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Multiplicities of simple closed geodesics and hypersurfaces
in Teichmüller space

GREG MCSHANE

HUGO PARLIER

Using geodesic length functions, we define a natural family of real codimension 1
subvarieties of Teichmüller space, namely the subsets where the lengths of two
distinct simple closed geodesics are of equal length. We investigate the point set
topology of the union of all such hypersurfaces using elementary methods. Finally,
this analysis is applied to investigate the nature of the Markoff conjecture.

57M50; 58D99

1 Introduction

We define the simple length spectrum of a Riemann surface of genus g with n totally
geodesic boundary components to be the set of lengths of simple closed geodesics
counted with multiplicities. As the metric varies, the length spectrum changes. We are
interested in three questions.

Is there a surface for which all the multiplicities are 1?

How big is the set of such surfaces?

Is it possible to deform a surface such that the multiplicity stays 1 for all simple
geodesics?

The answer to the first question is of course positive, although to answer it we shall
show that the set of surfaces where the spectrum does not have this property is Baire
meagre. The answer to the third question is clearly yes if we allow deformations in
the space of all Riemannian metrics, but we show that the answer is no if we restrict
ourselves to metrics of fixed constant curvature.

The hypersurfaces we study are the nonempty subsets E.˛; ˇ/ of Teichmüller space
where a pair of distinct simple closed geodesics ˛; ˇ have the same length. When the
intersection number �.˛; ˇ/ is small, the surfaces E.˛; ˇ/ play an important part in
the theory of fundamental domains for the mapping class group in low genus; see for
instance Griffiths [15] and Maskit [20].
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Our main theorem is the following:

Theorem 1.1 The set of surfaces with simple simple length spectrum is dense and its
complement is Baire meagre. If A is a path in Teichmüller space T then there is a
surface on A which has at least two distinct simple closed geodesics of the same length.

Let E denote the set of all surfaces with at least one pair of simple closed geodesics of
equal length; E is the union of a countable family of nowhere dense subsets, namely the
sets E.˛; ˇ/ where ˛; ˇ vary over all distinct simple closed geodesics. The theorem
asserts that E is dense and moreover that the complement contains no arcs and is thus
totally disconnected. Our next point of interest is the topology of the sets E.˛; ˇ/
and E .

Theorem 1.2 The sets E.˛; ˇ/ are connected analytic submanifolds of Teichmüller
space. The set E is connected.

In the case of the Teichmüller space T "
1;1

of a one-holed torus with fixed boundary
length, a careful study of the asymptotic behaviour of the sets E.˛; ˇ/ will allow us to
prove the following.

Theorem 1.3 Let ˛ and ˇ be a pair of distinct simple closed geodesics on a one-holed
torus. The set E.˛; ˇ/ is a simple path joining the points in the Thurston boundary
of T "

1;1
determined by the two unique simple closed geodesics with equal number of

intersection points with both ˛ and ˇ .

We strongly suspect that the set of one-holed tori which contain three simple closed
geodesics of equal length is nowhere dense.

Though the Euclidean torus is not negatively curved, it is useful to bear it in mind as a
prototype. The reader is invited to check that our theorems above hold for Euclidean
tori. Let T be the Teichmüller space of Euclidean tori, which one identifies with the
upper half plane, or the � plane, in the usual way. The rational p=q 2R corresponds
to a simple curve of slope p=q on the square torus which we shall use as a reference
surface. The length of the curve on the surface corresponding to the parameter � is
jp�Cqj and geometry of the set E is readily understood in terms of elementary number
theory. By computation, one sees that the set E.˛; ˇ/ is always a Poincaré geodesic,
joining pairs of rationals on the real line. Reciprocally, the map z 7! �xz preserves the
rationals and fixes Œ0;1�D f<z D 0g. For any rational m=n the curves of slope m=n

and �m=n have the same length at � 2 Œ0;1�. One maps Œ0;1� onto any geodesic
Œa=b; a0=b0� using PSL.2;R/, which is transitive on pairs of rationals and thus finds a
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Hypersurfaces in Teichmüller space 1885

pair of curves which are of equal length on Œa=b; a0=b0�. The first sentence of Theorem
1.1 follows since quadratic irrationals are countable and the second because every
pair of distinct points in the plane is separated by a Poincaré geodesic with rational
endpoints. Unfortunately, in the more general situation we consider below, no such
characterization of the sets E.˛; ˇ/ exists, although we obtain an analogous result for
one holed hyperbolic tori with fixed boundary length in Theorem 1.3.

It is also interesting to note that the simple length spectrum of the square flat torus has
unbounded multiplicity. The squares of the lengths are sums of squares of integers.
By elementary number theory, for any sequence of integers kn , each a product of n

distinct primes congruent to 1 mod 4, the number of ways of writing kn as a sum as
squares of coprime integers goes to infinity with n. It is well known that a prime p¤ 2

can be written as a sum of squares x2C y2 , x;y 2N if and only if p is congruent
to 1 modulo 4. It is also well known that there are infinitely many primes congruent
to 1 modulo 4. Such a prime p admits a factorization p D .x C iy/.x � iy/ and
xC iy;x � iy are irreducible elements of the ring of Gaussian integers ZŒi �. Choose
n distinct primes pk 2N; 1 � k � n, let ak 2 ZŒi � such that pk D akxak and let N

denote their product. It is immediate from the above that N factorizes over ZŒi �:

N D .a1xa1/.a2xa2/ : : : .anxan/:

Consider the set RN of Gaussian integers of the form c1c2 : : : cn where ck 2 fak ; xakg.
Note that the modulus squared of each element of Rn is N . It is easy to check,
using the fact that the Gaussian integers is a unique factorization domain, that RN

contains exactly 2n�1 distinct elements. Note further that if c1c2 : : : cn 2 RN and
c1c2 : : : cn D xC iy then x;y are coprime integers, for otherwise there is a prime p

that divides x;y hence xC iy but this is impossible as the ci are irreducible and no
two ci are complex conjugate.

Similarly, for the spectrum of lengths of all closed geodesics of hyperbolic surfaces,
the multiplicities are unbounded. More precisely, Randol [23] shows (using results of
Horowitz) that for any surface of constant curvature and any n> 0, there is a set of n

distinct primitive geodesics of the same length. By the above, these curves necessarily
have double points.

Finally, by the work of Schmutz-Schaller [28] and others on the systole, one has a
lower bound on the multiplicity of the simple length spectrum as the surface varies
over Teichmüller space. The existence (or not) of an upper bound for the multiplicity
of the simple length spectrum for surfaces of a given signature is an open question. In
particular, Schmutz-Schaller conjectured the following in [28] for once-punctured tori.
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Conjecture 1 The multiplicity of the simple length spectrum is bounded above by 6
for a once-punctured torus.

In fact, this conjecture is a geometric generalization of an equivalent version to the
following well-known conjecture, as will be explained below.

Conjecture 2 (Markoff conjecture) The Markoff conjecture (see Frobenius [12]) is
a conjecture in classical number theory. In its original form, it concerns solutions in
the positive integers to the cubic

x2
Cy2

C z2
�xyz D 0:

It states simply that if there are solutions x � y � z and x � y0 � z0 over the positive
integers then y D y0 and z D z0 .

At the time of writing, Conjecture 2 is known to be correct for x a prime power; see
Schmutz [27] and Button [7], and more recently Lang and Tan [19]. Other results
related to this conjecture include Baragar [2] and Button [8].

Over the past few decades, several authors (see for instance Series [29], Haas [16],
Schmidt and Sheingorn [26], Cohn [10; 11] and Sarnak [25]) have had much success
in translating problems in number theory into the language of surfaces and geodesics.
Their efforts have in some cases provided a greater clarity to the understanding of some
classical theorems, particularly in Diophantine approximation.

Let us outline the well-known correspondence between Markoff triples .x;y; z/ (so-
lutions to the above problem) and triples of simple closed geodesics .˛; ˇ; 
 / on a
certain once-punctured torus (a torus with a single cusp as boundary).

There is, up to isometry, exactly one hyperbolic once-punctured torus, M, with isometry
group of order 12. This surface, commonly called the modular torus, is obtained as the
quotient of the hyperbolic plane by a certain subgroup, G of index 6 of the modular
group PSL.2;Z/ acting by linear fractional transformations. In fact G is a normal
subgroup of the modular group and the quotient group SL.2;Z/=G ' C2 � S3 is
isomorphic to the group of orientation preserving isometries of the quotient surface.
By Riemann–Hurwitz, 6 is the maximum number of orientation preserving isometries
of a once-punctured torus and, by a similar argument, 12 is the maximum number of
isometries of a once-punctured torus.

If .˛; ˇ; 
 / is a triple of simple geodesics on M which pairwise intersect in exactly
one point (ie the three sets ˛\ˇ; ˇ\ 
; 
 \˛ each consist of a single point) then�

2 cosh
`.˛/

2
; 2 cosh

`.ˇ/

2
; 2 cosh

`.
 /

2

�
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is a solution to the cubic above. This is because one can find matrices A;B;C DAB

such that any pair generate G and so that

tr AD 2 cosh
`.˛/

2
; tr B D 2 cosh

`.ˇ/

2
; tr C D 2 cosh

`.
 /

2
I

the commutator of A;B is parabolic, ie, has trace �2, and, using the familiar trace
identity in SL.2;C/ for the commutator (see Beardon [3]), one sees that these three
numbers satisfy the cubic.

There is an equivalent conjecture to the Markoff conjecture which concerns simple
closed geodesics on M.

Conjecture 3 The modular torus M has the following property: if ˛; ˇ are a pair of
simple closed geodesics of the same length, then there is an isometry of M taking one
to the other. We shall refer to this as the Markoff isometry property.

The equivalence of these conjectures can be shown as follows. We begin by noting
that given 3 real numbers x;y; z satisfying the cubic above there exist 3 matrices
A;B;AB D C 2 SL.2;R/ such that

tr AD x; tr B D y; tr C D z;

and so that the commutator of A;B is parabolic. Further, these matrices are unique up
to conjugation in SL.2;R/ (see Goldman [14]).

Now let ˛; ˛0 be a pair of simple geodesics on M which have the same length. Since
˛ (resp. ˛0 ) is simple there exist A;B;C DAB 2 G (resp. A0;B0;C 0 DA0B0 2 G )
such that A (resp. A0 ) covers ˛ (resp. ˛0 ), any two of A;B;C (resp. A0;B0;C 0 )
generate G and so that the trace of the commutator of A;B (resp. A0;B0 ) is �2. From
the trace identity for this commutator, one sees that the quantities tr A; tr B; tr C and
tr A0; tr B0; tr C 0 satisfy the cubic. Since ˛ and ˛0 have the same length tr AD tr A0

so assuming the Markoff conjecture in its original form we must also have

tr B D tr B0; tr C D tr C 0:

By the uniqueness of A;B;C in SL.2;R/ there exists a matrix T 2 SL.2;R/ so
that TAT �1 D A0;TBT �1 D B0;TAT �1 D C 0 . Thus conjugation by T leaves G

invariant and so this induces an isometry of HnG ; since T conjugates A (which
covers ˛ ) to A0 (which covers ˛0 ) this isometry takes ˛ to ˛0 as required.

Now M is the only once-punctured torus which has isometry group C2�S3 , but not
the only one-holed torus. (When the boundary of torus is a cusp or the boundary of the
Nielsen core is a simple closed geodesic, we shall call it a one-holed torus.) Choose a real
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number t �3; there are matrices, unique up to conjugacy in SL.2;R/, At ;Bt ;AtBt D

Ct 2 SL.2;R/, each with trace t and such that the trace of the commutator of At ;Bt

is 3t2� t3� 2. The group generated by At ;Bt is free, discrete and, when we think of
it as acting on the upper half space by linear fractional transformations, the quotient
surface, Mt , is homeomorphic to a torus with a point removed. When t D 3 the trace
of the commutator is �2 and the surface is the once-punctured torus M. When t > 3

the commutator is hyperbolic, the Nielsen core of the quotient is a proper subset and
is bounded by a simple closed geodesic which is covered by the commutator. For
any given t � 3, from the uniqueness of the matrices, At ;Bt ;Ct , it follows that the
quotient surface has the isometry group specified.

In view of this observation, one is led to consider the following plausible generalization
of the Markoff isometry property conjecture:

Conjecture 4 Let T s
1;1

denote the set of hyperbolic one-holed tori which have isometry
group isomorphic to C2�S3 . If M is such a surface, then it enjoys the Markoff isometry
property; that is if ˛; ˇ are a pair of simple closed geodesics of the same length on M

then there is an isometry of this surface taking one to the other.

Notice that this conjecture is implied by a generalization to one-holed tori of Schmutz-
Schaller’s Conjecture 1. By applying the analysis used to prove Theorem 1.1, we shall
see that this conjecture is in fact false, and thus a generalized version of Schmutz-
Schaller’s conjecture is also false. More precisely, we show the following.

Theorem 1.4 The subset of surfaces which fail to have the Markoff isometry property
is dense in T s

1;1
.

This means that the original Markoff conjecture is (probably) a conjecture in pure
number theory and not tractable by hyperbolic geometry arguments.

Organization We begin by reviewing some basic facts concerning curves and geode-
sics from the theory of surfaces. Two preliminary results we readily use, Theorem 2.1
and Theorem 2.2, do not seem to be known in the form we require, and because the
proofs are different in nature from the rest of the article, we defer them to Section 10.
There then follows a discussion of the Dehn twist homeomorphism in relation to curves
(Lemma 2). Using Dehn twists, we generate special sequences of geodesics and using
these establish proposition Proposition 3.1, which is fundamental to our argument.
This result, together with Theorem 2.2, implies Theorem 1.1. We then discuss why
we believe that a careful modification of this argument provides evidence that the
Markoff conjecture cannot be proved using techniques from Teichmüller theory. In
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Hypersurfaces in Teichmüller space 1889

the final section, we begin by showing that the hypersurfaces we study are connected
submanifolds and that their union is also connected. Finally, a characterization of the
hypersurfaces is given in the particular case of one-holed tori (with fixed boundary
length) which is quite similar to the case of flat tori mentioned above.

Acknowledgments The first author would like to thank John Parker and Caroline
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him to study the problem and David Epstein for guidance and helpful remarks. The
second author would like to thank Benoit Bertrand, Thomas Gauglhofer and Alexander
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have bored with their unsuccessful geometric constructions while trying to solve the
Markoff conjecture, including Gérard Maze and André Rocha. Finally, we are grateful
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2 Preliminaries

We review some elementary definitions and facts from the theory of surfaces; much
of this is available in a more detailed treatment in either Abikoff [1], Beardon [3] or
Buser [5]. Throughout M will denote a surface with constant curvature �1 and we
shall insist that M is complete with respect to this metric (although we will only be
concerned by what happens inside the convex core of the surface). This means that
M is locally modeled on the hyperbolic plane H2 and there is a natural covering
map � W H!M . By T we mean the Teichmüller space of M , meaning the space
of marked complete hyperbolic structures on M . The signature of a surface M will
be denoted .g; n/ where M is homeomorphic to a surface of genus g with n simple
closed boundary curves. If deemed necessary, we will denote Tg;n the Teichmüller
space of surfaces of signature .g; n/. It is often useful to think of the Fenchel–Nielsen
coordinates of Teichmüller space, namely the lengths of a pants decomposition of
M and a set of twist parameters which set how the interior simple closed geodesics
(defined below) are pasted together. We insist on the fact the lengths of the boundary
curves are allowed to vary.

Next one recalls some facts concerning curves on surfaces (see Buser [5] or Casson and
Bleiler [9] for details). Firstly, a simple curve is a curve which has no self intersections.
A curve is essential if it bounds neither a disc nor a punctured disc (annulus). For each
free homotopy class which contains an essential simple loop, there is a unique geodesic
representative. Further if such a free homotopy class contains a simple curve then this
geodesic representative is also simple. Simple closed geodesics are called separating if
they separate the surface into two connected components and nonseparating otherwise.
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Furthermore, a simple closed geodesic is called interior if it is entirely contained in the
interior of the convex core of the surface.

There is a natural function, `W T � essential homotopy classes!RC , which takes the
pair M; Œ˛� to the length `M .˛/ of the geodesic in the homotopy class Œ˛� (measured
in the Riemannian metric on M ). It is an abuse, though common in the literature, to
refer merely to the length of the geodesic ˛ (rather than, more properly, the length of
the geodesic in the appropriate homotopy class).

The set of simple closed geodesics on the surface M is more than just an interesting
curiosity. It was discovered by early investigators (Fricke et al) that the lengths of a
carefully chosen finite subset of such curves could be used as a local coordinate system
for the space of surfaces; these are often referred to as the moduli of the space. One
way of seeing this is through the following theorem, which we shall not use explicitly
although one could say that it contains the intuitive idea of how we shall proceed.

Theorem 2.1 Let T be the Teichmüller space of given signature. There is a fixed
finite set of simple closed geodesics 
1; : : : ; 
n such that the map

'W M 7! .`M .
1/; : : : ; `M .
n//

is projectively injective on T .

(A map f W X ! V , V a real vector space is projectively injective if and only if
f .x/D tf .y/; for some t 2R, implies x D y .)

It is important to note that in the case where T is the Teichmüller space of a surface
with boundary, the geodesics are allowed to be boundary geodesics. The nature of
our investigation requires us to study interior simple closed geodesics, so we need a
generalization of Theorem 2.1 where the set of simple closed geodesics 
1; : : : ; 
n are
all interior. While concocting a theorem suitable for our needs, we discovered that the
generalization to surfaces with boundary, under the assumption that the geodesics are
all interior, is false. What is true however is the following theorem.

Theorem 2.2 Let T be the Teichmüller space of given signature. Then there is a
set � WD f
1; : : : ; 
ng of interior simple closed curves such that for any given point
in M 2 T , there are a finite many M 0 2 T such that �.`M .
1/; :::; `M .
n// D

.`M 0.
1/; :::; `M 0.
n// for some � 2R.

We give proofs of both Theorem 2.1 and Theorem 2.2, but because these are different
in nature to the rest of the article, their proofs are deferred to Section 10. In Section 10,
examples are given to highlight the differences between Theorem 2.1 and Theorem 2.2.
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In particular, Example A.1 shows that a generalization of Theorem 2.1 is false for
four holed spheres. Note that Theorem 2.1 is well known to specialists, and for closed
surfaces is implicit in Thurston [30].

Of particular use to us is the following reformulation of Theorem 2.2.

Theorem 2.3 Let T be the Teichmüller space of given signature, and � be the set of
curves of Theorem 2.2. For any M 2 T , there are finitely many M 0 2 T such that

`M 0.˛/

`M 0.ˇ/
D
`M .˛/

`M .ˇ/

for all ˛; ˇ 2 � .

If we consider only closed surfaces then the following argument proves a slightly
stronger result than the theorem stated above.

For the argument we use Dehn twists : a Dehn twist T˛W M 7!M around a simple
closed curve ˛ is a homeomorphism (defined up to isotopy) of the surface M to itself
which is the identity on the complement of a regular neighborhood of ˛ . The Dehn
twist takes a geodesic 
 meeting ˛ to a (possibly nongeodesic) curve. However, since
this curve is also essential, we can straighten it, ie, take the unique closed geodesic
in the homotopy class of T˛.
 /. Since the twist is a homeomorphism, the resulting
geodesic is simple if and only if the original geodesic 
 was. By convention, we say
that a Dehn twist takes simple closed geodesics to simple closed geodesics.

Now let A;B be points in a Teichmüller space of a closed hyperbolic surface; we now
give a sketch of the existence of simple closed curves ˛; ˇ such that

`A.˛/

`A.ˇ/
¤
`B.˛/

`B.ˇ/
:

We shall suppose that there exists a simple closed curve 
 such that A;B lie are in the
same orbit for Fenchel–Nielsen twist along 
 ; by replacing 
 by a measured lamination
and using Thurston’s earthquake theorem one obtains the general case. Suppose further
that 
 is non separating then there is a simple closed geodesic 
 0 that meets 
 in
exactly one point. In fact, if Tn


 .

0/ denotes the simple geodesic freely homotopic

to the image of 
 0 by the (right) Dehn twist along 
 iterated n times, then Tn

 .

0/

meets 
 in exactly one point too. Let �n denote the signed angle at Tn

 .

0/\ 
 , then

it is not hard to show, using hyperbolic trigonometry, that �n is monotone in n, and
furthermore that for any � > 0 there exists N such that

cos.��N / < �1C �; cos.�N / > 1� �:
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Take ˛ D TN

 .


0/ and ˇ D TN

 .


0/. Following Kerckhoff [18], we see that as we move
from A to B along the Fenchel–Nielsen twist orbit, `.˛/ is monotone decreasing
whilst `ˇ is monotone increasing and

`A.˛/

`A.ˇ/
<
`B.˛/

`B.ˇ/
:

Finally, with respect to the differential structure of Teichmüller space, we have the
following:

Proposition 2.4 For each closed geodesic ˛ , the function M 7! `M .˛/ is an analytic
function.

3 Dehn Twists and length ratios

The proof of our main Theorem 1.1 is based on a trick involving the topological
manipulation of curves. In particular, we shall generate a sequence of simple closed
curves with a certain prescribed property which is outlined below (basically their
lengths should satisfy part 2 of Lemma 2).

A simple topological argument, pasting together curves, establishes the next lemma
(left to the reader as an exercise.)

Lemma 1 Let M be a surface and ˛ a simple closed geodesic on M . If ˛ is not a
boundary geodesic then there is a simple closed geodesic ˛0 which meets ˛ in exactly
2 points.

Remark 3.1 We work with pairs of curves which meet in two points because a simple
closed geodesic which divides the surface into 2 components meets any other geodesic
loop in at least 2 points. A surface for which every non peripheral simple closed
geodesic is separating is called a planar surface. Topologically, planar surfaces are
n–holed spheres. The one-holed torus is not a planar surface, and in fact it is the only
topological type of surface where every simple closed geodesic is non separating. By
choosing a pair of curves as in the lemma above, we are able to treat the case of planar
surfaces without much extra work.

Using Dehn twists around ˛ , we shall construct a sequence of geodesics with an
interesting sequence of lengths. We construct the sequence inductively as follows: let
˛0 be any geodesic which meets ˛ in exactly two points as in Lemma 1. Then let ˛n

be the right Dehn twist of ˛n�1 round ˛ . This gives us a well-defined sequence of
curves f˛ng

1
nD0

, each of which is closed and simple.
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Lemma 2 With ˛; f˛kg
1
kD0

as above:

(1) For each k D 1; : : :1 the curve ˛k meets ˛ in 2 points and each ˛k is simple.

(2) For all k 2N ,

2k`.˛/� `.˛0/ < `.˛k/ < 2k`.˛/C `.˛0/:

Proof The first claim is immediate since homeomorphism takes simple curves to
simple curves. The second is a consequence of the triangle inequality as can be seen in
Figure 1 where the diagonal arc represents a lift of the curve ˛k . The vertical segments

v1

v2

v3

h1

h2

Figure 1

v1; v2; v3 correspond to the lifts of three arcs of ˛0 and `.v1/C`.v2/C`.v3/D `.˛0/.
The horizontal segments h1; h2 are lifts of two arcs of the (nonprimitive) curve n˛ with
`.h1/C `.h2/D n`.˛/. By applying the triangle inequality to the different triangles
one obtains the two inequalities.

We note that, by using Riemannian comparison theorems, this result is true even when
M does not have constant curvature but merely pinched negative curvature.

Fix a surface M and let ˛; ˇ be distinct simple closed geodesics. Our aim is to
calculate the ratio `.˛/=`.ˇ/ from the asymptotic formula in Lemma 2. For ˛ , resp.
ˇ , choose ˛0 , resp. ˇ0 , as in Lemma 1. Define j̨ WD Tj

˛.˛0/, resp. ǰ WD Tj

ˇ
.ˇ0/).

Set Bi WD fˇk W `.ˇk/� `.˛i/g:

Proposition 3.1 With the notation above:

]Bi

i
�!

`.˛/

`.ˇ/
:
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Proof By Lemma 2 we have

]Bi � ]fk W 2k`.ˇ/� `.ˇ0/� 2i`.˛/C `.˛0/g;

]Bi � ]fk W 2k`.ˇ/C `.ˇ0/� 2i`.˛/� `.˛0/g:and

It follows that

i
`.˛/

`.ˇ/
�
`.ˇ0/

2`.ˇ/
�
`.˛0/

2`.ˇ/
� ]Bi � i

`.˛/

`.ˇ/
C
`.˛0/

2`.ˇ/
C
`.ˇ0/

2`.ˇ/
:

The statement of the proposition is immediate.

In the sequel, we shall denote N.M /i WD ]Bi for a given choice of M .

4 Surfaces with a pair of geodesics of equal length

For completeness we give a brief account of the nature of the sets E.˛; ˇ/ in terms
of elementary pointset topology. The results presented in this section seem to be well
known but do not appear in the literature.

It should be possible to develop a very precise theory of these sets in terms of algebraic
functions, via Fricke trace calculus, however, we will not consider that approach further
here.

The next result exploits the fact, by Proposition 2.4, that the function M 7! `M .˛/�

`M .ˇ/ is analytic.

Lemma 3 Let ˛; ˇ be a pair of simple closed geodesics.

(1) E.˛; ˇ/ is non empty.

(2) E.˛; ˇ/ is a closed subset with no interior, ie, its complement is open dense
in T .

(3) Let E D
S
E.˛; ˇ/ where the union is taken over all pairs of simple closed

geodesics and set Neq D T nE . Then Neq is dense.

Proof It is easy to show that, for each pair of simple closed geodesics ˛¤ ˇ , E.˛; ˇ/
is closed. This follows when one notes that E.˛; ˇ/ is the zero set for the continuous
function M 7! f˛;ˇ.M / WD `M .˛/� `M .ˇ/.

Next one establishes that E.˛; ˇ/ has no interior, ie, contains no open sets. Recall that
if a real analytic function is constant on an open set in its domain then in fact it is
constant on the entire component which contains this set. We shall apply this to our
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function f˛;ˇ to establish the claim. Suppose that ˛ and ˇ are simple geodesics and
they have the same length on some open subset of T (so that the function above is zero
on this open set). Since T is connected, the function is zero over the whole space, ie,
the corresponding geodesics must have the same length over the whole space. If ˛ and
ˇ are distinct then it is easy to find a sequence of deformations of the surface such that
the length of ˛ remains bounded while the length of ˇ tends to infinity (for example,
if ˛ meets ˇ the right Dehn twist round ˛ provides such a sequence). Thus ˛ D ˇ .

We show that E.˛; ˇ/ is non empty by applying the intermediate value theorem to our
function f˛;ˇ on Teichmüller space, which is connected. The claim is true if there are
surfaces X and Y such that on X , the curve ˛ is very short and ˇ is very long, and
on Y ˇ is very short and ˛ is very long. There are two cases to consider depending on
whether ˛ and ˇ intersect or not. Suppose that ˛ and ˇ do not meet; then there is a
pants decomposition of M so that both ˛ and ˇ are curves in the decomposition. This
enables one to find the surfaces X;Y quite easily, since one can specify the lengths of
the curves in a pants decomposition independently. On the other hand, if ˛; ˇ meet,
then by the collar theorem [5], for any M 2 T , their lengths satisfy the inequalities

`M .˛/� 2 arcsinh

 
1

sinh `M .ˇ/
2

!
;

`M .ˇ/� 2 arcsinh

 
1

sinh `M .˛/
2

!
:

Now by choosing a surface X , resp. Y , where the length of ˛ is indeed very small,
resp. where the length of ˇ is very small, we are guaranteed that the length of ˇ ,
resp. ˛ , is very long.

One notes that the final part is just the result of the Baire category theorem applied to
the sets T nE.˛; ˇ/. This completes the proof.

In some sense the complement of E , Neq , is a big set (Baire). Another convenient way
of thinking of this is that for the generic surface in Teichmüller space, the length map
from the set of simple geodesics to the positive reals is injective. It is also interesting
to contrast the above lemma with the following observation due to Randol [23]: there
are pairs of closed geodesics ˛ ¤ ˇ which have the same length over the whole of
Teichmüller space. By the above, these geodesics necessarily have self intersections.

Lemma 3 proves the first part of Theorem 1.1, and the remaining part is the goal of the
next section.
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5 Total disconnectedness

In this section we establish that Neq , the complement of E in Teichmüller space T is
totally disconnected ie it contains no nontrivial arc. An arc is the continuous image of
the closed unit interval, an arc is trivial if it is a constant map on the interval; obviously
an arc is nontrivial if and only if it contains a subarc with distinct endpoints. Our proof
consists of applying the intermediate value theorem to a certain continuous function
which we concoct using Proposition 3.1.

Let A be a nontrivial arc in Teichmüller space. By Theorem 2.3, there exist distinct
points X;Y 2A and a pair of simple closed geodesics ˛; ˇ such that

`X .˛/=`X .ˇ/¤ `Y .˛/=`Y .ˇ/:

Now by Proposition 3.1, we see that there is an integer i such that the numbers
N.X /i ; N.Y /i , defined in Section 3, are different. In particular, there are simple
closed geodesics ˛i and ˇn such that

`X .ˇn/ > `X .˛i/

`Y .ˇn/ < `Y .˛i/:and

Now M 7! `M .˛i/� `M .ˇn/ is a continuous function, so applying the intermediate
value theorem to A, between the points X and Y , yields the existence of a surface
Z 2A so that `Z .˛i/D `Z .ˇn/.

6 The order in lengths of simple closed geodesics determines
a point in Teichmüller space

The purpose of this section is to observe that our analysis has produced a curious fact:
for closed surfaces (or surfaces with fixed boundary length) and one-holed tori, the
orders between lengths of simple closed geodesics determine a point in Teichmüller
space. To see this, recall that one of the main ingredients in our proof of Theorem
1.1 is that, in many cases, including the case of surfaces with fixed boundary lengths
and in particular closed surfaces or surfaces with cusp boundary (Theorem 2.1) and
one-holed tori (Lemma 11 in Section 10), the map from Teichmüller space to the
marked interior simple length spectrum is projectively injective. When this is the case,
we’ve shown that between any two distinct points of Teichmüller space there is a pair
of simple closed geodesics ˛ and ˇ such that their order in length is reversed. From
this observation, one obtains the following result.
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Theorem 6.1 Let T be the Teichmüller space of a surface with given boundary length
or of a one-holed torus with variable boundary length. Then the map that sends a point
in T to the relative orders in length between simple closed geodesics is injective.

Example A.1 of two nonisometric four-holed spheres with identical interior marked
simple length spectrum at the end of Section 10 shows that one must be very care-
ful when trying to generalize the above theorem to arbitrary signature with variable
boundary lengths.

7 Application to the Markoff conjecture

Recall that T s
1;1

is the set of all one-holed tori with maximal isometry group. The
mapping class group of acts transitively on connected components of T s

1;1
each of

which is a smooth 1–dimensional submanifold of the Teichmüller space of one-holed
tori T1;1 . We now apply our analysis of multiplicities to this subset.

Theorem 7.1 The subset of T s
1;1

which does not have the Markoff isometry property
is dense.

Remark 7.1 For the same reason as was given for the set E � T in Lemma 3, the
subset consisting of those surfaces Mt not having the Markoff isometry property is
a meager set in the sense of Baire. To do this one needs to see that, for ˛ and ˇ not
related by an isometry, the set E.˛; ˇ/ meets a connected component of T s

1;1
in a finite

number of points. This can be done presenting E.˛; ˇ/ and the connected component
of T s

1;1
as algebraic subsets of R3 using the Fricke trace calculus.

Proof Consider X and Y , two distinct points in some connected component of
T s

1;1
. Since T s

1;1
is a submanifold of T1;1 , it follows that there is an arc A � T

between X and Y . By the results of Section 5, there is a pair of geodesics .˛; ˇ/
such that `X .˛/ < `X .ˇ/ and `Y .ˇ/ < `Y .˛/, and thus a surface Z 2 A such that
`Z .˛/D `Z .ˇ/. Since the connected component of T s

1;1
is an embedded line no two

surfaces X;Y in the connected component are related by an element of the mapping
class group (ie a change of marking). This means that if there is a surface X in
the connected component such that `X .˛/ ¤ `X .ˇ/ then there is no surface X 0 (in
the connected component) such that an isometry of X 0 takes ˛ to ˇ . In particular
the surface Z constructed above does not have the Markoff isometry property. This
establishes the claim of the theorem.
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Remark 7.2 The surface Z in the proof of the theorem is a one-holed torus with 12
distinct simple closed geodesics of equal length. As mentioned in the introduction, an
upper bound on the number of simple closed geodesics of equal length on a one-holed
torus would have to be at least 12.

8 Topology of E.˛; ˇ/

In this section we prove Theorem 1.2 which tells us that our hypersurfaces are connected
submanifolds and that their reunion is also connected. Let us begin by showing that
they are submanifolds.

Lemma 4 E.˛; ˇ/ is a smooth codimension 1 submanifold.

Proof This follows from the implicit function theorem, a surface M 2 E is a regular
point for the function M 7! `M .˛/� `M .ˇ/ if

d`M .˛/� d`M .ˇ/¤ 0:

It suffices to find a single (smooth) deformation �t ; �0 DM such that

d`M .˛/: P�t ¤ d`M .ˇ/: P�t ;

where P�t D
d�t

dt

ˇ̌
tD0

. In fact since `M .˛/D d`M .ˇ/ it suffices to find a deformation
�t such that

d`M .˛/

`M .˛/
: P�t ¤

d`M .ˇ/

`M .ˇ/
: P�t :

We explain why Thurston’s stretch maps provide �t satisfying this latter condition.
Stretch maps were introduced by Thurston in [30] as maps minimising the bi-Lipschitz
constant between pairs of hyperbolic structures on the same closed surface. A stretch
map �t is constructed from a maximal geodesic lamination �; recall that a geodesic
lamination is maximal if and only every complementary region is either an ideal
triangle or a punctured monogon. One constructs a (partial) foliation of complementary
regions by horocyclic segments. The hyperbolic metric induces a transverse Holder
distribution on this foliation. Roughly speaking, the stretch map consists of multiplying
this transverse distribution by et . This yields a hyperbolic structure such that the length
of the maximal measured sublamination of � is also multiplied by et .

To show connectedness, we will need the following lemma which concerns spaces
homeomorphic to Rn (such as Teichmüller space).
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Lemma 5 Let U;V be open connected sets of Rn such that xU \ xV D @U D @V and
xU [V DRn . Then @U D @V is connected.

Proof Essentially this lemma follows from the fact that Rn has the Phragmen–Brouwer
Property [4] which is outlined below. A topological space is said to have the Phragmen–
Brouwer property if, for two given disjoint closed sets D and E and two points a

and b , neither D nor E separates a and b , then D [E does not separate a and b .
(A set separates two points if the two points lie on distinct connected components of
the complement of the set.)

Denote F D @U D @V and suppose F is not connected, ie, F D F1[F2 where F1

and F2 are disjoint nonempty closed sets. Now clearly, because Rn has the Phragmen–
Brouwer property, either the complement of F1 or F2 is disconnected. Suppose then
that F c

1
DA[B where A and B are disjoint and open. Now U �A[B is connected

thus we can suppose that U � A. Also, F2 � A[B is closed and a subset of @A,
so F2 �A. The set V �A[B is also connected and @V \A� F2 ¤∅ so V �A.
Now xADRn and B D∅, a contradiction.

Using this lemma and stretch maps we can show the following:

Lemma 6 The hypersurfaces E.˛; ˇ/ are connected.

Proof If ˛ and ˇ are disjoint, then they can be decomposed into a pants decomposition
and because Fenchel–Nielsen parameters determine both the points and the topology
of Teichmüller space, the result is obvious.

Now for intersecting ˛ and ˇ , denote by EC , resp. E� , the open subsets of T where
`.˛/ > `.ˇ/, resp. where `.˛/ < `.ˇ/. We begin by showing that these subsets of T
are connected. Let M1;M2 2 EC . Using a stretch map, it is possible to continuously
deform a surface such that a given simple curve’s length is decreased and more so
than any other simple curve. Furthermore, its length will go to 0. Applying a stretch
map to ˇ on both M1 and M2 , we can find two finite paths in Teichmüller space
c1; c2 such that c1.0/ D M1 , c2.0/ D M2 and c1.1/ D M 0

1
, c2.1/ D M 0

2
where

`M 0
1
.ˇ/; `M 0

2
.ˇ/ < 2 arcsinh 1. Because of the property of stretch maps, these paths

remain entirely in EC . By looking at Fenchel–Nielsen coordinates which include
the length of ˇ , it is easy to see that the subset of T such that `.ˇ/ < 2 arcsinh 1 is
connected. Note that by the collar theorem and the fact that ˛ and ˇ intersect, any
surface with `.ˇ/ < 2 arcsinh 1 also has `.˛/ > 2 arcsinh 1, and thus is contained in
EC . This shows that EC is connected. Using the same argument, one shows that E�
is connected.
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Applying Lemma 5 to U WD EC and V WD E� (and of course E.˛; ˇ/D @ECD @E� ),
we obtain the result.

We now need to show that the reunion of the hypersurfaces is connected which follows
from the fact that Neq is totally disconnected and the following lemma.

Lemma 7 Let N be a totally disconnected set of Rn with n > 2. Then Rn nN is
connected.

Proof Rn is a Cantor manifold (a result due to Urysohn for nD 3 and to Aleksandrov
for n> 3), meaning that a closed subset that separates has topological dimension at
least n� 1. Of course, a totally disconnected subset N is not (necessarily) closed.
However, if N separates then it contains a closed subset that separates as follows. Let
M be the complement of N that is not connected, thus is equal to .A\M /[.B\M /

where A and B are open nonempty sets which are disjoint on M . Thus A\B �N .
But as N is totally disconnected, A\B D∅. Now the complement of A[B , say F ,
is closed, separates Rn , and is contained in N . But its topological dimension cannot
be greater than 0 because N has topological dimension 0, and thus cannot separate, a
contradiction.

9 Asymptotic behaviour of E.˛; ˇ/

The goal of this section is to prove Theorem 9.1 which gives, in the particular case
of a one-holed torus with fixed boundary length, a “coarse” description of E.˛; ˇ/.
We show that E.˛; ˇ/ has two ends and that these determine a pair of points in the
Thurston boundary of Teichmüller space. In fact these points are the same pair of
geodesics as in the case of flat tori outlined in the introduction. Our point of departure
is the observation that, by the collar lemma, one expects that if M 2 E.˛; ˇ/ contains
a (very) short essential simple closed geodesic 
 then

�.
; ˛/D �.
; ˇ/(9–1)

We begin by studying this equation.

9.1 Curves and homology

Let T "
1;1

denote the Teichmüller space of one-holed tori with some fixed boundary
length ". Let 
 be an oriented primitive essential simple closed geodesic and let .t; `/
be Fenchel–Nielsen parameters for this choice of simple closed curve. Associated
to 
 is a foliation of T "

1;1
by level sets of `M .
 / D ` for M 2 T "

1;1
. We make the
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convention that if a curve is a k iterate of a primitive curve, then each intersection
point (geometric or algebraic) is counted k times.

Let us briefly recall some facts about homology classes and oriented simple closed
curves. Write Œ
 � 2H1.M;Z/ for the integer homology class determined by a simple
closed curve 
 and �a.�; �/ for the algebraic intersection number (relative to a fixed
orientation of the surface). There is an essential simple closed curve 
 0 which meets 

just once and, after possibly changing the orientation, we may suppose that �a.
; 
 0/D1.
We say that the pair .Œ
 �; Œ
 0�/ form a canonical basis for homology. The intersection
numbers �a.
; ˛/ and �a.ı; ˛/ define a unique oriented simple closed curve up to isotopy.
To each pair .k; l/2Z�Z, we associate the unique oriented (not necessarily primitive)
simple closed geodesic Œ˛� D kŒ
 �C l Œ
 0� where k D �a.˛; 


0/ and l D ��a.˛; 
 /.
Recall that, in the particular case of the one-holed torus, two simple closed curves are
homologous if and only if they are isotopic. The following equation relating algebraic
and geometric intersection numbers will of use in studying equation (9–1):

j�a.˛; ˇ/j D �.˛; ˇ/:(9–2)

Geometrically this means that a pair of oriented simple closed geodesics ˛; ˇ on a
torus always intersect “in the same way”, ie, there are no arcs of ˛ that leave ˇ and
come back to ˇ on the same side of ˇ . Essentially, equation (9–2) holds because on
a one-holed torus no pair of arcs of simple closed geodesics form a bigon nor even a
bigon surrounding the boundary curve of the torus [6; 16].

Lemma 8 If 
1 is an essential simple closed geodesic such that �.˛; 
1/D �.ˇ; 
1/,
then ˙Œ
1�D Œ˛�˙ Œˇ�.

Proof Let Œ
 �; Œ
 0� be a basis of the integer homology, then there exists a; b; c; d 2 Z
such that Œ˛� D aŒ
 �C bŒ
 0� and Œˇ� D cŒ
 �C d Œ
 0� with ad � bc ¤ 0. Suppose
Œ
1�D xŒ
 �CyŒ
 0� with x;y 2 Z2 n f0; 0g then it satisfies

�.
1; ˛/D jay �xbj D jcy � dxj D �.
1; ˇ/;

since geometric intersection number is just the absolute value of the algebraic intersec-
tion number. Dropping absolute values,

ay � bx D˙.cy � dx/;

that is .x;y/ is a solution of one of the following:

.aC c/y � .bC d/x D 0;

.a� c/y � .b� d/x D 0:
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The first equation gives ˙Œ
1�D Œ˛�C Œˇ� and the second ˙Œ
1�D Œ˛�� Œˇ�.

9.2 Existence

Given a pair of primitive simple closed geodesics ˛ and ˇ , the preceding lemma
yields a pair of primitive essential simple closed geodesics such that the geometric
intersection number with both ˛ and ˇ is the same. We will now show that the ends of
E.˛; ˇ/ meet the Thurston boundary in these points Let 
; 
 0 be a pair of simple closed
geodesic such that .Œ
 �; Œ
 0�/ is a canonical homology basis. Thus Œ˛�D aŒ
 0�˙ nŒ
 �

and Œˇ�D bŒ
 0�˙ nŒ
 �. After possibly changing orientations of the curves ˛ and ˇ ,
we may suppose that Œ˛�D aŒ
 �� nŒ
 0� and Œˇ�D bŒ
 �� nŒ
 0�.

For any given torus, in [21] it is shown that Œ
 � 7! `.
 / extends to a norm, equal in
fact to the stable norm, on the first homology group of the torus H1.T;R/. The unit
ball of a norm is a convex set and for 
 any simple closed geodesic Œ
 �=`.
 / is a
boundary point of the unit ball of the stable norm. Denote L` the leaf of T "

1;1
for

which `.
 /D `.

Lemma 9 Let ˛; ˇ be a pair of distinct geodesics that meet a simple geodesic 
 in
the same number of points. Then for any ` > 0, there exists a torus T 2L` such that
`T .˛/D `T .ˇ/:

Proof The level sets of the function f˛ˇ (defined in Lemma 10) are just the Fenchel–
Nielsen twist orbits for 
 and thus are connected. We think of Z as being a zero of
the function

M 7! `M .˛/� `M .ˇ/

where M varies in L` .

To prove the existence of a solution Z we shall apply the intermediate value theorem
on L` to our function f˛ˇ . Let D
 be a positive Dehn twist along 
 . The Dehn twist
acts on both the homotopy class of simple curves and on Teichml̈ler space, sending a
surface M to D
 :M . For our function this means that

f˛ˇ.D
M /D `M .D�1

 .˛//� `M .D�1


 .ˇ//:

We show that our function changes sign as M varies over a twist orbit by considering
the corresponding problem for lengths of curves on a fixed surface M ; that is, we show
that, as k varies over Z, there is a change of sign of

`M .D�k

 .˛//� `M .D�k


 .ˇ//:
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It is convenient to suppose that M is “rectangular”, that is it admits two noncommuting
reflections. As before, we choose 
 0 so that .Œ
 �; Œ
 0�/ is a canonical basis of integer
homology H1.T;Z/ and identify H1.T;R/ with R2 with coordinates .x;y/ in the
obvious way, ie, by sending Œ
 �; Œ
 0� to the usual orthonormal basis. The two reflections
of M induce automorphisms of R2 , reflections in respectively the x and y axes,
and xB1 , the closed unit ball of the stable norm is invariant under these. Using this
invariance one sees that, as we vary over xB1 , the maximum y value is attained at
Œ
 0�=`
 0 . Moreover we make the following observation:

Observation If Œı�; Œı0� on the boundary of xB1 are in the positive quadrant of R2 then
the slope of the line joining these points is negative.

Suppose that ˛; ˇ each meet 
 in exactly n> 0 points. Then there exist integers a; b

such that

Œ˛�D aŒ
 �C nŒ
 0�

Œˇ�D bŒ
 �C nŒ
 0�:and

After swapping ˛; ˇ we may suppose that b > a.

The Dehn twist along 
 induces an automorphism of H1.T;Z/, which extends to
H1.T;R/, namely

D
 �W xŒ
 �CyŒ
 0� 7! .xCy/Œ
 �CyŒ
 0�:

To simplify notation for k 2N we set

˛k WDD

k
�
.Œ˛�/; ˇk WDDˇ

k
�
.Œˇ�/:

The corresponding normalized points

Œ˛k �

`.˛k/
;
Œˇk �

`.ˇk/

are in the boundary of the unit ball of stable norm [21]. There exists K 2 Z such that
for all k >K , both Œ˛k �, Œˇk � are in the positive quadrant of R2 . The slope of the line
segment joining ˛k=`˛k

to ˇk=`ˇk
is

`.˛k/� b� `.ˇk/� a

`.˛k/� `.ˇk/
;

which is positive if `.ˇk/� `.˛k/ and b > a. This contradicts our observation above
and so finishes the proof of the lemma.
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9.3 Uniqueness

Lemma 10 Consider a leaf L` of T "
1;1

for some fixed `. Denote by Mt the surface
of L` where the twist parameter along 
 takes the value t . If a> b then the function
f˛ˇ.t/D `Mt

.˛/� `Mt
.ˇ/ is a strictly increasing function.

Remark 9.1 Although ˛ and ˇ are oriented curves, this plays no role in the func-
tion f˛ˇ .

Proof To prove the lemma, we shall show that the derivative of this function is strictly
positive. Clearly, it suffices to show that this holds whenever aD bC 1, the general
case follows by induction.

We have �a.˛; 
 / D �a.ˇ; 
 / D n and �a.˛; 
 0/ � 1 D �a.ˇ; 

0/ D b . Recall that a

simple closed geodesics of a one-holed torus intersect passes through two of the three
Weierstrass points of the torus. It follows that any given any pair of simple closed
geodesics ˛ and ˇ there is a Weierstrass point p 2 ˛\ˇ . Consider the oriented path
starting from p , following ˇ until ˇ intersects 
 , then following 
 until the next
intersection point with ˇ and so forth. The path closes up after n such steps, when,
after having crossed 
 n times. By construction this is a closed oriented piecewise
smooth curve, say z̨ , with self intersections occuring only at the points of ˛ \ ˇ .
Since none of the self intersections of z̨ are transverse it is homotopic to a simple
closed (smooth) curve. We now calculate the algebraic intersection number �.z̨; �/. By
construction, z̨ is an Eulerian path for the directed graph with vertices at ˛\ˇ and
edges the set of all the oriented arcs of both 
 and ˇ joining these points. Thus

�a.z̨; �/D �a.
; �/C �a.ˇ; �/:

It follows that �a.z̨; 
 /D �a.
; 
 /C �a.ˇ; 
 /D 0C nD n and �a.z̨; ı/D �a.
; 
 0/C
�a.ˇ; 


0/ D 1C b D a. This proves that z̨ and ˛ determine the same homology
class. On a hyperbolic punctured torus there is at most one closed simple geodesic in
each homology class so, since z̨ is homotopic to a simple closed curve, z̨ and ˛ are
homotopic.

Lifting to the universal cover H , we obtain a configuration of curves depicted in
Figure 2, where the 
 .k/ , ˇ.k/ and p.k/ correspond to the successive lifts of 
 , ˇ
and p . So, in the figure, the orientation of ˇ is from top to bottom, and the orientation
of 
 from left to right. We obtain a copy of ˛ in H by joining the points p.1/ to p.2/

by the unique oriented geodesic arc between them. Denote this oriented geodesic arc
by ˛0 . Note that p may or may not be a point of 
 . Figure 2 portrays the case where
p is not a point of 
 . If p was a point of 
 , the lift 
 .n/ would pass through point
p.2/ , and the arc denoted ˇ10

would not appear.
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 .1/


 .2/


 .n�1/


 .n/

ˇ.1/

ˇ.2/

ˇ.n/

ˇ.1
0/

p.1/

p.2/

Figure 2: A lift to H

We now put orders on set of n oriented angles of intersection between ˇ and 
 , and
on the set of n oriented angles of intersection between ˛ and 
 respectively. Denote
by �i 2 �0; �Œ the oriented angle between ˇ.i/ and 
 .i/ , and by z�i 2 �0; �Œ the oriented
angle between ˛.1/ and 
 .i/ . Now because ˛ is homotopic to z̨ which is obtained by
adding positive arcs along 
 to ˇ we have �i > z�i for all i 2 f1; : : : ; ng. Now by the
Kerckhoff–Wolpert formula, the derivative along a positive twist of the function f˛ˇ is
given by

Pn
kD1.cos z�k � cos �k/ which is always strictly positive as each summand

cos z�k � cos �k is strictly positive.

Putting the three previous lemmas together, we have now prove Theorem 1.3, which
rephrased in the notation introduced above is the following.

Theorem 9.1 Let ˛ and ˇ be a pair of distinct simple closed geodesics on a one-holed
torus. The set E.˛; ˇ/ is a simple path joining the points in the Thurston boundary of
T "

1;1
determined by the simple closed geodesics Œ˛�˙ Œˇ�.

Proof Denote by L` the leaf of T "
1;1

where `.
 / D ` and by L0
`

the leaf of T "
1;1

where `.
 0/D `. By the previous lemmas, on each leaf L` and L0
`

, there is a unique
one-holed torus T where `T .˛/D `T .ˇ/. As both sets fL`g`2�0;1Œ foliate T "

1;1
, it
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follows that E.˛; ˇ/ is a simple path between the boundary points of T "
1;1


 , resp. 
 0 ,
ie the point where `.
 /D 0, respectively the point where `.
 0/D 0.

10 Concluding remarks, problems

In conclusion we remark that the above situation, for reasons which should be apparent
from our treatment, bears a striking similarity to the case of the transcendental numbers.
It is relatively easy to establish the existence of aggregate of all transcendentals as a
nonempty set, and even to show that in fact most numbers are transcendental. However,
to say whether a particular number is transcendental is a very difficult proposition.

Let us end with a list of related problems.

Problems

(1) It is easy to show that there exists a Euclidean torus, with no symmetries other
than the hyperelliptic involution, but which has infinitely many distinct pairs of
simple geodesics of the same length; that is it lies on infinitely many different
hypersurfaces E.:; :/. (It is perhaps surprising that a countable set of planes
should have its set of intersections distributed so that they clump together in
such a fashion.) Is there a hyperbolic once-punctured torus with this property?

(2) On the other hand is there a number K > 1 such that if M has K pairs of
equal length then M , a hyperbolic torus, must have an isometry (other than the
hyperelliptic involution)?

(3) We have constructed a dense set of counterexamples to the naive geometric
generalization of the Markoff conjecture. That is, for a dense set a of t � 3, there
are matrices, in SL.2;R/, At ;Bt ;AtBt D Ct 2 SL.2;R/, each with trace t ,
such that the quotient of H by the Fuchsian group they generate is a torus with a
hole with maximal symmetry group but the multiplicity of the simple spectrum
is at least 12. Is it possible to find such a t 2 Z?

(4) As mentioned in the introduction, it is not known if simple multiplicity is always
bounded for a hyperbolic surface. This is probably a very difficult problem. To
illustrate the difficulty, let us make the following observation. Recent results
on both upper and lower polynomial bounds on the growth of simple closed
geodesics in function of length (see Mirzakhani [22] and Rivin [24]) imply that
on any hyperbolic surface which is not a pair of pants, any "> 0 and any n, there
exists n distinct simple closed geodesics 
1; : : : ; 
n such that j`.
k/�`.
l/j<"

for all k; l 2 f1; : : : ; ng. To prove this, it suffices to notice that if this were not
true, then there would be a linear growth bound.
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Appendix A Proofs of Theorems 2.1 and 2.2

We begin by treating the case of one-holed tori. In this case, the map from Teichmüller
space to the set of lengths of interior simple closed geodesics is projectively injective.

Lemma 11 There are four interior simple closed curves ˛ , ˇ , 
 , and ı of a one-
holed torus such that the map 'W M 7! .`M .˛/; `M .ˇ/; `M .
 /; `M .ı// is projectively
injective.

Proof Let M be a one-holed torus and let ˛ , ˇ , 
 , and ı be the simple closed curves
as in Figure 3.

˛

ˇ

 ı

˛

ˇ

 ı

˛

Figure 3: The one-holed torus with four interior geodesics and the four curves
seen in the universal cover

The remarkable fact about the geodesic representatives of simple closed curves on a
one-holed torus is that they pass through exactly two of the three Weierstrass points
of the torus in diametrically opposite points. In the case of the curves ˛ , ˇ , 
 , and
ı , their intersection points are all Weierstrass points. Therefore they can be seen in
the universal cover as in Figure 3. It is well known that the lengths of ˛ , ˇ , and 

determine a unique point in Teichmüller space (see for example Buser and Semmler [6]).
The lengths of these three curves up to a multiplicative constant do not determine a
unique point in Teichmüller space however. For this we need the curve ı . What we
need to prove is that if we have two one-holed tori M1 and M2 in Teichmüller space
with

.`M1
.˛/; `M1

.ˇ/; `M1
.
 /; `M1

.ı//D �.`M2
.˛/; `M2

.ˇ/; `M2
.
 /; `M2

.ı//
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for some � 2R, then �D 1 and then, by what precedes, M1 DM2 . Figure 3 shows
four hyperbolic triangles. Consider the two bottom ones. The side lengths of the bottom
left triangle are `.˛/=2, `.ˇ/=2, and `.
 /=2. The side lengths of the bottom right
triangle are `.˛/=2, `.ˇ/=2, and `.ı/=2. The bottom intersection point between ˛
and ˇ forms two angles depending on the surface M , say �1.M / and �2.M / such
that �1C �2 D � . Suppose without loss of generality that �� 1. Now if for M1 the
triangle lengths are equal to a; b; c and d , the triangle lengths for M2 are �a; �b; �c

and �d . This implies that �1.M1/� �1.M2/ as well as �2.M1/� �2.M2/, equality
occurring only if �D 1. As �1C �2 is always equal to � , this concludes the proof.

In order to prove the more general theorems, we shall need some lemmas from elemen-
tary real function theory concerning sums of logarithmic and exponential functions.
The functions we shall study arise naturally as trace polynomials satisfied by traces of
simple closed geodesics. (Recall the trace of a simple closed geodesic 
 is the trace of
a matrix in PSL.2;R/ which covers 
 and is equal to 2 cosh.`.
 /=2/.)

Lemma 12 Let F W Rn!R be the following function in n> 1 variables:

F.x/D log
� nX

kD1

xk � 1
�� nX

kD1

xk � 1
�
�

nX
kD1

xk log xk :

Then F.x/� 0 for all x with minkD1;:::;n xk � 1.

Proof We have F.1; : : : ; 1/D 0 and @F.x/=@xl D log.
Pn

kD1 xk � 1/� log xl � 0

for all l 2 f1; : : : ; ng which proves the result.

Lemma 13 Let a1; a2; b1; : : : ; bn be positive numbers satisfying a1 > bk for all
k 2 f1; : : : ; ng, and let f be the following real function defined for t 2RC :

f .t/D at
1C at

2�

nX
kD1

bt
k :

Then f has at most one strictly positive zero.

Proof We can suppose that a2D 1 as multiplying f by a�t
2

does not change the sign
of f , nor does it change the order of the positive numbers.
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Let us suppose that f .t/� 0 for some t > 0. We shall show that this implies f 0.t/� 0.
By calculation

f 0.t/D at
1 log a1�

X
kD1

nbt
k log bk ;

tf 0.t/DA1 log A1�

nX
kD1

Bk log Bk ;and thus

with A1 D at
1

and Bk D bt
k

. Because f .t/� 0, we have A1 �
Pn

kD1 Bk � 1, and it
follows that

tf 0.t/� log
� nX

kD1

Bk � 1
�� nX

kD1

Bk � 1
�
�

nX
kD1

Bk log Bk :

If Bk � 1 for k 2 f1; : : : ; ng, then by Lemma 12, tf 0.t/� 0. If not, then notice that

tf 0.t/� log
� znX

kD1

Bk � 1
�� znX

kD1

Bk � 1
�
�

znX
kD1

Bk log Bk

with zn< n and all Bk � 1 for k � zn is positive if zn� 2. Now if zn� 1 then a1 > b1

and a2 D 1> b2 and the result is trivial.

Corollary A.1 Let a1; a2; b1; : : : ; bn be positive numbers satisfying a1 > bk for all
k 2 f1; : : : ; ng, and let f be the following real function defined for t 2RC :

f .x/D cosh.a1x/C cosh.a2x/�

nX
kD1

cosh.bkx/:

Then f has at most one strictly positive zero.

Proof Let us suppose that a1 � a2 . Let us remark that limx!C1 f .x/DC1. By
calculation

f .2p/.x/D a
2p
1

cosh.a1x/C a
2p
2

cosh.a2x/�

nX
kD1

b
2p

k
cosh.bkx/

f .2pC1/.x/D a
2pC1
1

sinh.a1x/C a
2pC1
2

sinh.a2x/�

nX
kD1

b
2pC1

k
sinh.bkx/:and

Because a1 > bk for all k 2 f1; : : : ; ng, it follows that there exists a p such that a
2p
1
>Pn

kD1 b
2p

k
and it follows that for this p , we have f .2p/.x/ > 0 for all x� 0. We shall

proceed backwards to f . Notice that for any q2N , f .2q/.0/Da
2q
1
C a

2q
2
�
Pn

kD1 b
2q

k
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and that f .2qC1/.0/D 0. It follows that f .2p�1/.x/ > 0 for all t > 0. For all k less
than 2p � 1, f .k/.t/ > 0 for all t > 0, until there is a p1 such that f .2p1/.0/ < 0.
(If such a p1 does not exist then f is a strictly increasing function and the result
is obvious.) Notice that the existence of p1 implies that the function defined as
g.t/ WD f .t/D at

1
C at

2
�
Pn

kD1 bt
k

has a positive zero between 2p1 and 2p� 1. By
Lemma 13, this is the unique strictly positive zero of the function g . The unicity of
this zero implies that for k D 1; : : : ;p1� 1 we have f .2k/.0/ < 0. Also, f .2kC1/.x/

takes value 0 for xD 0, is strictly decreasing for a while, and then is strictly increasing
and goes to infinity. In particular, f 0.x/ behaves this way. As f .0/ < 0, this completes
the proof.

We are now set to prove Theorem 2.1. Let us recall its statement.

Theorem 2.1 There is a fixed finite set of simple closed geodesics 
1; : : : ; 
n such
that the map ' W M 7! .`M .
1/; : : : ; `M .
n// is projectively injective.

Proof The first step is to show that the lengths of a finite set of simple closed geodesics
determine a point in Teichmüller space. Recall that a point in Teichmüller space
is determined by the lengths of the geodesics of a pants decomposition and twist
parameters along the interior geodesics of the pants decomposition. In turn, the twist
parameter around a geodesic is determined by the lengths of two simple closed geodesics
that intersect the pants geodesic minimally, that mutually intersect minimally and do
not intersect any other geodesic of the pants decomposition. (For a proof of how these
lengths determine the twist parameter, see for example Buser [5]). Thus the geodesics
of a pants decomposition can be completed into a finite set of simple closed geodesics,
say f
1; : : : ; 
mg, whose lengths determines a unique point in Teichmüller space.

We shall now show that we can add an extra geodesic to one of the finite sets described
above such that the map to the lengths of the extended set is projectively injective.
There will be two cases to consider: either the surface is of signature .g; n/ with g> 0,
or not. In the first case, the surface has an embedded one-holed torus, whose boundary
curve we ensure is in the simple closed geodesics of our pants decomposition used to
create the above set. By Lemma 11, it suffices to add an simple closed geodesic 
mC1

which is interior of our torus, and the result follows.

Now if g D 0, for any pants decomposition, the surface contains an embedded four
holed sphere whose boundary geodesics are among the pants decomposition geodesics
of the surface. Denote by ˛; ˇ; 
; ı these boundary geodesics, and by � , � and � the
interior geodesics of the finite set determined above. Consider an auxiliary geodesic x�
which is only simple closed geodesic with two intersection points with both � and �
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˛

ˇ




ı

�
�

�

˛

ˇ




ı

�
�

x�

Figure 4: The geodesics � , � , � and x� on the four holed sphere

distinct from � . It necessarily has four intersection points with � , and is portrayed in
Figure 4.

In [13], it is shown that the geodesics described above satisfy a certain number of trace
equalities. As we require information on the lengths of the corresponding geodesics,
we have translated these equations accordingly. One of them, that is used to describe a
fundamental domain for action of the mapping class group of the four-holed sphere, is
the following:

cosh `.�/
2
C cosh `.

x�/
2
C2

�
cosh `.˛/

2
cosh `.ı/

2
C cosh `.ˇ/

2
cosh `.
 /

2

�
D 2 cosh `.�/

2
cosh `.�/

2
:

(A–1)

By hyperbolic trigonometry this becomes

cosh `.�/
2
C cosh `.

x�/
2
C cosh `.˛/C`.ı/

2
C cosh `.˛/�`.ı/

2

C cosh `.ˇ/C`.
 /
2

C cosh `.ˇ/�`.
 /
2

D cosh `.�/C`.�/
2

C cosh `.�/�`.�/
2

:

(A–2)

Notice that for geometric reasons, cosh
�
.`.�/C `.�//=2

�
is greater than all of the

other summands. Suppose now that the map on the lengths was not projectively
injective. That would imply that there exists at least two surfaces with their lengths
satisfying the above equations. In other words, the above equations are satisfied by both
˛; ˇ; 
; ı; �; �; �; x� and t0.˛; ˇ; 
; ı; �; �; �; x�/ for some t0 . Now consider the function
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f .t/ WD
P2

kD1 cosh.ak t/�
P6

kD1 cosh.bk t/ with

a1 WD
`.�/C `.�/

2
;

a2 WD
`.�/� `.�/

2
;

b1 WD
`.�/

2
;

b2 WD
`.x�/

2
;

b3 WD
`.˛/C `.ı/

2
;

b4 WD
`.˛/� `.ı/

2
;

b5 WD
`.ˇ/C `.
 /

2
;

b6 WD
`.ˇ/� `.
 /

2
:

Notice that the constants a1; a2; b1; : : : ; b6 satisfy the conditions of Corollary A.1.
The equation f .t/D 0 has a positive solution given by t D 1, and by Corollary A.1,
this solution is unique (given by t0 D 1) which completes the proof.

Remark A.1 The number of curves (denoted n above) in the projectively injective
map which we obtain is in no way optimal. In the case of surfaces of genus g with m

cusps, Hamenstädt has shown that the optimal number is 6g� 5C 2m [17].

Consider a four-holed sphere. For a given choice of � , � and � , the simple closed
geodesic x� is uniquely determined. Similarly, consider the auxiliary curves x� and x� as
the unique simple closed geodesics (distinct from respectively � and � ) such that x�
intersects both � and � twice, respectively such that x� intersects both � and � twice.
As before, notice that � and x� intersect four times, respectively that � and x� intersect
four times. We now have a set of six interior simple closed geodesics f�; x�; �; x�; �; x�g
whose lengths are shown in the following lemma to determine a finite number of points
in Teichmüller space.

Lemma 14 Let T be the Teichmüller space of the four-holed sphere, and let M2 T .
Then there are finitely many Mk 2 T such that `M .
 / D `Mk

.
 / for all 
 2
f�; x�; �; x�; �; x�g.
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Proof The idea is to show that the lengths of the six curves f�; x�; �; x�; �; x�g determine
a finite number of possibilities for the lengths of the four boundary curves ˛ , ˇ , 

and ı . In the proof of the previous theorem, we have seen that the lengths of the
geodesic representatives of �; x�; �; � satisfy an interesting trace equation (Equation
(A–1)) involving the boundary geodesics. The sets �; �; x�; � and �; �; �; x� satisfy
similar equations (Equations (A–5) and (A–6) below). All these equations, along with
an additional trace equality which we shall detail later (Equation (A–3)), have been
proved in [13] and are the basis of this proof. We shall use the following abbreviations
for these equations aD cosh.`.˛/=2/ etc. (In other words, the half-trace of a curve
denoted by a Greek letter is denoted by the lowercase corresponding roman letter.) The
additional trace equation mentioned earlier is the following:

a2
C b2

C c2
C d2

Cx2
Cy2

C z2
C 4abcd � 1

� 2xyzC 2x.ad C bc/C 2y.abC cd/C 2z.acC bd/D 0:
(A–3)

The full list of equalities that we shall use is:

ad C bc D yz�
xC xx

2
;(A–4)

acC bd D xy �
zCxz

2
;(A–5)

abC cd D xz�
yC xy

2
;(A–6)

a2
C b2

C c2
C d2

C 4abcd D 1� 4xyzCxxxCy xyC zxz:(A–7)

(The last equation is obtained from an obvious manipulation of (A–3) and (A–4), (A–5),
(A–6).) Notice that the right-hand side of each equation is determined by the lengths of
f�; x�; �; x�; �; x�g. Denote by f1; : : : ; f4 the right hand side of each equation, which we
shall view as given constants. It now suffices to show that for given f1; : : : ; f4 2RC� ,
there are a finite number of .a; b; c; d/ 2 .RC�/4 solution to the system of equations.
There are five distinct situations to consider.

The first situation is when aD b D c D d , which implies f1 D f2 D f3 and aD b D

c D d D
p
f1=2.

If aD b D c , then

a2
C ad D f1 D f2 D f3;

3a2
C d2

C 4a3d D f4:

From these equations, we can deduce a single polynomial equation in a with a finite
number of solutions. Working backwards, one obtains a finite number of solutions
.aD b D c; d/ to Equation (A–4).
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Now if aD b and c D d then

aC c D
p
f1Cf2;

ac D
f2

2
;

which trivially implies a finite (but not unique) set of solutions of type .a; a; c; c/.

The two remaining cases (when aD b , a¤ c; d , c ¤ d , and when all four variables
a; b; c; d are distinct) are similar in nature. We shall give the full solution to the latter
case which is the most complicated and leave the remaining case to the dedicated reader.
Note that a; b; c; d distinct implies that the constants f1 , f2 and f3 are also distinct.
By manipulating the system of equations one obtains

aD
f2c �f1d

c2� d2
;(A–8)

b D
f1c �f2d

c2� d2
;(A–9)

.cd �f3/.c
2
� d2/2C .f1c �f2d/.f2c �f1d/D 0;(A–10)

.f2c �f1d/2C .f1c �f2d/2C .d2
C c2/.c2

� d2/2

C 4.f2c �f1d/.f1c �f2d/cd �f4.c
2
� d2/2 D 0:

(A–11)

Equations (A–10) and (A–11) determine two real planar curves. There are a finite
number of pairs .c; d/ solution to both equations if and only if their underlying poly-
nomials are coprime in RŒc; d �. In order to determine whether or not they polynomials
are coprime, we shall consider the polynomials as polynomials in variable c , resp. in
variable d . Note that if the two polynomials, say P and Q, are not coprime in RŒc; d �,
then they are not coprime in either RŒc� or RŒd �. We shall then calculate the resultant
of the two polynomials in c , resp. in d , which gives a polynomial Rc.d/ in variable
d , resp. Rd .c/ in variable c . We shall see that neither of the polynomials Rc.d/ and
Rd .c/ are identically zero. This implies that P and Q are coprime in both RŒc� and
RŒd �, which in turn implies that they are coprime in RŒc; d �. We have

P D .cd �f3/.c
2
� d2/2C .f1c �f2d/.f2c �f1d/;

QD .f2c �f1d/2C .f1c �f2d/2C .d2
C c2/.c2

� d2/2

C 4.f2c �f1d/.f1c �f2d/cd �f4.c
2
� d2/2:

The resultants are calculated by calculating the determinants of the associated Sylvester
matrixes of the two polynomials. In our case, by computation, the resultant Rc.d/DP28

kD1 ˛kdk is a degree 28 polynomial with many terms, but luckily, the leading

Geometry & Topology, Volume 12 (2008)



Hypersurfaces in Teichmüller space 1915

coefficient is simple and equal to

˛28 D 256.f1�f2/
4.f1Cf2/

4:

Similarly (and by symmetry), Rd .c/D
P28

kD1 ˇkdk , and

ˇ28 D 256.f1�f2/
4.f1Cf2/

4:

As f1 ¤ f2 and both f1 and f2 are strictly positive, this proves the result. The
remaining case can be solved using the same method.

Remark A.2 One might hope for unicity in the previous lemma (as in the case of the
one-holed torus, Lemma 11), ie, that the lengths of our well chosen six interior simple
closed curves determine uniquely the lengths of the boundary geodesics and thus a
unique point in Teichmüller space. A first remark is that, by using the trace equalities
used above, the length of the six curves f�; x�; �; x�; �; x�g determine the lengths of all
interior simple closed geodesics of a given surface (see Gauglhofer and Semmler [13]
for a full proof). In spite of this, it is easy to construct examples of pairs of marked four
holed spheres where the lengths of f�; x�; �; x�; �; x�g are equal but the surfaces represent
different points in T . To do this consider a surface M1 with marked boundary lengths
`M1

.˛/D `M1
.ˇ/D `1 , and `M1

.
 /D `M1
.ı/D `2 . Further consider that the marked

surface M1 has twist parameter equal to 0 along � . Now consider a surface M2 with
boundary lengths `M2

.˛/ D `M2
.ˇ/ D `2 and `M2

.
 / D `M2
.ı/ D `1 , satisfying

`M2
.�/D `M1

.�/, also with twist parameter 0 along � . It is not too difficult to see
that the lengths of x� , � , x� , � and x� are the same for both M1 and M2 , but yet M1

and M2 are clearly distinct points in T . These examples, however, are examples of
the same surface up to isometry. What is more surprising is that one can find examples
of surfaces that are not isometric, but have the same interior length spectrum.

Example A.1 Consider a four holed sphere �M1 whose marked boundary lengths are
` �M1

.˛/D ` �M1
.ˇ/D ` �M1

.
 /D 2 arccosh 2; and ` �M1
.ı/D 2 arccosh 3. Now set our

marked interior geodesic lengths to

` �M1
.�/D ` �M1

.�/D ` �M1
.�/D q;

q D 2 arccosh.1C .293� 92
p

2/
1
3 C .293C 92

p
2/

1
3 /:where

This surface has the same interior length spectrum as the surface �M2 with

` �M2
.�/D ` �M2

.�/D ` �M2
.�/D q;
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but with ` �M2
.˛/D ` �M2

.ˇ/D ` �M2
.
 /D r; and ` �M2

.ı/D s where

r D 2 arccosh

r
7

2
�
p

6;

s D 2 arccosh

r
79

2
C 15
p

6:and

To see that these two surfaces have the interior simple length spectrum, by the above it
suffices to check that the left-hand sides of Equations (A–8), (A–9), and (A–10) are the
same, and they are by calculation. This example is in no way isolated, and the trick to
finding it was to search for two surfaces with distinct boundary lengths, but each with
three equal boundary lengths. With this method you get at least a real dimension 1

family of such surfaces.

We are now ready to prove Theorem 2.2.

Theorem 2.2 Let T be the Teichmüller space of given signature. Then, there is a
set � WD f
1; : : : ; 
ng of interior simple closed curves such that for any given point
in M 2 T , there are a finite number of M 0 2 T such that �.`M .
1/; :::; `M .
n/ D

.`M 0.
1/; :::; `M 0.
n// for some � 2R.

Proof This is obviously true by Theorem 2.1 for closed surfaces and by Lemma 11
for the one-holed torus. In the remaining cases, consider the set of geodesics � 0 WD
f
1; : : : ; 
mg constructed for the proof of Theorem 2.1. Each boundary curve (of the
base surface) in the set � 0 is a boundary curve of a four-holed sphere formed by
elements of � 0 . To � 0 , we need to add auxiliary curves to obtain a set � 00 such that
every boundary curve of � 0 is the boundary curve of a four-holed sphere whose interior
curves f�; x�; �; x�; �; x�g are elements of � 00 . Now consider the set � 000 is obtained
by removing the boundary curves from � 00 . By the previous lemma and the initial
considerations in the proof of Theorem 2.1, the lengths of the elements of � 000 determine
a finite number of marked surfaces in T .

We now need to show that the equality

�.`M .
1/; :::; `M .
n//D ..`M 0.
1/; :::; `M 0.
n//

can only be true for a finite number of � for some choice of � WD f
1; : : : ; 
ng. If the
genus of the underlying surface is not 0, and as we have mimicked the set of geodesics
in Theorem 2.1, by Lemma 11 it follows that �D 1. Otherwise, let us consider one
of the four-holed spheres whose interior curves f�; x�; �; x�; �; x�g are in � 000 . Consider
the further set of interior curves obtained by a single right Dehn twist around � of the
curves � , x� , � and � . Notice the curve obtained from � this way is of course itself,
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and the curve obtained by � is x� . Denote by x� 0 and � 0 the images of x� and � . We can
now fix � WD � 000[fx� 0; � 0g: Recall that the lengths of � , x� , � and � satisfy equality
(A–2). As a Dehn twist along � does not change the equality satisfied by the set of
curves, this gives a second equality which, with Equation (A–2), gives:

cosh `.�/
2
C cosh `.�

0/C`.�/
2

C cosh `.�
0/�`.�/

2

D cosh `.
x�0/
2
C cosh `.�/C`.�/

2
C cosh `.�/�`.�/

2
:

Now suppose `M1
.�/D �`M2

.�/. This implies that f .1/D 0 and f .�/D 0 for

f .t/ WD

3X
kD1

cosh.ak t/�

3X
kD1

cosh.bk t/;

with a1 D
`M .�/

2
;

a2 D
`M .� 0/C `M .�/

2
;

a3 D
`M .� 0/� `M .�/

2
;

b1 D
`M .x� 0/

2
;

b2 D
`M .�/C `M .�/

2
;

b3 D
`M .�/� `M .�/

2
:

Unlike in Corollary A.1, the function f may have more than one positive zero, but the
number of zeros is clearly finite, which implies a finite number of possible �. This
completes the proof.
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[17] U Hamenstädt, Length functions and parameterizations of Teichmüller space for
surfaces with cusps, Ann. Acad. Sci. Fenn. Math. 28 (2003) 75–88 MR1976831

[18] S P Kerckhoff, The Nielsen realization problem, Ann. of Math. .2/ 117 (1983) 235–265
MR690845

[19] M L Lang, S P Tan, A simple proof of the Markoff conjecture for prime powers, Geom.
Dedicata 129 (2007) 15–22 MR2353978

[20] B Maskit, A picture of moduli space, Invent. Math. 126 (1996) 341–390 MR1411137

[21] G McShane, I Rivin, A norm on homology of surfaces and counting simple geodesics,
Internat. Math. Res. Notices (1995) 61–69 MR1317643

Geometry & Topology, Volume 12 (2008)

http://www.ams.org/mathscinet-getitem?mr=984598
http://www.ams.org/mathscinet-getitem?mr=1183224
http://dx.doi.org/10.1007/BF02566766
http://www.ams.org/mathscinet-getitem?mr=948781
http://dx.doi.org/10.1112/S0024610798006292
http://www.ams.org/mathscinet-getitem?mr=1666058
http://dx.doi.org/10.1006/jnth.2000.2578
http://www.ams.org/mathscinet-getitem?mr=1816037
http://www.ams.org/mathscinet-getitem?mr=964685
http://dx.doi.org/10.2307/1969618
http://www.ams.org/mathscinet-getitem?mr=0067935
http://www.ams.org/mathscinet-getitem?mr=0288079
http://dx.doi.org/10.1090/S1088-4173-05-00106-2
http://dx.doi.org/10.1090/S1088-4173-05-00106-2
http://www.ams.org/mathscinet-getitem?mr=2133805
http://dx.doi.org/10.2140/gt.2003.7.443
http://dx.doi.org/10.2140/gt.2003.7.443
http://www.ams.org/mathscinet-getitem?mr=2026539
http://www.ams.org/mathscinet-getitem?mr=1668355
http://dx.doi.org/10.1007/BF02399200
http://www.ams.org/mathscinet-getitem?mr=822330
http://www.ams.org/mathscinet-getitem?mr=1976831
http://dx.doi.org/10.2307/2007076
http://www.ams.org/mathscinet-getitem?mr=690845
http://dx.doi.org/10.1007/s10711-007-9189-x
http://www.ams.org/mathscinet-getitem?mr=2353978
http://dx.doi.org/10.1007/s002220050103
http://www.ams.org/mathscinet-getitem?mr=1411137
http://dx.doi.org/10.1155/S1073792895000055
http://www.ams.org/mathscinet-getitem?mr=1317643


Hypersurfaces in Teichmüller space 1919

[22] M Mirzakhani, Simple geodesics and Weil–Petersson volumes of moduli spaces of
bordered Riemann surfaces, submitted (2003)

[23] B Randol, The length spectrum of a Riemann surface is always of unbounded multi-
plicity, Proc. Amer. Math. Soc. 78 (1980) 455–456 MR553396

[24] I Rivin, Simple curves on surfaces, Geom. Dedicata 87 (2001) 345–360 MR1866856

[25] P C Sarnak, Diophantine problems and linear groups, from: “Proceedings of the
International Congress of Mathematicians, Vol. I, II (Kyoto, 1990)”, Math. Soc. Japan,
Tokyo (1991) 459–471 MR1159234

[26] T A Schmidt, M Sheingorn, Parametrizing simple closed geodesy on �3nH , J. Aust.
Math. Soc. 74 (2003) 43–60 MR1948257

[27] P Schmutz, Systoles of arithmetic surfaces and the Markoff spectrum, Math. Ann. 305
(1996) 191–203 MR1386112

[28] P Schmutz Schaller, Geometry of Riemann surfaces based on closed geodesics, Bull.
Amer. Math. Soc. .N.S./ 35 (1998) 193–214 MR1609636

[29] C Series, The geometry of Markoff numbers, Math. Intelligencer 7 (1985) 20–29
MR795536

[30] W Thurston, Minimal stretch maps between surfaces arXiv:math.GT/9801039

Laboratoire Emile Picard, Université Paul Sabatier
Toulouse, France

Section de Mathématiques, École Polytechnique Fédérale de Lausanne
SB-IGAT-CTG, BCH, CH-1015 Lausanne, Switzerland

greg.mcshane@gmail.com, hugo.parlier@epfl.ch

Proposed: Benson Farb Received: 25 July 2007
Seconded: Dave Gabai, Jean-Pierre Otal Revised: 1 May 2008

Geometry & Topology, Volume 12 (2008)

http://dx.doi.org/10.2307/2042345
http://dx.doi.org/10.2307/2042345
http://www.ams.org/mathscinet-getitem?mr=553396
http://dx.doi.org/10.1023/A:1012010721583
http://www.ams.org/mathscinet-getitem?mr=1866856
http://www.ams.org/mathscinet-getitem?mr=1159234
http://www.ams.org/mathscinet-getitem?mr=1948257
http://dx.doi.org/10.1007/BF01444218
http://www.ams.org/mathscinet-getitem?mr=1386112
http://dx.doi.org/10.1090/S0273-0979-98-00750-2
http://www.ams.org/mathscinet-getitem?mr=1609636
http://www.ams.org/mathscinet-getitem?mr=795536
http://arxiv.org/abs/math.GT/9801039
mailto:greg.mcshane@gmail.com
mailto:hugo.parlier@epfl.ch

	1. Introduction
	2. Preliminaries
	3. Dehn Twists and length ratios
	4. Surfaces with a pair of geodesics of equal length
	5. Total disconnectedness
	6. The order in lengths of simple closed geodesics determines a point in Teichmüller space
	7. Application to the Markoff conjecture
	8. Topology of E(alpha,beta)
	9. Asymptotic behaviour of E(alpha,beta)
	9.1. Curves and homology
	9.2. Existence
	9.3. Uniqueness

	10. Concluding remarks, problems
	Appendix A. Proofs of Theorems 2.1 and 2.2
	References

