represents c1.si ; t/.

Let � be a two-simplex of the triangulation, and fix a trivialization of STM j�. Notice
that w�i .TS2/D w?i . When we glue � and �� along their boundary, we get a map
w1�w2W S

2! S2 such that

.w1�w2/
�.TS2/D .w?1 j�/[ .w

?
2 j ��/:

Let � D .w1 �w2/
�.TS2/. Recall that o.�/D Œw1 �w2� 2 �2.S

2/Š Z. Then the
map .w1 �w2/�W H2.S

2/! H2.S
2/ is multiplication by o.�/. Furthermore, the

Euler class e.�/D .w1�w2/
�.e.TS2//, hence

h e.�/; ŒS2� i D h e.TS2/; .w1�w2/�.ŒS
2�/ i D o.�/h e.TS2/; ŒS2� i D 2o.�/:

Now o1.�/ is the rotation of t j@� with respect to a trivialization uC of �j�, while
o2.�/ is the rotation of t j@� with respect to a trivialization u� of �j.��/. So
o1.�/ � o2.�/ is the rotation of uCj@� with respect to u�j@�, which is exactly
h e.�/; ŒS2� i D 2o.�/. So o1� o2 D 2o, as required.

Proposition 3.14 Suppose that .M; 
 / is a taut sutured manifold, M is open (ie, it
is compact and has no closed components), and the map �0.A.
 // ! �0.@M / is
surjective. Then .M; 
 / is balanced.

Proof Since RC D RC.
 / and R� D R�.
 / are both norm minimizing repre-
sentatives of their homology class in H2.M; 
 / and ŒRC� D ŒR��, we see that
x.RC/Dx.R�/. Let V be a component of R.
 /. Then V is open, so x.V /D��.V /,
except when V is a disk. Suppose that V is a disk component of say RC . Then if
we push @V into R� we get a curve C in R� which bounds a disk in M . Since R�
is incompressible, C has to be inessential in R� , so it bounds a disk in R� . This
argument shows that RC and R� have the same number of disk components. Thus
�.RC/D �.R�/.
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Remark 3.15 Suppose that .M; 
 / is a balanced sutured manifold and H2.M /D 0.
Then @M is connected, and so .M; 
 / is strongly balanced.

This, together with Proposition 3.14, shows that if .M; 
 / is taut, M is open, H2.M /D

0, and @M is not a torus which belongs to 
 , then .M; 
 / is strongly balanced.

Definition 3.16 Let S be a decomposing surface in a balanced sutured manifold
.M; 
 / such that the positive unit normal field �S of S is nowhere parallel to v0

along @S . This holds for generic S . We endow @S with the boundary orientation. Let
us denote the components of @S by T1; : : : ;Tk .

Let w0 denote the projection of v0 into TS , this is a nowhere zero vector field.
Moreover, let f be the positive unit tangent vector field of @S . For 1 � i � k , we
define the index I.Ti/ to be the number of times w0 rotates with respect to f as we
go around Ti . Then define

I.S/D

kX
iD1

I.Tk/:

Let p.�S / be the projection of �S into v? . Observe that p.�S /j@S is nowhere zero.
For 1� i � k , we define r.Ti ; t/ to be the rotation of p.�S /j@Ti with respect to the
trivialization t as we go around Ti . Moreover, let

r.S; t/D

kX
iD1

r.Ti ; t/:

We introduce the notation

c.S; t/D �.S/C I.S/� r.S; t/:

The following is [14, Lemma 3.9].

Lemma 3.17 Let .M; 
 / be a balanced sutured manifold and let S be a decomposing
surface as in Definition 3.16.

(1) If T is a component of @S such that T 6� 
 , then

I.T /D�
jT \ s.
 /j

2
:

(2) Suppose that T1; : : : ;Ta are components of @S such that T DT1[� � �[Ta� 


is parallel to s.
 / and �S points out of M along T . Then I.Tj / D 0 for
1� j � a; moreover,

aX
jD1

r.Tj ; t/D �.RC.
 //:
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Remark 3.18 Observe that if the components of the decomposing surface S are
S1; : : : ;Sk , and �S is nowhere parallel to v0 , then

c.S; t/D c.S1; t/C � � �C c.Sk ; t/:

Definition 3.19 Let .M; 
 / be a balanced sutured manifold, and let .S; @S/ �
.M; @M / be a properly embedded oriented surface. An element s 2 Spinc.M; 
 /

is called outer with respect to S if there is a unit vector field v on M whose homology
class is s and vp ¤�.�S /p for every p 2 S . Here �S is the unit normal vector field
of S . Let OS denote the set of outer Spinc structures.

The following is [14, Lemma 3.10]

Lemma 3.20 Suppose that .M; 
 / is a strongly balanced sutured manifold. Let
t 2 T .M; 
 /, choose s 2 Spinc.M; 
 /, and let S be a decomposing surface in .M; 
 /

as in Definition 3.16. Denote the components of S by S1; : : : ;Sk . Then s is outer
with respect to S if and only if

(3-1) h c1.s; t/; ŒSi � i D c.Si ; t/ for every 1� i � k:

In particular, if s 2OS , then

(3-2) h c1.s; t/; ŒS � i D

kX
iD1

c.Si ; t/D c.S; t/:

Definition 3.21 Suppose that R is a compact, oriented, and open surface. Let C be
an oriented simple closed curve in R. If ŒC � D 0 in H1.RIZ/, then R nC can be
written as R1 [R2 , where R1 is the component of R nC that is disjoint from @R

and satisfies @R1 D C . We call R1 the interior and R2 the exterior of C .

We say that the curve C is boundary-coherent if either ŒC � ¤ 0 in H1.RIZ/, or if
ŒC �D 0 in H1.RIZ/ and C is oriented as the boundary of its interior.

Definition 3.22 A decomposing surface S in .M; 
 / is called nice if S is open,
�S is nowhere parallel to v0 , and for each component V of R.
 / the set of closed
components of S \V consists of parallel, coherently oriented, and boundary-coherent
simple closed curves.

Remark 3.23 Note that every open and groomed decomposing surface becomes nice
if we put it into generic position along the boundary.
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The following theorem is one of the main technical results of the paper [14] – see
Theorem 3.11 there.

Theorem 3.24 Let .M; 
 / be a strongly balanced sutured manifold; furthermore, let
.M; 
 / S .M 0; 
 0/ be a sutured manifold decomposition along a nice decomposing
surface S . Denote the components of S by S1; : : : ;Sk and choose a trivialization
t 2 T .M; 
 /. Then

SFH.M 0; 
 0/D
M

s2Spinc.M;
 /W
h c1.s;t/;ŒSi � iDc.Si ;t/ 81�i�k

SFH.M; 
; s/:

4 Adjunction inequality

Theorem 4.1 (Adjunction inequality) Suppose that the sutured manifold .M; 
 /

is strongly balanced, and fix a trivialization t 2 T .M; 
 /. Let S � M be a nice
decomposing surface. If a Spinc –structure s 2 Spinc.M; 
 / satisfies

h c1.s; t/; ŒS � i< c.S; t/;

then SFH.M; 
; s/D 0.

Proof Let S1; : : : ;Sk denote the components of S . Then

kX
iD1

h c1.s; t/; ŒSi � i D h c1.s; t/; ŒS � i< c.S; t/D

kX
iD1

c.Si ; t/;

which implies that there is an i for which h c1.s; t/; ŒSi � i< c.Si ; t/.

Now we are going to show that c.Si ; t/�h c1.s; t/; ŒSi � i is even. From the proof of [14,
Lemma 3.10] it follows that OSi

¤∅, and for s0 2OSi
we have h c1.s0; t/; ŒSi � i D

c.Si ; t/. Thus

c.Si ; t/� h c1.s; t/; ŒSi � i D h c1.s0; t/� c1.s; t/; ŒSi � i D 2h s0� s; ŒSi � i;

where we used Lemma 3.13 in the second equality.

Add .c.Si ; t/� h c1.s; t/; ŒSi � i/=2 compressible 1–handles to Si to obtain a decom-
posing surface S 0i in .M; 
 /. Since Si and S 0i agree in a neighborhood of @Si D @S

0
i ,

we have I.S 0i/D I.Si/ and r.S 0i ; t/D r.Si ; t/. Moreover,

�.S 0i/D �.Si/� c.Si ; t/Ch c1.s; t/; ŒSi � i:
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Thus c.S 0i ; t/D h c1.s; t/; ŒSi � i D h c1.s; t/; ŒS
0
i � i. Decomposing .M; 
 / along S 0i we

get a sutured manifold .M 0; 
 0/ which is not taut since R.
 0/ is compressible. Thus
SFH.M 0; 
 0/D 0 by [13, Proposition 9.18]. Using Theorem 3.24,

SFH.M 0; 
 0/D
M

s0 2Spinc.M;
 /W
h c1.s

0;t/;ŒS 0
i
� iDc.S 0

i
;t/

SFH.M; 
; s0/;

so from h c1.s; t/; ŒS
0
i � i D c.S 0i ; t/ we get that SFH.M; 
; s/D 0.

Definition 4.2 Let .M; 
 / be a balanced sutured manifold. We say that a closed,
oriented, one-dimensional submanifold L � @M is an L–link if it is transverse to
v?

0
j
 . Given an L–link L, a homology class ˛ 2H2.M; @M / such that @˛ D ŒL� in

H1.@M /, and a Spinc –structure s 2 Spinc.M; 
 /, we can define the rotation number
rot˛;s.L/ as follows. Choose a properly embedded, oriented, open surface S �M

such that @S D L and ŒS � D ˛ . Furthermore, pick a nowhere zero vector field v
on M with vj@M D v0 whose homology class is s. Then v?jS is trivial, let tS be
an arbitrary trivialization. We let rot˛;s.L/ be the sum over all components of L of
the rotation of p.�S / with respect to tS . Finally, define x˛.L/ to be the minimum of
��.S/ for all surfaces S as above.

It is straightforward to check that rot˛;s.L/ is independent of the various choices.
In some sense, the notion of an L–link is analogous to the notion of a Legendrian
link in contact topology, and our rotation number corresponds to the classical rotation
number of a Legendrian link. This analogy will be justified by the following Thurston–
Bennequin type inequality.

Corollary 4.3 Let .M; 
 / be a strongly balanced sutured manifold, and suppose that
L � @M is an L–link such that for each component V of R.
 / the set of closed
components of L\V consists of parallel, coherently oriented, nonseparating simple
closed curves. If for a Spinc –structure s 2 Spinc.M; 
 / we have SFH.M; 
; s/¤ 0,
and ˛ 2H2.M; @M / satisfies @˛ D ŒL�, then

x˛.L/� jrot˛;s.L/j �
jL\ 
 j

2
:

Proof If S is a properly embedded, oriented, open surface S �M such that @S DL,
then we can perturb S slightly fixing @S to get a nice decomposing surface. So we
can apply Theorem 4.1 to get

h c1.S; t/; ŒS � i � c.S; t/D �.S/C I.S/� r.S; t/:
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Since L is transverse to v?
0
j
 , no component of L lies in 
 , hence by Lemma 3.17 we

have I.S/D�jL\ 
 j=2. Observe that we have three trivializations of v?
0
jL, namely

t , tS , and p.�S /. Furthermore, h c1.S; t/; ŒS � i is the rotation of t with respect to tS ,
while r.S; t/ is the rotation of p.�S / with respect to t . Hence

h c1.S; t/; ŒS � iC r.S; t/D rot˛;s.L/;

��.S/� �rot˛;s.L/�
jL\ 
 j

2
:and so

Taking the minimum of the left hand side over all such S , we get

x˛.L/� �rot˛;s.L/�
jL\ 
 j

2
:

Replacing L by �L and ˛ by �˛ in the above inequality gives

x�˛.�L/� �rot�˛;s.�L/�
jL\ 
 j

2
:

Note that we had to flip the sign of ˛ since @.�˛/D Œ�L�. Since �rot�˛;s.�L/D

rot˛;s.L/, while x�˛.�L/D x˛.L/, we obtain

x˛.L/� jrot˛;s.L/j �
jL\ 
 j

2
:

Remark 4.4 Note that if � is a contact structure on M such that @M is convex with
dividing set s.
 / and L is a Legendrian link on @M , then the Thurston–Bennequin num-
ber of L is precisely �jL\ s.
 /j=2. In the above version of the Thurston–Bennequin
inequality, the role of the contact structure � is played by the Spinc –structure s, and
instead of tightness of � we have the condition SFH.M; 
; s/¤ 0. However, if � is a
tight and s� is the Spinc –structure of � , we might have SFH.M; 
; s�/D 0. In the
other direction, if SFH.M; 
; s/ ¤ 0, it is not clear whether there is a tight contact
structure � with s� D s.

Theorem 4.5 Suppose that .M; 
 / is a strongly balanced sutured manifold and fix a
trivialization t 2 T .M; 
 /. Let .M; 
 / S .M 0; 
 0/ be a surface decomposition along
a nice decomposing surface. Then

SFH.M 0; 
 0/D
M

s2Spinc.M;
 /W
h c1.s;t/;ŒS � iDc.S;t/

SFH.M; 
; s/:

Proof By Theorem 3.24 we know that if the components of S are S1; : : : ;Sk , then

SFH.M 0; 
 0/D
M

s2Spinc.M;
 /W
h c1.s;t/;ŒSi � iDc.Si ;t/ 81�i�k

SFH.M; 
; s/:
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If s 2 Spinc.M; 
 / satisfies h c1.s; t/; ŒSi � i D c.Si ; t/ for every 1� i � k , then it also
satisfies h c1.s; t/; ŒS � i D c.S; t/.

Now suppose that

(4-1) h c1.s; t/; ŒS � i D c.S; t/

and SFH.M; 
; s/¤ 0. If we apply Theorem 4.1 to Si , we get that h c1.s; t/; ŒSi � i �

c.Si ; t/. Summing these inequalities for 1 � i � k gives the equality (4-1). Thus
h c1.s; t/; ŒSi � i D c.Si ; t/ for every 1� i � k .

So we have shown thatM
s2Spinc.M;
 /W

h c1.s;t/;ŒSi � iDc.Si ;t/ 81�i�k

SFH.M; 
; s/D
M

s2Spinc.M;
 /W
h c1.s;t/;ŒS � iDc.S;t/

SFH.M; 
; s/:

Corollary 4.6 Suppose that .M; 
 / is a strongly balanced sutured manifold. If
.M; 
 / S .M 0; 
 0/ is a decomposition along a nice surface such that ŒS � D 0 in
H2.M; @M /, then either

SFH.M 0; 
 0/Š SFH.M; 
 /;

or SFH.M 0; 
 0/D 0, in which case .M 0; 
 0/ is not taut.

Proof Note that h c1.s; t/; ŒS � i D 0 since ŒS �D 0. Then by Theorem 4.5 we see that
SFH.M 0; 
 0/D SFH.M; 
 / if c.S; t/D 0, and SFH.M 0; 
 0/D 0 if c.S; t/¤ 0. By
[14, Theorem 1.4], the condition SFH.M 0; 
 0/D 0 implies that .M 0; 
 0/ is not taut.

Corollary 4.7 Let .M; 
 / S .M 0; 
 0/ be a surface decomposition of a strongly
balanced sutured manifold. If there is a surface S 0 disjoint from S such that S [S 0

is nice, ŒS [ S 0� D 0 in H2.M; @M /, and S [ S 0 gives a taut decomposition, then
SFH.M 0; 
 0/Š SFH.M; 
 /.

Proof Suppose that S 0 gives a decomposition .M 0; 
 0/ S 0.M 00; 
 00/. Then

SFH.M 00; 
 00/� SFH.M 0; 
 0/� SFH.M; 
 /:

If we apply Corollary 4.6 to S [S 0 , then we get that SFH.M 00; 
 00/Š SFH.M; 
 /.
Thus SFH.M 0; 
 0/Š SFH.M; 
 /.

In the following lemma, we define SFH.M; 
 / to be zero for any sutured manifold
such that �.RC.
 //¤ �.R�.
 //.
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Lemma 4.8 Suppose that the balanced sutured manifold .M; 
 / is the disjoint union
of the sutured manifolds .M1; 
1/ and .M2; 
2/. Then

rk.SFH.M; 
 //D rk.SFH.M1; 
1// � rk.SFH.M2; 
2//:

Proof We work with Z2 coefficients throughout. Let .†;˛;ˇ/ be a balanced diagram
defining .M; 
 /. This is the disjoint union of the sutured diagrams .†1;˛1;ˇ1/ and
.†2;˛2;ˇ2/ defining .M1; 
1/ and .M2; 
2/, respectively.

Suppose that .Mi ; 
i/ is not balanced for iD1 or iD2. Since .M; 
 / is balanced, this
can only happen when �.RC.
i//¤�.R�.
i//. Then j˛i j¤jˇ i j, hence T˛\TˇD∅.
So SFH.M; 
 /D 0, and by definition SFH.Mi ; 
i/D 0, which proves the lemma in
this case.

Now suppose that both .M1; 
1/ and .M2; 
2/ are balanced. Then

CF.†;˛;ˇ/Š CF.†1;˛1;ˇ1/˝CF.†2;˛2;ˇ2/:

Using the Künneth formula,

SFH.M; 
 /Š SFH.M1; 
1/˝ SFH.M2; 
2/:

The result follows.

Definition 4.9 Let .M; 
 / be a balanced sutured manifold. The support of the sutured
Floer homology of .M; 
 / is

S.M; 
 /D f s 2 Spinc.M; 
 / W SFH.M; 
; s/¤ 0 g:

Since SFH.M; 
 / is a finitely generated Abelian group, S.M; 
 / is a finite set. More-
over, if .M; 
 / is taut, then S.M; 
 /¤∅ by [14, Theorem 1.4].

Let i W H 2.M; @M IZ/ ! H 2.M; @M IR/ be the map induced by the embedding
Z ,!R. If .M; 
 / is strongly balanced and t 2 T .M; 
 /, then we define

C.M; 
; t/D fi.c1.s; t// W s 2 S.M; 
 /g �H 2.M; @M IR/:

Let P .M; 
; t/ be the convex hull of C.M; 
; t/ inside H 2.M; 
 IR/, this is a finite
polytope. Thus if .M; 
 / is taut and ˛ 2H2.M; @M /, then

c.˛; t/Dminf h c; ˛ i W c 2 C.M; 
; t/ g

is a well-defined number.
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Remark 4.10 We call P .M; 
; t/ the sutured Floer homology polytope of the sutured
manifold .M; 
 /. It follows from Lemma 3.12 that for t1; t22T .M; 
 / the relationship

P .M; 
; t2/D P .M; 
; t1/C i ı d.t2� t1/

holds. So the sutured Floer homology polytope is well defined up to translations in the
vector space H 2.M; @M IR/.

Corollary 4.11 Let the sutured manifold .M; 
 / be taut and strongly balanced.
Choose a trivialization t 2 T .M; 
 / and let ˛ 2 H2.M; @M / be a nonzero element.
Then

(4-2) maxf c.S; t/ W S is a nice decomposing surface; ŒS �D ˛ g � c.˛; t/:

Moreover, for S in the above set c.S; t/ D c.˛; t/ if and only if S gives a taut
decomposition. If H2.M /D 0 also holds, then inequality (4-2) is an equality.

Proof We introduce the notation

M Dmaxf c.S; t/ W S is a nice decomposing surface; ŒS �D ˛ g:

First suppose that S is a nice decomposing surface such that ŒS �D˛ . If c 2C.M; 
; t/,
then there is an s 2 S.M; 
 / such that i.c1.s; t//D c . Since s 2 S.M; 
 /, we know
that SFH.M; 
; s/¤ 0. Thus by Theorem 4.1 we get that

c.S; t/� h c1.s; t/; ŒS � i D h c; ˛ i:

Taking the minimum over all c 2 C.M; 
; t/, we see that c.S; t/� c.˛; t/. Since this
holds for every nice S , this implies that M � c.˛; t/.

Let .M; 
 / S .M 0; 
 0/ be a decomposition along a nice decomposing surface S

such that ŒS � D ˛ . We saw above that c.S; t/ � c.˛; t/. Suppose that c.S; t/ <

c.˛; t/. Then for every s 2 Spinc.M; 
 / such that h c1.s; t/; ŒS � i D c.S; t/, we have
SFH.M; 
; s/D 0. Thus by Theorem 4.5 we get SFH.M 0; 
 0/ D 0, and so [14,
Theorem 1.4] implies that .M 0; 
 0/ is not taut.

Now assume that c.S; t/ D c.˛; t/. Then by the definition of c.˛; t/, there exists
an s 2 Spinc.M; 
 / such that h c1.s; t/; ŒS � i D c.˛; t/ and SFH.M; 
; s/¤ 0. Since
.M; 
 / is taut, it is irreducible, thus .M 0; 
 0/ is also irreducible. Using Theorem 4.5
again, we see that SFH.M 0; 
 0/¤ 0, and so .M 0; 
 0/ is taut by [13, Proposition 9.18].

Suppose that H2.M /D 0. By [7, Lemma 0.7], for every ˛ ¤ 0 in H2.M; @M / there
is a nice surface decomposition .M; 
 / S .M 0; 
 0/ such that .M 0; 
 0/ is taut and
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ŒS �D ˛ . We can assume that S is open since H2.M /D 0. Using Theorem 4.5,

SFH.M 0; 
 0/D
M

s2Spinc.M;
 /Wh c1.s;t/;ŒS � iDc.S;t/

SFH.M; 
; s/:

Since .M 0; 
 0/ is taut, by [14, Theorem 1.4] we see that SFH.M 0; 
 0/ ¤ 0. Thus
there exists an s 2 Spinc.M; 
 / such that h c1.s; t/; ŒS � i D c.S; t/ and SFH.M; 
; s/

is nonzero, ie, s 2 S.M; 
 /. This implies that c.˛; t/ � M . So indeed we have
c.˛; t/DM .

Definition 4.12 For ˛ 2H2.M; @M /, let

H˛ D
˚
x 2H 2.M; @M IR/ W hx; ˛i D c.˛; t/

	
;

C˛.M; 
; t/DH˛ \C.M; 
; t/moreover,

P˛.M; 
; t/DH˛ \P .M; 
; t/:and similarly

Finally, we introduce the notation

SFH˛.M; 
 /D
M
fSFH.M; 
; s/ W i.c1.s; t// 2 C˛.M; 
; t/g :

Note that this is independent of t by Lemma 3.12.

Proposition 4.13 Let the sutured manifold .M; 
 / be taut and strongly balanced. Fix
an element ˛ 2H2.M; @M /. Then P˛.M; 
; t/ is the convex hull of C˛.M; 
; t/ and
it is a face of the polytope P .M; 
; t/. If S is a nice decomposing surface that gives a
taut decomposition .M; 
 / S .M 0; 
 0/ and ŒS �D ˛ , then

(4-3) SFH.M 0; 
 0/Š SFH˛.M; 
 /:

Proof First we prove Equation (4-3). If S gives a taut decomposition, then c.S; t/D

c.˛; t/ by Corollary 4.11. Thus Equation (4-3) follows from Theorem 4.5.

If ˛D0, then c.˛; t/D0. So C˛.M; 
; t/DC.M; 
; t/ and P˛.M; 
; t/DP .M; 
; t/,
hence Proposition 4.13 is true for ˛ D 0. Now suppose that ˛ ¤ 0. Then H˛

is a hyperplane in H 2.M; @M IR/. Using the definition of c.˛; t/, we see that
H˛\C.M; 
; t/¤∅ and h c; ˛ i� c.˛; t/ for every c 2C.M; 
; t/. Thus P˛.M; 
; t/

is the convex hull of C˛.M; 
; t/ and is a face of P .M; 
; t/.

Remark 4.14 It follows from Proposition 4.13 that if i.c1.s; t// lies in the interior
of the polytope P .M; 
; t/, then SFH.M; 
; s/ dies under any nice surface decompo-
sition that strictly decreases SFH.M; 
 /. However, we might still be able to obtain
information about the interior of the polytope using decomposing surfaces that are
null-homologous in H2.M; @M /.
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Corollary 4.15 Let the sutured manifold .M; 
 / be taut and balanced, and suppose
that H2.M /D 0. Then the following hold.

(1) For every ˛ 2 H2.M; @M /, there exists a groomed surface decomposition
.M; 
 / S .M 0; 
 0/ such that .M 0; 
 0/ is taut, ŒS �D ˛ , and

SFH.M 0; 
 0/Š SFH˛.M; 
 /:

If, moreover, ˛ is well groomed, then S can be chosen to be well groomed.

(2) For every face F of P .M; 
; t/, there exists an ˛ 2 H2.M; @M / such that
F D P˛.M; 
; t/.

Proof First we prove (1). In the case ˛ D 0 we can choose S D ∅, so suppose
that ˛ ¤ 0. Then by [7, Lemma 0.7] there exists a groomed surface decomposition
.M; 
 / S .M 0; 
 0/ such that .M 0; 
 0/ is taut and ŒS � D ˛ . If ˛ is well groomed,
then the existence of a well groomed S follows from Lemma 2.9. Since H2.M /D 0,
we can assume that S has no closed components, so S is nice. Thus the first part of
Corollary 4.15 follows from Equation (4-3).

Now we prove (2). Let P DP .M; 
; t/. If F DP , then ˛D 0 works. So suppose that
F is a proper face of P . Recall that P is spanned by points lying in the lattice LD

i.H 2.M; @M IZ//. Thus there exists an affine hyperplane of the form H DH0C v0 ,
where v0 2L and H0 is a linear hyperplane spanned by elements of L, and such that
F DH \P .

Consider the following commutative diagram.

L ����! H 2.M; @M IR/??yujL

??yu

Hom.H2.M; @M /;Z/ ����! Hom.H2.M; @M /;R/

Here the horizontal arrows are embeddings. Moreover, u is given by u.c/.�/D h c; � i

for c 2H 2.M; @M IR/ and � 2H2.M; @M IR/. Both u and ujL are isomorphisms
because of the universal coefficient theorem. Let b1; : : : ; bn be a basis of the free
Abelian group L. Then b1; : : : ; bn is also a basis of H 2.M; @M IR/. Consider the
scalar product � on H 2.M; @M IR/ such that b1; : : : ; bn is an orthonormal basis.
Since ujL is an isomorphism, and because H2.M; @M / is torsion free, there are
unique elements ˇ1; : : : ; ˇn 2H2.M; @M / that satisfy the condition h bi ; ǰ i D ıij ,
where ıij is the Kronecker delta.

Since H0 is spanned by elements of L, there is a vector a 2L which is perpendicular
to H0 and such that v0 C a and P lie on the same side of H . In other words,
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a �H0 D a � .H � v0/D 0 and a � .P � v0/� 0. Thus a �H D a � v0 and a �P � a � v0 .
Let A1; : : : ;An be the coordinates of a in the basis b1; : : : ; bn , these are all integers.
Define ˛ D A1ˇ1C � � � CAnˇn 2 H2.M; @M /. Then for any c 2 H 2.M; @M IR/,
we have h c; ˛ i D a � c . Thus hH; ˛ i D h v0; ˛ i and hP; ˛ i � h v0; ˛ i. This implies
that h v0; ˛ i D c.˛; t/, and so H DH˛ . Thus F DH \P D P˛.M; 
; t/.

Proposition 4.16 Let the sutured manifold .M; 
 / be taut and balanced, and suppose
that H2.M /D 0. If the polytope P .M; 
; t/ has k vertices, then

rk.SFH.M; 
 //� k;

and there exists a groomed surface decomposition .M; 
 / S .M 0; 
 0/ such that
.M 0; 
 0/ is taut and

rk.SFH.M 0; 
 0//� rk.SFH.M; 
 //=k:

Proof Let v1; : : : ; vk be the vertices of P .M; 
; t/. By Corollary 4.15, for every
1� j � k there is a groomed surface decomposition .M; 
 / Sj .M 0

j ; 

0

j / such that
.M 0

j ; 

0

j / is taut; furthermore, for j̨ D ŒSj � we have SFH.M 0
j ; 

0

j /D SFH
j̨
.M; 
 /

and P
j̨
.M; 
; t/ D fvj g. By [14, Theorem 1.4], we see that rk.SFH.M 0

j ; 

0

j // � 1

for 1� j � k . Since the faces P
j̨
.M; 
; t/D C

j̨
.M; 
; t/ are pairwise disjoint for

j D 1; : : : ; k , we get that

SFH.M; 
 /�

kM
jD1

SFH
j̨
.M; 
 /:

Thus rk.SFH.M; 
 //� k , and for some 1� l � k the inequality

rk.SFH˛l
.M; 
 //� rk.SFH.M; 
 //=k

holds. So we can choose S D Sl .

5 How the polytope changes under surface decompositions

In what follows bi.X / denotes the i –th Betti number of a topological space X .

Lemma 5.1 Suppose that .M; 
 / is a sutured manifold and let .M; 
 / S .M 0; 
 0/

be a surface decomposition along the nice decomposing surface S . If H2.M /D 0 or
S DD2 , then

b1.M
0/D b1.M /C b1.S/� b0.S/C b0.M

0/� b0.M /:

Furthermore, H2.M /D 0 implies that H2.M
0/D 0.

Geometry & Topology, Volume 14 (2010)



The sutured Floer homology polytope 1329

Proof Let N.S/ be a regular neighborhood of S . Since M 0 \N.S/ is homotopy
equivalent to S tS , the Mayer–Vietoris sequence of the pair .M 0;N.S// looks like:

(5-1) � � � !Hj .S/˚Hj .S/!Hj .M
0/˚Hj .S/!Hj .M /! � � �

Note that H2.S/D 0 because S is open. Thus if we write down the sequence (5-1)
for j D 2, then we see that H2.M /D 0 implies H2.M

0/D 0.

Suppose that H2.M / D 0. If we look at the portion of sequence (5-1) starting at
H2.M / and we take the alternating sum of the ranks of the groups that appear, then
we get that

2b1.S/� .b1.M
0/C b1.S//C b1.M /� 2b0.S/C .b0.M

0/C b0.S//� b0.M /D 0:

The result follows. If S D D2 , then b2.M / D b2.M
0/, and we obtain the same

conclusion.

Let us review the relative Maslov grading on Sutured Floer homology; see Definitions 8.1
and 8.2 of [13].

Definition 5.2 For s 2 Spinc.M; 
 /, the divisibility of s is

d.s/D gcd
�2H2.M IZ/

h c1.s/; � i:

Suppose that s 2 Spinc.M; 
 /, and let .†;˛;ˇ/ be an admissible balanced diagram
for .M; 
 /. Then we define a relative Zd.s/ grading on CF.†;˛;ˇ; s/ such that for
any x; y 2 T˛ \Tˇ with s.x/D s.y/D s we have

gr.x; y/D �.�/ mod d.s/;

where � 2 �2.x; y/ is an arbitrary homotopy class and � is the Maslov index of � .

Definition 5.3 Let .M; 
 / S .M 0; 
 0/ be a surface decomposition. If eW M 0 ,!M

denotes the embedding, then we define

FS D PD ıe� ı .PD0/�1
W H 2.M 0; @M 0

IR/!H 2.M; @M IR/;

hence the following diagram is commutative.

H1.M
0IR/

e�
����! H1.M IR/??yPD0

??yPD

H 2.M 0; @M 0IR/
FS
����! H 2.M; @M IR/
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Here PD and PD0 are Poincareé duality maps and e� is the map induced by e . We will
use the same symbol FS to denote the map H 2.M 0; @M 0/!H 2.M; @M / defined
over Z in a completely analogous way.

Next we study how the Spinc –grading changes under a sutured manifold decompo-
sition .M; 
 / S .M 0; 
 0/. Intuitively, a Spinc –structure s0 2 Spinc.M 0; 
 0/ can be
glued along S to get an outer Spinc –structure fS .s

0/ 2OS on .M; 
 /. Recall from
Remark 3.5 that Spinc.M; 
 / is an affine space over H 2.M; @M /ŠH1.M /. Then
the gluing map fS is an affine version of the map e�W H1.M

0/!H1.M / induced by
the embedding eW M 0 ,!M . Furthermore, for every outer Spinc –structure s2OS the
group SFH.M; 
; s/ is isomorphic to the direct sum of SFH.M 0; 
 0; s0/ for all s0 that
glue to give s, and the relative Maslov grading is preserved by this gluing isomorphism.

Proposition 5.4 Let .M; 
 / S.M 0; 
 0/ be a nice surface decomposition of a strongly
balanced sutured manifold .M; 
 /, and fix t 2 T .M; 
 / and t 0 2 T .M 0; 
 0/. Then
there are an affine map

fS W Spinc.M 0; 
 0/! Spinc.M; 
 /

and an element c.t; t 0/ 2H 2.M; @M IR/ satisfying the following three conditions.

(1) fS maps onto OS , and for any s 2OS we have

SFH.M; 
; s/Š
M

s02Spinc.M 0;
 0/WfS .s0/Ds

SFH.M 0; 
 0; s0/:

Furthermore, there is an isomorphism

ypW SFH.M 0; 
 0/!
M
s2OS

SFH.M; 
; s/

such that for every s0 2 Spinc.M 0; 
 0/ and for every x0;y0 2 SFH.M 0; 
 0; s0/

we have yp.SFH.M 0; 
 0; s0//� SFH.M; 
; fS .s
0// and

gr.x0;y0/D gr. yp.x0/; yp.y0//:

(2) If s0
1
; s0

2
2 Spinc.M 0; 
 0/, then

FS .s
0
1� s02/D fS .s

0
1/�fS .s

0
2/ 2H 2.M; @M /:

(3) For every s0 2 Spinc.M 0; 
 0/ we have

FS .i.c1.s
0; t 0///D i.c1.fS .s

0/; t//C c.t; t 0/:
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Proof We improve the proof of [14, Theorem 1.3] by also taking into consideration
the Spinc and the relative Maslov gradings on SFH.M 0; 
 0/. First we need to recall
Definitions 4.3 and 5.1 of [14].

Definition 5.5 A balanced diagram adapted to the decomposing surface S in .M; 
 /

is a quadruple .†;˛;ˇ;P / that satisfies the following conditions. .†;˛;ˇ/ is a
balanced diagram of .M; 
 /; furthermore, P � † is a quasipolygon (a closed sub-
surface of † whose boundary is a union of polygons) such that P \ @† is exactly
the set of vertices of P . We are also given a decomposition @P D A [ B , where
both A and B are unions of pairwise disjoint edges of P . This decomposition
has to satisfy the property that ˛ \ B D ∅ and ˇ \ A D ∅ for every ˛ 2 ˛ and
ˇ 2 ˇ . Finally, S is given up to equivalence by smoothing the corners of the surface
.P�f1=2g/[.A� Œ1=2; 1�/[.B� Œ0; 1=2�/� .M; 
 /. The orientation of S is given by
the orientation of P �†. We call a tuple .†;˛;ˇ;P / satisfying the above conditions
a surface diagram.

Definition 5.6 Let .†;˛;ˇ;P / be a surface diagram. Then we can uniquely associate
to it a tuple D.P /D .†0;˛0;ˇ 0;PA;PB;p/, where .†0;˛0;ˇ 0/ is a balanced diagram,
pW †0 ! † is a smooth map, and PA;PB � †

0 are two closed subsurfaces (see
Figure 1).

To define †0 , take two disjoint copies of P that we call PA and PB , together with
diffeomorphisms pAW PA ! P and pBW PB ! P . Cut † along @P and remove
P . Then glue A to PA using p�1

A
and B to PB using p�1

B
to obtain †0 . The map

pW †0!† agrees with pA on PA and with pB on PB , and it maps †0 n .PA[PB/

to † nP using the obvious diffeomorphism. Finally, let ˛0 D fp�1.˛/ nPB W ˛ 2 ˛ g

and ˇ 0 D fp�1.ˇ/ nPA W ˇ 2 ˇ g.

Since S is nice, by [14, Lemma 4.5] it is isotopic to a decomposing surface S 0

such that each component of @S 0 intersects both RC.
 / and R�.
 /, decomposing
.M; 
 / along S 0 also gives .M 0; 
 0/, and OS DOS 0 . Thus we can suppose that each
component of @S intersects both RC.
 / and R�.
 /. Then by [14, Proposition 4.8] and
[14, Theorem 6.4] there is a nice and admissible surface diagram .†;˛;ˇ;P / adapted
to S . By [14, Proposition 5.2], if D.P /D .†0;˛0;ˇ 0;PA;PB;p/, then .†0;˛0;ˇ 0/
is an admissible balanced diagram defining .M 0; 
 0/. Moreover, [14, Proposition 7.6]
says that p gives an isomorphism CF.†0;˛0;ˇ 0/ Š .OP ; @jOP /. Here OP is the
subcomplex of CF.†;˛;ˇ/ generated by

f x 2 T˛ \Tˇ W x\P D∅ g:
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˛0

ˇ0

PB

PA

p

˛

ˇ

P

Figure 1: The quasipolygon P in the lower sutured diagram defines a decom-
posing surface S . The upper sutured diagram corresponds to the manifold
obtained by decomposing along S .

However, [14, Lemma 5.5] implies that x 2 OP if and only if s.x/ 2 OS . Thus p

induces an isomorphism

ypW SFH.M 0; 
 0/!
M
s2OS

SFH.M; 
; s/:

We can now define fS . If T˛0 \Tˇ0 ¤∅, then fix an element x0
0
2 T˛0 \Tˇ0 and let

x0 D p.x0
0
/. Put s0

0
D s.x0

0
/ and s0 D s.x0/. Otherwise, let s0

0
2 Spinc.M 0; 
 0/ and

s0 2OS be arbitrary elements. Then for any s0 2 Spinc.M 0; 
 0/ define

fS .s
0/D s0CFS .s

0
� s00/:

(2) is immediate from the definition of fS .

Next we show that fS maps onto OS . It is sufficient to prove the following claim.

Claim 5.7 Let s 2 Spinc.M; 
 /. Then s 2OS if and only if s� s0 2 im.FS /.

Proof Since x0 2OP , by [14, Lemma 5.5] we see that s0 2OS . Note that s� s0 2

im.FS / if and only if PD�1.s� s0/ can be represented by a 1–cycle disjoint from S .
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Using cut-and-paste techniques, this is equivalent to the statement that h s�s0; ŒS�� iD0

for every component S� of S . Finally, this happens if and only if s and s0 can be
represented by nowhere zero vector fields that are homotopic (through nowhere zero
vector fields) over each component of S rel @S . Since s0 2OS , this is equivalent to
saying that s 2OS .

To prove (1), recall that we have an isomorphism CF.†0;˛0;ˇ 0/Š .OP ; @jOP / induced
by the projection pW †0!†. Moreover, p.˛0/D˛ and p.ˇ0/Dˇ for every ˛2˛ and
ˇ 2 ˇ . Furthermore, H1.M /ŠH1.†/=h˛[ˇi and H1.M

0/DH1.†
0/=h˛0 [ˇ 0i.

There is a commutative diagram

H1.†
0/

p�
����! H1.†/??y� 0 ??y�

H1.M
0/

e�
����! H1.M /;

where � and � 0 are factor homomorphisms. Now we recall [13, Definition 4.6].

Definition 5.8 For x; y 2 T˛ \Tˇ , we define �.x; y/ 2H1.M / as follows. Choose
paths aW I ! T˛ and bW I ! Tˇ with @aD @b D x� y. Then a� b can be viewed
as a one-cycle in † whose homology class in M is �.x; y/. This is independent of the
choices of a and b .

In [13, Lemma 4.7] we showed that s.x/� s.y/D PDŒ�.x; y/� for any x; y 2 T˛ \Tˇ .
Now pick elements x0; y0 2 T˛0 \ Tˇ0 , and let x D p.x0/ and y D p.y0/. Choose
paths a0W I ! T˛0 and b0W I ! Tˇ0 such that @a0 D @b0 D x0� y0 . Let aD p.a0/ and
b D p.b0/. Since p.a0� b0/D a� b , using the above commutative diagram, we get
e�.�.x0; y0//D �.x; y/. Hence

PDŒe�.�.x0; y0//�D PDŒ�.x; y/�D s.x/� s.y/:

Another application of [13, Lemma 4.7] gives

PDŒe�.�.x0; y0//�D PD ıe� ı .PD0/�1.s.x0/� s.y0//D FS .s.x0/� s.y0//:

So we see that FS .s.x0/� s.y0//D s.x/� s.y/, and by definition fS .s.x00//D s.x0/.
Thus fS .s.x0//D s.x/. Hence

yp.SFH.M 0; 
 0; s0//� SFH.M; 
; fS .s
0//

for every s0 2 Spinc.M 0; 
 0/.

If x0; y0 2 T˛0 \Tˇ0 satisfy s.x0/ D s.y0/, then choose a domain D0 connecting x0

and y0 . Then D D p.D0/ is a domain connecting x D p.x0/ and y D p.y0/. Using
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Lipshitz’s Maslov index formula (cf [14, Proposition 7.3]) we see that �.D/D �.D0/
since the local diffeomorphism p preserves both the Euler and the point measures.
Thus gr.x0;y0/ D gr. yp.x0/; yp.y0// if x0;y0 2 SFH.M 0; 
 0; s0/. This concludes the
proof of (1).

Finally, we prove (3). Given t 2 T .M; 
 / and t 0 2 T .M 0; 
 0/, let

c.t; t 0/D FS .i.c1.s
0
0; t
0///� i.c1.s0; t//:

If s0 2 Spinc.M 0; 
 0/ is arbitrary and sD fS .s
0/, then using (2) we have

FS .i.c1.s
0; t 0///D FS .i.c1.s

0
0; t
0///CFS .i.2.s

0
� s00///

D i.c1.s0; t//C c.t; t 0/C 2i.s� s0/D i.c1.s; t//C c.t; t 0/:

Remark 5.9 Actually fS depends only on S and is independent of the choice of a
surface diagram representing S . It can be defined geometrically as follows. Let v0 be
a vector field representing s0 2 Spinc.M 0; 
 0/. After homotoping v0 over S 0� and S 0C
(see Definition 2.5) one can glue v0jS 0C and v0jS 0� to obtain a nowhere zero vector
field v on M , which is unique up to homotopy. Then v represents fS .s

0/. To verify this
claim, one has to trace through the identifications in the proof of [14, Proposition 5.2]
to see that s.x0/ and s.p.x0// are related by the above “gluing” operation. This is
straightforward but tedious, and we will make no use of it in the rest of the paper.

On the other hand, the isomorphism yp might possibly depend on the choice of a
surface diagram .†;˛;ˇ;P / representing S . To show independence, one either needs
a different proof of the decomposition formula, or one must show invariance of yp
under a sequence of moves relating two different surface diagrams.

Remark 5.10 If H 2.M /D 0, then for every t 0 2 T .M 0; 
 0/ there is a t 2 T .M; 
 /

such that c.t; t 0/ D 0 in Proposition 5.4. Indeed, fix an s0
0
2 Spinc.M 0; 
 0/ and let

s0 D fS .s
0
0
/. The map H 1.@M /! H 2.M; @M / is surjective since H 2.M / D 0.

Thus by Lemma 3.12 in the proof of part (3) of Proposition 5.4, we can choose a
t 2 T .M; 
 / which satisfies FS .i.c1.s

0
0
; t 0///D i.c1.s0; t//.

Note that if we only suppose that H2.M / D 0, then such a t might not exist. For
example, if K is the knot in S1 � S2 which goes around twice monotonically in
the S1 direction and M D .S1 �S2/ nN.K/, then M fibres over S1 with annulus
fibers. Actually M deformation retracts onto a Klein bottle. Thus H1.M /D Z2˚Z
and H2.M /D 0. So H 2.M /D Z2 . The map H 1.@M /!H 2.M; @M / is Poincaré
dual to H1.@M /! H1.M /. This map is Z˚Z! Z2˚Z. It takes a pair .a; b/
to .a mod 2; 2b/. Here a corresponds to the meridional and b to the longitudinal
component. Thus the map d in Lemma 3.12 is not surjective onto the Z component of
H 2.M; @M /.
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Theorem 5.11 Let .M;
 / S.M 0;
 0/ be a taut surface decomposition, where .M;
 /

is strongly balanced, and fix t 2 T .M; 
 / and t 0 2 T .M 0; 
 0/. Suppose that S is nice
and let ˛ D ŒS �. Then the following hold.

(i) The map

FS � c.t; t 0/W H 2.M 0; @M 0
IR/!H 2.M; @M IR/

projects the polytope P .M 0; 
 0; t 0/ onto the face P˛.M; 
; t/ of P .M; 
; t/.

(ii) If, moreover, S is connected and nonseparating, then the image of FS is the
hyperplane H˛C c.t; t 0/.

(iii) If, in addition to the assumptions of (2), we have H2.M /D 0 or S DD2 , then
dim ker.FS /D b1.S/.

Proof Let SDS.M; 
 / and S0DS.M 0; 
 0/. First we show that fS .S
0/DS\OS .

Indeed, if s0 2 S0 , then by definition SFH.M 0; 
 0; s0/ ¤ 0. So from part (1) of
Proposition 5.4 it follows that fS .s

0/ 2OS and SFH.M; 
; fS .s
0//¤ 0, ie, fS .s

0/ 2

S\OS . Similarly, if s 2S\OS , then by part (1) of Proposition 5.4 there exists an
s0 2 S.M 0; 
 0/ such that fS .s

0/D s.

Let C D C.M; 
; t/ and C 0 D C.M 0; 
 0; t 0/. Using part (3) of Proposition 5.4,

FS .C
0/�c.t; t 0/DFS .i.c1.S

0; t 0///�c.t; t 0/D i.c1.fS .S
0/; t//D i.c1.S\OS ; t//:

By Lemma 3.20, for s 2 Spinc.M; 
 / we have s 2OS if and only if

h c1.s; t/; ŒSi � i D c.Si ; t/

for every component Si of S . However, we saw in the proof of Theorem 4.5 that
s 2S\OS if and only if s 2S and h c1.s; t/; ŒS � i D c.S; t/. Since S gives a taut
decomposition, Corollary 4.11 gives that c.S; t/D c.˛; t/. Hence

i.c1.S\OS ; t//D C \H˛ D C˛.M; 
; t/;

which concludes the proof of (i).

Now we prove (ii). Part (1) of Proposition 5.4 states that the image of fS is OS , thus
by part (3) the image of FS is i.c1.OS ; t//Cc.t; t 0/. Using Lemma 3.20, the fact that
S is connected, and c.S; t/D c.˛; t/, we conclude that i.c1.OS ; t//DH˛ . Since S

is nonseparating, H˛ is a hyperplane, ie, dim H˛ D b1.M /� 1.

To see (iii), first note that b0.M /D b0.M
0/. If H2.M /D 0 or S DD2 , then we can

apply Lemma 5.1 to conclude that b1.M
0/D b1.M /C b1.S/� 1. Thus the kernel of

the map FS has dimension b1.S/.
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Proposition 5.12 Suppose that .M; 
 / S .M 0; 
 0/ is a taut surface decomposition
of a strongly balanced sutured manifold, such that S is a disk and ŒS � D ˛ ¤ 0.
Fix t 2 T .M; 
 / and t 0 2 T .M 0; 
 0/. Then the map c0 7! FS .c

0/ � c.t; t 0/ is an
affine isomorphism between the polytope P .M 0; 
 0; t 0/ and the face P˛.M; 
; t/ of
P .M; 
; t/.

Proof We use Theorem 5.11. As b1.S/D 0, the map FS�c.t; t 0/ is an affine isomor-
phism between H 2.M 0; @M 0/ and H˛ , and maps P .M 0; 
 0; t 0/ onto P˛.M; 
; t/.

The next result also follows from [5].

Corollary 5.13 Suppose that the balanced sutured manifold .M; 
 / is disk decom-
posable. Then there is a single groomed surface decomposition .M; 
 / S .M 0; 
 0/

such that .M 0; 
 0/ is a product. Moreover, if 
 is connected then .M; 
 / has a depth
at most one taut foliation.

Proof First note that M has to be a handlebody, thus H2.M /D 0. In this proof we
suppress the trivialization t in the notation P .M; 
; t/, this is justified by Remark 4.10.
Suppose that

.M; 
 /D .M0; 
0/ S1.M1; 
1/ S2 : : : Sn.Mn; 
n/

is a sutured manifold hierarchy such that each Si is a disk and .Mn; 
n/ is a product.
Then SFH.Mk ; 
k/ ¤ 0 for 0 � k � n, since SFH.Mn; 
n/ � SFH.Mk ; 
k/ by
Theorem 4.5. Furthermore, .Mk ; 
k/ is irreducible because .Mn; 
n/ is. Together
with [13, Proposition 9.18] these imply that every .Mk ; 
k/ is taut.

Let ˛iD ŒSi �. Then P .MiC1;
iC1/ is isomorphic to the face P˛i
.Mi ;
i/ of P .Mi ;
i/

by Proposition 5.12. Furthermore, SFH.MiC1; 
iC1/Š SFH˛i
.Mi ; 
i/ by Proposition

4.13. Since .Mn; 
n/ is a product, P .Mn; 
n/ is a single point and SFH.Mn; 
n/Š

Z. So P .Mn; 
n/ corresponds to a vertex v D i.c1.s; t// of P .M; 
 / such that
SFH.M; 
; s/Š Z.

Hence Corollary 4.15 implies that there is a groomed and taut surface decomposition
.M; 
 / S .M 0; 
 0/ such that for ˛ D ŒS � we have P˛.M; 
 /D fvg and

SFH.M 0; 
 0/Š SFH˛.M; 
 /Š Z:

Since .M 0; 
 0/ is taut, we can use [14, Theorem 9.7] to conclude that .M 0; 
 0/ is a
product. If 
 is connected, then S is necessarily well groomed, thus by [4] there is a
depth at most one taut foliation on .M; 
 /.

Geometry & Topology, Volume 14 (2010)



The sutured Floer homology polytope 1337

Proposition 5.14 Suppose that .M; 
 / S .M 0; 
 0/ is a decomposition of a balanced
sutured manifold along a disk S such that I.S/ D �2, ie, j@S \ s.
 /j D 4. If we
decompose .M; 
 / along �S , we get .M 0; 
 00/. Then

(5-2) SFH.M; 
 /Š SFH.M 0; 
 0/˚ SFH.M 0; 
 00/:

Proof By Theorem 4.1, if for some s 2 Spinc.M; 
 / we have SFH.M; 
; s/ ¤ 0,
then h c1.s; t/; ŒS � i � c.S; t/ and h c1.s; t/; Œ�S � i � c.�S; t/. Thus

c.S; t/� h c1.s; t/; ŒS � i � �c.�S; t/:

�c.�S; t/� c.S; t/D��.S/��.�S/� I.S/� I.�S/D 2:Note that

Furthermore, h c1.s; t/; ŒS � i is always congruent to c.S; t/ modulo 2. Indeed, for
s0 2OS we have h c1.s0; t/; ŒS � i D c.S; t/ and c1.s; t/� c1.s0; t/D 2.s� s0/.

So for any s2S.M; 
 / either h c1.s; t/; ŒS � iD c.S; t/ or h c1.s; t/; Œ�S � iD c.�S; t/.
Together with Theorem 4.5, this implies Equation (5-2).

Corollary 5.15 With the assumptions of Proposition 5.14, if .M; 
 / is taut, then at
least one of .M 0; 
 0/ and .M 0; 
 00/ is taut.

Remark 5.16 Corollary 5.15 can also be proven using simple cut-and-paste meth-
ods. The following, yet unpublished argument was communicated to me by David
Gabai. If x denotes the Thurston norm, then x.RC.


0// D x.RC.
 // � 1 and
x.R�.


00// D x.R�.
 // � 1. If neither .M 0; 
 0/, nor .M 0; 
 00/ are taut then we
have x.ŒRC.


0/�/ � x.RC.
 //� 3 and x.ŒR�.

00/�/ � x.R�.
 //� 3. Let T 0 and

T 00 be properly embedded, norm minimizing representatives of ŒRC.
 0/� and ŒR�.
 00/�,
respectively. Recall that S 0C and S 0� were introduced in Definition 2.5. Let T be
the oriented surface obtained from T 0[T 00 (viewed as an immersed surface in M )
by gluing T 0\S 0C to T 00\S 0� and T 0\S 0� to T 00\S 0C (each intersection consists
of two arcs), and then doing oriented cut-and-paste along the double curves. We can
assume that T has no S2 components since M is irreducible. Then

x.T /Dx.ŒRC.

0/�/Cx.ŒR�.


00/�/C4�x.RC.
 //Cx.R�.
 //�2Dx.R.
 //�2:

Since ŒT � D ŒR.
 /� in H2.M; 
 /, we get that R.
 / is not norm minimizing in its
homology class in H2.M; 
 /, contradicting the assumption that .M; 
 / is taut. So at
least one of .M 0; 
 0/ and .M 0; 
 00/ is taut.
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6 Dimension of the sutured Floer homology polytope

Theorem 6.1 Suppose that H2.M /D 0 and the sutured manifold .M; 
 / is balanced,
taut, reduced and horizontally prime. Let t 2 T .M; 
 /. Then

dim P .M; 
; t/D dim H 2.M; @M IR/D b1.M /D b1.@M /=2:

In particular,
rk.SFH.M; 
 //� b1.@M /=2C 1:

Proof We improve on and simplify the proof of [14, Theorem 9.7]. By [7, Lemma 0.7]
for any nonzero element ˛ 2H2.M; @M / there is a groomed surface decomposition
.M; 
 / S .M 0; 
 0/ such that .M 0; 
 0/ is taut and ŒS �D ˛ . We can assume that S is
open since H2.M /D 0, and we can make S nice by putting it into generic position.

We are now going to show that c.˛; t/C c.�˛; t/ < 0. Since S gives a taut decom-
position, c.˛; t/ D c.S; t/ D �.S/C I.S/� r.S; t/ by Corollary 4.11. Using [24,
Theorem 2.5] and the fact that H2.M /D 0, we can find a nice decomposing surface S 0

that gives a taut decomposition, ŒS 0� D �˛ , and @S \R.
 / D �@S 0 \R.
 /. We
briefly outline the construction of S 0 here. Let U DN.@S � @M /[ 
 be a regular
neighborhood of @S inside @M , together with 
 . Denote by � the relative homology
class represented by R.
 / in H2.M;U /. Similarly, let �D ŒS �2H2.M;U /. Consider
the Thurston norm xU on H2.M;U /. It is shown in [24] that there is an integer k0

such that for every k > k0 we have

(6-1) xU .�� C .kC 1/�/D xU .�� C k�/CxU .�/:

Then the surface S 0 is a Thurston norm minimizing representative of ��Ck� for some
fixed k > k0 . Since H2.M /D 0, we can remove all closed components of S 0 without
changing the homology class it represents in H2.M;U /, and without increasing its
Thurston norm. Equation (6-1) ensures that S 0 gives a taut decomposition.

Note that c.�˛; t/D c.S 0; t/D �.S 0/C I.S 0/� r.S 0; t/. So we have to show that

�.S/C�.S 0/C I.S/C I.S 0/ < r.S; t/C r.S 0; t/:

Since @S \R.
 /D�@S 0\R.
 /, and by the construction of S 0 described above, the
one-cycle @S C @S 0 � 
 is homologous to ks.
 / in H1.
 / for some nonnegative
integer k ; see Figure 2.

Recall that r.S; t/ is defined as the rotation of p.�S / with respect to the trivialization t

as we go around @S , where p is orthogonal projection onto v? . Note that r.S 0; t/ can
also be computed as the rotation of �p.�S 0/ with respect to t . Moreover, p.�S /D

�p.�S 0/ over S \R.
 /D S 0\R.
 /.
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 S p.�S /

S 0

�p.�S 0/

Figure 2: The decomposing surfaces S and S 0

Let C be a component of @S \ 
 or @S 0 \ 
 . We can assume that if C is closed
then �S jC (or ��S 0 jC ) points out of M ; and if C is an arc then it is monotonic
between R�.
 / and RC.
 / and p.�S /jC (or p.�S 0/jC ) is nonzero and parallel to
s.
 /. Observe that p.�S /[�p.�S 0/ is a continuous vector field along @SC@S 0 , and
it can be homotoped inside v?

0
n 0 such that it points out of M everywhere. Using the

Poincaré–Hopf index formula we get that

r.S; t/C r.S 0; t/D k�.RC.
 //:

See Lemma 3.17.

Suppose that C and C 0 are components of @S \ 
 and @S 0 \ 
 , respectively, such
that C � Œ0; 1�� C 0 and @C D @C 0 ; see Figure 2. Let s0 be the component of s.
 /

containing C \ s.
 /. If C C C 0 is null-homologous in 
 , then we can achieve by
an isotopy of S 0 that C D C 0 . If C CC 0 is homologous to ms0 in H1.
 / for some
m> 0, then we can achieve that jC \C 0j DmC 1.

Make S and S 0 transverse by perturbing them in the interior of M . Then take the
double curve sum P of S and S 0 . We are now going to see how �.S/C�.S 0/ changes
when doing the cut-and-paste. The number of components of @S \@S 0 homeomorphic
to Œ0; 1� is at most jS \ s.
 /j. (It is strictly smaller if there are Œ0; 1� components C

and C 0 of S \ 
 and S 0 \ 
 , respectively, such that C D C 0 .) Now let K be a
component of S \S 0 . If int.K/� int.S/\ int.S 0/, then doing cut-and-paste along K

doesn’t change the Euler characteristic (we remove two circles or intervals and glue
them back in a different way). On the other hand, if K � @S \ @S 0 is homeomorphic
to Œ0; 1�, then cut-and-paste along K decreases the Euler characteristic by one (we glue
two surfaces together along two arcs in their boundaries). According to Lemma 3.17,
we have I.S/D I.S 0/D�jS \ s.
 /j=2, so

�.S/C�.S 0/C I.S/C I.S 0/� �.P /:

Thus it is sufficient to prove that �.P / < k�.RC.
 //.
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Let r D ŒRC.
 /�D ŒR�.
 /� 2H2.M; 
 /. From H2.M /D 0, and by looking at the
exact sequence of the pair .M; 
 /, we see that the map @W H2.M; 
 /! H1.
 / is
injective. Thus

@ŒP �D @.kr/D kŒs.
 /� 2H1.
 /

implies that ŒP � D kr in H2.M; 
 /. Let x denote the Thurston seminorm on
H2.M; 
 /. As in [14, Claim 9.10], using the fact that M is irreducible we can
suppose that P has no S2 and T 2 components.

Suppose that P has a D2 component. Since H2.M / D 0, the boundary @M is
connected. Using the fact that R.
 / is incompressible and @P � 
 , we get that
@M D S2 and 
 is connected. But M is irreducible, so M D D3 . The sutured
manifold .D2 � I; @D2 � I/ obviously satisfies the theorem, so we can suppose from
now on that P has no D2 component. Similarly, we can assume that RC.
 / has no
D2 component.

Using the above assumptions, x.P /D��.P / and x.RC.
 //D��.RC.
 //. Since
.M; 
 / is taut,

��.P /D x.P /� x.ŒP �/D x.kr/D kx.r/D�k�.RC.
 //:

So we only have to exclude the possibility x.P / D kx.r/. In this case, P is norm
minimizing in kr . Thus P cannot have genus > 1 closed components, for if it did we
could remove them without changing ŒP � (as H2.M /D 0) and decrease x.P /.

Fix a point z0 2 RC.
 /. We define a function 'W M n P ! Z by setting '.z/ to
be the algebraic intersection number of P with a path connecting z0 and z . This
is well defined because ŒP �D ŒS �C ŒS 0�D ˛ � ˛ D 0 in H2.M; @M /, and thus any
closed curve in M intersects P algebraically zero times. There is a well defined
homological pairing between H1.M;R.
 // and H2.M; 
 /. Thus if z 2R.
 /, then
'.z/ can be computed by taking the intersection number of a path connecting z0 and z

with the cycle kR�.
 /. So 'jRC.
 /� 0 and 'jR�.
 /� k . Since P has no closed
components, every component of M nP intersects 
 . Thus by considering paths on 
 ,
we see that 0� ' � k .

As in [14, Claim 9.10], let Ji D cl..'�1/.i// for 0 � i � k and let Pi D Ji�1 \ Ji

for 1� i � k . Then P is the disjoint union of the surfaces P1; : : : ;Pk , and
Si�1

lD0 Jl

is a homology between RC.
 / and Pi in H2.M; 
 /. Thus ŒPi � D r , and hence
x.Pi/� x.r/. Since

kX
iD1

x.Pi/D x.P /D kx.r/;
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we must have x.Pi/D x.r/ for 1� i � k . The boundary @P consists of k parallel
copies of s.
 /, hence computing 'j
 using curves in 
 implies that @Pi is isotopic
to @RC.
 / for 1 � i � k . So each Pi is a horizontal surface. Since .M; 
 / is
horizontally prime, for some 1� j � k the surfaces P1; : : : ;Pj are parallel to RC.
 /

and PjC1; : : : ;Pk are parallel to R�.
 /.

Let 
j D 
 \ Jj . Then the sutured manifold .Jj ; 
j / is homeomorphic to .M; 
 /.
Thus .Jj ; 
j / is reduced. Observe that the closure of each component of S \ Int.Jj /

is either a product disk or product annulus in .Jj ; 
j /, which in turn lies in a product
neighborhood N.
j / of 
j . Indeed, by Lemma 2.13 every product disk is inessential
in .Mj ; 
j /, and every product annulus is either ambient isotopic to a component of

j or bounds a D2 � I by Lemma 2.11. The rest of S , ie, S n Jj lies in a product
neighborhood of R.
 / since NC D J1 [ � � � [ Jj�1 is a regular neighborhood of
RC.
 / and N� D JjC1[ � � � [Jk is a regular neighborhood of R�.
 /. Thus S lies
in a product neighborhood N D N.
 /[NC [N� of @M . Let r W N ! @M be a
retraction. Then r.S/ represents a 2–chain in @M whose boundary is @S . The map
@W H2.M; @M /!H1.@M / is injective because H2.M /D 0. Moreover, ŒS �D ˛¤ 0,
thus Œ@S �D @˛ ¤ 0 in H1.@M /. Consequently, @S cannot be a boundary in @M , a
contradiction.

So indeed c.˛; t/ C c.�˛; t/ < 0. By Definition 4.9, this means that the inter-
val h˛;P .M; 
; t/ i D Œc.˛; t/;�c.�˛; t/� is not a single point. Since this holds
for every ˛ ¤ 0 in H2.M; @M /, the dimensions of P .M; 
; t/ has to be at least
b2.M; @M /. Since P .M; 
; t/ sits inside H 2.M; @M;R/, the dimension has to be
equal to b2.M; @M /. By Poincaré duality b2.M; @M /D b1.M /, and this is equal to
b1.@M /=2 because H2.M /D 0.

The last statement follows from the fact that a d –dimensional polytope has at least
d C 1 vertices and from Proposition 4.16.

Proposition 6.2 Suppose that S is a nice decomposing surface in the strongly balanced
sutured manifold .M; 
 / whose components are S1; : : : ;Sk . Let ˛D ŒS � and j̨ D ŒSj �

for 1� j � k . Suppose that ˛ ¤ 0,

dim P .M; 
; t/D dim H 2.M; @M IR/D b1.M /

and dim P˛.M; 
; t/D b1.M /�1. Then there is a nonzero class � 2H2.M; @M / and
integers a1; : : : ; ak such that j̨ D aj � � for 1 � j � k . Moreover, P

j̨
.M; 
; t/D

P˛.M; 
; t/ for every 1� j � k such that sgn.aj /D sgn.a1C � � �C ak/.
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Proof Note that ˛1C � � �C˛k D ˛ ¤ 0, so there is a nonzero j̨ . Since

P˛.M; 
; t/�

k\
jD1

H
j̨
;

dim

 
k\

jD1

H
j̨

!
D b1.M /� 1:we must have

Thus ˛1; : : : ; ˛k are pairwise linearly dependent. The existence of � and a1; : : : ; ak

follows. If sgn.aj /D sgn.a1C � � �C ak/, then ˛ and j̨ are parallel and point in the
same direction, thus H˛ DH

j̨
, and consequently P˛.M; 
; t/D P

j̨
.M; 
; t/.

Corollary 6.3 Let .M; 
 / be strongly balanced. If H2.M / D 0, then every face
of P .M; 
; t/ whose dimension is b1.M /� 1 is of the form PŒR�.M; 
; t/ for some
connected groomed surface R.

Proof This follows from Proposition 6.2 and Corollary 4.15.

7 Depth of a sutured manifold

Proposition 7.1 Suppose that H2.M /D 0 and the sutured manifold .M; 
 / is bal-
anced, taut, reduced, horizontally prime, and not a product. Then there is always a
well-groomed surface decomposition .M; 
 / S .M 0; 
 0/ such that .M 0; 
 0/ is taut
and rk.SFH.M 0; 
 0//� rk.SFH.M; 
 //=2.

Proof Note that @M is connected because H2.M / D 0. We show that @M ¤ S2 .
Indeed, otherwise by the irreducibility of M we have M DD3 , and since .M; 
 / is
taut, 
 would have to be a single annulus. But this would contradict that .M; 
 / is not
a product. So b1.@M /� 2. By Theorem 6.1,

dim P .M; 
; t/D dim H 2.M; @M IR/D b1.@M /=2� 1:

Lemma 2.8 implies that there is a well groomed homology class ˛2H2.M; @M /. Then
�˛ is also well groomed. Thus using Corollary 4.15 we get well groomed and taut sur-
face decompositions .M; 
 / S1.M1; 
1/ and .M; 
 / S2.M2; 
2/ such that ŒS1�D

˛ and ŒS2� D �˛ ; furthermore, SFH.M1; 
1/ Š SFH˛.M; 
 / and SFH.M2; 
2/ Š

SFH�˛.M; 
 /. Since the dimension of P .M; 
; t/ is the same as the dimension of
the ambient space H 2.M; @M IR/, we have

P˛.M; 
; t/\P�˛.M; 
; t/D∅:

SFH˛.M; 
 /˚ SFH�˛.M; 
 /� SFH.M; 
 /;Thus

and consequently either S1 or S2 satisfies the requirements of the proposition.
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Remark 7.2 Proposition 7.1 implies that the number rk.SFH.M; 
 // acts as a com-
plexity of taut balanced sutured manifolds with H2.M /D 0 in the following sense.
If .M; 
 / is not a product, then Proposition 2.18 and Proposition 2.16 imply that we
can perform finitely many horizontal and product annulus decompositions to get an
.M; 
 / which is horizontally prime, reduced, and H2.M / is still zero. By Proposition
7.1, now there is a taut decomposition which strictly decreases rk.SFH.M; 
 //.

Compare this with the complexity defined in [4] to show the existence of sutured
manifold hierarchies. Note that we used the existence of sutured manifold hierarchies
to prove that SFH.M; 
 /� Z if .M; 
 / is taut, which in turn is implicitly needed in
the proof of Proposition 7.1.

Definition 7.3 Let .M; 
 / be a taut sutured manifold. By [4], .M; 
 / has a sutured
manifold hierarchy

.M; 
 / S1.M1; 
1/ S2 � � � Sn.Mn; 
n/;

where .Mn; 
n/ is a product. We define the depth d.M; 
 / of .M; 
 / to be the minimal
such n. In particular, d.M; 
 /D 0 if and only if .M; 
 / is a product.

Remark 7.4 It is important to note that in the above definition S1; : : : ;Sn can be
arbitrary decomposing surfaces, they are not necessarily connected.

Example 7.5 This example illustrates that Theorem 6.1 and Proposition 7.1 do not
hold without the assumption that the sutured manifold .M; 
 / is reduced. Furthermore,
it also shows that even though annulus decompositions do not change SFH.M; 
 /,
they might change the sutured Floer homology polytope P .M; 
; t/.

Let .†;˛;ˇ/ be the balanced diagram shown in Figure 3, and let .M; 
 / be the
balanced sutured manifold defined by it. Here † is a genus one surface with three
boundary components, each represented by a little circle. There is one ˛ and one ˇ
curve; moreover, ˛\ˇ consists of two points denoted by x and y . Since there are no
periodic domains, H2.M /D 0. It is a simple exercise to check that @M is a surface
of genus two.

The chain complex CF.†;˛;ˇ/ is generated by the points x and y . They lie in the
same Spinc –structure s0 because the component D of †n .˛[ˇ/ containing the one-
handle gives a homology class of Whitney disks connecting x and y (if we stabilize
the diagram there is even a topological Whitney disc in the symmetric product). There
are no holomorphic disks connecting x and y , thus SFH.M; 
 / Š Z2 , which lies
in s0 . Thus P .M; 
; t/ is a single point. On the other hand, .M; 
 / is not a product
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x y

˛

ˇ

A

B

Figure 3: A nonproduct, horizontally prime, taut sutured manifold such that
the polytope P .M; 
 / is a single point

because SFH.M; 
 /© Z, and it is taut since SFH.M; 
 /¤ 0 and M is irreducible.
Moreover, .M; 
 / is horizontally prime. Indeed, suppose that

.M; 
 / S .M1; 
1/t .M2; 
2/

is a horizontal decomposition. Since S gives a taut decomposition and ŒS � D 0 in
H2.M; @M /, we can apply Corollary 4.6 and conclude that

SFH.M; 
 /Š SFH..M1; 
1/t .M2; 
2//:

By Lemma 4.8,

2D rk.SFH.M; 
 //D rk.SFH.M1; 
1// � rk.SFH.M2; 
2//:

So rk.SFH.Mi ; 
i//D 1 for i D 1 or i D 2, and this means that .Mi ; 
i/ is a product.
That is, S is parallel to either RC.
 / or R�.
 /, and so .M; 
 / is horizontally prime.
This shows that Theorem 6.1 fails if .M; 
 / is not reduced. In fact, there is no
nice surface decomposition that would change SFH.M; 
 /. Thus .M; 
 / cannot be
decomposed into a product using a single nice surface decomposition.

Let A denote the core of the handle in D , and let B be a simple closed curve in D

parallel to @D . Then A�I is a nonseparating product annulus, and B�I is a separating
product annulus in .M; 
 /. Both of them are nice decomposing surfaces.

If we decompose .M; 
 / along A�I , then we get a sutured manifold .MA; 
A/ which
is defined by the diagram .†A;˛;ˇ/, where †A is the completion of † nA. Here
x and y lie in different Spinc –structures. So SFH.MA; 
A/ Š Z2 , and the two Z–
summands lie in different Spinc –structures. Thus S.MA; 
A/ consists of two points, so
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P .MA; 
A; tA/ is a nondegenerate line segment for any trivialization tA . By Corollary
4.15, there is a well-groomed surface decomposition .MA; 
A/ S .M 0; 
 0/ such that
SFH.M 0; 
 0/Š Z, and thus .M 0; 
 0/ is a product. This shows that d.M; 
 /� 2.

Decomposing .M; 
 / along B � I , we get the disjoint union of a sutured manifold
.MB; 
B/ and the product sutured manifold .D�I; @D�I/. Note that .MB; 
B/ can
be obtained from .MA; 
A/ by decomposing along a product disk (which corresponds
to an arc connecting the feet of the handle in D ). As above, SFH.MB; 
B/ Š Z2

and P .MB; 
B; tB/ consists of a nondegenerate line segment. Thus even a separating
product annulus can change the sutured Floer homology polytope.

It is not hard to see that .MB; 
B/ is a solid torus with four longitudinal sutures. We
can obtain .M; 
 / from this by attaching .D � I; @D � I/ along @D � I to one of the
components of 
B . Of course D is a punctured torus. This again shows that .M; 
 /

is taut. And we can directly see that .MB; 
B/ can be reduced to a product, namely by
decomposing along a disk which intersects s.
B/ in four points.

The following proposition contains [14, Theorem 9.7], which claims that SFH detects
product sutured manifolds, as the special case k D 0. The proof presented here is
independent of the proof of [14, Theorem 9.7], which refers to an erroneous result
in [15] that has been corrected in [16].

Proposition 7.6 Suppose that .M; 
 / is a taut balanced sutured manifold such that
H2.M /D 0 and rk.SFH.M; 
 // < 2kC1 for some integer k � 0. Then

d.M; 
 /� 2k:

Proof We proceed by induction on k . First suppose that k D 0. By Proposition 2.18,
after a finite sequence of horizontal decompositions we get a taut sutured manifold
.M 0; 
 0/ which is horizontally prime. Using Lemma 5.1, we see that H2.M

0/D 0.
Furthermore, SFH.M 0; 
 0/Š SFH.M; 
 / by Corollary 4.6. Then, using Proposition
2.16, we can decompose .M 0; 
 0/ along product annuli to get a reduced, horizontally
prime, and taut sutured manifold .M 00; 
 00/. Now [14, Lemma 8.10] and Lemma 5.1 im-
ply that SFH.M 00; 
 00/� SFH.M 0; 
 0/ and H2.M

00/D 0. So rk.SFH.M 00; 
 00//� 1.
Then, by the second part of Theorem 6.1, each component of @M 00 has to be a sphere.
But .M 00; 
 00/ is taut (in particular irreducible), so it is necessarily a disjoint union of
product sutured manifolds of the form .D2 � I; @D2 � I/. Consequently, the sutured
manifold .M; 
 / is a product, and hence d.M; 
 /D 0.

Now suppose that k > 0 and that the result holds for i < k . We show that this implies
the result for k . It suffices to consider the case when .M; 
 / is not a product. First
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assume that .M; 
 / is not horizontally prime. Then Proposition 2.18 gives a taut
decomposition

.M; 
 / H .M 0; 
 0/;

such that each component of H is a horizontal surface and .M 0; 
 0/ is horizontally
prime. Let .M 0

1
; 
 0

1
/; : : : ; .M 0

l
; 
 0

l
/ denote the components of .M 0; 
 0/. Then l � 2,

and we can suppose that for each 1 � i � l the sutured manifold .M 0
i ; 

0
i / is not

a product. Moreover, H2.M
0
i / D 0 by Lemma 5.1. If we apply the k D 0 case to

.M 0
i ; 

0
i /, we get that rk.SFH.M 0

i ; 

0
i // � 2 for 1 � i � l . By Corollary 4.6 and

Lemma 4.8,

rk.SFH.M; 
 //D rk.SFH.M 0
1; 

0
1// : : : rk.SFH.M 0

l ; 

0
l //:

So rk.SFH.M 0
i ; 

0
i // < 2k for every 1 � i � l . Hence we can apply the induction

hypothesis to each .M 0
i ; 

0
i / separately to obtain d.M 0

i ; 

0
i /�2k�2 for every 1� i � l .

But .M 0
1
; 
 0

1
/; : : : ; .M 0

l
; 
 0

l
/ are pairwise disjoint, hence d.M 0; 
 0/ � 2k � 2. So

d.M; 
 /� 2k � 1.

Consequently, we can assume that .M; 
 / is horizontally prime. Using Proposition
2.16, there is a decomposition .M; 
 / A.M1; 
1/, where A is a union of pairwise
disjoint product annuli A1; : : : ;Ar and .M1; 
1/ is reduced, horizontally prime, taut,
H2.M1/ D 0, and is not a product. If we apply [14, Lemma 8.10] to A1; : : : ;Ar ,
then we get SFH.M1; 
1/� SFH.M; 
 /. So we can use Proposition 4.16 to get a taut
decomposition .M1; 
1/ S .M 0

1
; 
 0

1
/ such that

rk.SFH.M 0
1; 

0
1//� rk.SFH.M1; 
1//=2< 2k :

Thus, using the induction hypothesis for .M 0
1
; 
 0

1
/, we see that d.M 0

1
; 
 0

1
/� 2k � 2,

and hence d.M; 
 /� 2k .

Remark 7.7 In the above proof, every decomposition can be chosen to be well
groomed, except possibly the one along A, which is a disjoint union of product annuli.
If every decomposition were well groomed, then we could even claim the existence
of a depth at most 2k taut foliation on .M; 
 /. Unfortunately, I have overlooked this
point in the proof of [14, Theorem 1.8], which leaves [14, Question 9.14] unanswered.
If one could make a sutured manifold reduced using a groomed decomposition, that
would give a positive answer to [14, Question 9.14].

Corollary 7.8 Suppose that K is a null-homologous knot in the rational homology
3–sphere Y , and

rk
� bHFK .Y;K;g.K//

�
< 2kC1:

Then the sutured manifold Y .K/ complementary to K has depth d.Y .K//� 2kC 1.
In particular, if k D 0, then K is fibred.
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Proof Let R be a minimal genus Seifert surface for K . By [14, Theorem 1.5],

SFH.Y .R//Š bHFK .Y;K;g.K//:

So Proposition 7.6 implies that d.Y .R//� 2k . Since we have the sutured manifold
decomposition Y .K/ RY .R/, we get d.Y .K// � 2k C 1. Finally, if k D 0, then
Y .R/ is a product, so K is fibred.

8 A seminorm on the homology of a sutured manifold

In this section, we are going to define a seminorm on H2.M; @M IR/ for a strongly
balanced sutured manifold .M; 
 /. Then we will show that it is nondegenerate if
.M; 
 / is taut, reduced, horizontally prime, and H2.M /D 0. Note that H2.M; @M /

is torsion free, and hence can be considered to be a subgroup of H2.M; @M IR/.

Definition 8.1 Let .M; 
 / be taut and strongly balanced. For t 2 T .M; 
 /, let
pt 2 H 2.M; @M IR/ denote the center of mass of P .M; 
; t/. Then the polytope
P .M; 
 /D P .M; 
; t/�pt is independent of t because of Lemma 3.12. Of course
the center of mass of P .M; 
 / is 0.

Proposition 8.2 Let .M; 
 / be taut and strongly balanced. Then for a homology class
˛ 2H2.M; @M IR/ the formula

y.˛/Dmaxf h�c; ˛ i W c 2 P .M; 
 / g

defines a seminorm on H2.M; @M IR/. It is nondegenerate if and only if

dim P .M; 
 /D b1.M /:

Remark 8.3 If t 2T .M; 
 /, then y.˛/D�c.˛; t/Chpt ; ˛ i. Furthermore, note that
for every k � 0 we have y.k˛/D ky.˛/, but in general y.˛/¤ y.�˛/ can happen.
Indeed, in [3, Example 8.5] we exhibit a family of sutured manifolds whose sutured
Floer homology polytopes are all centrally asymmetric. So in those examples y is not
symmetric.

Proof Since 0 is the center of mass of P .M; 
 /, and because P .M; 
 / is convex,
we have 0 2 P .M; 
 /. So y.˛/ � 0 for every ˛ 2H2.M; @M IR/. If y.˛/D 0 for
some ˛ ¤ 0, then P .M; 
 / lies in the hyperplane

fc 2H 2.M; @M IR/ W h c; ˛ i D 0g;

dim P .M; 
 / < dim H 2.M; @M IR/D b1.M /:thus
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On the other hand, if dim P .M; 
 / < b1.M /, then there is a hyperplane H containing
P .M; 
 /. There is also a nonzero homology class ˛ 2 H2.M; @M IR/ for which
hH; ˛ i D 0, ie, y.˛/D 0 and y is degenerate.

Suppose that ˛; ˇ 2H2.M; @M IR/. Then

y.˛Cˇ/Dmaxf h�c; ˛Cˇ i W c 2 P .M; 
 / g

Dmaxf h�c; ˛ iC h�c; ˇ i W c 2 P .M; 
 / g

�maxf h�c; ˛ i W c 2 P .M; 
 / gCmaxf h�c; ˇ i W c 2 P .M; 
 / g

D y.˛/Cy.ˇ/:

Remark 8.4 Notice that by construction �P .M; 
 / is the dual unit norm ball of the
seminorm y . That is, the polytope �P .M; 
 / is the unit ball of the dual seminorm y�

on H 2.M; @M IR/ defined by the formula

y�.c/Dmaxf h c; ˛ i W ˛ 2H2.M; @M IR/; y.˛/� 1 g:

Proposition 8.5 Suppose that .M; 
 / is taut, balanced, reduced, horizontally prime,
and H2.M /D 0. Then y is a norm on H2.M; @M IR/.

Proof Theorem 6.1 implies that dim P .M; 
 /D b1.M /, thus by Proposition 8.2 the
seminorm y is nondegenerate.

Remark 8.6 In [24], another seminorm is defined on H2.M; @M IR/, which we will
denote by xs . Given a properly embedded, compact, oriented, and connected surface
S �M , let

xs.S/Dmaxf 0;��.S/� I.S/ g;

and we extend xs to disconnected surfaces by taking the sum over the components.
For ˛ 2 H2.M; @M /, we define xs.˛/ as the minimum of xs.S/ for all properly
embedded, compact, oriented surfaces S that represent the homology class ˛ . Finally,
it is straightforward to show that xs extends to H 2.M; @M IR/.

As opposed to y , the Scharlemann norm xs is always symmetric. Hence it makes
sense to compare xs with the symmetrized seminorm

z.˛/D 1
2
.y.˛/Cy.�˛//:

In [3, Theorem 7.7], we show that z � xs . Somewhat surprisingly, in general z ¤ xs

by [3, Proposition 7.12].
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9 Sutured manifolds with M D S 1�D2

In this section, we will compute the sutured Floer homology of every sutured manifold
.M; 
 / with M D S1 �D2 . This will illustrate some of the techniques we have just
developed.

First, note that if such an .M; 
 / is taut, then s.
 / has to be a collection of n parallel
torus knots of type Tp;q . Here p denotes the number of times the curve on @M

goes around in the longitudinal direction. Furthermore, if p D 0, then R.
 / is
compressible, hence .M; 
 / is not taut. Since M is irreducible, if .M; 
 / is not taut,
then SFH.M; 
 /D 0. Also note that n is necessarily even. We will denote this sutured
manifold by T .p; qI n/.

Proposition 9.1 Let T .p; qI n/ be the sutured manifold defined above, and suppose
that nD 2kC2 for k � 0. Then there is an identification Spinc.T .p; qI n//ŠZ such
that the following holds.

(9-1) SFH.T .p; qI n/; i/Š

(
Z.

k
bi=pc/ if 0� i < p.kC 1/;

0 otherwise.

Moreover, in each Spinc –structure any two elements of SFH lie in the same relative
Maslov grading.

Proof We saw in Example 7.5 that SFH.T .1; 0I 4//ŠZ2 , where the two Z summands
lie in Spinc –structures whose difference is a generator l of H1.S

1�D2IZ/. Figure 4
shows a sutured diagram for T .1; 0I 4/.

Let .M1; 
1/ D T .1; 0I n/ and .M2; 
2/ D T .p; qIm/, and suppose that Ai is a
component of 
i for i D 1; 2. Now glue the annuli A1 �M1 and A2 �M2 such that
A1\R�.
1/ is identified with A2\R�.
2/. Then we obtain the sutured manifold
T .p; qI nCm�2/. If we decompose T .p; qI nCm�2/ along the separating product
annulus ADA1 DA2 , then we get the disjoint union of T .1; 0I n/ and T .p; qIm/.
Since A is a nice decomposing surface in T .p; qI nCm�2/, an application of Corollary
4.6 gives that

(9-2) SFH.T .p; qI nCm� 2//Š SFH.T .1; 0I n//˝ SFH.T .p; qIm//:

Using the above formula repeatedly for T .p; qIm/D T .1; 0I 4/, together with the fact
that SFH.T .1; 0I 4//Š Z2 , we get that

SFH.T .1; 0I n//Š
kO

jD1

Z2;
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x0 x1

˛

ˇ

Figure 4: A sutured diagram for T .1; 0I 4/

where nD 2kC2. It follows from Proposition 5.4 that there are generators x
j
0

and x
j
1

of the j –th Z2 factor in the above expression such that if ."1; : : : ; "k/; .�1; : : : ; �k/ 2

f0; 1gk , then

s.x1
"1
˝ � � �˝xk

"k
/� s.x1

�1
˝ � � �˝xk

�k
/D

kX
jD1

."j � �j / � l:

In other words, there is an identification between Spinc.T .1; 0I n// and Z such that
s.x1

"1
˝� � �˝xk

"k
/D

Pk
jD1 "j , which proves Equation (9-1) for .p; q/D .1; 0/. Indeed,

for every 0� i � k the number of generators whose Spinc –structure is i equals the
number of length k sequences of zeros and ones whose sum is i , which is

�
k
i

�
.

In light of formula (9-2), we only have to determine SFH.T .p; qI 2//. The lens space
L.p; q/ is obtained from .M; 
 /D T .p; q/ by gluing an S1 �D2 to M such that
the meridian f1g �D2 maps to one component, say ˛ , of s.
 /. Let the knot K be
the image of S1 � f0g in L.p; q/. Then the sutured manifold L.p; q/.K/ (see [13,
Example 2.4]) is exactly T .p; qI 2/. Hence we only have to find a knot diagram for
the knot K �L.p; q/. But this has already been done in [20, Proof of Proposition 1.8].
First, observe that K is isotopic to a curve on the Heegaard surface T 2 D S1 �S1

that intersects ˛ in a single point. Let ˇ be a meridian of M that intersects ˛ in
exactly p points. Then .T 2; ˛; ˇ/ is a Heegaard diagram for L.p; q/. As we go
around ˛ , label the points of ˛\ˇ with y0; : : : ;yp�1 . For 0� s � p� 1, let As be
the segment of ˛nfy0; : : : ;yp�1 g connecting ys and ysC1 , where yp is by definition
the same as y0 . Choose basepoints z and w on the two sides of Ap�1 . Then I claim
that .T 2; ˛; ˇ; z; w/ is a knot diagram defining K . Indeed, if we connect z to w in
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T 2 n ˛ with an arc, then w to z in T 2 n ˇ with a short arc that intersects ˛ in a
single point, then we obtain a simple closed curve on T 2 that intersects ˛ in a single
point, and hence is isotopic to the knot K . Let † be T 2 with two small open disks
removed around z and w . Then the previous argument implies that .†; ˛; ˇ/ is a
sutured diagram defining T .p; qI 2/.

It is immediate that
SFH.T .p; qI 2//Š Zp;

which is generated by y0; : : : ;yp�1 . Indeed, if we connect ys and ysC1 along ˛
using As and then on ˇ with an arbitrary curve, then we get a curve on † whose
homology class in H1.M / is l if 0 � s < p � 1, and is �.p � 1/l if s D p (this is
because components of @† represent ˙pl in H1.M /). So s.ysC1/� s.ys/D l for
0� s < p� 1. This verifies Equation (9-1) for nD 2 and .p; q/ arbitrary.

To get Equation (9-1) in general, glue .M1; 
1/DT .1; 0I n/ and .M2; 
2/DT .p; qI 2/

using formula (9-2), and apply Proposition 5.4 to see what happens to the Spinc grading.
If li denotes a generator of H1.Mi/ for i D 1; 2, then l1 is identified with pl2 when
we glue M1 and M2 along one of their sutures. Consider the decomposition

T .p; qI n/ A.M1; 
1/t .M2; 
2/:

Using the above, SFH..M1; 
1/t .M2; 
2// is supported on the rectangle

f0; : : : ; kg � f0; : : : ;p� 1g

inside the lattice Z2 generated by l1 and l2 . For the Spinc –structure corresponding to
the point .i; j / in the support, the Künneth formula gives

SFH..M1; 
1/t .M2; 
2/; .i; j //Š Z.
k
i /˝ZŠ Z.

k
i /:

Now we apply Proposition 5.4. The affine map

fAW Spinc..M1; 
1/t .M2; 
2//! Spinc.T .p; qI n//

can be identified with the projection from Z2 to Z given by fA.1; 0/ D p and
fA.0; 1/D 1. So for 0� i � k and 0� j � p� 1, we have fA.i; j /D pi C j . This
map is injective when restricted to the rectangle f0; : : : ; kg � f0; : : : ;p� 1g, hence

SFH.T .p; qI n/; fA.i; j //Š Z.
k
i /:

SFH.T .p; qI n/; s/Š Z.
k
bs=pc/This implies that

if 0� s � p.kC 1/, and is zero otherwise.
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The above argument actually tells us how to obtain an explicit sutured diagram for
T .p; qI n/. Let .†1; ˛1; ˇ1/; : : : ; .†k ; ˛k ; ˇk/ be k identical copies of the sutured
diagram shown in Figure 4, and introduce the notation .†0; ˛0; ˇ0/ for the diagram
defining T .p; qI 2/ described above. For 0� j < k , let cj be a fixed component of
@†j , and for 1 � h � k , let dh be a component of @†h distinct from ch . Then we
obtain † from

`k
jD0†j by identifying cj with djC1 for 0 � j < k . Finally, let

˛Df˛0; ˛1; : : : ˛k g and ˇ Dfˇ0; ˇ1; : : : ; ˇk g. Then .†;˛;ˇ/ is a sutured diagram
defining T .p; qI n/.

Every intersection point in T˛ \Tˇ is of the form ys �x1
"1
� � � � �xk

"k
, where 0 �

s � p�1 and ."1; : : : ; "k/ 2 f0; 1g
k . There is an identification Spinc.T .p; qI n//ŠZ

such that
s.ys �x1

"1
� � � � �xk

"k
/D sC "1C � � �C "k :

Therefore s.ys �x1
"1
� � � � �xk

"k
/D s.ys0 �x1

�1
� � � � �xk

�k
/ if and only if s D s0 and

"1C� � �C"k D �1C� � �C�k . Since we already know the total rank of SFH.T .p; qI n//
by Equation (9-2), this gives another, more direct proof of formula (9-1). To show that

(9-3) �.ys �x1
"1
� � � � �xk

"k
;ys �x1

�1
� � � � �xk

�k
/D 0

for any two intersection points lying in the same Spinc structure, it suffices to check
the following. If 1� t < k is fixed and �j � "j C 1 mod 2 for j D t and j D t C 1;
furthermore, �j D "j for every other 1 � j � k , then Equation (9-3) holds. To see
this, look at the region D in † n .

S
˛[

S
ˇ/ whose corners are xt

0
;xt

1
;xtC1

0
, and

xtC1
1

. This is obtained from the punctured bigons in †t and †tC1 containing ct and
dtC1 , respectively, by gluing ct to dtC1 . Let D be the domain whose multiplicity
in D is one and is zero everywhere else. Then D connects ys �x1

"1
� � � � �xk

"k
and

ys �x1
�1
� � � � �xk

�k
; moreover, Lipshitz’s Maslov index formula [14, Proposition 7.3]

tells us that �.D/D 0. This concludes the proof of our claim about the relative Maslov
index being zero within a given Spinc structure.

The same way as we proved formula (9-2), we can obtain the following.

Proposition 9.2 Suppose that .M; 
 / is a balanced sutured manifold, and let 
0 be a
component of 
 . If .M; 
1/ is obtained from .M; 
 / by adding two sutures parallel to

0 , then

SFH.M; 
1/Š SFH.M; 
 /˝Z2:

Remark 9.3 In [3, Chapter 8], we compute SFH.M; 
; s/ for every s 2 Spinc.M; 
 /

when .M; 
 / is a sutured manifold complementary to a pretzel surface, so M is a
genus two handlebody. These examples illustrate well how complicated the support
S.M; 
 / of sutured Floer homology can be in general.
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[17] P Ozsváth, Z Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004)
311–334 MR2023281
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