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The tree of knot tunnels

SANGBUM CHO

DARRYL MCCULLOUGH

We present a new theory which describes the collection of all tunnels of tunnel
number 1 knots in S3 (up to orientation-preserving equivalence in the sense of Hee-
gaard splittings) using the disk complex of the genus–2 handlebody and associated
structures. It shows that each knot tunnel is obtained from the tunnel of the trivial
knot by a uniquely determined sequence of simple cabling constructions. A cabling
construction is determined by a single rational parameter, so there is a corresponding
numerical parameterization of all tunnels by sequences of such parameters and some
additional data. Up to superficial differences in definition, the final parameter of
this sequence is the Scharlemann–Thompson invariant of the tunnel, and the other
parameters are the Scharlemann–Thompson invariants of the intermediate tunnels
produced by the constructions. We calculate the parameter sequences for tunnels
of 2–bridge knots. The theory extends easily to links, and to allow equivalence of
tunnels by homeomorphisms that may be orientation-reversing.

57M25

Introduction

In this work we present a new descriptive theory of the tunnels of tunnel number 1

knots in S3 , or equivalently, of genus–2 Heegaard splittings of tunnel number 1 knot
exteriors. At its heart is a bijective correspondence between the set of equivalence
classes of all tunnels of all tunnel number 1 knots and a subset of the vertices of a
certain tree T . In fact, T is bipartite, and the tunnel vertex subset is exactly one of its
two classes of vertices. The construction of T uses the disk complex of the genus 2

handlebody, and T is a quotient of a spine of the subcomplex of nonseparating disks.
The tree and its associated objects have a rich combinatorial structure. The work in
this paper is a first step toward understanding how that structure is manifested in the
topology of tunnel number 1 knots.

The theory has many consequences. It shows that every tunnel can be obtained by
starting from the unique tunnel of the trivial knot and performing a uniquely determined
sequence of simple constructions. Each construction is determined by a rational
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parameter, which is essentially a Scharlemann–Thompson invariant [26]. This gives a
natural numerical parameterization of all tunnels. We have computed this sequence of
rational invariants for all tunnels of 2–bridge knots and torus knots.

The theory adapts easily to include tunnels of tunnel number 1 links, and to allow
orientation-reversing equivalence.

The next two sections provide overviews before beginning the actual development of
the theory. Section 1 emphasizes the context of the work, while Section 2 summarizes
the main ideas and results of the paper and the contents of the individual sections.

The second author was supported in part by NSF grant DMS-0802424.

1 Context of the work

There are several equivalent definitions of a tunnel for a knot K in S3 . One is that
a tunnel is a 1–handle attached to a regular neighborhood of K in S3 to produce a
genus–2 handlebody that is unknotted, that is, one of the handlebodies of a genus–2

Heegaard splitting of S3 . Two such configurations are equivalent tunnels when the
handlebodies are isotopic taking the copy of K in one handlebody to the corresponding
copy in the other. Alternatively, one may think of a tunnel as an arc ˛ meeting K

only in its endpoints, such that a regular neighborhood of the “� –curve” K [ ˛ is
unknotted. The equivalence on such arcs must then allow not only isotopy but also
“sliding,” where the two endpoints can meet and pass through each other.

There is a stronger notion of equivalence, in which the isotopies and sliding must
preserve the knot at all times. All of our work uses the weaker notion.

If one removes a small tubular neighborhood of K from the genus–2 handlebody
produced by a tunnel, the remaining compression body and its complementary genus–2

handlebody form a genus–2 Heegaard splitting of the knot exterior, in the sense of
Heegaard splittings of 3–manifolds with boundary. Indeed, the equivalence classes
of knot tunnels correspond exactly to the equivalence classes up to homeomorphism
of genus–2 Heegaard splittings of knot exteriors. For closed 3–manifolds, genus–0

Heegaard splittings are trivial, and genus–1 splittings are very restrictive, forming
only lens spaces (including S3 and S2 �S1 ), while genus–2 splittings are already a
very complicated class. In this context, the Heegaard splittings coming from tunnel
number 1 knots might be considered to be a special class of “genus–11

2
” splittings,

an intermediate case where one might hope to find structure restricted enough to be
tractable, but rich enough to be of mathematical interest.
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The historical development of the subject is consistent with this hope. An impres-
sive amount of geometric theory of tunnel number 1 knots has been developed by a
number of researchers. Recently, a general picture began to emerge, through work of
M Scharlemann and A Thompson [26] which defines a rational invariant that detects a
kind of cabled structure of K near the tunnel. One of the applications of our work is a
complete clarification of how their invariant works and what information it is detecting.
As mentioned above, it extends to a sequence of rational invariants which determine
a unique sequence of simple constructions that produce the tunnel. These rational
invariants, plus a bit more information, give a natural numerical parameterization of all
knot tunnels.

Other recent work in the subject has begun to utilize connections between tunnel number
1 knots and the curve complex of the genus–2 surface. The curve complex provides an
important measure of complexity of Heegaard splittings, called the (Hempel) distance.
Applying it to the splittings that correspond to knot tunnels, J Johnson and A Thompson
[15; 16] and Y Minsky, Y Moriah and S Schleimer [21] have obtained results on
bridge number and other aspects of tunnels. In [4], we use our theory to define a new
distance-type invariant for knot tunnels, the “depth”, that is finer than distance (depth
can be large even when distance is small). The depth invariant figures prominently
in our exploration of bridge numbers of tunnel number 1 knots in [5]. In particular,
it allows substantial improvements of known estimates of the growth rate of bridge
number as distance increases.

There are additional reasons to believe that the class of tunnel number 1 knots is a
nexus of interesting mathematical objects. The fundamental group of the genus–2

handlebody is the free group on two generators F2 , and because of this, the mapping
class group of the genus–2 handlebody is related to the automorphism group Out.F2/

and thereby to the linear groups SL2 , which are very special and whose theory differs
in many respects from SLn with n � 3. It will be evident that the tree T that is
the central object in our theory carries much of the structure of the well-known tree
associated to PSL2.Z/.

2 Summary of the results

In this section, we will give an overview of the theory and applications developed in
this paper.

Let H be an unknotted genus–2 handlebody in S3 . By D.H / we denote the 2–
dimensional complex whose vertices are the isotopy classes of nonseparating properly-
imbedded disks in H . A set of vertices spans a simplex of D.H / when they have
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pairwise disjoint representatives. In the first barycentric subdivision D0.H / of D.H /,
the span of the vertices that are not vertices of D.H / is a tree �T . Each vertex of �T
is either a triple of (isotopy classes of) disks in H , or a pair. Figure 1 below shows a
small portion of D.H / and �T .

Each tunnel of a tunnel number 1 knot determines a collection of disks in H as follows.
The tunnel is a 1–handle attached to a regular neighborhood of the knot to form an
unknotted genus–2 handlebody. An isotopy carrying this handlebody to H carries a
cocore 2–disk of that 1–handle to a nonseparating disk in H . The indeterminacy of
this process is the group of isotopy classes of orientation-preserving homeomorphisms
of S3 that preserve H . This is the Goeritz group G , which we discuss in Section 5
below. In particular, we will recall work of M Scharlemann [24] and E Akbas [2] that
shows that G is finitely presented, and even provides a simple presentation of it.

Since G is exactly the indeterminacy of the cocore disk, moved to H , it is essential
to understand the action of G on D.H /. This action is closely related to a central
concept of our viewpoint, called primitivity. A disk � in H is primitive if there exists
a properly imbedded disk � 0 in the complementary handlebody S3�H such that the
circles @� and @� 0 in @H intersect transversely in a single point. Viewed as tunnels,
primitive disks are exactly the tunnels of the trivial knot, and are all equivalent. The
portions of D.H / and �T corresponding to primitive disks form the “primitive region,”
in particular the pairs and triples of primitive disks span a G–invariant subtree �T 0

of �T called the primitive subtree. The primitive subtree �T 0 is isomorphic to the tree
used by Scharlemann and Akbas to understand the Goeritz group. As explained in
Section 5 below, the 2–complex used by Scharlemann imbeds in a very natural way
into D.H /, in such a way that it deformation retracts to �T 0 (see Figure 2). Indeed, it
is fair to say that �T 0 is the Scharlemann–Akbas tree. This viewpoint leads to a new
proof of the main results of [24] and [2] that avoids many of the difficult geometric
arguments of those important papers. This recasting of their work is carried out by the
first author [3].

Using this viewpoint, it is not difficult to analyze the action of G on D.H / and �T . The
action of G on the primitive structures is as transitive as possible, while the action of G
on the nonprimitive structures has stabilizers that are as small as possible—usually only
the order 2 subgroup generated by the “hyperelliptic” element which acts trivially on
all of D.H /. This gives a picture of D.H /=G as a tiny primitive region, together with
additional portions which look exactly as they did in D.H /. Figure 4 below shows the
structure of D.H /=G and �T =G near the primitive region. The quotients D.H /=G
and �T =G are described precisely in Section 10, after preliminary work which provides
a useful framework for that discussion and is also used throughout the rest of the paper.
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The tree T discussed in the introduction is defined to be �T =G . The vertices of
D.H /=G are not in T , but their links in the barycentric subdivision D0.H /=G are
subcomplexes of T . These links are infinite trees. In T , there is a vertex �0 which is
the unique G–orbit of a triple of primitive disks in H (or dually it represents a planar
� –curve in S3 ). For each vertex � of D0.H /=G that is the image of a vertex of D.H /,
ie for each tunnel, there is a unique shortest path in T from �0 to the vertex in the link
of � that is closest to �0 . This closest vertex is a triple, called the principal vertex of � ,
and the path is the principal path of � . Figure 8 below illustrates these structures.

Those familiar with [26] will not be surprised to learn that the disks in the principal
vertex, other than � itself, are the disks �C and �� used in the definition of the
Scharlemann–Thompson invariant. That is, the principal vertex of � is f�C; ��; �g
(Lemma 14.1).

The principal path and principal vertex of � , along with the surrounding structure of
D.H /=G , encode a great deal of geometric information about the tunnel � and the knot
K� of which it is a tunnel. In Section 13 we examine how the sequence of vertices in the
principal path corresponds to a sequence of constructions of a very simple type, which
will look familiar to experts. In a sentence, the construction is “Think of the union of K

and the tunnel arc as a � –curve, and cable the ends of the tunnel arc and one of the arcs
of K in a neighborhood of the other arc of K .” Each of these “cabling constructions”
(often just called “cablings”) is determined by a rational “slope” parameter. For the first
cabling of the sequence, the indeterminacy coming from the Goeritz group necessitates
some special treatment; in particular, its parameter is a “simple” slope taking values
in Q=Z. Figures 9 and 10 below should give a fairly good idea of how cabling
constructions change a pair consisting of a knot and tunnel to a more complicated pair.

More precisely, the vertices in the principal path of � are a sequence of alternating
triples and pairs, which we write as �0 , �0 , �0[f�0g, �1; : : : , �n , �n[f�ng, where
�nD � . Denoting by .�I �/ the edge of T that goes from a pair � to an adjacent triple
�[ � , the exact information needed to describe a cabling construction is a succession
from .�i�1I �i�1/ to .�i I �i/ in the principal path. The first edge .�0I �0/ is special,
and by itself determines a “simple” cabling. The uniqueness of the principal path gives
one of our main results:

Unique Cabling Sequence Theorem 13.2 Let � be a tunnel of a nontrivial knot. Let
�0 , �0 , �0 [ f�0g, �1; : : : , �n , �n [ f�ng with �n D � be the principal path of � .
Then the sequence of nC 1 cablings consisting of the simple cabling determined by
.�0I �0/ and the cablings determined by the successions from .�i�1I �i�1/ to .�i I �i/

is the unique sequence of cablings beginning with the tunnel of the trivial knot and
ending with � .
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As detailed in Sections 7 and 8, an edge .�I �/ defines a coordinate system in which
each essential disk in H disjoint from the disks of � and not parallel to either of them
or to � is assigned a rational slope. In particular, the .�i I �i/–slopes of the �i , where �i

is the unique disk in �i�1��i , together with a special Q=Z–valued slope associated
to the initial .�0I �0/, determine the exact cabling constructions in the sequence. This
gives us a version of Unique Cabling Sequence Theorem 13.2 that describes the unique
cabling sequences as a parameterization of all tunnels:

Parameterization Theorem 12.3 Let � be a knot tunnel with principal path �0 , �0 ,
�0 [ f�0g, �1; : : : , �n , �n [ f�ng. Fix a lift of the principal path to D.H /, so that
each �i corresponds to an actual pair of disks in H .

(1) If � is primitive, put m0 D Œ0� 2Q=Z. Otherwise, let m0 D Œp0=q0� 2Q=Z be
the simple slope of �0 .

(2) If n � 1, then for 1 � i � n let �i be the unique disk in �i�1 � �i and let
mi D qi=pi 2Q be the .�i I �i/–slope of �i .

(3) If n� 2, then for 2� i � n define si D 0 or si D 1 according to whether or not
the unique disk of �i \�i�1 equals the unique disk of �i�1\�i�2 .

Then, sending � to the pair ..m0; : : : ;mn/; .s2; : : : ; sn// is a bijection from the set of
all tunnels of all tunnel number 1 knots to the set of all elements

..Œp0=q0�; q1=p1; : : : ; qn=pn/; .s2; : : : ; sn//�
Q=Z

�
[
�
Q=Z � Q

�
[
�S

n�2 Q=Z � Qn � C n�1
2

�
in

with all qi odd.

This is actually proven earlier than Unique Cabling Sequence Theorem 13.2, since it
does not require any interpretation of the principal path in terms of cabling constructions.

Section 14 explains how the Scharlemann–Thompson invariant is really the slope param-
eter for the final cabling construction—the mn in the Parameterization Theorem 12.3.
This rational number is called the principal slope of � . Due to differing definitions, the
invariants generally have different values, but they capture exactly the same geometric
information. Intuitively, the Scharlemann–Thompson invariant is “the slope of the disk
that the tunnel disk replaced as seen from the tunnel disk” while the principal slope is
“the slope of the tunnel disk as seen from the disk it replaced,” so it is not surprising that
they are related by a continued fraction algorithm, which is described in Proposition
14.4 and has been computationally implemented [7]. In particular, when one of them is
an integer, the other is also an integer, in fact, the negative of the first one.
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A tunnel produced from the tunnel of the trivial knot by a single cabling construction
is called a simple tunnel. These are exactly the “upper and lower” tunnels of 2–bridge
knots. According to the Parameterization Theorem 12.3, these are determined by a
single Q=Z–valued parameter m0 , and this is of course a version of the standard
rational parameter associated to the 2–bridge knot. Simple tunnels are examined in
Section 11.

A nonsimple tunnel produced by a cabling sequence in which one of the original
arcs of the trivial knot is retained is called a “semisimple” tunnel. In terms of the
parameterization, the simple and semisimple tunnels are exactly the tunnels with all
si D 0. Geometrically, the simple and semisimple tunnels are the “(1,1)” tunnels
of .1; 1/–knots (ie knots which can be put in 1–bridge position with respect to the
levels of a product neighborhood of an unknotted torus in S3 ). As arcs, they are
sometimes called “eyeglass” tunnels, meaning that the tunnel arc can be slid to an
unknotted circle. The “semisimple region” in D.H /=G appears to be where the more
complicated phenomena involving tunnels occur. Indeed, we do not know an example
of a knot with inequivalent tunnels which is not a .1; 1/–knot.

The tunnels of 2–bridge knots are examined in Section 15. It is known from work
of several mathematicians (see Kobayashi [17; 18], Morimoto and Sakuma [22] and
Uchida [27]) that a 2–bridge knot has at most four equivalence classes of tunnels
(not six, for us, since we are considering tunnels only up to equivalence, rather
than up to isotopy). Two of these are the upper and lower simple tunnels. The
others are semisimple tunnels, and in Section 15 we determine their exact cabling
sequences. Indeed, we have made software available [7] that computes them quite
effectively.

In [8], we have computed the cabling sequences for all tunnels of torus knots. In other
ongoing work [6], we have computed the cabling sequences for all .1; 1/–tunnels,
in terms of a description of its .1; 1/–knot as a braid of two points in the torus. A
complete translation between the braid word descriptions and the cabling slopes is
obtained and has been implemented computationally.

The minimal length of a simplicial path in the 1–skeleton of D.H /=G from a tunnel �
to the orbit of the primitive disks is called the depth of � . The simple and semisimple
tunnels are exactly the tunnels of depth 1. The depth invariant is used in our paper [5].
In particular, we show there that as a rather immediate consequence of work of Goda,
Scharlemann and Thompson [11] and Scharlemann and Thompson [26], the bridge
number grows exponentially with the depth. More precisely, we have the following
from [5]:
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Minimum Bridge Number Theorem For d � 1, the minimum bridge number of a
knot having a tunnel of depth d is given recursively by ad , where a1 D 2, a2 D 4 and
ad D 2ad�1C ad�2 for d � 3. Explicitly,

ad D
.1C
p

2/d
p

2
�
.1�
p

2/d
p

2
;

and consequently

lim
d!1

ad �
.1C
p

2/d
p

2
D 0:

The lower bound in the Minimum Bridge Number Theorem improves Lemma 2 of [15],
which is that bridge number grows linearly with Hempel distance. It also improves
Proposition 1.11 of [11], which shows that bridge number grows asymptotically at least
as fast as 2d .

In addition, [5] contains a strengthening of the Tunnel Leveling Theorem of [11], which
we call the Tunnel Leveling Addendum. It implies that for a knot having a tunnel with
a given sequence of invariants .s2; s3; : : : ; sn/ in the Parameterization Theorem 12.3,
the bridge number lies in an easily computable set containing 2m� 2 elements, where
sm is the first si that is equal to 1 (and mD nC 1 if all si D 0).

Our entire theory extends quite easily to links, as we discuss in Section 16. The cabling
constructions are expanded to allow cablings that produce links, which are terminal in
the sense that they do not allow further cabling constructions to be performed. The
Parameterization Theorem 12.3 holds as stated, except allowing the final qn to be even.
One application of the link version of the theory is a very quick proof of the fact that
the only tunnels of a 2–bridge link are its upper and lower tunnels [1; 19]. We also
show that a tunnel number 1 link with an unknotted component must have torus bridge
number 2 (Theorem 16.4).

Our entire theory also adapts easily to allow tunnel equivalences which may be
orientation-reversing homeomorphisms of S3 . In the Parameterization Theorem 12.3,
the cabling sequence of the mirror image of a tunnel � has the same parameters as �
except that the slopes .m0; : : : ;mn/ become .�m0; : : : ;�mn/. This shows (Theorem
16.2) that apart from the tunnels of the trivial knot and trivial link, the only tunnel
that is equivalent to itself under an orientation-reversing homeomorphism of S3 is
the tunnel of the Hopf link. In fact, the Hopf link and its tunnel have some unusual
symmetries, which are analyzed in Section 17.
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3 The disk complex of an irreducible 3–manifold

Let M be a compact, irreducible 3–manifold. The disk complex K.M / is the simplicial
complex whose vertices are the isotopy classes of essential disks in M , such that a
collection of k C 1 vertices spans a k –simplex if and only if they admit a set of
pairwise-disjoint representatives.

This is a good point at which to mention that to avoid endless repetition of “isotopy
class”, we often speak of “disks” and other objects when we really mean their isotopy
classes, with the implicit understanding that we always choose representatives of the
isotopy classes that are the simplest possible with respect to whatever we are doing
(ie transversely intersecting in the minimum possible number of components, and so
on). A “unique” disk means a unique isotopy class of disks. We often omit other
formalism that should be obvious from context, so imbedded submanifolds are assumed
to be essentially and properly imbedded, unless otherwise stated, and isotopies are
assumed to preserve relevant structure. To initiate this massive abuse of language, we
say that a collection of kC 1 disks in M spans a k –simplex of K.M / if and only if
they are pairwise disjoint.

The following was proven in [20, Theorem 5.3]:

Theorem 3.1 If @M is compressible, then K.M / is contractible.

Denote by D.M / the subcomplex of K.M / spanned by the nonseparating disks.
From [20, Theorem 5.4], we have:

Theorem 3.2 If M has a nonseparating compressing disk, then D.M / is contractible.

The basic idea of these theorems is that, fixing a base disk D0 , one can start at any
disk D and move steadily “closer” to D0 , in an appropriate sense, by repeatedly
surgering D along an intersection with D0 that lies outermost on D0 . Doing this with
a certain amount of care allows one to produce a null-homotopy for any simplicial map
of Sk into the complex. The arguments given in [20] are basically correct, but contain
some minor misstatements. A much improved treatment is given in [3].

4 The disk complex and its spine

Fix a standard unknotted genus–2 handlebody H � S3 . From now on, disks in H are
assumed to be nonseparating unless explicitly stated otherwise. Since at most three
isotopy classes in H may be represented by disjoint disks, D.H / has dimension 2.
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Figure 1: A portion of the nonseparating disk complex D.H / and the tree�T . Countably many 2–simplices meet along each edge.

A portion of D.H / is shown in Figure 1. An edge of D.H / is a pair of disjoint
nonisotopic disks in H and is called a meridian pair, or just a pair. Similarly, a
2–simplex of D.H / is a triple. A triple corresponds to a � –curve in H ; that is, a
union of three arcs meeting only in their common endpoints that is a deformation retract
of H . It is determined by the condition that each arc passes through exactly one of the
disks of the triple in one point. That arc is called the arc dual to the disk it meets, and
the disk is called the disk dual to the arc. We also say that the � –curve is dual to the
triple.

Also shown in Figure 1 is a tree �T which is a deformation retract of D.H /. It is
constructed as follows. Let D0.H / be the first barycentric subdivision of D.H /.
Denote by �T the subcomplex of D0.H / obtained by removing the open stars of the
vertices of D.H /. It is a bipartite graph, with “white” vertices of valence 3 represented
by triples and “black” vertices of (countably) infinite valence represented by pairs. The
valences reflect the fact that moving along an edge from a triple to a pair corresponds
to removing one of its three disks, while moving from a pair to a triple corresponds to
adding one of infinitely many possible third disks to a pair. The possible disjoint third
disks that can be added are called the “slope disks” for the pair.

The link of a vertex of D.H / in D0.H / is an infinite graph contained in �T , and
structurally very similar to �T , except that its white vertices have valence 2 rather than
valence 3.

It was proven in [20, Theorem 5.5] and in [3] that the link in D0.H / of each vertex of
D.H / is contractible. Combined with Theorem 3.2, this implies that:

Theorem 4.1 �T is a tree.

It is well known that complexes such as the disk complex admit actions of mapping
class groups, indeed this is one of the important motivations for studying them. The
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mapping class group �0.DiffC.H // acts on D.H /, simply by Œf � � hŒD0�; : : : ; ŒDk �i D

hŒf .D0/�; : : : ; Œf .Dk/�i. It is rather obvious that the quotient of �T is a single edge, so as
seen in [20], the Bass-Serre theory of group actions on trees shows that �0.DiffC.H //

is a free product with amalgamation. In particular, it is finitely generated, and an explicit
presentation can be worked out by examination of the vertex and edge stabilizers.

5 The Goeritz groups and the Scharlemann–Akbas tree

The Goeritz group G is the group of isotopy classes of orientation-preserving dif-
feomorphisms of S3 that take H onto itself. Since every orientation-preserving
diffeomorphism of S3 is isotopic to the identity, G is exactly the indeterminacy when
one takes an arbitrary unknotted handlebody in S3 and moves it to H by an isotopy.

At times, mostly in Section 16, we will use the extended Goeritz group G˙ , in which
the diffeomorphisms of S3 are allowed to reverse orientation.

Some very important recent work of M Scharlemann and E Akbas provides a precise
description of G . Their methodology is also of interest, and as we will see it can be
considerably simplified by using D.H /.

L Goeritz [12] gave generators for G , and M Scharlemann [24] provided a modern
proof that they do generate. That proof uses a 2–dimensional complex whose vertices
are isotopy classes of splitting spheres for H , that is, 2–spheres in S3 that intersect H

in one essential disk (necessarily a separating disk), up to isotopy through such spheres.
This complex, which we call the Scharlemann complex, is rather difficult to work with,
since the adjacency condition for two spheres in the complex is not disjointness—this
condition would not work, because vertices with disjoint representatives are equal, and
the complex would be a discrete set. Instead, one must use minimal intersection, that
is, the intersections of the spheres with @H meet in only 4 points. The Goeritz group
acts on the Scharlemann complex in the usual way, with quotient a finite complex
and with finitely generated stabilizers. Using highly nontrivial geometric arguments,
Scharlemann proved:

Theorem 5.1 (Scharlemann) The Scharlemann complex is connected.

It follows by well-known algebraic considerations that G is finitely generated.

By additional complicated geometric arguments, E Akbas [2] obtained the following:

Theorem 5.2 (Akbas) The natural 1–dimensional deformation retract of the Scharle-
mann complex is a tree.
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Akbas worked out the vertex and edge stabilizers of the tree, enabling him to give a
pleasantly transparent presentation of G .

It turns out that the work of Scharlemann and Akbas is intimately related to the disk
complex and begins to give insight into the role of �T . Recall that a disk � in H is
called primitive when there exists a properly imbedded disk � 0 in the complementary
handlebody S3�H such that the circles @� and @� 0 in @H intersect transversely in a
single point. We call � 0 a dual disk of � .

A primitive pair (respectively, primitive triple) is a pair (respectively, triple) of disjoint
(nonisotopic) primitive disks. The splitting spheres for H correspond exactly to the
primitive pairs. For a splitting sphere cuts H into two unknotted solid tori, each
containing a unique nonseparating disk which is primitive. On the other hand, any
primitive pair can be shown [3, Lemma 2.2] to have a unique pair of dual disks that are
disjoint from each other and each disjoint from the other disk of the primitive pair, and
the splitting sphere is the boundary of a small regular neighborhood of the union of
either of the disks with its dual.

The primitive subtree eT 0 is the subcomplex of eT spanned by the vertices that are
primitive pairs and primitive triples. It is routine to check that two splitting spheres
represent adjacent vertices in the Scharlemann complex if and only if the corresponding
primitive pairs are contained in a primitive triple. So sending a splitting sphere to its cor-

Figure 2: A portion of the nonsimplicial imbedding of the Scharlemann
complex into D.H / . The vertices of the complex map to the vertices of
D0.H / that are primitive pairs, and each 2–simplex is spanned by the three
primitive pairs contained in a primitive triple.

responding primitive pair determines a (nonsimplicial) imbedding of the Scharlemann
complex into D.H /, as shown in Figure 2, and there is an obvious deformation from
the image to the primitive tree. In this way, the Scharlemann–Akbas tree is naturally
identified with the primitive subtree �T 0 of �T .
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Notice that our observations to this point show that Scharlemann’s connectedness
theorem immediately implies Akbas’s tree theorem, since any connected subcomplex of
a tree is a tree; also, Scharlemann’s theorem verifies that the primitive subtree really is
a tree. But there is now an independent proof that �T 0 is a tree, based on the following
key fact about primitive disks [3, Theorem 2.3]:

Theorem 5.3 Let � and � be primitive disks in H which intersect transversely. Let
�1 and �2 be the disks that result from surgering � along an intersection arc which is
outermost on � . Then �1 and �2 are primitive.

The proof of Theorem 5.3 is not trivial, but neither is it lengthy. Theorem 5.3 easily
implies that �T 0 is contractible, so implies the theorem of Akbas, and it is straightforward
to work out the stabilizers and recover his presentation of G .

We remark that Theorem 5.3 is not true for higher genera, so does not provide a proof
that the higher-genus Goeritz groups are finitely generated.

6 Tunnels as disks

Consider a knot tunnel, regarded as a 1–handle attached to a regular neighborhood
of the knot. Since S3 has a unique Heegaard splitting of each genus, we can move
the neighborhood of the knot and the 1–handle by isotopy to be the standard H . The
cocore 2–disk of the 1–handle is then a nonseparating disk in H , ie a vertex of D.H /.
Allowing for the indeterminacy in this process measured by the Goeritz group, we have
our definition of a knot tunnel:

Definition 6.1 A tunnel is a G–orbit of disks in H . Thus the tunnels correspond
exactly to the vertices of the quotient D.H /=G of D.H / by the action of G .

Notation 6.2 If � is a tunnel, then it is a tunnel of the knot K� which is a core of
the solid torus obtained by cutting H along � . We regard K� as defined only up to
isotopy in S3 .

Figure 3 shows tunnels for the right-handed trefoil and figure-8 knots.

One may also consider tunnels and knots up to equivalence that may be orientation-
reversing, simply by replacing G by G˙ in the definition of tunnel. This requires only
very minor modifications to the theory. In our exposition, we usually consider only
orientation-preserving equivalence, but will occasionally point out what happens in the
other case.
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Figure 3: Knot tunnels for the right-handed trefoil and figure-8 knots.

Our definition of tunnel agrees with the standard definition of “equivalent” knot tunnels
using a 1–handle attached to a regular neighborhood of a knot, and hence with any
definition, but it is still worth thinking through the tunnel arc viewpoint. Given a tunnel
arc attached to the knot, take a regular neighborhood of the knot and arc and move it
to H by isotopy. The knot and tunnel arc form a � –curve, and the disks dual to the
arcs of the � –curve form a triple that contains � . Conversely, any triple containing
� determines such a � –curve whose arcs not dual to � form (a knot isotopic to) K� .
Thus the isotopy classes in S3 of arcs that determine the tunnel correspond exactly to
the white vertices of the link of � in D0.H /=G . The moves usually called “sliding”
change the � –curve and correspond to moving through the link of � in D0.H /=G .

It is not difficult to see that there is a unique G–orbit �0 of primitive disks. Using [3,
Lemma 2.2], one can show that there is a unique G–orbit �0 of primitive pairs. Also
from [3], there is a unique orbit �0 of primitive triples.

The quotient D0.H /=G inherits a triangulation from D0.H /. The quotient of �T by
the action of G is a subcomplex of D0.H /=G . We call this quotient T . A portion of
D.H /=G and T is shown in Figure 4.

Theorem 6.3 T is a tree.

Proof Since all primitive triples are equivalent, and the three pairs in a triple are also
equivalent under the stabilizer of the triple, the quotient of �T 0 by G is the single edge
h�0; �0i. Since fT0 is connected, each point p of �T ��T 0 has a well-defined minimal
distance from �T 0 , which is just the length of the unique shortest arc in �T from p to�T 0 (as is usual, we use a path metric with the length of each edge equal to 1). This arc
must end at a primitive pair, since all edges incident to a primitive triple lie in �T 0 . The
action of G leaves �T 0 invariant, hence preserves the shortest distance, so the image of
the arc from p to �T 0 is the unique shortest arc from the image of p to �T 0 . Thus T
has a unique arc from each point to �0 , so T is a tree.

In Section 9 we will analyze D.H /=G and T in quite a bit more detail, after setting
up some useful terminology in the next two sections.
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�0

�0

�0
…

Figure 4: A portion of D.H /=G and T near the primitive orbits

7 Slope disks, cables and waves

Throughout this section, we consider a pair of disks � and � (for “left” and “right”)
in H , as shown abstractly in Figure 5. Since � and � are arbitrary, the true picture
in S3 might look very different from the standard-looking pair shown here. Let B

be H cut along �[ � . The frontier of B in H consists of four disks which appear
vertical in Figure 5. Denote this frontier by F , and let † be B \ @H , a sphere with
four holes.

� �

W

Figure 5: A slope disk and associated structures. The disk W is one of the
four waves that correspond to the slope disk.

Definition 7.1 A slope disk for f�; �g is an essential disk, possibly separating, which
is contained in B and not isotopic to any component of F .

The boundary of a slope disk always separates † into two pairs of pants, conversely
any loop in † that is not homotopic into @† is the boundary of a unique slope disk. If
two slope disks are isotopic in H , then they are isotopic in B .
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An arc in † whose endpoints lie in two different boundary circles of † is called a
cabling arc, and a pair of disjoint cabling arcs whose four endpoints lie in the four
different boundary circles of † is called a cable. Figure 5 shows a cable disjoint from
a slope disk. A slope disk is disjoint from a unique cable. On the other hand, each
cabling arc ˛ determines a unique slope disk: if the endpoints of ˛ lie in the frontier
disks F1 and F2 of B , then the frontier of a regular neighborhood of F1 [ ˛ [F2

in B is the slope disk. Finally, each cabling arc determines a unique cable, the cable
disjoint from the slope disk that it determines.

A wave is a disk in B that meets F in a single arc and is essential in .B;F /, that is, not
parallel through such disks to a disk in F . A wave W determines a unique slope disk:
if F0 is the component of F that meets W , then the frontier of a regular neighborhood
of F0 [W in B consists of two disks, one a slope disk and the other parallel to a
component of F . A cabling arc ˛ determines two waves: if F1 and F2 are the disks
of F that contain a boundary point of ˛ , the frontier of a regular neighborhood of each
˛[Fi in B is a wave which determines the same slope disk as ˛ does. A slope disk is
produced by any of four waves, the two pairs produced from a cabling that determines
the slope disk. One such wave is shown in Figure 5.

In summary:

(1) A slope disk determines a cable, either of whose cabling arcs determines the
slope disk and hence the other cabling arc of the cable.

(2) A slope disk determines four waves, each of which determines the slope disk.

Since disjoint slope disks in B are parallel, disjoint waves in B determine the same
slope disk. If E is any disk in H , separating or not, which intersects F minimally,
then each arc of E \F that is outermost on E cuts off a subdisk of E that is a wave.
We call it a wave of E with respect to f�; �g.

Any disk D in H , separating or not, determines a unique slope disk of f�; �g, provided
that D itself is not one of � or � . If it is not already a slope disk, then it has a wave
with respect to f�; �g, which determines a unique slope disk of f�; �g. Since all waves
of D with respect to f�; �g are disjoint, this slope disk is well-defined, and we call
it the slope disk of f�; �g determined by D . Of course if D is already slope disk for
f�; �g, then we define the slope disk determined by D to be D itself.

8 General slope coordinates

In this section, we will explain how each choice of nonseparating slope disk for a pair
�D f�; �g determines a correspondence between Q[ f1g and the set of all slope

Geometry & Topology, Volume 13 (2009)



The tree of knot tunnels 785

disks of �. As we saw in Section 7, such a correspondence associates a value to each
cabling arc, cable and wave as well. In fact, it will be most convenient to use cabling
arcs to define the value, as the method is simply a version of the standard procedure
for associating a parameter to a rational tangle.

Let F and † be as in the previous section. Fixing a nonseparating slope disk � for �,
we will write .�I �/ for the ordered pair consisting of � and � .

Definition 8.1 A perpendicular disk for .�I �/ is a disk �? with the following prop-
erties:

(1) �? is a slope disk for �.

(2) � and �? intersect transversely in one arc.

(3) �? separates H .

There are infinitely many choices for �? , but because H � S3 there is a natural way
to choose a particular one, which we call �0 . It is illustrated in Figure 6. To construct
it, start with any perpendicular disk and change it by Dehn twists of H about � until
the core circles of the complementary solid tori have linking number 0 in S3 .

�C �C

�� ��

�

�

�

K� K�

�0

Figure 6: The slope-zero perpendicular disk �0 . It is chosen so that K� and
K� have linking number 0 .

For calculations, it is convenient to draw the picture as in Figure 6, and orient the
boundaries of � and �0 so that the orientation of �0 (the “x–axis”), followed by the
orientation of � (the “y –axis”), followed by the outward normal of H , is a right-hand
orientation of S3 . At the other intersection point, these give the left-hand orientation,
but we will see that the coordinates are unaffected by changing the choices of which of
f�; �g is � and which is � , or changing which sides are C and which are �, provided
that the C sides both lie on the same side of �[ �[ � in Figure 6.
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Let �† be the covering space of † such that:

(1) �† is the plane with an open disk of radius 1=8 removed from each point with
half-integer coordinates.

(2) The components of the preimage of � are the vertical lines with integer x–
coordinate.

(3) The components of the preimage of �0 are the horizontal lines with integer
y –coordinate.

Figure 7 shows a picture of †, and a picture of �† showing a fundamental domain for
the action of its group of covering transformations, which is the orientation-preserving
subgroup of the group generated by reflections in the half-integer lattice lines (that
pass through the centers of the missing disks). Each circle of @�† double covers a
circle of @†. The curves in † labeled �˙ , �˙ , � and �0 are the boundaries of the
corresponding disks in H .

�C �� �C ��

�C �� �C ��

�C �� �C ��

�C �� �C ��

�C ��

�C ��

�0

�

Figure 7: The covering space �† ! † and some lifts of a Œ1;�3�–
cabling arc. The shaded region is a fundamental domain.

If we lift any cabling arc in † to �†, the lift runs from a boundary circle of �† to one
of its translates by a vector .p; q/ of signed integers, defined up to multiplication by
the scalar �1. Thus each cabling arc receives a slope pair Œp; q�D f.p; q/; .�p;�q/g

and is called a Œp; q�–cabling arc. Of course, each slope disk, cable, or wave receives
a slope pair Œp; q� as well.

An important observation is that a Œp; q�–slope disk is nonseparating in H if and only
if q is odd. Both happen exactly when the corresponding cabling arc has one endpoint
in �C or �� and the other in �C or �� .
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Definition 8.2 The .�I �/–slope of a Œp; q�–slope disk, cabling arc, cable, or wave is
the rational number q=p .

Finally, we clarify why the choices of � and � and of C and � sides do not affect the
final slope. Interchanging � and � changes the covering space in Figure 7 by a vertical
translation by 1, while interchanging the C and � sides changes it by a horizontal
translation by 1. The orientation on one of �0 or � is reversed, but the set of lifts in
Figure 7 is preserved, so the slope pairs are unchanged.

In fact, any disk D in H , separating or not, has a well-defined .�I �/–slope provided
that D is not one of the two disks in �. We just define it to be the .�I �/–slope of
the slope disk of � determined by D . This has the following property, which will be
useful in Section 14.

Proposition 8.3 Let D and D0 be disjoint disks in H , separating or not, neither of
which is a disk in �. Then D and D0 have the same .�I �/–slope.

Proof If both are slope disks of �, they must be parallel in B . If only one is a slope
disk, then it is the unique slope disk disjoint from a wave with respect to � of the
other, again producing the same slope. If neither is a slope disk, then they have disjoint
waves with respect to � and hence the same .�I �/–slope.

9 Slope disks of primitive pairs

In this section, we will examine the set of slope disks for primitive pairs. In particular,
we will show that the equivalence classes modulo G correspond, by taking the “simple
slope,” to Q=Z[f1g.

Fix a primitive pair �0 D f�0; �0g. We use the notation of the previous section, but
add “0” subscripts as in †0 and �†0 to remind ourselves that we are in the primitive
case.

Akbas [2] gave explicit generators for the stabilizer G�0
of �0 under the action of G .

To describe them, we refer to Figure 6 (take �0 to be the disk � in Figure 6 and �0

to be �). The “hyperelliptic” involution ˛ rotates H by � about a horizontal axis
that meets H in three arcs that are diameters of �0 , �0 and � . The “half-twist” ˇ
is the identity on the half of H to the left of �0 and agrees with ˛ on the 1–handle
connecting �C

0
and ��

0
. It is a “left-hand” twist, taking the � in Figure 6, which

has slope pair Œ0; 1�, to a slope disk with slope pair Œ1; 1�, and ˇ2 is a Dehn twist
about �0 . Finally, the “rotation” 
 is an involution that rotates H by � about the
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axis � \ �0 , interchanging �0 and �0 and preserving each of � and �0 but acting
as reflection across the fixed axis on each of the latter two. As usual, we make no
notational distinction between these maps and their isotopy classes.

As is well known, the restriction of ˛ to @H is central in the mapping class group
of @H and acts trivially on every simple closed loop in @H . Consequently ˛ is a
central involution in G which acts trivially on every disk in H . It is easily seen that
ˇ
ˇ�1 D ˛
 . From [2] and also, using the present viewpoint, from [3], we have:

Proposition 9.1 The stabilizer G�0
is the subgroup generated by ˛ , ˇ and 
 . In fact,

G�0
is the semidirect product .C2 �Z/ ı C2 , where h˛; ˇi is the normal subgroup

C2 �Z and 
 acts by 
˛
�1 D ˛ and 
ˇ
�1 D ˛ˇ .

Now we analyze the action of G on the slope disks associated to �0 . Each cable
for �0 , and hence each slope disk for �0 , is invariant under ˛ and 
 . In terms of the
covering space �†0 in Figure 7, ˛ lifts to a horizontal translation by 1, and 
 lifts to
multiplication by �I .

To understand the action of ˇ , fix some primitive slope disk �0 for �0 , and consider
.�0I �0/–slope pairs. The associated perpendicular disk �0

0
is exactly the intersection

of H with the splitting sphere disjoint from �0[ �0 . A lift of ˇ to �†0 sends .x;y/
to .x C y;y/, so ˇ sends a cabling arc with slope pair Œp; q� to one with slope
pair ŒpC q; q�.

The next observation is that the action of G�0
is transitive on primitive slope disks

for �0 . Perhaps the easiest way to see this is that the ˇ–translates of �0 are the only
slope disks for �0 whose complementary tori in H are unknotted in S3 (for the
others, the core circle of the complementary torus is a nontrivial 2–bridge knot; see
Section 11).

We claim that slope disks of �0 are equivalent under G only when they are equivalent
under G�0

. We have just seen that the action of G�0
on the primitive slope disks of �0

is transitive. Consider two nonprimitive slope disks �1 and �2 of �0 that are equivalent
by an element g of G . The shortest path !i in �T from any vertex in the link of �i

in D0.H / to a vertex of the primitive tree �T 0 is the edge of �T from �0[f�ig to �0 .
Since the primitive tree is invariant, g must take !1 to !2 and hence g 2 G�0

.

Since ˛ and 
 act trivially on slope disks associated to �0 , while ˇ sends a Œp; q�–disk
to a ŒpC q; q�–disk, it follows that sending a Œp; q�–slope disk associated to �0 to
p=q induces a bijection from the set of G–orbits of slope disks associated to �0 to the
set Q=Z[f1g. The slope disk that corresponds to 1 is the one with slope pair Œ1; 0�,
that is, �0

0
.
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Since any other choice of �0 differs from our previous one by the action of a power
of ˇ , the bijection to Q=Z[f1g is independent of the choice of �0 . Moreover, this
shows that the primitive slope disks are those having slope pair of the form Œp; 1�, so
they correspond to Œ0� 2Q=Z[f1g.

The slope disks for a primitive pair play a key role in our theory, so we introduce some
special terminology.

Definition 9.2 A possibly separating disk in H is called simple if it is nonprimitive
and is a slope disk for a primitive pair.

Definition 9.3 The simple slope of a simple disk is the corresponding element Œp=q�2
.Q=Z�f0g/[f1g, which has q odd if and only if the disk is nonseparating.

10 The tree of knot tunnels

In this section we will analyze the quotient D.H /=G and the tree T . We begin with a
summary description, which we will establish in the remainder of this section. It may
be useful at this point to refer to Figure 4. To fix notation, let �0 be a primitive triple
f�0; �0; �0g, containing the primitive pair �0 D f�0; �0g. We recall that �0 denotes
the G–orbit of primitive disks, which is representable by any of �0 , �0 , or �0 . As
before, we will use �0 and �0 to denote their images in D.H /=G , the unique orbits
or primitive pairs and primitive triples.

(1) The quotient of the subcomplex of D.H / spanned by primitive vertices is a
single simplex … spanned by �0 , �0 and �0 . It is a copy of a 2–simplex of
D0.H / and meets T in the edge h�0; �0i D

�T 0=G .

(2) Each 2–simplex of D.H / having two primitive vertices and one simple vertex
gets identified with some other such simplices, then folded in half by the action
of some conjugate of the element 
 of Section 9, and the quotient half-simplex
is attached to … along the edge h�0; �0i. These half-simplices correspond to
the elements of Q=Z�f0g with odd denominator. The intersection of T with
such a half-simplex is a pair of edges.

(3) Each component of the remainder of D.H / descends injectively to D.H /=G . In
fact, it is identified with some other such components, and the result is attached
to a half-simplex of D.H /=G along the edge from �0 to the simple vertex. The
intersection of T with each component of the remainder of D.H /=G is exactly
a copy of the intersection of �T with a component of the remainder of D.H /.
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Now we present more detail of this description. Part (1) should be clear since the action
of G is transitive on primitive triples, and the stabilizer of �0 acts as the permutation
group on the three disks in �0 .

Consider a 2–simplex of D.H / which has �0 and �0 as two of its vertices, and third
vertex a simple disk. We saw in Section 9 that the generator ˛ of G�0

acts trivially
on every 2–simplex, and the generator ˇ preserves each of �0 and �0 , but acts on
slope disks for �0 by sending the disk with slope pair Œp; q� to the one with slope
pair ŒpC q; q�. Finally, 
 interchanges �0 and �0 , while preserving each slope disk
associated to �0 . So the effect of G�0

on the collection of 2–simplices of D.H /

having �0 , �0 , and a simple disk as vertices is to identify those for which the ratio p=q

differs by an integer, and to fold the resulting 2–simplices in half, producing half-sized
simplices in D.H /=G with short edges attached to … along the 1–simplex h�0; �0i.
There is one such half-simplex for each orbit of nonseparating simple disks under G�0

,
and as seen in Section 9, these orbits correspond to the elements of Q=Z�f0g with
odd denominator.

To understand the remaining portions of D.H /=G , fix a simple disk � , and consider
a portion of D.H / attached to the 2–simplex h�0; �0; �i along the edge h�0; �i. We
know that the action of ˇ moves it to similar portions attached along edges of other
2–simplices having �0 and �0 as vertices. The action of 
 interchanges �0 and �0 ,
so interchanges the portion with another one attached along h�0; �i. Finally, ˛ acts
trivially. So the original portion descends injectively into D.H /=G onto a copy attached
along the edge h�0; �i.

The quotient of the primitive subtree �T 0 is the edge h�0; �0i of …. The rest of T
should be clear from the previous discussion and Figure 4. In T , the vertex �0 has
valence 1, and �0 has countable valence. Each additional edge emanating from �0

goes to a white vertex of valence 2, representing a triple with two primitive and one
simple disk as vertices. From then on, T looks exactly like a portion of �T .

We now have a complete picture of D.H /=G and T . It will also be useful to know
the stabilizers of the action of G on nonprimitive disks in H .

Proposition 10.1 The stabilizer in G of a nonseparating, nonprimitive disk � in H is
as follows:

(i) If � simple, then its stabilizer is conjugate to the subgroup C2 �C2 generated
by ˛ and 
 .

(ii) Otherwise, the stabilizer is C2 , generated by ˛ .
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Proof Suppose first that � simple. There is a unique primitive pair � which together
with � spans a 2–simplex of D.H /, for if there were two such pairs � and �0 , then
the 1–simplices h�[f�g; �i and h�0[f�g; �0i, connected by an arc in the primitive
tree, would form an imbedded loop in �T . By conjugation, we may assume that � is
the standard primitive pair �0 .

Let h be in G� . Since h also preserves the primitive subcomplex of D.H /, it must
preserve �0 . From Proposition 9.1, any element of G�0

can be written in the form
˛�1ˇn
 �2 , where the �i 2 f0; 1g and n 2Z. Since h preserves the slope pair of � , we
have nD 0 and part (i) follows.

For (ii), suppose that � is not simple. Let � be the vertex of the link of � in D0.H /

that is closest in �T to the primitive subtree �T 0 . Since the action of G fixes � and
preserves �T 0 , it must fix the path from � to the nearest point � of �T 0 (we will see in
Section 12 that the image of this path in D.H /=G , together with �0 , is the principal
path of � , illustrated in Figure 8). By conjugation, we may assume that �D�0 . Write
this path as �0 , �0[f�0g, �1 , �1[f�1g; : : : , � . As in part (i), any element of G�
fixes this path, so must be in the stabilizer h˛; 
 i of �0 . But 
 interchanges the disks
of �0 , so acts as reflection on the 2–simplex spanned by �0[f�0g and cannot fix �1 .
Part (ii) follows.

Corollary 10.2 Let h�1; �2; �3i be a 2–simplex of D.H /, with �3 nonprimitive. Sup-
pose that h�1; �2; �3i is stabilized by an element h of G other than the identity or ˛ .
Then �3 is simple, �1 and �2 are primitive, and h is conjugate to 
 or ˛
 .

Proof Of the three vertices h�1; �2i, h�1; �3i and h�2; �3i, let h�i ; �j i be the one
closest to �T 0 (possibly in �T 0 ), and let �k be the vertex of h�1; �2; �3i different from
�i and �j . The action of h must preserve h�i ; �j i, so must fix �k .

Since h�i ; �j i is the closest vertex to �T0 , �k is nonprimitive. Proposition 10.1 then
shows that �k is simple and h is conjugate to either 
 or ˛
 . Again since h�i ; �j i is
the closest vertex to �T0 , �i and �j must both be primitive, so �k D �3 and the corollary
is established.

11 Simple, semisimple and regular tunnels

A G–orbit of nonseparating simple disks is called a simple tunnel.

Proposition 11.1 The simple tunnels are exactly the “upper” and “lower” tunnels of
2–bridge knots.
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Proof Let †0 be as in Section 9. If � is a simple tunnel, then K� is isotopic to the
union of the cable in †0 determined by � , plus two arcs in @H �†0 , each crossing
�0 or �0 in one point. A dual arc to � is an arc cutting once across � and connecting
the cable arcs. This is a standard description of the upper and lower tunnels of 2–bridge
knots.

From Sections 9 and 10, we have immediately:

Proposition 11.2 The simple tunnels are classified up to equivalence by their simple
slopes in Q=Z�f0g, and up to possibly orientation-reversing equivalence by the pairs
fŒp=q�; Œ�p=q�g with q odd.

Of course, Œp=q� is a version of the standard rational invariant that classifies 2–bridge
knots. This will be examined further in Section 15.

Recall that a � –curve in S3 is called unknotted if its complement is an open handlebody
and planar if it is isotopic into a standard plane. The results of Section 10 allow us to
describe the automorphisms of nonplanar unknotted � –curves.

Corollary 11.3 Let ‚ be a nonplanar unknotted � –curve in S3 , and let h be an
orientation-preserving homeomorphism of S3 that preserves ‚. Then, either

(i) h is isotopic preserving ‚ to a homeomorphism which is the identity or the
hyperelliptic involution on a neighborhood of ‚, or

(ii) ‚ is the union of a 2–bridge knot and one of its simple tunnel arcs, and h

preserves the tunnel arc and interchanges the two arcs of the knot.

Proof By isotopy we may assume that ‚�H and h 2 G . In D.H /, the dual disks
of the arcs of ‚ span a 2–simplex, which is preserved by h. Since ‚ is nonplanar, the
dual disk of the tunnel is not primitive. Applying Corollary 10.2, either case (i) holds,
or the tunnel disk is simple and h is conjugate to 
 or to ˛
 , giving case (ii).

Remark 11.4 Corollary 11.3 holds as stated without the assumption that h is orienta-
tion-preserving, since Proposition 17.2 below shows that nonplanar unknotted � –curves
have no orientation-reversing automorphisms.

Corollary 11.3 gives immediately a result of D Futer [9]:

Theorem 11.5 (Futer) Let A be a tunnel arc for a nontrivial knot K � S3 . Then A

is fixed pointwise by a strong inversion of K if and only if K is a two-bridge knot and
A is its upper or lower tunnel.
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Definition 11.6 A tunnel � is called semisimple if � is not primitive or simple but �
lies in the link in D.H / of a primitive disk. It is called regular if it is neither primitive,
simple, or semisimple.

Recall that a .1; 1/–knot is a knot of the form t1 [ t2 , where t1 and t2 are trivial
(boundary parallel) arcs in the tori W1 and W2 of a genus–1 Heegaard splitting of
S3 . A .1; 1/–tunnel is a tunnel of a .1; 1/–knot which is representable by an arc t

in W1 which meets t1 in its endpoints and together with the arc that @t bounds in t1
forms a core circle of W1 . There is also a .1; 1/–tunnel obtained by the corresponding
construction in W2 , which may be equivalent to the one in W1 . The knot may have
more .1; 1/–tunnels coming from other .1; 1/–descriptions, or may have a regular
tunnel (as occurs for most torus knots). The following fact is well-known; see for
example [22, Proposition 1.3]. A fairly brief proof can be obtained using Gordon’s
Theorem [13]. We give an independent proof from our viewpoint.

Proposition 11.7 A tunnel is a .1; 1/–tunnel for a nontrivial .1; 1/–knot if and only
if it is simple or semisimple.

Proof Suppose first that � is simple or semisimple. By definition, � lies in a 2–
simplex f�; �; �g with � primitive. Let ˛ be a tunnel arc of K� for which the � –curve
K� [ ˛ is dual to this triple. Let N be a small regular neighborhood of � in H ,
and consider the solid torus W D H �N . Since � is primitive, W is unknotted.
The existence of a dual disk to � in S3�H shows that K� \N is a trivial arc in
S3�W . Moreover, since K� [˛ is dual to f�; �; �g, K� \W is a trivial arc in W

and .K� [˛/\W contains a core circle of W . Thus � is a .1; 1/–tunnel.

Conversely, suppose that � is a .1; 1/–tunnel. Then the union of one of the arcs of K�

with ˛ is a core circle of an unknotted solid torus, so the disk � or � dual to the other
arc of K� is primitive. Therefore � is simple or semisimple.

Remark 11.8 Most torus knots have a regular tunnel and two semisimple tunnels [8].
H Goda and C Hayashi [10] give an example of a nontorus knot with a regular tunnel
and a semisimple tunnel. We do not know an example of a knot that has more than one
regular tunnel.

12 Principal paths, principal vertices and parameterization

Using the coordinates from Section 8, we will obtain a natural numerical parameteri-
zation of all knot tunnels. First, we give an important definition.
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Definition 12.1 Let � be a tunnel. The principal vertex of � is the vertex of the link
of � in D0.H /=G that is closest to �0 in T . The principal path of � is the unique
path in T from �0 to the principal vertex of � .

Figure 8 illustrates the principal path and principal vertex of a typical tunnel.

�0 � �n�1 �n D �

�0

�0

�0

�n�1 �n

Figure 8: The principal path of � is the path in T from �0 to the principal
vertex �n[f�g of � . The “trailing” disk � , which is the disk of �n�1��n ,
plays an important role in the calculation of slope invariants.

Remark 12.2 We will see in Lemma 14.1 that the principal vertex of � is h�C; ��; �i,
where �C and �� is the pair of disks used in the definition of the Scharlemann–
Thompson invariant [26]. Thus in Figure 8, �n D f�

C; ��g.

We can now give the numerical parameterization.

Parameterization Theorem 12.3 Let � be a knot tunnel with principal path �0 , �0 ,
�0 [ f�0g, �1; : : : , �n , �n [ f�ng. Fix a lift of the principal path to D.H /, so that
each �i corresponds to an actual pair of disks in H .

(1) If � is primitive, put m0 D Œ0� 2Q=Z. Otherwise, let m0 D Œp0=q0� 2Q=Z be
the simple slope of �0 .

(2) If n � 1, then for 1 � i � n let �i be the unique disk in �i�1 � �i and let
mi D qi=pi 2Q be the .�i I �i/–slope of �i .

(3) If n� 2, then for 2� i � n define si D 0 or si D 1 according to whether or not
the unique disk of �i \�i�1 equals the unique disk of �i�1\�i�2 .

Then, sending � to the pair ..m0; : : : ;mn/; .s2; : : : ; sn// is a bijection from the set of
all tunnels of all tunnel number 1 knots to the set of all elements

..Œp0=q0�; q1=p1; : : : ; qn=pn/; .s2; : : : ; sn//�
Q=Z

�
[
�
Q=Z � Q

�
[
�
[n�2 Q=Z � Qn

� C n�1
2

�
in

with all qi odd.
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Proof To see that the slopes are well-defined, consider another lift of the principal path
of � , given by a sequence of vertices � 0

0
, �0

0
, �0

0
[f� 0

0
g, �0

1
; : : : , �0n , �0n[f�

0
ng of �T

in D.H /. There is an element h of the Goeritz group taking �0 to � 0
0

. Each of �0 and
� 0

0
is adjacent to only two primitive vertices, so h must take �0 to �0

0
. According to

Proposition 10.1, the stabilizer of �0
0

is generated by ˛ and (an appropriate conjugate
of) 
 ; since ˛ acts trivially on all of D.H /, h.�1/ and �0

1
must either be equal or

differ by the action of 
 . Since 
 preserves �0
0

, we may compose h with 
 if necessary
to assume that h also takes �1 to �0

1
. Again by Proposition 10.1, the stabilizer of each

remaining vertex of the two lifts is generated by ˛ , so h must carry the entire first lift
to the second. Since all slopes are defined to be invariant under the application of an
element of G , the vector .Œp0=q0�; q1=p1; : : : ; qn=pn/ is well-defined.

From the definitions in Sections 8 and 9, all qi must be odd, and any such vector as in
the theorem must occur for some path in D.H / that projects to the principal path of
some vertex � of D.H /=G .

Finally, the sequence .s2; : : : ; sn/ needs explanation. Referring to Figure 4, we note
that the value of m0 determines a unique simple tunnel �0 (unless m0 D Œ0�, which
determines the primitive tunnel), and the value of m1 determines a unique choice
of �1 . From then on, one must make a choice of which disk of �i�1 will be retained
in �i , and the number si simply records this choice. As with the slopes, this vector is
well-defined, and any sequence can be achieved.

Remark 12.4 Theorem 16.1 below is a version of the Parameterization Theorem 12.3
that includes tunnels of tunnel number 1 links. The main difference is that the final
slope mn may have qn even.

Remark 12.5 Reversing the orientation of S3 has the effect of negating each slope
invariant, so the classification of tunnels up to arbitrary homeomorphism of S3 is
obtained from that of the Parameterization Theorem 12.3 by adding the equivalence
.m0;m1; : : : ;mn/� .�m0;�m1; : : : ;�mn/.

13 The cabling construction

In this section, we will see how the tree T specifies a unique sequence of “cabling
constructions” that produce a given tunnel. Roughly speaking, a path of length 2 from
a white vertex to a white vertex corresponds to one cabling construction. The principal
path of � encodes the unique sequence of cabling constructions that produces � .

The cabling construction is simple and will look familiar to experts. In a sentence, it is
“Think of the union of K and the tunnel arc as a � –curve, and rationally tangle the
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ends of the tunnel arc and one of the arcs of K in a neighborhood of the other arc
of K .” We sometimes call this “swap and tangle,” since one of the arcs in the knot is
exchanged for the tunnel arc, then the ends of the other arc of the knot and the tunnel
arc are connected by a rational tangle.

The cabling operation is a very restricted special case of the “tunnel moves” described
in Goda, Scharlemann and Thompson [11]. A tunnel move means a replacement of K�

by any knot in @H that crosses @� exactly once. A tunnel move is a composition of an
arbitrarily large number of cabling constructions that retain the same arc of the knot.
As mentioned in Section 2, tunnel moves are studied from our viewpoint in [4].

We begin with some terminology.

Definition 13.1 Let � be a pair, and let � be a disk in H . We say that � is a meridian
pair of � when � is a slope disk of �. In this case, the pair .�I �/ corresponds to the
directed 1–simplex in T (or �T ) from � to �[f�g.

The meridian pairs of � correspond exactly to the white vertices of the link of �
in D0.H /.

Geometrically, .�I �/ corresponds to an isotopy class of tunnel arc of K� . In a � –curve
corresponding to �[ f�g, the union of the arcs dual to � is K� , and the arc dual
to � is a tunnel arc for K� . Here, isotopy class refers to the isotopy class in H when
working in �T , and the isotopy class in S3 (possibly moving K� along with the arc)
when working in T .

� � � 0
K� K� 0

�
�0

� � � � � 0 �

�

Figure 9: Schematic for the general cabling construction. In the middle ball
in the right-hand picture of H , the two vertical arcs form some rational tangle,
disjoint from the disk � 0 .

Moving through the tree determines a sequence of steps in which one of the two disks
of a pair f�; �g is replaced by a tunnel disk � , and a slope disk � 0 of the new pair
�0 (with � 0 nonseparating in H ) is chosen as the new tunnel disk. As illustrated in
Figure 9, the way the path determines the particular cabling operation is:

(1) The selection of � or � corresponds to which edge one chooses to move out of
the white vertex f�; �; �g.

(2) The selection of the new slope disk � 0 corresponds to which edge one chooses
to continue out of the black vertex �0 .
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�0 �1
�0

�1

�0

�1

�0 �0 �0
�1 �0

�1

� �0 � �1 �0 �1

�0

Figure 10: Examples of the cabling construction

Figure 10 shows the effects of a specific sequence of two cabling constructions, starting
with the trivial knot and obtaining the trefoil, then starting with the tunnel of the trefoil.

As usual, let �0 be a primitive pair, and let �0 be a simple disk for �0 , with simple
slope m0 . The segment .�0I �0/ determines a cabling construction starting with the
tunnel of the trivial knot and producing a 2–bridge knot. We call this a simple cabling
of slope m0 .

Now, consider a path of length 3 in T determined by the four vertices �, �[ f�g,
�0 , �0 [ f� 0g, that is, by a succession from .�I �/ to .�0I � 0/, as in Figure 9. Let �
be the unique disk of ���0 (the “trailing” disk). In the case shown in Figure 9, �
happens to be � , so that �0 D f�; �g. Denoting by m the .�0I �/–slope of � 0 , we call
the corresponding cabling construction a cabling of slope m. We require that � 0 ¤ � ,
that is, cablings do not allow one to “backtrack” in T . In terms of slope, such a cabling
would have mD1.

On the other hand, any cabling construction in H corresponds to an arc of length 3

starting at a black vertex in �T , and any cabling construction in S3 that does not produce
the trivial tunnel or a simple tunnel corresponds to such an arc in T . One of our main
theorems is now immediate; it is just a geometric restatement of the Parameterization
Theorem 12.3.

Unique Cabling Sequence Theorem 13.2 Let � be a tunnel of a nontrivial knot. Let
�0 , �0 , �0 [ f�0g, �1; : : : , �n , �n [ f�ng with �n D � be the principal path of � .
Then the sequence of nC 1 cablings consisting of the simple cabling determined by
.�0I �0/ and the cablings determined by the successions from .�i�1I �i�1/ to .�i I �i/

is the unique sequence of cablings beginning with the tunnel of the trivial knot and
ending with � .
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Of course, the values Œp0=q0� and qi=pi in the Parameterization Theorem 12.3 are
exactly the slopes of the cablings.

One of the slope parameters in the Unique Cabling Sequence Theorem 13.2 will be the
subject of Section 14:

Definition 13.3 Let � be a tunnel for a nontrivial knot. If � is not simple, then the
slope mn is called the principal slope of � . When � is simple, its principal slope is
undefined.

In some sense, the Unique Cabling Sequence Theorem 13.2 enables one to distinguish
any two tunnels. If one finds any sequence of cablings that produce the tunnel, it must
be the unique such sequence, and when the sequences are different for two tunnels, the
tunnels are inequivalent. Theoretically this sequence of cablings, ie the principal path,
can be determined algorithmically starting from a specific representative disk D �H

of the tunnel: Working in �T , fix a primitive pair �0 D f�0; �0g, and let W be a wave
for D with respect to �0 with W meeting, say, �0 . Let �0 be the slope disk of �0

determined by W . Then D has fewer components of intersection with �0[ �0 than
with �0[�0 . Put �1D f�0; �0g and repeat this process inductively using a wave of D

with respect to �1 . When D has no wave, one is at the principal vertex �n [ fDg.
Some of the initial disks �0 , �1; : : : may be primitive, but the portion starting with the
last �i [ f�ig that is a primitive triple will descend to the principal path in T . This
does not seem to be a practical algorithm.

14 The Scharlemann–Thompson invariant

The Scharlemann–Thompson invariant, developed in [26] and further used in [25; 23],
is essentially the principal slope of � . The construction in [26] proceeds as follows:
(1) Intersect a splitting sphere S with H , obtaining a separating disk E . (2) Take an
arc of E \ � outermost on E and cutting off a subdisk E0 of E . (3) Take as �C and
�� the two components of the frontier of a regular neighborhood of �[E0 that are not
parallel to � . Then the invariant is defined to be the .f�C; ��gI �/–slope of a wave
of E with respect to f�C; ��g. No selection of a canonical perpendicular disk �0 is
made, so the invariant is regarded as an element of Q=2Z since changing the choice of
�? changes the slope by a multiple of 2. We will regard the Scharlemann–Thompson
invariant as Q–valued, by using �0 as the perpendicular disk.

To understand the relation between the Scharlemann–Thompson invariant and the
principal slope, we use the following lemma.
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Lemma 14.1 Let � be a nonsimple tunnel of a nontrivial knot. Then:

(i) The disks called �C and �� in the definition of the Scharlemann–Thompson
invariant form the principal meridian pair of � . That is, the principal vertex of �
is f�; �C; ��g.

(ii) The Scharlemann–Thompson invariant is the .�nI �/–slope of the unique disk
�n of �n�1��n .

Proof Before beginning the proof, we remind the reader that any finite collection
of essential disks in H can be moved by isotopies so that any two of them intersect
minimally. A nice way to do this is to choose a hyperbolic structure on @H , move
the boundaries of the disks by isotopies to be geodesics, and eliminate simple closed
curve intersections of their interiors by further isotopies. If we choose our hyperbolic
structure so that the hyperbolic involution ˛ of H is an isometry, then the boundaries
will be invariant under ˛ , indeed every simple closed curve is invariant up to isotopy
so every geodesic is invariant. In particular, we may assume that ˛ preserves the
boundaries of � , �C , �� and E .

As usual, denote the vertices in the principal path of � by �0 , �0 , �0[f�0g, �1; : : : ,
�n , �n[f�g, so that �n[f�g is the principal vertex of � , and denote the unique disk
of �n�1��n by �n . We will first show that if � is any black vertex of the link of �
in D0.H /=G other than �n , then the .�I �/–slope of E is 1.

�0

�0

�0
�n

�n�1

�n

�n�1
�

��

�

�C

Figure 11: Verification that the principal vertex is f�C; ��; �g

Figure 11 illustrates the path in T from �0 to � if the principal vertex is not �[f�g.
It is possible that one of the disks of � equals a disk of �n , in which case the two
rightmost triangles in Figure 11 share a side.

The splitting sphere S that contains E is disjoint from a primitive disk D0 . Assuming
that �¤ �n , there is a sequence D0 , D1; : : : , Dk of disks in H such that:
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(1) For each 1� i � k , Di�1 is disjoint from Di .

(2) Dk�2 D �n and Dk D � .

(3) No Di is a disk of � (if it happens that one of the disks of � is a disk of �n ,
then Dk�1 will be the other disk of �n ).

D0

!1 !2 !3 !4 !m

� 0

D 0

Figure 12: Constructing a path that avoids �

Figure 12 illustrates one way to obtain such a sequence: Choose a representative disk
� 0 of � , and choose a primitive pair �1 such that �1[fD0g is a primitive triple, ie a
representative of �0 . Let �1[fD0g, �1 , �1[ ı1; : : : , �`�1[ ı`�1 , �` , �` [f� 0g be
the shortest path in �T from �1[fD0g to the link of � 0 . Some final segment of this path
projects to the principal path of � , and in particular �` projects to �n . The 2–simplices
of D.H / that contain one of the white vertices of this path form a “corridor” which
is topologically a disk and is illustrated in Figure 12. The boundary of this corridor
contains two arcs in the 1–skeleton of D.H / that run from D0 to the disk ! that
projects to �n ; let D0 , !1; : : : , !m D ! be the one that does not contain � 0 . Since
!m projects to �n , it is a vertex of a 2–simplex whose other vertices are the disks of
�` . Therefore !m is disjoint from both of the disks of �` . At least one of these disks,
say D0 , is not in �, so one sequence of disks satisfying the three conditions given
above is D0 , !1; : : : , !m , D0 , � 0 .

Proposition 8.3 now shows that the .�I �/–slope of E equals the .�I �/–slope of � ,
which is 1.

Now put �D f�C; ��g. To prove part (i), it suffices to show that E does not have
infinite .�I �/–slope. If E is a slope disk for �, then it has finite slope since it
separates H . Suppose it is not a slope disk, but has infinite .�I �/–slope. Let W be
a wave of E with respect to �, and consider the arc W \ @H . Either this arc or its
image under ˛ lies on the side of �C[ � [�� that contains E0 . Since E is invariant
under ˛ , both of these arcs lie in E and are disjoint from E0 . But this contradicts the
fact that W is essential.

For part (ii), we have seen that �D �n and that for any splitting sphere S , the disks
S \H and Dk�2 from a sequence as above have the same .�nI �/–slope. That is, the
.�nI �/–slope of a wave of S \H is the same as the slope of �n .
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The previous argument clarifies the fact that the .�I �/–slope of E is infinite for any
meridian pair � other than the principal meridian pair [26, Lemma 2.9]. It also explains
why the Scharlemann–Thompson definition gives nonunique values for the upper and
lower tunnels of 2–bridge knots [26, Corollary 2.8]. For these cases, the principal path
is just �0 , �0 , �0 [ f�g. In the sequence of disks D0 , D1; : : : , Dk in the proof of
Lemma 14.1, different choices of E and hence of D0 can give different choices for
Dk�2 , with different slopes. From our viewpoint, these are the simple tunnels, for
which the principal slope is undefined.

Theorem 14.5 below gives the expression for the Scharlemann–Thompson invariant and
the principal slope mn in terms of each other. To obtain this, we must understand how
to change coordinates on the slope disks at the principal meridian pair of the tunnel,
and we set this up as a general principle. Recall that for integers a1; : : : , ak , the
continued fraction Œa1; : : : ; ak � is defined inductively by Œa1�D a1 and Œa1; : : : ; ak �D

a1C 1=Œa2; : : : ; ak �. Sometimes one may choose to allow some of the ai to be 1.
We have �Œa1; : : : ; ak �D Œ�a1; : : : ;�ak �, and

Œ: : : ai�1; 0; aiC1 : : :�D Œ: : : ai�1C aiC1 : : :�

so in particular

Œ: : : ; ak�1; ak ; 0�D Œ: : : ; ak�1; ak ; 0;1�D Œ: : : ; ak�1;1�D Œ: : : ; ak�1� :

Another basic fact is:

Lemma 14.2 Let q=p 2 Q. Then q=p may be written as a continued fraction as
Œ2a1; 2b1; 2a2; : : : ; 2bk�1; 2ak � or Œ2a1; 2b1; 2a2; : : : ; 2bk�1; 2ak ; bk �, with all en-
tries nonzero except possibly a1 , according as q is even or odd. When q is odd, the
parity of bk equals the parity of p . The expression is unique, provided that ak and bk

do not have different signs when bk D˙1.

There is a very well-known connection between continued fraction decompositions and
SL2.Z/. Define

U D

�
1 1

0 1

�
and LD

�
1 0

1 1

�
:

Lemma 14.3 If

U a1Lb1 � � �U ak Lbk D

�
q s

p r

�
q=p D Œa1; b1; : : : ; ak ; bk �; s=r D Œa1; b1; : : : ; ak �;then

q=s D Œbk ; ak ; : : : ; b1; a1� and p=r D Œbk ; ak ; : : : ; b1� :
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The first two equalities can be proven by a straightforward induction, and the last two
follow by taking transposes.

Proposition 14.4 Let � D f�; �g be a pair of disks in H and let � and � be two
nonseparating slope disks for �. Write the .�I �/–slope of � as

q=p D Œ2a1; 2b1; 2a2; : : : ; 2bn�1; 2an; bn� :

If we regard slope pairs Œr; s� as column vectors
�

s
r

�
, then the change-of-basis matrix

from .�I �/–slopes to .�I �/–slopes is

U 2a1L2b1U 2a2 � � �U 2anLbnU�.�1/p2a ;

where aD
P

ai .

Proof Referring to the picture of H in Figure 6, let u be the Dehn twist of H about �
that sends an object with slope pair Œp; q� to one with slope pair Œp; qC 2p� (u is a
“left-handed” Dehn twist about � ). Similarly, let ` be the homeomorphism of H that
preserves � and � and sends an object with slope pair Œp; q� to one with slope pair
ŒpC q; q� (a half-twist of H about �0 , whose effect looks like the restriction of ˇ
from Section 9, when H is viewed as in Figure 6).

Regarding slope pairs Œr; s� as column vectors
�

s
r

�
, the effects of u and ` are multi-

plication by U 2 and L respectively. That is, for the .�I �/–slopes determined by the
basis f�; �0g, these are the matrices of u and `.

Since � is nonseparating, we can use Lemma 14.2 to write its .�I �/–slope in the
form Œ2a1; 2b1; : : : ; 2bn�1; 2an; bn�, where bn has the parity of p and all terms ex-
cept possibly 2a1 are nonzero. The composition ua1`2b1 � � �uan`bn of ` has matrix
U 2a1L2b1 � � �U 2anLbn . Since � has slope pair Œ0; 1�, ie

�
1
0

�
, the “q=p” case of

Lemma 14.3 shows that ua1`2b1 � � �uan`bn sends � to � . It takes �0 to a perpendic-
ular disk for � , but not necessarily �0 . Since u preserves � , the homeomorphism
ua1`2b1 � � �uan`bnu�.�1/pa , where aD

P
ai , also takes � to � . In the remainder of

the proof, we will show that it takes �0 to �0 as well, and the lemma follows.

Consider any separating slope disk for �, and let c1 and c2 be the core circles of
its complementary solid tori in H . Each ci has intersection number 0 with �0 , but
applying ` reverses the sides of � , so reverses the orientation of exactly one of the ci . It
follows that lk.`.c1/; `.c2//D� lk.c1; c2/. On the other hand, each ci has intersection
number ˙1 with � , since ci has intersection number ˙1 with one of � or � and
0 with the other. Therefore lk.u.c1/;u.c2//D lk.c1; c2/˙ 1, the sign depending on
conventions.
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In particular, if C1 and C2 are the core circles for the complementary components of
�0 , we have

lk.`bnu�.�1/pa.C1/; `
bnu�.�1/pa.C2//D lk.u�a.C1/;u

�a.C2//

since bn and p have the same parity. The remaining `2bi do not change linking
numbers, and aD

P
ai , so

lk.ua1`2b1 � � �uan`bnu�.�1/pa.C1/;u
a1`2b1 � � �uan`bnu�.�1/pa.C2//D 0 :

These are core circles of the complementary tori of ua1`2b1 � � �uan`bnu�.�1/pa.�0/.
Since this disk intersects ua1`2b1 � � �uan`bnu�.�1/pa.�/D � in a single arc, it must
be �0 .

Theorem 14.5 If q=p D Œ2a1; 2b1; 2a2; : : : ; 2bn�1; 2an; bn� is one of the Scharle-
mann–Thompson invariant or the principal slope of a tunnel, then the other one is
Œ.�1/p2a;�bn;�2an; : : : ;�2a2;�2b1�, where a D

P
ai . In particular, if one is a

.necessarily odd / integer, then the other is the negative of that integer.

Proof From Lemma 14.1, the invariants are related by the fact that for some pair of
slope disks � and � for a meridian pair �, one invariant is the .�I �/–slope of � , and
the other is the .�I �/–slope of � . Using Proposition 14.4, the change-of-basis matrix
from .�I �/–slopes to .�I �/–slopes is U .�1/p2aL�bnU�2an � � �U�2a2L�2b1U�2a1 .
The first column of this matrix gives the .�I �/–slope of � . By the “q=p” case of
Lemma 14.3, with bk D 0, it is Œ.�1/p2a;�bn;�2an; : : : ;�2a2;�2b1�.

Corollary 14.6 If q=p is either the Scharlemann–Thompson invariant or the principal
slope of a tunnel, then the other one is of the form q 0=p where qq 0 ��1 .mod p/.

Proof If the change-of-basis matrix in the proof of Theorem 14.5 has the form�
q s

p r

�
;

then its inverse is �
r �s

�p q

�
;

so the invariants are q=p and �r=p where qr �ps D 1.
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We have implemented the formula of Theorem 14.5 to convert between the invariants
computationally [7]. Some sample calculations are:

STinvariant> convert 55
-55

STinvariant> convert (59/35)
-299/35

STinvariant> convert (-299/35)
59/35

STinvariant> convertRange 100102 17255 17265
17255/100102, -2843767/100102
17257/100102, -6541753/100102
17259/100102, 345051565/100102
17261/100102, 5593835/100102
17263/100102, 1775313/100102
17265/100102, 158447/100102

The last command produces the corresponding pairs of invariants containing each
q=100102 for odd q with 17255� q � 17265.

15 Tunnels of two-bridge knots

It is known from work of Kobayashi [17; 18], Morimoto and Sakuma [22] and
Uchida [27] that a 2–bridge knot has at most four equivalence classes of tunnels
(not six, for us, since we are considering tunnels only up to equivalence, rather than up
to isotopy). Two of these are the upper and lower simple tunnels. In this section, we
will locate the other tunnels in D.H /=G and compute their slope parameters.

2a1 2a2

2b1 bn

Figure 13

From the above references and standard repositioning of 2–bridge knots by isotopy,
each tunnel of a 2–bridge knot either is simple or is equivalent to one like that shown in
Figure 13, where each circle indicates a block of some nonzero number of half-twists.
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Each of the blocks in the middle row has an even number 2ai of half-twists, and those
on the bottom row have an even number 2bi of half-twists, except that the last one has
a number bn that may be odd. Our convention is that ai is positive for left-hand twists,
and bi is positive for right-hand twists.

There is a well-known classification of 2–bridge knots based on continued fraction
expansions of a rational parameter b=a with b odd (the case of b even gives 2–bridge
links). One description of the invariant is that the 2–fold branched cover of S3 over
the knot is L.b; a/, but we will describe it here in a way that is more suited to our
purposes.

Given b=a, change a by multiples of b until j b=a j>1. Either of two possible values of
a may be used. Expand b=a as a continued fraction Œ2a1; 2b1; 2a2; 2b2; : : : ; 2an; bn�

as in Lemma 14.2. Additionally, if bn D˙1, adjust an and bn so that they have the
same sign. Under these conditions, the expansion of b=a is uniquely determined, and
the corresponding 2–bridge knot is the one shown in Figure 13.

Figure 14 shows the type of cabling construction used to produce the tunnel in Figure 13.

.L/ .R /

Figure 14

It is described by a nonzero parameter k that tells the number of right-hand twists
of the two horizontal arcs from the original tunnel (the case k D 0 would produce
a cabling with infinite slope, ie not a cabling construction). The cabling shown in
Figure 14 has k D �4. As indicated in that figure, a knot and tunnel arc resulting
from such a cabling can be moved by isotopy so that the full twist of the middle two
strands is either left-handed (configuration (L)) or right-handed (configuration (R)),
then repositioned so that the tunnel arc has the same appearance as the original one.
As shown in Figure 14, this will produce either k half-twists below the full twist and
�1 half-twists above, as in configuration (L), or kC 1 half-twists below the full twist,
as in configuration (R).
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Starting from the right-hand end of Figure 13, we perform a sequence of these cablings,
one for each of the full twists of the middle two strands. Thus, the total number of
cablings is

P
jai j. At each step, the value of k in the cablings must be selected to

produce the correct number 2bi (or bn ) of half-twists, as we will detail below. The
condition that bn has the same sign as an , when bn D ˙1, ensures that the first
cabling produces a nontrivial knot. By the Unique Cabling Sequence Theorem 13.2,
this sequence of cablings is the unique sequence producing this tunnel.

We will now calculate the slopes of these cablings. The calculation depends on the
parity, at the time a given cabling is to be performed, of the number of crossings of the
left-hand two strands that lie below the tunnel when it is positioned in Figure 14. In the
example of Figure 14, the parity is odd both in configuration (L) and in configuration (R).
When the parity is even, either of the two orientations of the knot orients the middle
strands so that near the tunnel one is upward and the other is downward, as occurs in
the trivial knot, but when the parity is odd, both are upward or both are downward.

�� �0

�

��

�

�

�?

K�

K�

�C �C�0

Figure 15: The zero-slope disk for the case of odd parity (compare with
Figure 6)

The parity affects which disk will be the zero-slope disk in the calculation of the slope
coefficients. Figure 15 shows the case when the parity is odd. The disk � is the one
that is replaced by the cabling construction. The zero-slope disk �0 is obtained from
�? by a left-hand Dehn twist about � . For this �0 , a K� that is disjoint from �0 has
linking number 0 with the K� that is disjoint from �0 . In the case of even parity, �0

is obtained from �? by a right-hand Dehn twist.

To obtain the actual slope coefficient for a given cabling of the type shown in Figure 14,
one may draw a cabling arc for the cabling and laboriously calculate its slope using
�0 as the zero-slope disk, but there is a quick way to find it. If the disk �? shown
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in Figure 15 were used in place of �0 in calculating the slope, then the slope pairs
would be Œk; 1�. The Dehn twist about � that moves �0 to �? moves the cabling arc
to one whose slope pair using �? as the zero-slope disk is Œk; 1�2k� (see the proof of
Proposition 14.4, where this Dehn twist would be denoted by u�1 ), so this is the slope
pair of the original cabling arc using �0 . Consequently the .f�; �gI �/–slope of the
cabling arc is �2C 1=k . In the even parity case, the only difference is that the twist
moving �0 to �? is in the opposite sense, changing Œk; 1� to Œk; 1C2k� and producing
the slope 2C 1=k .

Consider the initial cabling construction. Let k be the number of right-hand half twists
in the cabling, so that the slope is 2C 1=k .

Suppose first that an > 0. According to configuration (L) of Figure 14, bn D k . The
parity of the trivial knot is even, to the slope pair of the cabling is Œk; 2k C 1� D

Œbn; 2bnC 1�, giving m0 D Œbn=.2bnC 1/�.

Suppose now that an< 0. From configuration (R) of Figure 14, we see that bnD kC1.
The slope pair of the cabling is Œk; 1C 2k� D Œbn � 1; 2bn � 1�, giving m0 D Œ.bn �

1/=.2bn� 1/�.

For the cablings beyond the first, it will be convenient to rewrite the continued fraction by
expanding each 2ai to Œ2; 0; 2; 0; : : : ; 2; 0; 2� or Œ�2; 0;�2; 0; : : : ;�2; 0;�2�, thereby
assuming that each ai D˙2 and allowing some bi D 0.

Consider the cabling that produces the full twist of the middle two strands correspond-
ing to ai . The cabling that produces the twist corresponding to aiC1 has just been
completed. Suppose first that aiC1 > 0. As in configuration (L) of Figure 14, there is
already a left-hand half twist in the left two strands. Since all 2bj are even, the parity
is the opposite of the parity of bn . Again referring to Figure 14, we see that to end up
with exactly bi half-twists of the left two strands, we need to use k D biC1 if ai > 0,
and k D bi if ai < 0.

Suppose now that aiC1 < 0. From configuration (R) of Figure 14, the parity is just
equal to that of bn . To achieve 2bi half-twists after the cabling, we need k D 2bi if
ai > 0, and k D 2bi � 1 if ai < 0.

We now have a complete algorithm to determine the values ki in the cablings and the
cabling slopes: Write b=a as Œ2a1; 2b1; : : : ; 2an; bn� where:

(1) Each ai D˙1, and some bi other than bn may be 0.
(2) If bn D˙1, then an and bn have the same sign.

For the first cabling:
(1) If an D 1, then kn D bn and m0 D Œbn=.2bnC 1/�.
(2) If an D�1, then kn D bn� 1 and m0 D Œ.bn� 1/=.2bn� 1/�.
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For the remaining cablings, the slope mi is 2C 1=ki or �2C 1=ki according as the
parity is even or odd. The parity and the value of ki are computed as follows:

(1) If aiC1 D 1, then:
(a) The parity equals the parity of bnC 1.
(b) If ai D 1, then ki D 2bi C 1, and if ai D�1, then ki D 2bi .

(2) If aiC1 D�1, then:
(a) The parity equals the parity of bn .
(b) If ai D 1, then ki D 2bi , and if ai D�1, then ki D 2bi � 1.

We have implemented the algorithm computationally [7]. Some sample calculations
are:

TwoBridge> slopes (33/19)
[ 1/3 ], 3, 5/3

TwoBridge> slopes (64793/31710)
[ 2/3 ], -3/2, 3, 3, 3, 3, 3, 7/3, 3, 3, 3, 3, 49/24

TwoBridge> slopes (3860981/2689048)
[ 13/27 ], 3, 3, 3, 5/3, 3, 7/3, 15/8, -5/3, -1, -3

TwoBridge> slopes (5272967/2616517)
[ 5/9 ], 11/5, 21/10, -23/11, -131/66

Of course, the slope parameters that we have calculated are the parameters mi that
appear in the Parameterization Theorem 12.3. The parameters sj are all 0, since these
are semisimple tunnels (the primitive disk called � in Figure 15 is retained in every
cabling construction).

16 Tunnels of links

A quick summary of how the theory adapts to include tunnels of tunnel number 1 links
is that one just adds the separating disks as possible slope disks. The cabling sequence
ends with the first separating slope disk and cannot be continued. The Parameterization
Theorem 12.3 holds as stated, except allowing qn to be even.

In a bit more detail, one way to allow links is to include separating disks in the theory
from the start, that is, to use the full disk complex K.H / rather than the nonseparating
disk complex D.H /. Very little additional complication actually occurs. A separating
disk E in H is disjoint from only two other disks, both nonseparating, so is a vertex
of only one 2–simplex hE; �1; �2i attached to D.H / along h�1; �2i. Each 1–simplex
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h�1; �2i of D.H / is a face of countably many such 2–simplices, one for each separating
slope disk of f�1; �2g. In slope coordinates, these disks correspond to the q=p with q

even.

The link of E in the first barycentric subdivision K0.H / consists of two 1–simplices
meeting in the principal vertex fE; �1; �2g of E . The spine of K.H / is obtained from�T simply by adding a “Y” in each 2–simplex hE; �1; �2i, which meets �T only in the
vertex f�1; �2g.

A primitive separating disk is a disk in H that is contained in a splitting sphere of H .
Note that both of the nonseparating disks disjoint from a primitive separating disk are
primitive.

To obtain K.H /=G from D.H /=G , we first add one half-simplex to the primitive
region. It meets the primitive simplex … along the edge called h�0; �0i in Section 10,
and its third vertex is the unique orbit of primitive separating disks. Next, a half-
simplex for each simple separating disk is added along h�0; �0i. These correspond
to the Œp=q� 2 Q=Z with q even and are the upper and lower tunnels of 2–bridge
links. The remaining added 2–simplices are attached along the other 1–simplices of
D.H /=G as they were in D.H /. A tunnel of a link has a principal path from the
primitive nonseparating triple �0 to its principal vertex, which is the only white vertex
in the link of the tunnel.

The trivial link is the link associated to the orbit of primitive separating disks. It arises
from the tunnel of the trivial knot by a cabling construction of simple slope Œ1=0�D1.
This is the only case in which 1 is an allowable slope parameter. With this convention,
we can state the general Parameterization Theorem:

Theorem 16.1 Let � be a knot or link tunnel with principal path �0 , �0 , �0[f�0g,
�1; : : : , �n , �n [ f�ng. Fix a lift of the principal path to K.H /, so that each �i

corresponds to an actual pair of disks in H .

(1) If � is primitive, put m0D Œ0� 2Q=Z or m0D Œ1=0�D1, according as � is the
tunnel of the trivial knot or the trivial link. Otherwise, let m0 D Œp0=q0� 2Q=Z
be the simple slope of �0 .

(2) If n � 1, then for 1 � i � n let �i be the unique disk in �i�1 � �i and let
mi D qi=pi 2Q be the .�i I �i/–slope of �i .

(3) If n� 2, then for 2� i � n define si D 0 or si D 1 according to whether or not
the unique disk of �i�1\�i equals the unique disk of �i�1\�i�2 .
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Then, sending � to the pair ..m0; : : : ;mn/; .s2; : : : ; sn// is a bijection from the set
of all tunnels of all tunnel number 1 knots and links to the set of all elements
..Œp0=q0�; q1=p1; : : : ; qn=pn/; .s2; : : : ; sn// in�

Q=Z [ f1g
�
[
�
Q=Z � Q

�
[
�S

n�2 Q=Z � Qn � C n�1
2

�
with all qi odd except possibly qn . The tunnel is a tunnel of a knot or a link according
as qn is odd or even.

The linking number of the two components of a tunnel number 1 link, up to sign, is
half the numerator qn of the principal slope qn=pn of � (or half the denominator of
the simple slope, if the tunnel is simple). This is immediate from the construction of
general slope coordinates in Section 8.

Theorem 16.1 implies that a tunnel is almost never equivalent to itself by an orientation-
reversing equivalence:

Theorem 16.2 Let � be a tunnel of a tunnel number 1 knot or link. Suppose that � is
equivalent to itself by an orientation-reversing equivalence. Then � is the tunnel of the
trivial knot, the trivial link, or the Hopf link.

Proof As noted in Remark 12.5, the classification of tunnels up to arbitrary homeo-
morphism of S3 is obtained from that of the Parameterization Theorem 12.3 by adding
the equivalence .Œm0�;m1; : : : ;mn/� .Œ�m0�;�m1; : : : ;�mn/. The only tuples equal
to themselves under this move are .Œ0�/, .1/ and .Œ1=2�/, which correspond to the
trivial knot, the trivial link and the Hopf link.

The tunnel of the Hopf link will be examined more closely in Section 17 below.

The Unique Cabling Sequence Theorem 13.2 holds as stated for links as well as knots.

As in Proposition 11.1, the simple tunnels of links are exactly the upper and lower
tunnels of 2–bridge links, and the statement of Proposition 11.2 holds allowing q even.
Concerning these tunnels, we can give a quick proof of a theorem of C Adams and
A Reid [1] and M Kuhn [19]:

Theorem 16.3 (Adams–Reid, Kuhn) The only tunnels of a 2–bridge link are its
upper and lower tunnels.

Proof Since each component of a 2–bridge link is unknotted, the tunnel disk is disjoint
from a primitive pair, hence is simple.
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We can also understand semisimple tunnels of links, that is, tunnels whose cocore disk
is disjoint from a primitive disk, but not from a primitive pair. In this case, one of the
components of the link is unknotted. Such links are the topic of the following theorem,
which slightly strengthens a result of T Harikae [14]:

Theorem 16.4 Let L be a nontrivial tunnel number 1 link with an unknotted compo-
nent. Then the other component of L is a .1; 1/–knot. Moreover, every tunnel of L is
simple or semisimple, and L has torus bridge number 2.

Proof Let � be a tunnel of L. Then � is disjoint from exactly two nonseparating
disks, �1 and �2 , and one of them, say �1 , must be primitive. Therefore �2 is simple
or semisimple, and K�2

is a .1; 1/–knot.

To prove that L has torus bridge number 2, we refer to Figure 16. The left drawing

�0 �0 �0

�
�

�

T T T

Figure 16

shows a torus level T and the tunnel � before the cabling that produces � , and the
middle picture shows schematically the result of the cabling. The drawing on the right
shows an isotopic repositioning of L� . The � –arc is pushed slightly outside of T ,
and the sphere for the cabling is expanded to the union of an annulus in T and two
meridian disks. The cabling arcs may be moved off of the meridian disks by isotopy,
to lie in A. From there, they can be pushed slightly inside T . Then, L meets each of
the complementary solid tori of T in a trivial pair of arcs.

17 The Hopf link

In Theorem 16.2, we saw that the tunnel of the Hopf link is the only tunnel of a
nontrivial knot or link that is preserved by an orientation-reversing equivalence. In
this section, we examine this equivalence more closely, obtaining a version of Futer’s
Theorem 11.5 for links.
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First, we work out the vertex stabilizers of the action of G˙ on K.H /. As usual, fix
a primitive pair �0 D f�0; �0g. To obtain a generating set for the stabilizer .G˙/�0

,
we add to the generators ˛ , ˇ and 
 of G�0

an orientation-reversing involution R.
Recalling the description of ˛ , ˇ and 
 in Section 9, R is a reflection through the
plane of the page in Figure 6; it preserves �0 and �0 , reflecting each across a diameter.
It commutes with ˛ and 
 , and conjugates ˇ to ˇ�1 .

In the description of slope coordinates in Section 8, R lifts to the involution of �†
reflecting across the vertical line bisecting the fundamental domain shown in Figure 7.
This shows R sends a simple disk of slope pair Œp; q� to one with slope pair Œ�p; q�;

We have the following version of Proposition 9.1:

Proposition 17.1 The stabilizer .G˙/�0
is the subgroup generated by ˛ , ˇ , 
 and R.

In fact, .G˙/�0
is the semidirect product .C2 �Z/ ı .C2 �C2/, where h˛; ˇi is the

normal subgroup C2 �Z, h
;Ri is the subgroup C2 �C2 , ˛ is central, 
ˇ
�1 D ˛ˇ

and RˇR�1 D ˇ�1 .

Proof We have R2G˙�G , and R stabilizes the primitive pair �0 , so the subgroup S

generated by ˛ , ˇ , 
 and R properly contains G�0
and is contained in .G˙/�0

. But
G has index 2 in G˙ , so G�0

has index at most 2 in .G˙/�0
. Therefore S must equal

.G˙/�0
. Since R is an involution, .G˙/�0

is the semidirect product G�0
ıhRi, and

using Proposition 9.1 and the relations R˛R�1D ˛ , RˇR�1D ˇ�1 and R
R�1D 


gives our description of .G˙/�0
.

Proposition 17.2 The stabilizer in G˙ of a possibly separating nonprimitive disk E

in H is as follows:

(i) If E is simple with simple slope Œ1=2�, then its stabilizer is conjugate to the
dihedral subgroup of order 8 generated by the involutions ˇR and 
 .

(ii) If E is simple with simple slope not Œ1=2�, then its stabilizer is conjugate to the
subgroup C2 �C2 generated by ˛ and 
 .

(iii) Otherwise, the stabilizer is C2 , generated by ˛ .

Proof Assume first that E is simple with simple slope Œ1=2�. Any element of G˙
that preserves E must also preserve the unique pair of primitive disks that are disjoint
from E . Conjugating in G˙ , we may assume that this pair is �0 .

Conjugating further by a power of ˇ , we may assume that E has slope pair Œ1; 2� with
respect to �0 . This slope pair is preserved by ˇR, 
 and ˛ . On the other hand, using
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the action of the four generators of .G˙/�0
on slope pairs, any word that stabilizes

E can be written as ˛�1
 �2.ˇR/�3 where the �i 2 f0; 1g. Since .
ˇR/2 D ˛ , the
stabilizer is dihedral as in (i). (Figure 17 illustrates the effect of ˇR.)

If E is simple but does not have simple slope Œ1=2�, then R does not preserve its
simple slope. So any element ˛�1ˇn
 �2R�3 stabilizing E must have �3 D 0. As in
Proposition 10.1(i), part (ii) follows. Part (iii) is proven as in Proposition 10.1(ii); note
that the disk called �0 there must be nonseparating, since otherwise the path could not
continue on to � .

R ˇ

Figure 17: An orientation-reversing automorphism of the Hopf link and its
tunnel arc

Arguing as in Corollary 10.2, we have:

Corollary 17.3 Let h�1; �2; �3i be a 2–simplex of D.H /, with �3 nonprimitive. Sup-
pose that h�1; �2; �3i is stabilized by an element h of G˙ other than the identity or ˛ .
Then �3 is simple, and �1 and �2 are primitive.

Using Corollary 17.3 and Proposition 17.2, we adapt Corollary 11.3 to links:

Corollary 17.4 Let W be the union of a nontrivial tunnel number 1 link L and a
tunnel arc for L, and suppose that h is a homeomorphism of S3 that preserves W .
Then either

(i) h is isotopic preserving W to a homeomorphism which is the identity or the
hyperelliptic involution on a neighborhood of W , or

(ii) L is a 2–bridge link.

Moreover, if h is orientation-reversing, then L is the Hopf link.

Using these results, we obtain a version of Futer’s Theorem 11.5 for links:

Theorem 17.5 Let A be a tunnel arc for a nontrivial link L� S3 . Then:
(a) There exists an orientation-preserving homeomorphism of S3 that preserves

L[A and interchanges the components of L if and only if L is a two-bridge
link.

(b) There exists an orientation-reversing homeomorphism of S3 that preserves L[A

if and only if L is the Hopf link.
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Proof For a 2–bridge link, 
 interchanges the components and preserves the tun-
nel arc up to isotopy, so Corollary 17.4 gives part (a). Part (b) follows easily from
Proposition 17.2.
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Adv. Inst. Sci. Tech., Taejŏn (1990) 227–232 MR1098731

Department of Mathematics, University of California at Riverside
Riverside, CA 92521, USA

Department of Mathematics, University of Oklahoma
Norman, Oklahoma 73019, USA

scho@math.ucr.edu, dmccullough@math.ou.edu

www.math.ou.edu/~dmccullough/

Proposed: Cameron Gordon Received: 12 April 2008
Seconded: Joan Birman, Ron Stern Accepted: 12 November 2008

Geometry & Topology, Volume 13 (2009)

http://dx.doi.org/10.1017/S0305004100068766
http://www.ams.org/mathscinet-getitem?mr=1041480
http://dx.doi.org/10.2140/gtm.1999.2.259
http://www.ams.org/mathscinet-getitem?mr=1734412
http://dx.doi.org/10.1142/S0218216596000138
http://www.ams.org/mathscinet-getitem?mr=1395777
http://projecteuclid.org/getRecord?id=euclid.jdg/1214446029
http://www.ams.org/mathscinet-getitem?mr=1085134
http://dx.doi.org/10.2140/agt.2007.7.1471
http://www.ams.org/mathscinet-getitem?mr=2366166
http://dx.doi.org/10.1007/BF01446565
http://www.ams.org/mathscinet-getitem?mr=1087243
http://dx.doi.org/10.1112/S0024610705006514
http://dx.doi.org/10.1112/S0024610705006514
http://www.ams.org/mathscinet-getitem?mr=2132384
http://www.ams.org/mathscinet-getitem?mr=2199366
http://dx.doi.org/10.1090/S0002-9947-03-03182-9
http://www.ams.org/mathscinet-getitem?mr=2034312
http://dx.doi.org/10.1112/S0024611503014242
http://www.ams.org/mathscinet-getitem?mr=1990938
http://www.ams.org/mathscinet-getitem?mr=1098731
mailto:scho@math.ucr.edu
mailto:dmccullough@math.ou.edu

	Introduction
	1. Context of the work
	2. Summary of the results
	3. The disk complex of an irreducible 3-manifold
	4. The disk complex and its spine
	5. The Goeritz groups and the Scharlemann--Akbas tree
	6. Tunnels as disks
	7. Slope disks, cables and waves
	8. General slope coordinates
	9. Slope disks of primitive pairs
	10. The tree of knot tunnels
	11. Simple, semisimple and regular tunnels
	12. Principal paths, principal vertices and parameterization
	13. The cabling construction
	14. The Scharlemann--Thompson invariant
	15. Tunnels of two-bridge knots
	16. Tunnels of links
	17. The Hopf link
	References

