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Lagrangian matching invariants for fibred four-manifolds: II

TIM PERUTZ

In the second of a pair of papers, we complete our geometric construction of “La-
grangian matching invariants” for smooth four-manifolds equipped with broken
fibrations. We prove an index formula, a vanishing theorem for connected sums and
an analogue of the Meng–Taubes formula. These results lend support to the conjecture
that the invariants coincide with Seiberg–Witten invariants of the underlying four-
manifold, and are in particular independent of the broken fibration.

53D40, 57R57; 57R15

1 Introduction

This paper is the sequel to [24], which we shall refer to as Part I. Our overall aims
and main theorems were stated in the introduction to that paper, but briefly, the goal is
to understand Seiberg–Witten invariants of a four-manifold equipped with a “broken
fibration”—that is, a singular Lefschetz fibration in the sense of Auroux–Donaldson–
Katzarkov [1]—using constructions in symplectic topology directly reflecting the
geometry of the fibration. We shall not achieve quite as much as that: what we shall
manage is to construct “Lagrangian matching invariants”, as invariants of the fibration,
and demonstrate, in a number of ways, their resemblance to Seiberg–Witten invariants
of the four-manifold. However, equality of the Lagrangian matching invariants with
the Seiberg–Witten invariants remains conjectural, as does their independence of the
fibration.

1.1 Fibred coisotropic hypersurfaces

An important role in the programme is taken by certain Lagrangian correspondences
between symmetric products of surfaces. In Part I we constructed these correspondences
as vanishing cycles for certain degenerations and studied their properties. They arise
from fibred coisotropic hypersurfaces in symmetric products. One way to describe
their significance, which we did not do explicitly in Part I, is by means of a theorem
which we now proceed to state.
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Let † be a closed Riemann surface equipped with an area form ˛ . Fix n� 2 and a
Kähler form ! on Symn.†/ representing a cohomology class (in H 2.Symn.†/IR/)
invariant under action of the mapping class group of †. When g.†/ > 0 the space of
such invariant classes is two-dimensional, and there is a standard basis .�; �/ for it:

� � is dual to any of the smooth divisors Symn�1.†/� Symn.†/, embedded by
the map D 7! xCD for a fixed x 2†.

� � corresponds to the intersection form on H1.†IR/ under the natural map
ƒ2H 1.†/ ! H 2.Symn.†// (that is, the usual isomorphism ƒ2H 1.†/ !

H 2.Jac.†// followed by AJ� , where AJW Symn.†/ ! Jac.†/ is the Abel–
Jacobi map).

When g.†/ D 0, the class � vanishes, but � spans the invariant part of the second
cohomology. The classes � and � will come up repeatedly in this paper, as they did in
Part I.

After rescaling ! , we may write its cohomology class as Œ!�D �C�� where � lies in
(some bounded-below interval in) R.

One obtains a homomorphism between symplectic mapping class groups

�n;�W
Aut.†; ˛/
Ham.†; ˛/

!
Aut.Symn.†/; !/

Ham.Symn.†/; !/

by the following procedure. Given � 2 Aut.†; ˛/, its mapping torus Y D T.�/! S1

is a bundle with fibre † carrying a natural cohomology class ˛� 2 H 2.T.�/IR/
extending ˛ . A choice of complex structure on its vertical tangent bundle makes its
relative symmetric products Symn

S1.Y /Df.t;D/ W t 2S1;D 2Symn.Yt /g into smooth
manifolds. They fibre over S1 with complex fibres. A point which arose in Part I is
that there are natural maps

H 2.Y /!H 2.Symn
S1.Y //; c 7! cŒ1�

H 0.Y /!H 2.Symn
S1.Y //; c 7! cŒ2�;and

defined by means of the universal divisor

�D f.x;D/ W x 2 Supp.D/g � Y �S1 Symn
S1.Y /

and its Poincaré dual cohomology class ı . The second projection

pr2W Y �S1 Symn
S1.Y /! Symn

S1.†/

is a †–bundle. Using also the first projection pr1 , one puts

cŒ1� D .pr2/!.pr�1.c/ ^ ı/; cŒ2� D .pr2/!.pr�1.c/ ^ ı ^ ı/:
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There is a nonempty, convex set of closed two-forms on Symn
S1.Y / which are Kähler

on the fibres and which globally represent the unique cohomology class in the linear
span of .˛�/Œ1� and 1Œ2� which extends the class �C �� on a reference fibre. One
verifies that 1Œ2� restricts to the fibre Symn.†/ as 2.n� � �/; this, in tandem with
MacDonald’s formula c1.Symn.†//D .nC1�g/��� , shows that the class extending
�C�� is

(1)
1C�n

h†; ˛i
.˛�/

Œ1�
�
�

2
1Œ2�:

We then define �n;�.Œ��/ to be the Hamiltonian-isotopy class of the symplectic mon-
odromy of Symn

S1.Y /. One checks that this procedure defines a homomorphism.

In Section 2 of Part I, we defined spherically fibred coisotropic submanifolds and Dehn
twists along them.

Theorem 1.1 Let �
 denote the positive Dehn twist along the embedded circle 
 �
†. Then, assuming � > 0, �n;�.�
 / coincides with the Hamiltonian isotopy class
represented by a fibred Dehn twist along an S1 –fibred coisotropic submanifold V
 �

Symn.†/, itself determined by 
 up to Hamiltonian isotopy. The reduced space of V

is diffeomorphic to Symn�1.x†/, where x† is the result of surgery along 
 .

This theorem is essentially due to I Smith [37, Proposition 3.7], drawing on ideas of
Seidel, though to obtain the monodromy symplectically (up to Hamiltonian isotopy),
and not merely smoothly, we invoke the monodromy theorem from Part I, Section 2.

The theorem follows readily from Part I, in which the construction of V
 was given in
detail (Theorem A). Beware that whilst it is easy to think of a hypersurface in Symn.†/

determined by 
 , namely the image of the natural map 
 �Symn�1.†/! Symn.†/,
this is not diffeomorphic, let alone isotopic, to V
 (it is, however, homologous to V
 ).
The significance of V
 is more subtle: it is the vanishing cycle of a relative Hilbert
scheme of points on the fibres of an elementary Lefschetz fibration. The monodromy
theorem then shows that the monodromy of an elementary symplectic Morse–Bott
fibration, such as this Hilbert scheme, is the fibred Dehn twist about its vanishing cycle
(modulo Hamiltonian isotopies).

Corollary 1.2 When � > 0, im.�n;�/ is generated by fibred Dehn twists.

Proof We claim that Aut.†; ˛/=Ham.†; ˛/ is generated (as a group, not a monoid)
by Dehn twists; the corollary then follows from the theorem.

Moser [22] proved that Aut.†; ˛/ has the same homotopy type as Diff.†/. Thus
�0 Aut.†; ˛/ is the ordinary mapping class group �0 Diff.†/, which is generated by
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(area-preserving) Dehn twists. Hence it suffices to show that the kernel of the quotient
map Aut.†; ˛/=Ham.†; ˛/! �0 Aut.†; ˛/ is generated by Dehn twists. This kernel
is isomorphic, via the flux homomorphism, to H 1.†IR/=� , where � is the flux group.
By the Earle–Eells theorem [7], � is zero when g.†/ > 1 and � DH 1.†IZ/ when
g.†/D 1. By considering the Dehn twist along a curve 
 , followed by the inverse
twist along a parallel curve 
 0 , one sees that elements of H 1.†IR/=� are indeed
generated by Dehn twists.

It is unknown whether the corollary holds when �� 0.

1.2 Plan of the paper

In Section 4 of Part I we showed how families of Lagrangian correspondences, para-
metrised by S1 , could be cast as Lagrangian boundary conditions associated with
elementary broken fibrations (Theorem B). In Part II we continue where we left off.
We begin, in Section 2, by restating Theorem B, or rather, stating a corollary of it
which is our jumping-off point for this part. In Section 3 we set out what we need from
pseudo-holomorphic curve theory. This is then applied to relative Hilbert schemes of
points arising from broken fibrations, with the Lagrangian boundary conditions we
have constructed.

The definition of the Lagrangian matching invariants is given in Section 4.2. It invokes
a particular case of the theory of pseudo-holomorphic sections already described.
However, rather than applying the theory in its “raw” form, we show that the resulting
invariants L.X ;�/ for a broken fibration � on a four-manifold X can be organised in a
way which is strongly reminiscent of Seiberg–Witten theory:

� A “topological sector” for our theory determines (and is in many cases determined
by) a Spinc –structure for X (Section 4).

� The local expected dimension of the moduli space of pseudo-holomorphic sec-
tions defining the invariants is equal to that of the Seiberg–Witten moduli space
(Theorem D).

� There are relative invariants in Floer homology groups HF�.Y; t/, which one
can take to be finitely generated over Z for each Spinc –structure. These are
constructed as summands (corresponding to components of the twisted loopspace)
in the fixed-point Floer homology groups HF�.�n;�.�//, where Y D T.�/, and
� is chosen so as to avoid periods. The group HF�.Y; t/ is graded by the
Z–set of homotopy classes of oriented two-plane fields underlying t (Section 5).
Such geometric gradings appear in Kronheimer and Mrowka’s monopole Floer
homology theory for three-manifolds [16].
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Computations are carried out in Section 6, including the proofs of Theorem E (“Meng–
Taubes formula”) and Theorem F (“vanishing for connected sums”), both of which
were stated in the introduction to Part I.

Acknowledgements I thank Simon Donaldson, Paul Seidel, Ivan Smith and Michael
Usher for their useful input. This work was supported by the EPSRC via Research
Grant EP/C535995/1.

2 Matching conditions

In this section we state some of our conclusions from Part I in a language we shall find
convenient for the pseudo-holomorphic curve theory still to come.

Definition 2.1 Let S be a compact surface with an even number of boundary compo-
nents. A matching for S is a decomposition

@S D @SCq @S�

(defined by a continuous function @S ! f˙1g) together with an orientation-reversing
diffeomorphism � W @SC! @S� .

In Part I, Definition 2.1, a symplectic Morse–Bott fibration was defined in terms of
data .E; �;�;J0; j0/, where E is a manifold with boundary, � W E! S a smooth
proper map to a surface, mapping @E submersively to @S ; � is a closed two-form,
nondegenerate on the tangent distribution ker.D�/; J0 (resp. j0 ) is the germ of
an almost complex structure near the critical set X crit (resp. near �.X crit/), making
D� holomorphic. X crit is assumed to be a submanifold, and the complex Hessian
form on its normal bundle nondegenerate. We additionally made certain integrability
assumptions near X crit , which we do not repeat here.

Definition 2.2 Let .E2nC2; �;�;J0; j0/ be a symplectic Morse–Bott fibration over
a surface S equipped with a matching. Let .@E˙; �˙; �˙/ be the restriction of E

to @S˙ . A Lagrangian matching condition for .E; �/ is a submanifold QnC1 �

@EC �@SC �
�.@E�/ such that (i) the projection Q ! @SC is a proper, surjective

submersion, and (ii) ..��C/˚ ����/jQD 0.

Our main examples of matched surfaces arise from broken fibrations (Part I, Definition
1.1). Let .X; �/ be a broken fibration over a closed, oriented surface S . Let Z be the
one-dimensional part of X crit , and suppose that �jX crit is injective.
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Let N be a narrow, closed tubular neighbourhood of �.Z/ � S , with retraction
r W N !Z . Then r gives rise to a matching for S 0 WD S n int.N /. Indeed, if � is a
component of �.Z/, there are two components of @S 0 which retract to it under r . The
one for which the fibres have lower Euler characteristic (higher genus, in the connected
case) is designated as belonging to @S 0C , the other as belonging to @S� . Clearly the
matching � is an invariant of .X; �/, up to isotopy.

Let X 0 DX jS 0 be the restricted fibration.

Now let �W S 0 nS crit! Z�0 be a locally constant function with the property that

2�.s/C�.Xs/D const:

For example, � could be the intersection number s 7!ˇ�ŒXs � for some relative homology
class ˇ 2H2.X;ZIZ/ with ı.ˇ/D ŒZ� 2H1.ZIZ/ (see Lemma 4.9).

Choose a positively oriented complex structure J on the tangent distribution T vX 0 .
Let

(2) X Œ��
D Hilb�S 0.X

0/

be the relative Hilbert scheme, ie, the disjoint union, over components C � S 0 , of
the relative Hilbert schemes Hilb�.C /

C
.X jC / (see Part I, Section 3). It comes with a

map � Œ��W X Œ��! S 0 , and a complex structure J Œ�� on its vertical tangent distribution
ker D� Œ�� (this distribution is not of constant rank).

Suppose that W 2 H 2.X IR/ is a class such that hW;Fi > 0 for every class F 2

H2.X IZ/ represented by a component of a fibre of � . Such a W exists by definition
of broken fibrations.

Definition 2.3 A closed two-form � on X Œ�� is W –admissible if it meets the follow-
ing conditions:

� .X Œ��; � Œ��; �;J0; j0/ is a symplectic Morse–Bott fibration for some .j0;J0/,
where J0 agrees with J Œ�� on tangent vectors where both are defined.

� � is Kähler on each regular fibre Sym�.s/.Xs/, and also on the components of
crit.� Œ��/.

� There is a �> 0 such that the restriction of � to each regular fibre Sym�.s/.Xs/

represents the class �Xs
C��Xs

.
� The restriction of � to @X Œ�� represents the cohomology class

1C�n

hW;fibrei
W Œ1�

�
�

2
1Œ2�

occurring in the construction of �n;� (cf equation (1)).
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It is admissible if it is W –admissible for some W .

Lemma 2.4 W –admissible two-forms exist. Moreover, the set of admissible forms is
convex, hence they are unique up to deformation.

Proof For existence, one uses the Thurston–Gompf method: see Gompf [13, Theorem
2.2] and also Donaldson–Smith [6, Lemma 4.4]. One can use Equation (17) to rewrite
the class

1C�n

hW;fibrei
.W j@X 0/Œ1��

�

2
1Œ2�

in the cohomology of the boundary as�
1C�n

hW;fibrei
.W j@X 0/C

�

2
c1.T

vX /j@X 0
�Œ1�
��c1.T

v@X Œ��/:

One then looks for a closed two-form globally representing the class�
1C�n

hW;fibrei
.W j@X 0/C

�

2
c1.T

vX 0/

�Œ1�
��c1.TX Œ��/:

This is possible locally in the base: this is a nontrivial statement near a critical value,
but it was established in Part I, Section 3. Hence, by Thurston–Gompf patching, it is
also possible globally. The convexity statement is obvious.

Admissibility depends on the choice of J , but the set of Jt –admissible forms varies
continuously in a path Jt .

Our rephrasing of Theorem B from Part I is the following:

Theorem 2.5 For any choice of J –admissible two-form �, the symplectic Morse–
Bott fibration .X Œ��; � Œ��; �;J0; j0/ admits a canonical Lagrangian matching condition
Q, up to isotopy. In a smooth path of complex structures Jt , and of Jt –admissible
two-forms �t , there are smoothly varying matching conditions Qt .

3 Pseudo-holomorphic sections with Lagrangian matching
conditions

In this section we set out a general framework for “Lagrangian matching invariants”, not
specifically tied to the Lagrangian matching conditions arising from broken fibrations
on four-manifolds.
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3.1 Almost complex structures adapted to symplectic Morse–Bott fibra-
tions

Let M be a smooth manifold and V !M an oriented real vector bundle. Denote by
J.V / the space of all orientation-compatible, C1 complex structures on V , with its
C1 topology. If .V; �/ is a symplectic vector bundle then the subspace J.V; �/�J.V /

of compatible complex structures—those J 2J.V / such that the formula gx.v1; v2/ WD

�.v1;Jv2/ defines a metric on the vector bundle V —is contractible.

Definition 3.1 Let .E; �;�;J0; j0/ be a symplectic Morse–Bott fibration over S ,
and let E�DE ncrit.�/. A pair .J; j /2 J.TE/�J.TS/ is adapted to the fibration if

(1) � is .J; j /–holomorphic, ie D� ıJ D j ıD� ;

(2) J jT vE� 2 J.T vE�; �jT vE�/, that is, J is compatible with � on the smooth
points of the fibres;

(3) J extends the germ J0 , and j extends j0 .

Trying not to make the notation too cumbersome, we write J.E; �/ for the space of
adapted pairs, and J.E; �; j /D fJ W .J; j / 2 J.E; �/g. With respect to the splitting
TE� D T vE�˚��TS� defined by the symplectic connection (or, in fact, any other
connection), a pair .J; j / 2 J.E; �/ has a block decomposition over E� of shape

(3) J D

�
J vv J vh

0 j ;

�
; J vv ıJ vh

CJ vh
ı j D 0:

With J vv and j fixed, J vh is just a C–antilinear homomorphism:

J vh
2 � Hom0;1.T hE�;T vE�/:

Lemma 3.2 The spaces J.E; �; j / are contractible.

Proof To see that J.E; �; j /¤∅, fix a closed neighbourhood U of crit.�/ on which
J0 can be defined; let U � D U n Ecrit . One can extend J0jT

vU � to an element
J vv 2 J.T vE�; �jT vE�/. Over U � , J vv ˚ j differs from J0 by an antilinear
homomorphism, which can be extended to one defined over E� . This gives rise to a
complex structure J of the right sort.

Now consider the restriction map r W J.E; �; j /! J.T vE�; �jT vE�/. Its fibres are
affine spaces modelled on the vector spaces �c Hom0;1.T hE�;T vE�/, where �c

means sections supported outside X crit . The map r admits a section s , and J.E; �; j /

deformation-retracts to the contractible space im.s/, hence is contractible.
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An easy matrix calculation, linearising (3), shows that J.E; �/ has formal tangent
spaces TJ J.X; �; j / which fit into short exact sequences

0! Hom0;1..��TS; j /; .T vE;J vv//! TJ J.E; �; j /! TJ vvJ.T
vE/! 0:

Moreover, J.E; �; j / can be made into a smooth Fréchet manifold which fibres
smoothly over J.T vE/.

The drawback of working with spaces of almost complex structures of class C1

is that they are not complete, which means that in establishing genericity results,
one cannot directly invoke the implicit function and Baire category theorems. This
is not a serious problem: one fix, due to Floer, is to observe that for any rapidly-
decreasing sequence �D .�n/n�1 of positive reals there is a dense Banach submanifold
J.E; �; j /� � J.E; �; j / whose tangent vectors are bundle maps with finite “C1� –
norm”. We refer to Schwarz [29, Section 4.2.1] for the details.

3.2 The moduli space

Now suppose that .E; �;�;J0; j0/ is a symplectic Morse–Bott fibration over a
matched surface, with Lagrangian matching condition Q (Definition 2.1 and Definition
2.2).

� Write sect.E/ for the space of C1 sections of � , and sect.E;Q/ for the
subspace of sections u which “map @S into Q.” This is an abbreviated way
of saying that the image of the section .uj@SC; ��uj@S�/ of the fibre product
@EC �@SC �

�@E� lies in Q.

� The tangent space of sect.E;Q/ at u is the subspace C1.u�T vEIT vQ/ of
sections � 2 C1.u�T vE/ such that .�j@SC; ���j@S�/ is a section of T vQ.

� We need a Sobolev completion sectp
1
.E;Q/ of sect.E;Q/, defined using a

Riemannian metric and a fixed number p > 2. It is the smallest subset of
the continuous sections sectC 0.E;Q/ which contains sect.E;Q/ and which
also contains the section x 7! expu.x/.�.x// for any u 2 sect.E;Q/, � 2
L

p
1
.u�T vEIT vQ/. The space sectp

1
.E;Q/ is a smooth Banach manifold with

tangent spaces L
p
1
.u�T vEIT vQ/.

� Fix .J; j / 2 J.E; �;�/. The moduli space of .j ;J /–pseudo-holomorphic
sections with boundary in Q is the space

MJ ;j .E;Q/D fu 2 sectp
1
.E;Q/ W J ı .Du/D .Du/ ı j g � sectp

1
.E;Q/;

and it is this that we wish to analyse.
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� Let E
Q
J ;j
! sect.E;Q/ be the natural infinite-rank vector bundle with fibres

.E
Q
J ;j
/u DLp.Hom0;1

Q
.TS;u�T vE//. Here Hom0;1

Q
.TS;u�T vE/ is the vec-

tor space of .j ;J vv/–antilinear homomorphisms TS ! u�T vE which (in the
obvious sense) carry T .@S/ to u�T vQ.

The moduli space MJ ;j .E;Q/ is the zero-set of the section

(4) x@J ;j D
1

2
.DCJ ıD ı j / 2 �.E

Q
J ;j
/:

Allowing J to vary within J.E; �; j / one gets a “universal” vector bundle

E
Q
j ! sect.E/� J.E; � I j /:

This has a section x@j , whose zero-set Mj .E;Q/ D
S

J MJ ;j .E/ is the “universal
moduli space”.

When u 2MJ ;j .E;Q/, there is an intrinsically defined linearised operator

DuW L
p
1
.u�T vEIQ/! .E

Q
J ;j
/u:

When u 2 sectp
1
.E;Q/ is not holomorphic, the linearisation is not intrinsic, but can be

defined by choosing a connection on E
Q
J ;j

. Then for connections ru on the complex
vector bundles u�T vE and bundle maps auW u

�T vE! Hom0;1.TS;E/, one has

Duv Dr
0;1
u vC auv:

3.3 Transversality

Apart from minor differences of context, this is a review of standard theory. We follow
Seidel [34] closely, since our set-up is almost the same as his.

The first point to make is that a C 1 section of � cannot intersect Ecrit , because, along
the image of the section, its derivative provides a right inverse to D� . Consequently
the presence of critical points makes no difference to transversality theory for moduli
spaces of sections. It does, however, affect their compactifications.

Introduce a torsion-free connection r on T .E nEcrit/ which restricts to a connection
on the vertical subbundle. The linearisation of x@J ;j (4) at u 2MJ ;j .E/ is a linear
map

(5) DuW �.u
�T vE/! .EJ ;j /u D �.Hom0;1.TS;u�T vE//:

Explicitly,

Du.v/D .u
�
r/0;1.v/C

1

2
.rvJ / ıDu ı j:
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The linearisation of x@j is Duniv
u;J

, where

Duniv
u;J W .v;Y / 7!DuvC

1

2
Y ıDu ı j:

The linearised operators extend continuously to maps between the Banach completions
of their domains and targets. Thus we have

DuWL
p
1
.u�T vE;T vQ/!Lp.Hom0;1

Q
.TS;u�T vE/;

Duniv
u;J WL

p
1
.u�T vE;T vQ/˚C1� .TJ J.E; �; j //!Lp.Hom0;1

Q
.TS;u�T vE/:

The crucial point is that Du is Fredholm (we will come back to this point shortly).
It follows that so too is Duniv

u;J
. The latter is also surjective, whence Mj .E;Q/ is a

smooth Banach submanifold of sectp
1
.E;Q/�J.E; � I j /� . This surjectivity statement

is nonstandard only in one respect, namely, that we are considering almost complex
structures on @EC �@SC �

�@E� which respect the fibre product decomposition. How-
ever, the standard argument, involving unique continuation, is unaffected by this point
(if D�u�D 0, where � is an Lq section of the dual bundle to Hom0;1

Q
.TS;u�T vE/,

q�1Cp�1 D 1, then � must be supported in @S ; but Lq \ ker D�u contains a dense
subspace of continuous sections, hence �D 0).

Write Jreg.X; � I j / for the space of regular almost complex structures: those with the
property that Du is onto for every u 2MJ ;j .X;Q/. Their importance is that when
J is regular, MJ ;j .E;Q/ is a smooth manifold of local dimension ind Du . The key
transversality statement, following from surjectivity of Duniv

u;J
, is that Jreg.E; �; j /\

J.E; �;J /� is a (dense) Baire subset of the complete space J.E; �; j /� (as trailed
earlier, we use Floer’s C1� spaces here).

3.3.1 Intersection with cycles in fibres Mark a finite set of points fsigi2I in int.S/,
manifolds Zi , and smooth maps �i W Zi!Xsi

. There is an evaluation map

(6) evJ
I D

Y
i2I

evi W MJ ;j .X;Q/!
Y

i

Xsi
:

The arguments that establish the surjectivity of Duniv
u;J

extend easily to give a “transver-
sality of evaluation” lemma (see Seidel [34, Lemma 2.5]) which says that, for any
J 2 J.X; � I j /, and any neighbourhood U of fsi W i 2 Ig, there exist arbitrarily
small perturbations Jt of J , supported in ��1.U /, such that Jt 2 Jreg.X; � I j /

and evJt

I
is transverse to � D

Q
i �i . Similarly, given marked points s0

k
2 @SC , and

maps �0
k
W Z0

k
!Qs0

k
, there exist small perturbations of J supported in a chosen

neighbourhood of fs0
k
g [ f��1.s0

k
/g making �0

k
transverse to the natural evaluation
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map. (Again, the argument is unaffected by our use of almost complex structures which
respect the fibre product structure.)

3.3.2 Fredholm theory It is a simple matter to prove that pseudo-holomorphic sec-
tions with Lagrangian matching conditions have a Fredholm deformation theory, granted
the standard Fredholm theory for Lagrangian boundary conditions. The argument is
most direct in the case where S DSCqS� and the matching diffeomorphism � of the
boundary components extends to a diffeomorphism � 0W SC! S� : here, a Lagrangian
matching condition is simply a Lagrangian boundary condition in a fibre product.

In general, the argument goes as follows. Near @S , we can extend � to an diffeo-
morphism z� between collar neighbourhoods CC of @SC and C� of @S� . Take
u 2 sect.E;Q/, and let u˙ D ujC˙ . Then we have a section .uC; z��u�/ of the fibre
bundle EjCC �CC z�

�.EjC�/! CC .

We claim that the map (5),

DuW L
p
1
.u�T vEIQ/! .E

Q
J ;j
/u;

is Fredholm. Over compact subsets of int.S/, one has the usual elliptic estimate for
Du . Near the boundary, one can equivalently work with Du over CC [C� or with
the corresponding operator D.uC;z��u�/ over CC . The theory developed by Floer—see
[9, Lemma 2.3]—gives an elliptic estimate for the latter. Together, these estimates
imply that ker.Du/ is finite-dimensional. On small open sets in int.S/ or in CC , the
operator Du has a bounded right inverse, by elliptic theory, and these may be patched
together to form a global parametrix (as in Donaldson [5, Proposition 3.6]), which
shows that Du has closed range and finite-dimensional cokernel.

To state the index formula for Du , we need to define a “Maslov index” map

�QW sect.E;Q/! Z:

For a component @S .i/C of @SC , let v.i/C D uj@S .i/C . Let v.i/� D uj�.@S .i/C /. Choose
symplectic trivialisations t .i/C for .v.i/C /

�T vE and t .i/� for ��.v.i/� /
�T vE . Then the

pullback .v.i/C ; � ı v
.i/
� /
�T vQ defines (via t .i/C ˚ t .i/� ) a loop in a Lagrangian Grass-

mannian, and so has a classical Maslov index li . We put

�Q.u/D 2crel
1 .u

�T vE/C
X

i

li ;

where crel
1
.u�T vE/ is the Chern number of u�T vE! S relative to the trivialisations

t .i/
˙

over @S .
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Lemma 3.3 The index of Du is

ind.Du/D �Q.u/C
X

Si2�0.S/

rkC.T
vEjSi/�.Si/:

Proof We use the observation from Eliashberg–Giventhal–Hofer [8] that the index
of Cauchy–Riemann operators is invariant under “cutting and pasting”. For a positive
boundary component @S .i/C , let 
 .i/C be a loop in S 0 , parallel to @S .i/C , and let V .i/

C D

.u�T vE/j
 .i/C . Let ı � S2 be the equator, and let U ! S2 be a complex vector
bundle with c1.U / D 0 and U jı D V .i/

C . Cut S 0 along 
 .i/C , and S2 along ı to
obtain a Riemann surface with boundary, then re-glue the four boundary components
so as to obtain a new Riemann surface (the result of surgery on 
 .i/C ) which inherits
a vector bundle. By [8, 1.8, Axiom C3], this vector bundle also inherits a Cauchy–
Riemann operator D.i/

u;C , and ind.D.i/
u;C/D ind.Du/C 2 rankC.V

.i/
C /. (According to

[8] one should consider real analytic data here; however, ultimately this will make no
difference.)

Perform this surgery operation for each i ; also perform similar surgeries on a loop

 .i/� parallel to �.@S .i/C /, for each i . The result is (i) a matched Riemann surface C

which is the union of a closed Riemann surface C 0 and k pairs of discs .D.i/
C ;D

.i/
� /

with matched boundaries; (ii) a Cauchy–Riemann operator D0u over it. The ordinary
Riemann–Roch theorem computes the index of D0u over C 0 . Riemann–Roch for
surfaces with boundary computes the index over D.i/

C [D.i/
� as liCrank.T vE/jD.i/

C C

rank.T vE/jD.i/
� , where li is a Maslov index as in the definition of �Q.u/. Putting

these things together gives the result.

3.4 Compactness

The action of a section u 2 sect.E;Q/ is

A.u/D

Z
S

u��:

Though � itself need not be symplectic, �C c��ˇ is symplectic (tamed by J ) for
any positive area form ˇ 2 �2

S
and c � 0. The symplectic area for sections then

differs from the action by a constant, c
R

S ˇ . Gromov’s compactness theorem (the
relevant version is that of Ye [40]) says that any sequence u1;u2; : : : in MJ ;j .X;Q/

of bounded symplectic area—equivalently, bounded action—has a subsequence which
converges, in Gromov’s topology, to a pseudo-holomorphic curve v with bubbles and
boundary bubbles.

The principal component of a Gromov-limit is a differentiable map S !E which is
a section over the complement of a discrete set in S (the roots of the bubble-trees),
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hence is globally a section. Hence to compactify fu 2MJ ;j .E;Q/ WA.u/� �g one
need only consider curves whose components are (i) sections; (ii) bubbles in regular
fibres; (iii) bubbles in singular fibres; (iv) boundary bubbles.

3.4.1 Fibred monotonicity One does not expect moduli spaces of pseudo-holo-
morphic sections with Lagrangian boundary conditions to resemble closed manifolds
in general, even to the extent of carrying fundamental homology classes. The reason
is that there is typically a codimension 1 boundary, corresponding to bubbling off of
discs. Various hypotheses can be imposed to make sure that there is in fact no such
boundary in codimension 1. Ours will be fibred weak monotonicity; indeed, we will
mostly be concerned with fibred monotonicity. In our applications, which will involve
symmetric products Symn.†/, fibred monotonicity holds when n� g.†/.

Definition 3.4 (a) A closed Lagrangian submanifold L in a compact symplectic
manifold .M; !/ is called monotone if there exists c > 0 such thatZ

xD

u�! D c �.u/

for every smooth map uW . xD; @ xD/! .M;L/.

(b) A symplectic Morse–Bott fibration .E; �;�/ over a matched surface, with La-
grangian matching condition Q, is fibre-monotone if, for each s2@SC , Qs is monotone
in .@EC �@SC �

�@E�/s .

For a Lagrangian submanifold L�M , let �LW �2.M;L/! Z be the Maslov index
homomorphism and �min.L/ the minimal Maslov index:

im.�L/D �min.L/Z; �min.L/� 0:

Let cmin.M / be the minimal Chern number of M :

im.c1W �2.M /! Z/D cmin.M /Z; cmin � 0:

Since the Maslov index of a disc whose boundary is mapped to a point is twice its
Chern number, �min.L/ � 2cmin.M /. For a Lagrangian boundary condition Q, let
�min.Q/D gcds2@S �min.Qs/.

In the following proposition, we suppose that Ecrit D∅, so that .E; �;�/ is actually
a locally Hamiltonian fibration (LHF).

Proposition 3.5 Let Q be a Lagrangian matching condition for the LHF .E2nC2;�;�/

over a matched surface S , and fix h 2 �0 sect.E;Q/. Fix also finite sets I � int.S/,
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J �@SC ; and smooth cycles �sW Zs!Es for each s2S , and �0W Zs0!Qs0 for s02J .
Let Z D

Q
Zs , � D

Q
�sW Z !

Q
Es ; and Z0 D

Q
Z0s , �0 D

Q
�0sW Z !

Q
Qs0 .

Suppose that

(1) both E and Q are fibre-monotone;

(2) the virtual dimension d.h/D ind.Du/ (u 2 h) satisfies

(7) d.h/�
X
s2I

.2n� dim.Zs//�
X
s02J

.n� dim.Z0s0//��min.Q/ < 0:

Then for any j 2 J.TS/ and for a dense set of J 2 Jreg.X; �; j /, the fibre product

MJ ;j .E;Q/�.ev;�;��0/ .Z �Z0/:

is a compact, smooth manifold of dimension

d.h/�
X

I

.2n� dim.Zs//�
X

J

.n� dim.Z0s0//

when this number is nonnegative, and empty when it is negative.

Proof By the remarks on transversality of evaluation (6), there is a dense subset of
Jreg.X; �; j / whose members J have the property that the evaluation map

evD evA � ev0BW MJ ;j .X;Q/!
Y

a

Esa
�

Y
b

Qs0
b

is transverse to � � �0 . This means that there is a smooth moduli space

MDMJ ;j .E;Q/�.ev;�;��0/ .Z �Z0/:

Any sequence in M, for which the sections all lie in h, has a subsequence with a
Gromov limit comprising a principal component uprin , nonconstant bubbles fulgl2L ,
and nonconstant boundary bubbles fu0

k
gk2K . These satisfy

d.h/D ind.uprin/C 2
X
l2L

c1.ul/C
X
k2K

�.u0k/:

By fibred monotonicity, the Maslov indices �.u0
k
/ are positive multiples of �min.Q/,

hence � �min.Q/. The contribution of each term c1.ˇl/ from a bubble in a fibre
is also positive, at least �min.Q/. Then if L [K ¤ ∅ we will have ind.uprin/ �P

a .2n� dim.Za//�
P

b .n� dim.Z0
b
// < 0. But for regular almost complex struc-

tures, this number gives the dimension near uprin of M, which cannot be negative.
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There are many possible hypotheses to make singularities in the fibres permissible, and
we do not attempt an axiomatisation. In the case of relative Hilbert schemes of points
on Lefschetz fibrations, they can be admitted because of the following observation of
Donaldson and Smith:

Lemma 3.6 [6, Lemma A.11] Let Hilbn
S .E/ be the relative Hilbert scheme of n

points on a Lefschetz fibration E!S with irreducible fibres, and Hilbn.Es/ a singular
fibre. Then any holomorphic sphere in Hilbn.Es/ which arises as a bubble-component
in a Gromov limit of pseudo-holomorphic sections is homotopic to a sphere in a regular
fibre.

3.4.2 Invariance We now give the parametric version of Proposition 3.5. All the
data involved in the construction can be allowed to move in smooth families. To begin
with, fix the symplectic Morse–Bott fibration .E; �;�;J0; j0/, Lagrangian boundary
condition Q, and homotopy class h.

Each j and each J 2 Jreg.E; � I j / gives a moduli space MJ ;j .E;QI /h which we
know to be a smooth, oriented manifold; after a small perturbation of J , the fibre
product MJ ;j .E;QI /h �ev;���0 Z �Z0 with a family of smooth oriented cycles in
the fibres (as considered above) is also smooth and oriented. It carries a smooth
boundary-evaluation map

ev.J; j /W MJ ;j .E;Q/h! sect.Q/

to the space of sections of Q.

Proposition 3.7 Assume that the hypotheses of Proposition 3.5 hold, and that the left-
hand side of (7) is <�.kC1/, for some k � 0. Then the oriented bordism class of the
map ev.J; j / is independent of .J; j /. Moreover, any smooth map Sk ! Jreg.X; �/

induces a bundle MSk over Sk and a map evW MSk
! sect.Q/ which extends to a

map to sect.Q/ from a bundle over BkC1 .

Proof One considers parametrised moduli spaces. The space J.E; �/ is contractible;
thus any map f W Sk ! Jreg.X; �/ extends to a map F W BkC1 ! J.X; �/. The
transversality theory extends in a straightforward way, showing that after a small
homotopy of F , fixing f , one gets a smooth moduli space of the appropriate dimension
which inherits an orientation from that on BkC1 . The numerical conditions imply that
compactness goes through as before, and this gives the result.

Likewise, the bordism class of the evaluation map is unchanged under deformations of
�, J0 , j0 , the points sa , s0

b
and the cycles �a and �0

b
.
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3.5 Fibred k–negativity

In the framework of fibred monotonicity, bubbling in low-dimensional moduli spaces
(with regularity assumptions in force) is ruled out on the grounds that the principal
component of a limit curve must have nonnegative index. A more refined method
incorporates transversality for pseudo-holomorphic spheres in the fibres and discs in
the boundary fibres. One can then determine numerical conditions under which moduli
spaces of sections are generically disjoint from those of fibrewise spheres and discs.
In the context of Hamiltonian Floer homology, these are the “weak monotonicity”
conditions of Hofer and Salamon [15] (a symplectic manifold .M 2n; !/ is weakly
monotone if it is monotone, or cmin D 0, or cmin � n � 2). To handle Lagrangian
boundary conditions effectively, somewhat more conservative assumptions are required.
We have seen that monotone Lagrangians in monotone symplectic manifolds are
acceptable, and we will consider one other hypothesis, drawing on technical results of
Lazzarini.1

Definition 3.8 For any k�0, a compact symplectic manifold .M 2n; !/ is k –negative
if, for any sphere f W S2 ! M with

R
S2 f

�! > 0, one has hf �c1.TM /; ŒS2�i �

3�n�k . A Lagrangian L�M is called k –negative if any disc f W .D; @D/! .M;L/

with
R

D f
�! > 0 has Maslov index � 2� n� k .

We shall need to consider 3–negative manifolds and 2–negative Lagrangians.

3.5.1 Transversality in the fibres For k –negative manifolds (k � 0) generic almost
complex structures J 2 J.M; !/ are regular in the sense that for every element ˇ 2
Msi

J
.M / of the moduli space of parametrised, simple J –holomorphic spheres, the

relevant linearised operator Dˇ is surjective (a pseudo-holomorphic curve uW C !M

is simple if it does not factor through a branched covering C !C 0 of degree > 1; by a
lemma of McDuff (see McDuff and Salamon [21, Proposition 2.51]) this is equivalent to
the set of injective points, fz 2S2 Wˇ�1.ˇ.z//Dfzgg, being nonempty, or indeed open
and dense). For such J , Msi

J
.M / is a manifold of local dimension 2.c1.ˇ/C n/, and

its quotient by the free action of Aut.S2/DPSL.2;C/ has dimension 2.c1.ˇ/Cn�3/.
Thus there can be no simple holomorphic spheres. Since every pseudo-holomorphic
sphere factors through a simple one, there are no nonconstant spheres at all. By the same

1There is, unfortunately, no straightforward general theory for Lagrangians with �minD0 in symplectic
manifolds with cmin D 0 (these are the characteristics of vanishing cycles in Symg�1.†/�Symg�2.x†/).
This is a borderline situation in which there is just enough leeway to obtain compact zero-dimensional
moduli spaces, but not enough to handle one-parameter families. We shall not venture into this hazardous
territory.
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argument, one sees that in a k –negative symplectic manifold, there are no nonconstant
spheres in a generic k –parameter family of almost complex structures.

As with spheres, transversality theory for pseudo-holomorphic discs in .M;L/ works
in a straightforward way for simple discs—those for which the set of injective points
is nonempty, or equivalently open and dense—but the complication is that not every
nonconstant disc factors through a simple one. One can, however, use Lazzarini’s
lemma [18]: if ı is a nonconstant J –disc then there is a simple J –disc ı0 such that
ı0.@ xD/� ı.@ xD/. The index formula says that the moduli space of parametrised simple
discs Msi

J
.M;L/ has virtual dimension �LC n. Since Aut. xD/ is 3–dimensional and

acts freely, the unparametrised moduli space has dimension �LC n� 3. Thus, for
generic k –parameter families of almost complex structures, the moduli space of simple
discs is empty. Lazzarini’s lemma allows us to remove “simple” from this conclusion.

Since we are interested in fibrations over surfaces, with Lagrangian boundary conditions,
we should consider 3–negative fibres and 2–negative Lagrangians in them. (Remember
that we need a spare parameter to prove invariance!)

3.5.2 Singular fibres Symplectic Morse–Bott fibrations can be handled using the
method developed for Lefschetz fibrations in Seidel’s thesis [32]. One needs to make
some hypothesis about the normalisation �M0 of a singular fibre M0 . The almost
complex structure J0 D J jM0 on M0 lifts to one zJ0 on �M0 , integrable near the
preimage of the normal crossing divisor; it is sufficient to assume that there zJ0 is
compatible with a 1–negative symplectic form on �M0 . The point is that any J0 –sphere
in M0 lifts uniquely to a zJ0 –sphere in �M0 . One cannot expect zJ0 to be regular;
however, for generic J , lifts of nonconstant spheres in M0 are regular, hence have
nonnegative Chern number: here we use a standard argument which shows that one
can achieve regularity for all spheres passing through an open set U by making a
perturbation of the almost complex structure supported in U .

Let us summarise our conclusion:

Proposition 3.9 Let Q be a Lagrangian matching condition for a symplectic Morse–
Bott fibration .E2nC2; �;�/ over a matched surface S , and fix h 2 �0 sect.E;Q/.
Fix also finite sets of regular values I � int.S/ and J � @SC ; and smooth cycles
�sW Zs ! Es for each s 2 S , and �0s0 W Zs0 ! Qs0 for s0 2 J . Let Z D

Q
Zs ,

� D
Q
�sW Z!

Q
Es ; and Z0 D

Q
Z0s , �0 D

Q
�0sW Z!

Q
Qs0 . Suppose that

(1) the fibres of E are 3–negative; those of Q are 2–negative;

(2) the components of Ecrit are 1–negative;
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(3) the number

D.hIZi ;Zj / WD n�.S/C�Q.h/�
X
s2I

.2n� ds.Z//�
X
s02J

.n� d 0s0.Z
0//

is nonpositive.

Here ds.Z/D dim Zs , d 0s0.Z
0/D dim Zs0 . Then, for any j 2 J.TS/ and for a dense

set of J 2 Jreg.E; �; j /, the fibre product

MJ ;j .E;Q/�.ev;���0/ .Z �Z0/:

is a compact, smooth manifold of dimension D.hIZ;Z0/ when this number is negative,
and empty when it is zero. Moreover, for generic paths in Jreg.E; �; j /, the one-
parameter moduli space is a compact 1–manifold with boundary when D.hIZi ;Z

0
j /D

0, and empty when D.hIZ;Z0/ < 0.

Remark 3.10 The same transversality arguments also apply when the fibres, La-
grangians, and critical manifolds are all monotone; this is a more complicated approach
to the one discussed above, but gives a slightly sharper result: one need only assume
that D.h/� 0. Note also that this technique handles the singular fibres of Hilbn

S .E/

for n� g in the case previously neglected, when E has reducible singular fibres.

3.6 Orientations

Since the first version of this paper was written, a draft of Seidel’s book on Fukaya
categories [35] has become available. It includes a thorough account of orientations in
Lagrangian Floer theory incorporating nonorientable Lagrangians. It seems churlish to
ignore this useful reference, particularly as the draft of this section dealt unconvincingly
with one or two points. The account we now present should be regarded, for the most
part, as expository; besides Seidel’s book, its sources are de Silva’s thesis [36] and the
book of Fukaya–Oh–Ohta–Ono [12].

Consider a space M defined as the zero-set of a nonlinear Fredholm map f between
Banach spaces. Suppose, moreover, that the linear Fredholm maps Fx linearising f
are all surjective (“regularity”). Then M is a smooth manifold with tangent spaces
ker.Fx/. Orientability of this manifold means triviality of ƒmaxT M, the line bundle
with fibres ƒmax ker.Fx/. In practice, M sits inside a larger space B parametrising
a family of Fredholm operators F D fFxgx2B , and ƒmaxT M extends to the larger
space as the determinant index bundle Det.F/!B, the natural line bundle with fibres
ƒmax ker.Fx/˝ƒ

max.coker.Fx//
� . One then studies w1 of this bundle.
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The Fredholm operators we wish to consider are Cauchy–Riemann operators over a
Riemann surface with boundary, subject to a Lagrangian boundary condition. Let S be
a compact Riemann surface with one boundary component. Let E! S be a (trivial)
symplectic vector bundle of rank 2n. We consider the space Lag.S;E/ of Lagrangian
subbundles F � Ej@S . By fixing a diffeomorphism @S Š S1 and a trivialisation
of Ej@S , we can identify Lag.S;E/ with the space of unbased loops L Grn in Grn ,
the Grassmannian of Lagrangian subspaces of the standard symplectic vector space
.Cn; !Cn/. Notice that the Maslov index decomposes Lag.S;E/ (or equally L Grn )
into connected components Lagk.S;E/ (or Lk Grn ) indexed by k 2 Z.

By choosing a conjugate-linear bundle map a 2 V WD Hom0;1.TS;E/, we get an R–
linear, Fredholm Cauchy–Riemann problem for .E;F /: that of solving .x@Ca/.u/D 0,
where u 2 L

p
1
.E/, for some fixed p > 2, and u.z/ 2 Fz for z 2 @S . Our object of

study is the determinant index bundle Det.F/! V �L Grn .

The space V �L Grn obviously deformation-retracts to the subspace f0g�L Grn . This
in turn deformation-retracts to U.n/=O.n/, via a deformation retraction of Sp.2n;R/
to U.n/. Hence Lag.S;E/ is homotopy-equivalent to L.U.n/=O.n//.

Remark 3.11 It is worth noting that if one considers only the based loops, and passes
to the limit U =OD lim

�!n
U.n/=O.n/, there is a homotopy equivalence

�.U =O/' Z�B O

with the classifying space of KO –theory. Bott [3] constructed such an equivalence
using Morse theory, as the final step in the periodic octagon starting with Z�B O;
there is also an equivalence �7.Z�B O/' U=O. We shall not need Bott periodicity,
but we shall be concerned with the functorial map

ŒX;L.U=O/�!KO.X /

defined by stabilising the virtual index bundle, and with its restriction to �.U =O/.

Following [35] (which itself extends [36]), we now give the formula for w1.Det.F// 2
H 1.Lag.S;E/IZ=2/. Evaluation eW S1 �Lk Grn! Grn induces a map

e�W H�.GrnIZ=2/!H�.S1
�Lk GrnIZ=2/:

For c 2 H i.GrnIZ=2/, let T .c/ D
R

S1 e�c 2 H i�1.GrnIZ=2/, and let U.c/ D

.e�c/j.fzg �Grn/ 2H i.GrnIZ=2/. It is easy to check that

H 1.Lk GrnIZ=2/D Z=2˚Z=2; n� 3;
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with generators T .w2/ and U.�/, � 2 H 1.Lk GrnIZ=2/ being the Maslov index
reduced mod 2. The first Stiefel–Whitney class for the determinant index bundle over
the component Lk Grn is then

(8) w1.Det.F//D T .w2/C .kC 1/U.�/:

Given a loop 
 W S1! Lag.S;E/, lying in the component where the Maslov index is
k , one can take the torus of boundary values @
 W S1 � @S ! L. What the formula
says is that, if k is odd, one has

hw1.

�Det.F//; ŒS1�i D h.@
 /�w2.TL/; ŒS1

� @S �i:

If k is even one must add a correction term hw1l�TL; ŒS1�i, where l is the loop
.@
 /jS1 � fxgW S1!L. In particular, w1.


�Det/ vanishes when L is spin.

Fukaya et al [12] show that one gets an actual orientation for the moduli space
MS .M;L/ of J –holomorphic maps .S; @S/! .M;L/ by giving a “relative spin
structure”, that is, an oriented vector bundle �!M , with w2.�jL/Dw2.TL/, and
a spin structure on �jL˚TL. This is not quite enough for our purposes, because it
precludes nonorientable Lagrangian boundary conditions. We can get around this by
working not with spin but with pin (again, cf [35]).

The Lie group PinC.n/ is one of the central extensions of O.n/ by Z=2. Such central
extensions of topological groups are classified by H 2.B O.n/IZ=2/, which is the
direct sum of two copies of Z=2 generated by the universal characteristic classes w2

and w2
1

. The central extension associated with w2 (resp. w2
1
Cw2 ) is PinC.n/ (resp.

Pin�.n/). A well-known algebraic construction assigns to any quadratic vector space
.V;Q/ a group Pin.V;Q/ as the subgroup of the unit group of the Clifford algebra
Cl.V / (in which the relation v2DQ.v/1 holds) generated by Q�1f˙1g�V �Cl.V /.
In these terms, Pin˙.n/D Pin.Rn;˙k � k2/.

A PinC–structure for a real n–plane bundle �!Z is a homotopy class of homotopy-
liftings Z!B PinC.n/ of the classifying map Z!B O.n/. The obstruction to such
a lift is w2.�/; when this is zero, the PinC–structures form an affine space modelled
on H 1.ZIZ=2/. The inclusions O.n/! O.nC 1/ lift to the PinC–groups, and this
gives the meaning of “stable”.

Example 3.12 When n is odd, one has an isomorphism

O.n/
Š
�! Z=2�SO.n/; A 7! .det.A/; det.A/�1

�A/:

The four central extensions of Z=2�SO.n/ by Z=2 are

(1) Z=2�Z=2�SO.n/,
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(2) Z=4�SO.n/,

(3) Z=2�Spin.n/, and

(4) .Z=4�Spin.n//=.Z=2/ (quotient by the “diagonal” involution).

Which of these is PinC.n/? Certainly one of the last two, since the covering PinC.n/!
O.n/ must restrict to the spin covering Spin.n/ ! SO.n/. The algebraic fact [35,
Lemma 11.14] which allows us to decide between them is that the two preimages of
�id 2 O.n/ in PinC.n/ both have order 2 when n � 1 mod 4, and 4 when n � 3

mod 4. Hence PinC.n/ is Z=2 � Spin.n/ or .Z=4 � Spin.n//=.Z=2/ according to
whether n is 1 or 3 mod 4.

Now suppose that .X 2nC2; �;�/ is a LHF over a compact matched surface S , and
Q � @X a Lagrangian matching condition. Thus Q is a subbundle of YC �@S� Y� ,
where Y�D �

�1.@S�/ and YC is the pullback to @S� of ��1.@S�/ by the matching
� W @S�! @SC .

Definition 3.13 A relative pin structure for .X;Q/ is

� a stable oriented vector bundle �!X , with w2.�jQ/D w2.T
vQ/;

� a stable PinC–structure on � 0˚T vQ. Here � 0 denotes the restriction to Q of
the bundle pr�

1
.���jYC/˚ pr�

2
.�jY�/ over YC �@S� Y� .

Lemma 3.14 Suppose that the first projection embeds Q in YC , and that the second
projection is an S1 –bundle over Y� . There is then a canonical relative pin structure
for .X;Q/.

Proof The boundaries @S� and @SC lie on different components of S , since the
respective fibres of � have different dimensions, 2n and 2.n� 1/ respectively. Let
� be the bundle T vX over the components containing @S� , and the trivial bundle
over those containing @SC . Thus � 0! YC �@S� Y� is pr�

2
T vY� . We exhibit a pin

structure on � 0jQ˚T vQ.

T vQ contains a distinguished line-subbundle �, the kernel of the projection to T vY� .
Choose a Euclidean metric on T vQ, and notice that �? D pr�

2
T vY� . The splitting

T vQD �˚ pr�
2
T vY� reduces the structure group of � 0jQ˚T vQ to the subgroup

O.1/�SO.2n� 2/ ,! O.4n� 3/; .A;B/ 7! diag.A;B;B/:

We claim that this homomorphism factors through PinC.4n� 3/. This will give a
canonical relative pin structure.
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The restriction to identity components, f1g � SO.2n � 2/ ! SO.4n � 3/, lifts to
Spin.4n�3/ because it kills �1 SO.2n�2/. Write this lift as l . Let � 2 PinC.4n�3/

be an element of order 2 which maps to .�1; I2n�2; I2n�2/; this exists by Example
3.12. The map .A;B/ 7! �.A/l.A/ gives the claimed lift.

Proposition 3.15 Suppose J is a compatible complex structure for .E; �/ such that
D� ıJ D i ıD� . Consider the moduli space of J –holomorphic sections MJ .X;Q/;
assume it is transversely cut out. A relative pin structure for .X;Q/ induces an
orientation for any component of MJ .X;Q/ on which the Maslov index is odd. A
relative pin structure together with an orientation for one fibre Qx induces an orientation
for components of even Maslov index.

Proof We assume, up until the last moment, that the base is a disc D .

Step (i) The regularity assumption means that the cokernels of the relevant linear
Cauchy–Riemann operators are trivial, and hence that the moduli space is smooth. The
tangent space to MJ .X;Q/ at u is then the index of a Fredholm operator associated
with the Cauchy–Riemann problem .u�T vX; @u�T vQ/. Thus the top exterior power
of the tangent space is the determinant line of the corresponding Fredholm operator.
The usefulness of working over a disc is that u�T vX can be trivialised in a canonical
way, up to homotopy. Hence the top exterior power of the tangent bundle to MJ .X;Q/

is isomorphic to the pullback of Det.F/ (the determinant bundle of the universal family
of Cauchy–Riemann operators over Lk Grn ) by a classifying map

� W MJ .X;Q/! Lk Grn :

Step (ii) On the other hand, Det.F/ gives rise to a double covering pW zL!Lk Grn as
the S0 –bundle sitting inside the line bundle. The pullback line bundle p�Det.F/ has
a tautological trivialisation. It will therefore suffice to show that a stable pin structure
determines a lift of � to a map z� W MJ .X;Q/! zL, so that the pullback by z� of the
tautological trivialisation of p�Det.F/! zL gives the sought orientation.

Step (iii) Now consider the pullback of the tautological Rn –bundle U !Grn (whose
fibre at ƒ is ƒ itself) by the evaluation map eW S1 � L Grn ! Grn . There is a
double covering of L Grn whose fibre at F is a stable pin structure in the bundle
.e�U /jS1 � fFg over S1 . This double covering is the S0 –bundle of a unique line
bundle � . By construction, w1.�/D T .w2/.

We are given a stable pin structure on �jQ ˚ T vQ. This pulls back to a stable
pin structure on .@u/�.�jQ˚ T vQ/, for any u 2 MS .X;Q/. But .@u/�.�jQ/ is
canonically trivial, since it extends to an oriented vector bundle u�� over the disc.
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Hence we obtain a stable pin structure on .@u/�T vQ. In other words, our relative pin
structure gives rise to a section of the covering ��� .

Step (iv) Our task is now to compare the information found in steps (ii) and (iii).
Suppose that k is odd. According to Equation (8), one then has w1 Det.F/D w1.�/;
thus, Det.F/ and � are isomorphic line bundles. To specify an isomorphism, one
has only to do so for some fibre. The particular choice will not really matter for our
purposes; notionally, however, we follow the convention of [35, Lemma 11.17]. A
fortiori, one then has an isomorphism ��Det.F/Š ��� . As in (iii), the pin structure
gives rise to a section � of the S0 –bundle in ��� ; composed with the isomorphism
with ��Det.F/, one then gets a lift z� as demanded in step (ii).

When k is even, one proceeds along similar lines, but because of Equation (8), the
result is only an isomorphism Det.F/Š �˝�, where � is the pullback to Ln Grn of
the line bundle ƒnU !Grn . The pin structure then trivialises ��� , but one also needs
the given orientation of Qx to trivialise ���.

Finally, in the general case where S is not a disc, one proceeds by a trick of “pinching
off the boundary”, as explained in both [12; 35].

Remark 3.16 Suppose k is even, that .X;Q/ admits a relative pin structure, and that
the fibres Qz of Q! S1 are orientable but Q itself is not. Choosing a relative pin
structure and an orientation for Qz , we determine an orientation for MS .X;Q/. On
the other hand, sliding z around the circle, we eventually come back to the opposite
orientation of Qz , and hence to the opposite orientation of the moduli space, which is
absurd. Hence the moduli space is empty in this case—an observation which one can
also prove in more elementary fashion.

3.6.1 Invariants We can now define our prototypical Lagrangian matching invariants,
using a familiar procedure. Suppose that .E; �;�;J0; j0/ is a symplectic Morse–Bott
fibration, Q a Lagrangian matching condition, h 2 �0 sect.E;Q/. Let I � int.S/ and
J � @S be finite sets. Suppose either that the fibres, critical manifolds and Lagrangians
are monotone, or that they satisfy the negativity assumptions of the last proposition.

We write .E#;Q#/ for .E;Q/ with the enhancements of a relative pin structure for
.E;Q/ and, if Q is orientable, an orientation.

The invariant takes the form of homomorphism

(9) ˆE;QII;J .h/W
O
s2I

H�.EsIZ/˝
O
s02J

H�.Qs0 IZ/! Z:
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Thinking of the products of cycles Z and Z0 as defining monomials ŒZ�, ŒZ0� in the
tensor products, we put

ˆE;QII;J .h/.ŒZ�˝ ŒZ
0�/D

(
#MJ ;j .E;Q/�.ev;�;��0/ .Z �Z0/; D.hIZ;Z0/D 0I

0 D.hIZ;Z0/¤ 0:

Here # is the signed count of points in a compact, oriented zero-manifold. This is
independent of choices because the one-parametric moduli spaces are compact, oriented
one-manifolds with boundary.

3.6.2 Floer homology Here we review the definition of Floer homology for symplec-
tic automorphisms. This is a well-established theory, and we shall be brief (Fredholm
and gluing theory are as in Schwartz [29]; transversality and compactness as in Hofer–
Salamon [15] and Seidel [32]).

Preliminaries

� Recall that we have defined a locally Hamiltonian fibration (LHF) to be a triple
.E; �;�/, where E is a smooth manifold with boundary, � a smooth proper
submersion � W E!B to another manifold with boundary, mapping @E to @B ,
and � 2�2.E/ a closed two-form which is nondegenerate on the fibres.

� For a commutative ring R, the universal Novikov ring ƒR is the ring of formal
series

P
c2R a.c/tc , where aW R!R has the property that Supp.a/\.�1;C /

is a finite set for each C 2R. When R is a field, so is ƒR .

Floer homology theory assigns to each LHF .Y; �; �/ over a closed, oriented 1–
manifold Z , a Z=2–graded ƒR –module

HF�.Y; �/DHF0.Y; �/˚HF1.Y; �/;

though we should give two caveats: (i) the fibres Yz of � should be weakly monotone
symplectic manifolds in the sense of [15] (the definition was given in the discussion
preceding Definition 3.8); (ii) the definition is simpler when R has characteristic 2.

There is a splitting (of Z=2–graded modules) into “topological sectors”, ie components
of the space of sections, sect.Y /:

HF�.Y; �/D
M


2�0 sect.Y /

HF�.Y; �/
 :

There is a continuation isomorphism HF�.Y; �/ ! HF�.Y; �
0/ when there is an

˛ 2�1.Y / with
� � � 0 D d˛; ˛.T vY /D 0:
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HF�.Y; �/ is, formally, the Morse–Novikov homology of the action 1–form AY;� 2

�1.sect.Y //:

AY;� .
 I �/D

Z
Z

�. P
 ; �/; � 2 C1Z .
 �T vY /:

The set of zeros of AY;� coincides with the set H.Y; �/ of horizontal sections defined
by the Hamiltonian connection:

H.Y; �/D f�W Z! Y W � ı � D idZ ; im Dz� � T hX�.z/g:

One should again enlarge the space of sections sect.Y / to a Banach manifold, namely
sect2

1
.Y /, which has tangent spaces L2

1
.
 �T vY /. The transversality condition for a

zero � of AY;� is surjectivity of the operator

� 7! r@t
�I L2

1.�
�T vY /!L2.��T vY /;

where r is the intrinsic connection along � . After fixing basepoints zi 2Z , one in
each component, we can consider the linear holonomy maps L�;i 2 End.T vY�.zi //.
Transversality of � is equivalent in turn to the invertibility of the linear maps id�L�;i 2

End.T v
�.zi /

Y /. This is the condition that �.z/ is a nondegenerate fixed point of the
monodromy � 2 Aut.Yz; � jYz

/. It follows that when Y is nondegenerate, meaning
that every � 2H.Y; �/ is transverse, the set H.Y; �/ is finite. In the next section, we
shall see how to assign to each � a free R–module of rank 1, denoted by jo.�/j. When
R has characteristic 2, jo.�/j DR. Now, for a nondegenerate LHF .Y; �; �/, one sets

CF.Y; �/D
M

�2H.Y;�/

jo.�/j˝R ƒR;

This is the module underlying Floer’s (co)chain complex. The definition does not yet
use the orientation of Z . For a general LHF, one perturbs it to a nondegenerate one
and proceeds as before.

Each � 2H.Y; �/ has a Lefschetz number l� 2 Z=2, defined when Z is connected
to be 0 if det.id�L�/ > 0 and 1 if det.id�L�/ < 0, and in general by summing
the Lefschetz numbers over components of Z . These give the Z=2–grading of the
complex, CF DCF0˚CF1; with CFi generated by f� W l� D ig. It follows that when
Z D

`
Zi there are canonical Z=2–graded isomorphisms CF.Y /Š

N
i CF.Y jZi/.

A compatible vertical almost complex structure J v 2 J.T vY; �/ extends uniquely to
an almost complex structure J0 on T Y ˚ "1 (where "1 is the trivial real line bundle
over Y ) such that J.e@t /D 1 2R (here @t is the unit length vector field on S1DR=Z
and e@t its horizontal lift).

Since T .Y �R/ D T Y ˚ "1 , J0 induces a translation-invariant complex structure
on T .Y �R/. It is still denoted J0 , and called cylindrical. If we regard Y �R as a

Geometry & Topology, Volume 12 (2008)



Lagrangian matching invariants for fibred four-manifolds: II 1487

locally Hamiltonian fibration over the cylinder S1 �R, with two-form pr�
1
� , then J0

preserves both vertical and horizontal subbundles, and the projection to S1�RDC=iZ
is holomorphic.

The differential on CF�.Y; �/ is defined via the moduli space MJ ;j .Y; �; �/ of finite-
action pseudo-holomorphic sections of

� � idW Y �R!Z �R;

ie sections u satisfying Jı.Du/D .Du/ıj and
R

Z�R u�� <1. Under the assumption
of nondegeneracy, any u 2MJ ;j .Y �R; � � id; pr�

1
�/ has the following asymptotic

behaviour:

� As s!˙1, the loops u.s; �/ converges pointwise towards a horizontal section
�˙ 2H.Y; �/.

� The convergence is exponentially fast with respect to the Riemannian metric g

given by �.�;J �/ on T vY and for which e@t is a unit-length vector field.

When Y has weakly monotone fibres, there is a good transversality theory for gradient
trajectories [11; 15]. This shows that a dense set of cylindrical almost complex structures
are “regular” in the sense that (i) the deformation operators are cylindrical for all
trajectories u 2 M�2

J ;j
.Y; �; �/ (the superscript � 2 refers to the index); (ii) these

trajectories do not hit any point of Y which lies on a pseudo-holomorphic sphere
S � Yt with c1.S/ � 0. For regular almost complex structures, the moduli spaces
M�2

J ;C
.��jY j�C/ of trajectories of index � 1, asymptotic limits �˙ , and action � C ,

have compactness (as well as regularity) properties: any sequence has a subsequence
converging in the Gromov–Floer topology to a broken trajectory.

We shall show in the next section how to assign to an arbitrary u 2M1
J ;j
.��jY j�C/=R

an isomorphism iuW jo.��/j ! jo.�C/j. To define the differential in the Floer complex,
we formally sum these isomorphisms, weighting them by their action. Thus, for
x 2 jo.��/j, we set

@x D
X

�C2H.Y;�/

X
u2M1

J;j
.��jY j�C/=R

iu.x/˝ tA.u/;

and extend @ to a ƒR –linear endomorphism of CF�.Y; �/. There are chain homotopy
equivalences (“continuation maps”) between the Floer complexes for .Y; � IJ / and
.Y; � 0;J 0/ when there exists ˛ 2 �1.Y / with � � � 0 D d˛ and ˛.T vY / D 0. The
argument by which one proves that @2 D 0 and that continuation maps are chain maps
is famous enough that we will not even adumbrate it. However, we do still need to say
what jo.�/j and iu are, and we shall do that in the next section.
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3.7 Coherent orientations in fixed point Floer homology

Coherent orientations for Floer-theoretic moduli spaces were introduced by Floer and
Hofer [10]. The essential technical ingredient is their (linear) gluing construction
for cylindrical Cauchy–Riemann operators, together with an index theorem which
expresses the determinant of the glued operator as the tensor product of those of the
factors. Besides [10], we draw on Seidel’s treatment of the Lagrangian case [35].

In our sketch of Floer homology, we have so far avoided discussing the relevant
linearised operators. These are cylindrical Cauchy–Riemann operators. Let S be a
Riemann surface with cylindrical ends (and compact outside the ends). We compactify
it to a Riemann surface xS with one boundary component for each end: this is done by
identifying an outgoing end S1� .0;1/� S with S1� .0; 1/ via the diffeomorphism
.0;1/ ! .0; 1/, s 7! s.1C s2/�1=2 , then adding a circle S1 � f1g; similarly for
incoming ends. Take a hermitian vector bundle .E; k � k/ over xS , and a unitary
connection r in it. The Cauchy–Riemann operator x@r is the operator C1.S;E/!

�1.S;E/ defined by
x@r � D .r�/

0;1:

The behaviour of r over the boundary of xS is of importance. Namely, for each
component T of the boundary, one wants the linear map r@=@t , operating on sections of
EjT , to have trivial kernel. In this case, x@r is called a nondegenerate Cauchy–Riemann
operator, and it extends to a Fredholm operator L

p
1
.S;E/!Lp.S;T �S ˝E/.

Take � 2 H.Y; �/, and form the pullback ��T vY ! S1 as a symplectic vector
bundle. It carries a canonical symplectic connection r�;� , the resulting of linearising
the connection in T vY defined by � , and the nondegeneracy assumption is that the
monodromy LDL� of r�;� does not have 1 as an eigenvalue.

Let x D �.Œ0�/ 2M , and consider the space PL of paths 
 W Œ0; 1�! U.TxM / with

 .0/D1 and 
 .0/DL. The component-set �0.PL/ is an affine copy of Z; indeed, the
homotopy classes of such paths 
 make up the fibre over L of the universal covering�U.TxM /! U.TxM /. We denote by L#Œn� the result of acting on L# 2 �0.Pm/ by
n 2 Z.

Associated with any 
 2 PL is a Cauchy–Riemann operator x@
 in the trivial vector
bundle TxM � C ! C . The assumption that L does not have 1 in its spectrum
guarantees its nondegeneracy. It has a determinant line ı
 D det x@
 , and these lines
make up a bundle ı! P.

Now, each component of P is simply connected, since its fundamental group is isomor-
phic to �2.U.TxM //D 0; hence ı is a trivial line bundle. We can therefore associate
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with a lift L# 2�U.TxM / of L a line o.L#/, unique up to canonical isomorphism, by
putting o.L#/D ı
 for any 
 representing the component L# .

The orientation group jo.L#/j is the abelian group generated by the two orientations
!1 and !2 of o
 , modulo the relation that !1C!2D 0. Thus a choice of isomorphism
determines an isomorphism jo.L#/j Š Z.

How does o.L#Œn�/ compare to o.L#/? The answer is pleasantly simple: there is a
canonical homotopy-class of isomorphisms between them. This is proved using the
Floer–Hofer gluing theorem: o.L#Œn�/�˝ o.L#/ is the determinant line of a Cauchy–
Riemann operator over S2 , obtained by gluing. Such determinant lines are canonically
oriented since they form a simply connected space which contains determinant lines of
complex-linear operators.

The last observation shows that the orientation groups jo.L#/Œn�j are canonically
isomorphic to a single group which we may denote by jo.�/j. Formally, jo.�/j is
the group of families .an/n2Z where an 2 jo.L

#/Œn�j and an maps to a0 under the
canonical isomorphism jo.L#/Œn�j ! jo.L#/j.

We now have the promised orientation lines jo.�/j. The next step is to show how
u 2MJ .��; �C/ determines an isomorphism jo.��/j ! jo.�C/j. For this we invoke,
once again, the linear gluing theorem of Floer–Hofer. The tangent space to MJ .��; �C/

is the kernel of a surjective Fredholm operator Du —namely, a Cauchy–Riemann
operator x@r in the bundle u�T vY over the cylinder, where r extends the canonical
symplectic connection over the ends f˙1g�S1 . We cap off the two ends of the cylinder
to make S2 . The bundle ��T vY , being trivial, extends to a hermitian vector bundle
over S2 , and the connection r also extends. The resulting Cauchy–Riemann operator
L over S2 is homotopic to a complex-linear operator, hence its real determinant line is
canonically oriented. But it is also homotopic to an operator obtained by gluing x@r to
two cylindrical Cauchy–Riemann operators over discs, and this gives an isomorphism
det LŠ det.Du/˝ o.L#

�/˝ o.L#
C/
� , where L˙ is the monodromy of r�˙;� , L#

� is
an arbitrary lift of L� , and L#

C the resulting lift of LC (obtained from it by path-
lifting). The upshot is that u determines an isomorphism ƒtopTuMJ .��jY j�C/ Š

o.L#
�/
�˝ o.L#

C/ (up to a positive factor).

Let us abbreviate MJ .��jY j�C/ to M, and MJ .��jY j�C/=R to M� . If u is a
nonconstant trajectory, translation in the R–direction determines a canonical tangent
vector � 2 TuM, and hence an isomorphism �.�/W ƒtopTuM! ƒtopTŒu�M

� . Thus
there is a composite isomorphism

ƒtopTŒu�M
�
Š o.L#

�/
�
˝ o.L#

C/:
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Now when TŒu�M
� is 0–dimensional, its top exterior power is simply R, which has a

canonical generator 1. Hence, plugging this generator into our isomorphism, we obtain
a generator for o.L#

�/
�˝ o.L#

C/. This, finally, induces an isomorphism

iuW jo.��/j ! jo.�C/j:

It is not difficult to see that these isomorphisms are compatible with gluing, in the sense
that when u1#u2 is a glued trajectory, iu1#u2

is the composite of iu1
and iu2

(cf the
discussion in Seidel [35, Section 12b]). This, of course, is what is needed for the proof
that @2 D 0.

3.8 A field theory

As observed by Seidel in [33], the Floer homology theory just described has an extension
to an open-closed topological field theory in .1C 1/ dimensions, coupled to singular
fibrations. This unifies it with the Lagrangian matching theory. An “object” in the field
theory is an LHF over a disjoint union of oriented circles. “Cobordisms” between objects
are symplectic Morse–Bott fibrations over punctured matched surfaces, equipped with
Lagrangian boundary conditions. To be precise, a cobordism from

Sp
iD1

.Yi ; �i ; �i/

to
Sq

jD1
.Y 0j ; �

0
j ; �
0
j / is defined by the following data:

� A compact surface S with matched boundary, together with a finite set F D

fz1; : : : ; zpCqg of interior marked points, of which p are labelled as “incoming”
and q as “outgoing”

� Small disjoint coordinate discs �i W .�; 0/! .S; zi/ contained in int.S/
� A symplectic Morse Bott fibration .E; �;�;J0; j0/ over S nF , equipped with

a Lagrangian boundary condition Q

� Diffeomorphisms �j fitting into commutative diagrams

��j E
�j
����! Y 0j � Œ0;1/??y ??y

��
rei� 7!.ei� ;� log r/
������������! S1 � Œ0;1/

at each of the outgoing punctures, where ˆ�j� D pr�
1
� 0j . At the incoming

punctures, one has rather

��i E
 i
����! Yi � .�1; 0�??y ??y

��
rei� 7!.e�i� ;log r/
������������! S1 � .�1; 0�:
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There is then an obvious notion of composition of cobordisms.

Remark 3.17 In formulating the field theory, it is convenient to work over the Novikov
ring ƒk of an arbitrary base field k , rather than over ƒZ . This is itself a field, so
taking homology commutes with ˝ and Hom.

Assuming that .E;Q/ is either a fibrewise monotone fibration with a fibrewise mono-
tone boundary condition, or a fibrewise 3–negative fibration with a fibrewise 2–negative
boundary condition, there are now relative invariants

ˆE;Q 2 Homƒk

 
pO

iD1

HF�.Yi ; �i/;

qO
iD1

HF�.Y
0

j ; �
0
j /

!
;

subject to a gluing law (see Seidel [32; 33]; the gluing theory is done in [29]).2

Another general property of Floer homology is the Poincaré duality isomorphism:

HF�.�Y; �/ŠHF�.Y; �/
�;

where .�Y; �/ refers to the fibration obtained by switching the orientation of the base
circle. A change in the incoming/outgoing label of a point �i dualises the corresponding
group.

3.9 Quantum cap product

If one chooses further finite sets I�S and J �@SC , disjoint from one another and from
the set of punctures F , the relative invariant ˆE;Q 2 Hom.HF�.Y; �/;HF�.Y

0; � 0//

generalises to a homomorphism

(10) ˆE;QII;J W

O
s2I

H�.EsIk/˝
O
s02J

H�.Qs0 Ik/!Hom�.HF�.Y ;�/;HF�.Y
0;� 0//:

The homomorphism is the map on homology associated with a chain-level map Cˆ.
The latter is defined using moduli spaces of index 0, finite action pseudo-holomorphic
sections with boundary on Q, hitting chosen cycles in the marked fibres Esa

and
Qs0

b
. When S is a twice-punctured sphere, ˆEIfsg;∅W H�.Xs/! End�HF�.X / is,

by definition, the quantum cap product on Floer homology.

For simplicity, we state the next lemma in a version which concerns a single marked
point (the reader will have no difficulty in generalising it to allow more points).

2Note that this is a topological field theory; the invariants are defined by choosing a complex structure
on the base, and are then independent of it. We do not consider the more subtle question of constructing a
conformal field theory.
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Lemma 3.18 Let �W H�.Es0
/!H�.Es1

/ be the isomorphism obtained by parallel
transport of cycles over a path fstgt2Œ0;1� in S . Then

� ıˆE;QIfs0g;∅.c/DˆE;QIfs1g;∅.�.c//:

Hence ˆE;QII;J .c/ depends only upon the image of c in H�.E/. When s 2 @SC , one
has

(11) ˆE;Q;fsg;∅.c/DˆE;Q;∅;fsg.i� ı pr!
1.c//;

where i W Qs ,!Es �E�.s/ is the inclusion. One also has

ˆE;Q;f�.s/g;∅.c/DˆE;Q;∅;fsg.i� ı pr!
2.c//:

Proof The first assertion is proved by considering the ends of 1–dimensional moduli
spaces associated of sections passing through the smooth singular chain obtained by
parallel transporting a cycle from one fibre to another.

For the assertions about cycles in boundary fibres, one should consider a cycle b in the
product Es�E�.s/ . The fibre product of b with a moduli space of sections M —taken
via the evaluation map of M into Es �E�.s/—is identified with the fibre product of
b\Qs , taken via the evaluation map of M into Q. Applying this to cycles b of the
form c �E�.s/ or Es � c gives the two formulae.

3.9.1 A reduction to homology Take two symplectic manifolds .M; !/ and . xM ; x!/

with a Lagrangian submanifold L � .M;�!/� . xM ; x!/. Let Y D S1 �M , � the
pullback of ! . Let S D�[� be the union of two discs (with their boundaries labelled
as C then �) and equip it with the obvious matching � . Take the union of trivial
fibrations, ED .M ��/[. xM ��/!S . Puncture S at interior points �C in the first
disc and �� in the second. One obtains, by restriction, an LHF E�! S n f�C; ��g

with Lagrangian matching condition Q.

On the other hand, one has canonical (Piunikhin–Salamon–Schwarz, or “PSS”) isomor-
phisms3

…M W H�.M Iƒk/!HF�.M �S1; pr�1!/;

… xM W H�.
xM Iƒk/!HF�. xM �S1; pr�1!/:

3See Piunikhin–Salamon–Schwarz [25], or alternatively, McDuff–Salamon [21, Chapter 12]. The
formal argument has to be backed up by transversality and compactness arguments (unproblematic in the
monotone or 3–negative cases), by Floer’s gluing theorem for pseudo-holomorphic trajectories, and by a
Gromov–Witten style gluing theorem for holomorphic spheres [21, Chapter 10].
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Note that these are valid with our orientation convention (the reason is almost the
same as that which permitted the construction of the maps iu in our construction of
Floer homology: the PSS map and its inverse are defined by means of holomorphic
planes asymptotic to horizontal sections and subject to incidence conditions; the moduli
space of such planes, when it is 0–dimensional, is “canonically oriented relative to the
cylindrical end”).

Proposition 3.19 Suppose that either (i) M and xM are monotone and L a monotone
Lagrangian, or (ii) M and xM are 3–negative and L 2–negative. Then one has

.… xM /�1
ıˆE�;Q ı…M .a/D˙pr2�.ŒL�\ pr!

1�/C h:o:t:

The letters h.o.t., abbreviating “higher order terms”, designate a map which carries the
subgroup H�.M Iƒ

�0/ �H�.M Iƒk/ into H�. xM Iƒ
>0/. Here ƒ>0 �ƒ�0 �ƒk

are the additive subgroups consisting of series
P

a.r/tr with r > 0 or � 0.

In words: the leading order part of the map on Floer homology (with respect to the
filtration by the action functional, recorded by the Novikov coefficients) is the classical
map between homology groups associated with the correspondence, up to a sign which
we do not check.

Proof The relative invariant ˆE;QIf�C;��g;fsg for the “completed” fibration E may
be formulated as a map

ˆE;QIf�C;��g;fsgW H�.
xM Iƒk/˝H�.LIƒk/!H�. xM Iƒk/:

We can decompose this map as ˆE;QIf�C;��g;fsg D
P
�2Rˆ�t� , where ˆ� takes

values in H�. xM I k/. We have ˆ� D 0 for � > 0. In fact, in the negative (rather than
monotone) case, ˆ� D 0 for �¤ 0 for dimension reasons.

The vertical isomorphisms in the diagram are obtained from the relative invariants of
trivial fibrations over the once-punctured two-sphere, and commutativity of the diagram
follows from the gluing property for the relative invariants. It therefore suffices to
prove that the leading term ˆ0 of ˆ.E;QI f�C; ��g; fsg/ is a˝ c 7! pr2�.c \ pr!

1
a/.

Trivialising the fibrations, sect.E;Q/ is identified with the space of maps

.�; @�/! .M � xM ;L/:

We use a complex structure of the form �J ˚ xJ . The relative invariant is then defined
using two smooth singular cycles, Z˙ , lying over �˙ , and a third cycle Z0 in L.
We then consider discs ı.�; @�/! .M � xM ;L/ such that ı.0/ lies in the image of
ZC �Z� , and ı.1/ lies in the image of L. The leading term ˆ0 is computed using
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discs ı of index zero. Because of our monotonicity/negativity assumptions, index zero
implies area zero, hence these discs are constant. Moreover, regularity for constant
discs is the same thing as transversality for the cycles ZC �Z� and Z0 . This reduces
us to classical intersection theory, and so gives the result.

Remark 3.20 The proposition says that the relative invariant gives a homomorphism
H�.L/˝QH�.M /!QH�. xM /, where QH� is quantum cohomology, deforming
the homomorphism on classical cohomology groups induced by the correspondence L.
These homomorphisms are little explored, even when xM D fptg.

3.9.2 A speculative interlude Lagrangian matching invariants should have computa-
tional consequences in Floer homology. The following conjecture (which is the subject
of work in progress) explains how this might work.

Suppose that .M; !/ and . xM ; x!/ are symplectic, �W V ! xM an Sk –bundle with
structure group SO.k C 1/, and i W V ,! M an embedding such that i�! D ��x! .
Suppose that � 2Aut.M; !/ satisfies �.V /DV and that �jV covers x� 2Aut. xM ; x!/.
The cohomology of xM acts on HF�.x�/ by quantum cap product; in particular, the
Euler class of V defines an endomorphism eD e.V /\�W HF�.x�/!HF�.x�/Œ�k�1�.
We form its mapping cone—a chain complex cone.e/.

There is a natural cobordism, in the sense of our field theory, from T.�/ to T.x�/, and
hence (assuming yV monotone in �M � xM , say) a Lagrangian matching invariant

ˆW HF�.x�/!HF�.�/:

It turns out that, when yV has high enough minimal Maslov index (at least k C

2), the composite ˆ ı e is nullhomotopic, in an essentially canonical way. Using
the nullhomotopy, one builds a map aW H� cone.e/! HF�.�/. On the other hand,
there is the fibred Dehn twist �V 2 Aut.M; !/ studied in I.2. By considering a
symplectic Morse–Bott fibration over an annulus, with one critical value, one gets a
map bW HF�.�/!HF�.� ı �V /.

Conjecture 3.21 Under conditions which render a and b well-defined, they fit into a
long exact sequence:

H� cone.e/ a // HF�.�/
b // HF�.� ı �V /

Œ�1�

gg
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In the case of our Lagrangian matching conditions for relative Hilbert schemes, this can
be translated into Seiberg–Witten theory, where it appears to be a somewhat unorthodox
variant of the surgery triangle in monopole Floer homology [17] in which all the
three-manifolds involved are fibred. Exactness of this triangle can in fact be deduced
from that of the usual one together with a connected sum formula.

4 Lagrangian matching invariants for broken fibrations

The previous section was devoid of examples. This section is devoted to a single class
of examples: the relative Hilbert schemes associated with broken fibrations, and the
Lagrangian matching conditions of Theorem 2.5.

4.1 Monotonicity for symmetric products and their vanishing cycles

4.1.1 The nonseparating case We consider Symn.†/, where † is connected of
genus g , and n� 2.

(1) The Hurewicz map �2.Symn.†//! H2.Symn.†// has rank one. Here is a
different proof to those I have seen in the literature in Bertram–Thaddeus [2] and
Donaldson–Smith [6]: we deduce the result from Hopf’s classic theorem that,
in general, coker.�2.X /! H2.X // Š H2.�1.X //:

4 Since �1.Symn.†// D

H 1.†/, and the second integral homology of a free abelian group is its exterior
square, we have H2.�1/Š ƒ

2H 1.†/. But H2.Symn.†//Š Z˚ƒ2H 1.†/.
This tells us im.�2!H2/ must be isomorphic to Z, and that its generator must
be a primitive class (ie, not a nonunit multiple of another integer class).

(2) One can easily identify a spherical homology class h 2 H2.Symn.†//: take
any pencil of linearly equivalent effective divisors. One has h�; hi D 1 (which
shows that h is primitive) and h�; hi D 0. (The notation was explained in the
introduction to this paper.) Since c1.T Symn.†//D .nC1�g/��� , the Chern
number of h is nC 1�g . Thus Symn.†/ is monotone if n� g , regardless of
the choice of symplectic form.

(3) Let x† be the result of surgery on a nonseparating loop L � †. Consider
Symn.†/ � Symn�1.x†/ with a symplectic form �! ˚ x! that it is a sum of
Kähler forms, with a sign reversal on the first factor, in cohomology classes
Œ!�D�†C��† and Œx!�D�x†C��x† . This symplectic manifold is also monotone.
The two generators for im.�2!H2/ (chosen with appropriate signs) each have
Chern number nC 1�g and area 1.

4An isomorphism is induced by the map X ! B�1.X / classifying the universal cover. When
X D Symn.†/ that map can be taken to be the Abel–Jacobi map to the Jacobian torus.
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(4) Now consider the Lagrangian vanishing cycle

yVL �
�

Symn.†/�Symn�1.x†/;�!˚ x!
�

associated with the loop L�† (Part I: Theorem A). It was shown in Part I that
every disc in �2.Symn.†/� Symn�1.x†/; yVL/ lifts to a sphere in the product
(Lemma 3.21). Hence the positive area discs D for which j� yVL

.D/j is least all
have

� yVL
.D/D 2.nC 1�g/D 2..n� 1/C 1� .g� 1//;

and area 1. Thus yVL is monotone as a Lagrangian when n� g .

(5) In the same situation, one checks that yVL is 2–negative when n� .2g.†/�1/=4.
This condition does not imply 3–negativity of Symn.†/� Symn�1.x†/, but it
does imply 3–negativity of the two factors.

4.1.2 The separating case The case where † is connected but x† disconnected, with
components †1 and †2 , is more delicate. One has

Symn�1.x†/D

n�1[
iD0

Symi.†1/�Symn�1�i.†2/:

For brevity, we write M for Symn.†/, N for Symn�1.x†/ and Ni for the component
Symi.†1/� Symn�1�i.†2/ of N . We put a symplectic form on M �N which, as
before, is of shape ! ˚�x! for Kähler forms ! on M and �x! on N . Since we
want to find Lagrangian correspondences, we should suppose that ! represents a class
�†C ��† for some � > 0, and that x! represents eC ��x† , where e restricts to the
component Ni as

�i�†1
C .1��i/�†2

for some �i 2 .0; 1/. When this is true, Theorem A from Part I gives us a correspondence
yVL;k �M �Ni for each i 2 f0; : : : ; n� 1g.

The factors Symi.†1/ and Symn�1�i.†2/ are all 3–negative when

n� 1� min
jD1;2

.g.†j /� 1/=2I

under this hypothesis, we will have adequate control so far as bubbling of holomorphic
spheres is concerned.

The awkward point is that it is no longer true in general that every disc with boundary
in yVL lifts to a sphere: when †1 and †2 have positive genus, there is a cyclic group’s
worth of nonspherical discs (Part I: Lemma 3.21) for each component of yVL . We have
to determine the Maslov indices for the generators for these cyclic groups.
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Lemma 4.1 Assume that g.†1/ > 0, g.†2/ > 0 and n> 1. Then the group �2.M �

Nk ; yVL;k/ contains primitive, nonspherical classes uk such that

� yVL;k
.uk/D kC 1� 2g.†1/:

The class uk generates �2.M �Nk ; yVL;k/ modulo the image of �2.M �Nk/.

Before we can prove this, we need to obtain a slightly more precise picture of yVL;k . We
will achieve this by considering the model considered in Part I, Section 3.2.1, in which
†, †1 and †2 are all 2–spheres. By interpreting the n–th symmetric product of P1

as Pn , we obtained an explicit equation for yVL;k (the explicit model was denoted by
Ln;k ).

Lemma 4.2 One of the S1 –fibres of Ln;k � Symn.P1/ consists of n–tuples of
the form Œei� ; ei��; : : : ; ei��k�1I1; : : : ;1�, where � D e2� i=k . Indeed, under the
quotient map Ln;k ! Symk�1.P1/�Symn�k.P1/, this circle maps to the point

..k � 1/1; .n� k/0/:

Proof Our notation is from Part I, Section 3.2.1. The S1 –action an;k preserves
this circle, so it suffices to take � D 0. Our identification Symn.P1/ D Pn sends
an n–tuple x D Œx1; : : : ;xk I1; : : : ;1�, where all the xj lie in C � P1 , to the
point .�k.x/ W � � � W �1.x/ W 1 W 0 W � � � W 0/ (n� k zeros). Here �j stands for the j –th
elementary symmetric polynomial, and our convention is such that �1.x/D�

P
xi

and �k.x/ D .�1/k
Q

xi . The n–tuple x D Œ1; �; : : : ; �k�1I1; : : : ;1� is mapped
to .1 W 0 W � � � W 0 W 1 W 0 W � � � W 0 W/, ie to the point .z0 W � � � W zn/ where z0 D zk D 1

and zj D 0 otherwise. To see this, note that �k.1; �; : : : ; �
k�1/ D 1 (clear) but that

�j .1; �; : : : ; �
k�1/D 0 for j < k , since by homogeneity of �j ,

�j�j .1; �; : : : ; �
k�1/D �j .�; �

2; : : : ; �k/D �j .1; �; : : : ; �
k�1/:

This point .z0 W � � � W zn/ certainly satisfies the defining equation for Ln;k , which isPk�1
jD0 jzj j

2 D
Pn

jDk jzj j
2 . The reduction map (dividing out the S1 –action) carries it

to ..1 W � � � W 0 W 1/; .1 W 0 W � � � W 0/ 2 Pk�1 � Pn�k , which corresponds to the divisor
..k � 1/.1 W 0/; .n� k/.0 W 1// 2 Symk�1.P1/�Symn�k.Pn�k/.

Proof of Lemma 4.1 By exchanging the roles of †1 and †2 , and of k and n�1�k ,
we see that it is sufficient to assume that k > 1.

Compactify each of the two components of †n
 to a Riemann surface-with-boundary
z†i , iD1; 2. Thus there is a map z†i!†i collapsing the boundary to a point. Consider
a holomorphic branched covering bW z†1!D over the closed unit disc, of degree k ,
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restricting to an unramified cyclic covering @z†! @D (also of degree k ). (We are free
to adjust the complex structure on † to make sure that the covering exists.) Fixing a
point z 2†2 , we obtain a holomorphic map

bz W D! Symn.†/; x 7! b�1.x/C .n� k/z:

Now, the coisotropic hypersurface VL � Symn.†/ depends on the choice of a Kähler
form on a relative Hilbert scheme, so it does not make sense to ask whether the boundary
of bz lies on VL . However, if we allow ourselves to move VL by totally real isotopies
by the method of Part I, Section 3.6, adjusting the (nonclosed) “good two-form” (Part
I, Section 2.3.2) defining the vanishing cycle, we may assume that this is indeed
so. Furthermore we may arrange that the boundary curve of this holomorphic curve
circumnavigates the fibre of the projection VL!Nk over a point .P;Q/. Indeed, by
the last lemma, this behaviour is exactly what happens in the genus-zero model, which
may be transplanted into higher-genus situations as in Part I, Section 3.6. (Because
of the homotopical nature of Maslov indices, it is perfectly acceptable to sacrifice
closedness of the nondegenerate two-forms.)

We can then promote bz to a holomorphic map

Bz W D!M �Nk ; x 7! .bx.z/;P;Q/:

with boundary on yVL . We can see that ŒBz � is primitive in �2.M �Nk ; yVL;k/ simply
by observing that its boundary is primitive in �1. yVL/ (this requires g.†1/ > 0).

To calculate the Maslov index of Bz , we shall exhibit a trivialisation .Y1; : : : ;Y2n�1/ of
.Bzj@D/

�T yVL;i . we then obtain a trivialisation .Y1; : : : ;Y2n�1IJ Y1; : : : ;J Y2n�1/

for .Bzj@D/
�T .M �Ni/ via a complex structure J , and hence an orientation o for

this last bundle. We then extend this orientation to a section of ƒtopB�z T .M �Nk/,
and count its zeros with signs; the Maslov index is this count.

A warm-up exercise, left to the reader, is to derive the Chern number nC 1�g for the
generating sphere in �2.Symn.†// by thinking of this sphere as a degree n branched
cover of S2 and applying Riemann–Hurwitz. This exercise is useful in getting the
local contributions to the Maslov index correct.

Start by trivialising T .@D/ via an anticlockwise-pointing vector field Z . Let az D

bzj@D and Az D Bzj@D . Then az�Z is a nonvanishing section of a�z T VL . The
required trivialisation for A�z T yVL is obtained by putting Yi DXi for i D 1; : : : ; 2n�2,
where .X1; : : : ;X2n�2/ is a positively oriented trivialisation of T.P;Q/.Nk/, and
Y2n�1Daz�Z . Now, Z extends to a vector field zZ on D with a single, nondegenerate
zero s of sign C1, which we may assume does not coincide with any of the critical
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values of the covering b . We may extend the fields Yi to fields zYi over D by putting
zYi DXi for i < 2n� 1 and zY2n�1 D bz�

zZ .

The field zY2n�1 has a k –fold zero at s , which contributes 2k to the Maslov index.
The other contributions come from the critical points of b ; each adds �1 to the Maslov
index, and there are k � 1C 2g.†1/ of them, by Riemann–Hurwitz. This gives us a
Maslov index of

� yVL
.Bz/D 2k � .k � 1C 2g.†1//D kC 1� 2g.†1/:

Putting uk D ŒBz �, we obtain the Maslov index claimed.

Now, we wish yVL;k to be 2–negative. We assume that n� 1
2

min.g.†1/;g.†2//. It
is not clear to the author whether 2–negativity can be achieved simultaneously for
all k 2 f0; : : : ; n � 1g; rather, we will adjust the available parameters so that it is
2–negative for any particular k . We first choose the coefficients �k so as to ensure
that the product manifolds M �Nk are all negatively monotone, ie, that the areas of
the two generators for �2 are proportional to their respective Chern numbers (with a
negative constant of proportionality, �/. We have to arrange that the area of the disc uk

is in the ratio 2� to its Maslov index. Now, yVL;k depends on the Hamiltonian isotopy
class of L�†. The areas of the disks that it bounds are sensitive to this Hamiltonian
isotopy class: in fact, under a Lagrangian isotopy of L, the area of the resulting uk

will change proportionally to the flux of the isotopy. Hence by moving L we can
ensure that the area of uk is 2� times its Maslov index.

Once we have arranged this negative monotonicity, we can apply Lemma 4.1 to see
that 2–negativity holds provided that n � 2

3
min.g.†1/;g.†2//, which is certainly

true when n� 1
2

min.g.†1/;g.†2//.

Our conclusion is expressed by the following lemma.

Lemma 4.3 When n � 1
2

min.g.†1/;g.†2/, all the symplectic manifolds M and
Nk are 3–negative. For each k 2 f0; : : : ; n� 1g, after an isotopy of L inside †, the
corresponding Lagrangian yVL;k �M �Nk is 2–negative.

4.2 Defining the invariants for broken fibrations on closed four-manifolds

We are, at last, ready to give the definition of the Lagrangian matching invariants for
broken fibrations on closed four-manifolds.

The invariants are indexed by Spinc –structures. For now we explain in schematic form
the connection between moduli spaces of sections and Spinc –structures. The details
will be given afterwards.
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Let .X; �/ be a broken fibration over a closed surface (X connected) and let Z�X crit

be the 1–dimensional part of the set of critical points.

(i) The “Taubes map” �X is a bijection

Spinc.X /! ı�1.ŒZ�/�H2.X;Z/;

where ıW H2.X;Z/!H1.Z/ is the boundary homomorphism, and Z is oriented by
a vector field v such that i��.v/ points into the side of �.Z/� S on which the Euler
characteristic is higher (here i is the complex structure on S ). The map �X arises
from the canonical Spinc –structure scan on the almost complex manifold X nZ . It is
characterised by the relation

(12) �X .s/D ˇ if sj.X nZ/D PD.ˇ/ � scan:

In the context of near-symplectic manifolds, the map �X plays an important role in
Taubes’ programme. In [38] it is proved that im.�/� ı�1.ŒZ�/; it is then easy to see
that �X is bijective.

(ii) Construct X Œ�� as in (2), where �W S reg! Z�0 satisfies 2�.s/C �.Xs/ D 2d ,
with d constant; and its Lagrangian matching condition Q. We shall see presently how
to build a map

˛� W �0 sect.X Œ��;Q/! ı�1.ŒZ�/�H2.X;ZIZ/:

If ˇ 2 im.˛�/ then one has hˇ;Xsi D �.s/. Also, hˇ; ŒF �i � 0 for every homology
class ŒF � 2H2.X nZIZ/ represented by a component of a regular or nodal fibre.

Define the map

(13) �� D �
�1
X ı˛� W �0 sect.X Œ��;Q/! Spinc.X /:

We will prove that �� is injective, and, when inf.�/� 2, describe its image.

Now take ˇ D ��1
X
.s/ 2H2.X;ZIZ/. Let us recall a definition from I.1:

Definition 4.4 Suppose that the fibres of � are all connected. The Spinc –structure s

is then admissible if (i) for every homology class ŒF �2H2.X nZIZ/ represented by F ,
a regular fibre or an irreducible component of a nodal fibre, one has hc1.s/;Fi � �.F /

(equivalently, hˇ; ŒF �i � 0); and (ii) one of the following two conditions holds: for
each regular fibre Xs one has either

(1) hc1.s/; ŒXs �i � �.Xs/=2 (equivalently, hˇ; ŒXs �i � ��.Xs/=4); or

(2) hc1.s/; ŒXs �i> 0 (equivalently, hˇ;Xsi � g.Xs/).
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By the results of Section 4.1.1, condition (2) implies that the fibres Sym�.s/.Xs/

are monotone, and that Q is a fibrewise-monotone matching condition. Condition (1)
implies that the fibres Sym�.s/.Xs/ are 3–negative, and that the fibres of the Lagrangian
matching condition are 2–negative. These are the conditions under which we are able
to construct invariants.

Definition 4.5 In a broken fibration some of whose fibres have two connected compo-
nents (but none more than two), we say that s is admissible when

�.F /� hc1.s/; ŒF �i � �.F /=2

for each fibre-component F .

By the results of Section 4.1.2 (more particularly, Lemma 4.3) admissibility guarantees
3–negativity of the relevant symmetric products, and—after suitable adjustments are
made—2–negativity of the Lagrangian correspondences.

Let I� �H1.X IZ/ be the subgroup of classes supported on a fibre of � . Let I�� D

Hom.I� ;Z/. Write
A.X; �/D ZŒU �˝Zƒ

�I�� ;

and make it a graded ring by declaring U to have degree 2. An element l of A.X; �/
is a finite sum

P
U n˝ ln . It can be thought of equally as a homomorphism ZŒU �˝Z

ƒ�I� ! Z (sending U m ˝ � to lm.�/) and we write l.m/ to denote its value on
m 2 ZŒU �˝Zƒ

�I� .

When I� D H1.X IZ/, we write A.X / instead of A.X; �/. The reader can verify
that this is always true when the base is S2 .

Remark 4.6 At this point I should confess to a technical inconsistency with the
announcements made in the introduction to Part I, arising because of a careless oversight.
(This refers to the published version; the ArXiv version has been corrected.) In Part
I, Section 1, A.X; �/ was defined using the dual group of K� D ker.��W H1.X /!

H1.S// in place of I�� . In general, K� will be larger than I� , and I have not established
how to work with the larger group. I apologise for this change.

Definition 4.7 Fix an orientation for each orientable attaching surface Qi for the
broken fibration .X; �/. The Lagrangian matching invariant

L.X ;�/.s/ 2A.X; �/

is a homogeneous element of degree d.s/, where

(14) d.s/D
1

4

�
c1.s/

2
� 2�.X /� 3�.X /

�
;
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characterised as follows. Let mD U a˝ l1 ^ � � � ^ lb be a monomial of degree d.s/.

Represent li by a loop 
i �Xsi
on a regular fibre. The points si should all be distinct.

We associate with each 
i a smooth codimension–1 cycle in a symmetric product:

ı
i
D 
i CSym�.s/�1.Xs/� Sym�.s/.Xs/:

Choose a points xj 2X , lying in distinct regular fibres of � , disjoint from the fibres
Xsi

. With each of these we associate the codimension–2 cycle

ıxj D xj CSym�.s/�1.X�.xj //� Sym�.s/.X�.s//:

The symplectic Morse–Bott fibration X Œ��!S 0 , and its Lagrangian matching condition
Q, give rise to a homomorphism

ˆDˆX Œ��;QIfsi g[f�.xj /g;∅W

aCbO
iD1

H�.Sym�.si /.Xsi
/IZ/! Z;

as in (9). Set

L.X ;�/.s/
�
U a
˝ Œ
1�^ � � � ^ Œ
b �

�
Dˆ.Œıx1

�˝ � � �˝ Œıxa
�˝ Œı
1

�˝ � � �˝ Œı
b
�/

(the cohomology classes here have degrees 2 and 1, and are Poincaré dual to the cycles
ıxj , ı
i

).

The definition involves an orientation for the moduli space of pseudo-holomorphic
sections. This is defined via the relative pin structure for Q constructed by the general
mechanism of Lemma 3.14.

We also need to orient the components Qi of Q for which an orientation exists. This is
equivalent to orienting the attaching tori Qi �X (the tori which degenerate to critical
circles): indeed, Qi is an S1 –family of circle-bundles over symplectic manifolds. One
orients these circle-bundles by orienting a fibre then orienting the base. The base has
its symplectic orientation, and one of the fibres may be taken to be a copy 
 � .n�1/x

of the attaching circle 
 �†. Finally, one orients Qi as

.canonical orientation of S1/

˝.orientation of fibre of yV
 ! Symn�1.x†//

˝.symplectic orientation of Symn�1.x†//:

That the degree of L.X ;�/.s/ is d.s/ is a nontrivial matter: it is a direct consequence
of our index formula, Theorem D. Other than that, the well-definedness of L.X ;�/.s/

is an easy consequence of the general theory we have set up. The following points are
worth remarking:

Geometry & Topology, Volume 12 (2008)



Lagrangian matching invariants for fibred four-manifolds: II 1503

� We must check independence from the choices of cycles ıxj and ı
i
. One can

certainly move the point xj inside X 0 : a path xj .t/ gives rise to a homotopy
of cycles Sym�.xj /�1.X�.xj .t///� Symn.xj /.X�.xj .t///, and the parametrised
moduli space is a compact one-manifold with boundary. It is also legitimate to
move xj between different components of X 0 , because of (10).
Similarly, one can replace 
j by a homotopic loop in a nearby fibre, or by a
homologous point loop in the same fibre, and one can also pass between different
components of X 0 .

� We must show that ˆ is symmetric in the ıxj –factors and antisymmetric in
the ı
i

–factors. This holds because a pair of cycles in distinct fibres can be
replaced by the intersection of two cycles in a single fibre; thus symmetry and
antisymmetry hold because the relevant cycles have, respectively, even and odd
codimension.

4.3 Sections of Q versus Spinc –structures

We now explain the map ˛� involved in the definition of �� given in equation (13),
starting with a prototypical case.

We use the same notation as in Part I, Section 4. So, � W Y ! S1 and x� W xY ! S1 are
fibred three-manifolds, and .Xbr; �br/ an elementary broken fibration over an annulus
AD fz 2C W 1=2� jzj � 2g realising a cobordism between them:

Y D ��1
br .fjzj D 1=2g/; xY D ��1

br .fjzj D 2g/:

The fibre † D ��1
br .1=2/ is connected of genus g , whilst x† WD ��1

br .2/ is either
connected of genus g � 1, or else disconnected with components of genera g1 and
g�g1 .

We write .Y Œn�; � Œn�/ for the relative symmetric product Symn
S1.Y / ! S1 , and

. xY Œn�1�; x� Œn�1� ) for Symn�1
S1 . xY /! S1 . As usual, after choosing complex structures

on T vY and T v xY these become differentiable families of complex manifolds.

The first step is to look more carefully at the Taubes map �Xbr . Let X DXbr and let
Z �X be the circle of critical points. Then we have a commutative diagram

Spinc.X /
restr: //

�X

��

Spinc. xY /

�xYŠ

��
H2.X; @X [ZIZ/

ı // H1. xY IZ/
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where the following holds:

� The map ı is the obvious boundary homomorphism. A straightforward compu-
tation verifies that it is surjective.

� �X is the Taubes map, defined by the condition (12). In similar fashion, � xY is
defined by the relation

tD PD.� xY .t// � tcan;

where tcan 2 Spinc. xY / is the canonical Spinc –structure associated with the
vertical two-plane field on xY (it is the restriction to xY of scan/.

For each integer d , let

Spinc. xY /d D ft 2 Spinc. xY / W hc1.t/; Œx†�i D 2dg;

and let Spinc.X /d be the preimage of Spinc. xY /d under the restriction map.

What is the image of Spinc.X /d (resp. Spinc. xY /d ) under �.X / (resp. � xY )? Write

2d D �.†/C 2nD �.x†/C 2.n� 1/:

Then �X .Spinc.X /d / is the affine subgroup

H
.n/
2
D fˇ 2H2.X;Z [ @X / W @ˇ D ŒZ�mod H1.@X IZ/ and ˇ � Œ†�D ng:

This follows immediately from the fact that scan has degree �.x†/ over x†. Similarly,
� xY .Spinc. xY /d / is the affine subgroup

H1. xY IZ/n D f
 2H1. xY IZ/ W 
 � Œx†�D ng:

If x† is disconnected, with components x†1 and x†2 , it become necessary to refine the
set Spinc.X /d . Write

Spinc. xY /d D
[

d1Cd2Dd

Spinc. xY /d1;d2
;

where t 2 Spinc. xY /d1;d2
if hc1.t/; Œx†i �i D 2di . Let Spinc.X /d1;d2

be the preimage
of Spinc. xY /d1;d2

under restriction. Then �X .Spinc.X /d1;d2
/DH .n1;n2/

2
, where ni D

di ��.†/=2, and H .n1;n2/
2

is the obvious refinement of H
.n/
2

.

Now we bring in the space of sections of the Lagrangian matching condition Q.

Proposition 4.8 Assume x† is connected. Then there is a unique map

˛W �0 sect.Q/!H
.n/
2
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which makes the diagram

�0 sect.Q/ ˛ //____________

��

H
.n/
2_�

@

��
�0 sect.Y Œn�/��0 sect. xY Œn�1�/ // H1.Y IZ/n˚H1. xY IZ/n�1

commute. Here the lower horizontal arrow is the natural “cycle map” sending homotopy
classes of sections of symmetric product bundles to the homology classes of the cycles
swept out by the points in their support. The map ˛ is surjective, and if n� 1� 2 also
injective. Hence the composite

� WD ��1
X ı˛W �0 sect.Q/! Spinc.X /d

is surjective, and bijective if n� 1� 2.

Proof The elements of H
.n/
2

are represented by surfaces with boundary, of form
C1 [ � � � [Cr�1 [C 0 , where the Ci are cylinders which are sections of the broken
fibration X ! A, and C 0 is a cylinder with @C 0 D Z [ 
 for some circle 
 � Y .
Recall the attaching surface Q� Y (torus of Klein bottle) which collapses to Z . The
set �0 sect.Q/ maps injectively to H1.QIZ/, and in this way it may be considered as
an affine abelian group, isomorphic to Z or Z=2 according to whether or not Q is
orientable. There is an “exact sequence”

0! �0 sect.Q/!H
.n/
2
!H1. xY IZ/n�1! 0

(we use quotation marks because these are only affine abelian groups).

Notice that H2.X; @X [ZIZ/ injects into H1.@X IZ/ (and even into H1.Y IZ/).
Thus H

.n/
2

defines a correspondence between H1.Y IZ/n and H1.Y IZ/n�1 . Because
of this, ˛—if it exists—is fully determined by the commutative square in the statement
of the theorem. We must show that the image of any section of Q in H1.Y IZ/n˚

H1. xY IZ/n�1 lies in @.H .n/
2
/.

To do so, we study �0 sect. xY Œn�1�/, and relate it to H1. xY IZ/n�1 . In general, given a
self-diffeomorphism  2 Diff.M / of a connected manifold M , once one chooses a
reference section of the mapping torus T. /, the set of homotopy classes of sections,
�0 sect T. /, is described by a natural commutative diagram

�0 sect T. / Š //

��

�1.M /=�

��
H1.T. /IZ/ H1.M /= im.1� �/_?

oo
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where � is the relation of “ –twisted conjugacy” in �1.M /:


 � ˇ � 
 � . ıˇ/�1

(concatenation of paths is read from left to right). This applies to xY , the mapping torus
of x� 2 DiffC.x†/. In that case, the vertical map on the right (the abelianisation map) is
always surjective, but when the genus of the fibre is > 1 it is not injective.

When we consider the symmetric products xY Œn�1� D Symn�1
S1 . xY /, we can slightly

modify the targets of the vertical arrows in the commutative diagram:

�0 sect. xY Œn�1�/
Š //

��

�1.Symr�1.x†//=�

��

H1. xY / H1.M /= im.1� x��/:_?
oo

Here we are considering sections of xY Œn�1� as .n�1/–fold sections of xY . If n�1� 2,
�1.Symn�1.x†// is abelian (isomorphic to H1.x†IZ/), and the vertical map on the
right is a bijection.

We conclude that �0 sect. xY Œn�1�/ maps surjectively to H1. xY IZ/n�1 , and also injec-
tively if n� 1� 2.

For any section of 
 2 sect. xY Œn�1�/, 
 �Q is an S1 –bundle over S1 , and thus 
 lifts
to a section of Q! S1 . If the surface Q is a torus, the pullback bundle 
 �Q is always
orientable, and the available lifts (up to homotopy) are parametrised by Z. If Q is
a Klein bottle, it is never orientable, and the lifts are parametrised by Z=2 (cf Part I,
section 4). In either case, the lifts are in bijection with �0 sect.Q/. Now xY contains
a distinguished braid B (which degenerates inside X to the critical circle Z ). The
section 
 is homotopic to a section 
 0 whose image in xY is well away from B . We
noted in Part I (Remark 4.2) that, after moving Q by an isotopy, and restricting to an
open subset U � xY Œn�1� of points Œx1; : : : ;xn�1� where none of the xi is close to B ,
we can suppose that the S1 –bundle Q! xY Œn�1� is identified with xY Œn�1��S1

Q. That
is to say, to lift 
 0 to a section z
 0 of Q, one just has to add a section of Q. But that
means that ˛.z
 0/ 2H

.n/
2

exists.

Hence the map ˛ exists, and we obtain a commutative diagram

�0 sect.Q/ ����! �0 sect.Q/ ����! �0 sect. xY Œn�1�/


 ˛

??y ??y
�0 sect.Q/ ����! H

.d/
2

����! H1. xY IZ/n�1
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where the upper row is a “short exact sequence” of sets, the lower row a short exact
sequence of affine abelian groups. We have already established the surjectivity (and
when n� 3, injectivity) of the right-hand vertical arrow. This gives the result.

If x† is disconnected, one should beware that sect. xY Œn�1�/ (and hence sect.Q/) may
be empty, because x� permutes the components of x†. However, we can still set up a
commutative diagram

�0 sect.Q/ ˛ //_________

��

S
0�d1�d H

.d1;d�d1/
2

_�

@

��
�0 sect.Y Œn�/��0 sect. xY Œn�1�/ // H1.Y IZ/n˚H1. xY IZ/n�1

which uniquely characterises ˛ . This again leads to composite maps

� D ��1
X ı˛W �0 sect.Q/!

[
0�d1�d

Spinc.X /.d1;d2/:

If n� 1� 2, ˛ (and hence � ) is injective. In general, however, it is not surjective.

4.3.1 Sections of relative Hilbert schemes versus Spinc –structures Now take any
broken fibration .X; �/ over a surface S . Consider the boundary map

ıW H2.X; @X [ZIZ/!H1.ZIZ/:

Let ˇ 2 ı�1.ŒZ�/. The intersection number of ˇ with a regular fibre Xs is not constant,
and nor is the Euler characteristic of the fibre, but one has the following:

Lemma 4.9 The number 2ˇ �XsC�.Xs/ is independent of s 2 S nS crit .

Proof The Lefschetz dual D.ˇ/ of ˇ lies in H 2.X nZIZ/. The submanifold X nZ

supports an almost complex structure compatible with ! and preserving the fibres of
� , and whilst c1.X nZ/ does not extend to X , c1.X nZ/C 2D.ˇ/ does (cf Taubes
[38]). The result follows.

Note that one can define the Taubes map

� W Spinc.X /!H2.X; @X [ZIZ/

precisely as in (12). As before, let �W S n S crit ! Z�0 be a function satisfying
2�.s/ C �.Xs/ D d , and form the relative Hilbert scheme X Œ�� and its matching
condition Q. Then any section u 2 sect.X Œ��;Q/ defines a relative homology class

˛.u/ 2 ı�1.ŒZ�/�H2.X; @X [ZIZ/:
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Indeed, over S 0 D S n nd.�.Z//, u tautologically defines a cycle u0 representing a
class in H2.X; �

�1.@S/IZ/. This extends to a class in H2.X;ZIZ/ as in Proposition
4.8.

The composite of ��1 and ˛ defines the map

�� D �
�1
ı˛W �0 sect.X Œ��;Q/! Spinc.X /d

introduced in (13).

Proposition 4.10 Assume inf.�/ � 2. Then the map �� is injective; if all fibres are
connected, it is also surjective.

Proof We claim that, if S DS1[T S2 is a splitting along a circle of regular values T ,
and X DX1[Y X2 is the corresponding splitting, then injectivity of �� for X is implied
by injectivity for X1 and X2 . Indeed, suppose sections s1 , s2 2 sect.X � ;Q/ satisfy
��.s1/D��.s2/. Then, by injectivity of �� for the Xi , s1 is homotopic to a new section
s0
1

which differs from s2 only over a small neighbourhood of T . The obstruction to
extending the homotopy over T is a class ı 2�1.Y

Œn�; 
 /, where nD �.s/, s 2T , and

 D s2jT . But there is a natural injection i W �1.Y

Œn�; 
 /!H2.Y IZ/DH 1.Y IZ/,
and i.ı/ is the lift of ��.s1/� ��.s2/ to H 1.Y IZ/. Hence ı D 0.

Similarly, surjectivity of �� for X1 and X2 implies surjectivity for X , providing that
inf � � 2. The point is that �0 sect.Y Œn�/ maps surjectively to H1.Y IZ/n if n � 2

(�0 sect.Y Œn�/ is an affine space modelled on the abelianisation of �1.Symn.†//,
where † is the fibre of Y ! S1 ).

With this patching procedure to hand, it suffices to check the result in three cases: (i)
S is a connected surface with nonempty boundary and X crit D ∅; (ii) S is a disc
and X ! S is an elementary Lefschetz fibration; (iii) S is an annulus and X ! S

an elementary broken fibration. Case (i) is easy once one observes that S retracts
to a bouquet of circles; (ii) is also straightforward and left to the interested reader.
Proposition 4.8 and the remarks following its proof deal with (iii). The result follows.

4.4 Computing the index

The map �� W �0 sect.Q/! Spinc.X /d gives a tidy way of partitioning the sections
of Q, but its importance goes beyond book-keeping: we can use it to understand the
index problem for pseudo-holomorphic sections with boundary on Q. Whilst setting
up invariants from such sections depends critically on compactness and transversality
theorems, the index computation can be done in a “soft” topological context. Underlying
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this and virtually all such computations is the invariance of the Fredholm index under
compact perturbations.

The proof of the index formula is rather complicated. As a warm-up, and so as to make
clear which aspects are tied specifically to our matching conditions, we first consider
the index problem for the relative Hilbert scheme X Œn� D Hilbn

S .X / of a Lefschetz
fibration � W X !S over a closed surface. In the case S DS2 , this was done by Smith
[37, Proposition 4.3] using an analytic form of Grothendieck–Riemann–Roch. It can
be done in more elementary fashion as follows.

Lemma 4.11 Let u 2 sect.X Œn�/, and let A 2 H2.X IZ/ be its underlying homol-
ogy class. Then the index of u (which, according to Riemann–Roch, is equal to
2hc1.T

vX Œn�/; Œu�iC n�.S/) is

ind.u/DA �AChc1.TX /;Ai:

The proof is preceded by an algebraic digression. Suppose that X is actually a
complex surface (not necessarily compact) and � W X ! S a holomorphic submersion
(not necessarily proper). To give a holomorphic section uW S ! X Œn� of the relative
symmetric product Symn

S .X / is to give a commutative triangle

Tu
zu //

tu

��

X

�~~}}
}}

}}
}}

S

where Tu is a Riemann surface, tu a proper holomorphic map of degree d , and zu a
holomorphic mapping into X . One constructs Tu , as a branched cover of S , as the
space of germs of sections of � mapping each point s into Supp.u.s//.

Lemma 4.12 For any holomorphic section uW S ! X , there is an isomorphism of
holomorphic vector bundles over S ,

u�T v Symn
S .X /Š tu�zu

�.T vX /:

Proof This is essentially the infinitesimal version of the correspondence just described.
The standard algebro-geometric description of T Symn.Xs/ at an effective divisor
D is as the vector space of “Laurent tails” H 0.XsIOXs ;D.D// (here OXs ;D.D/ is
the cokernel of the natural inclusion of sheaves OXs

! OXs
.D/). Thus the fibre

of u�T v Symn
S .X / at x is H 0.XsIOXs ;D.D//, where D is u.x/, counted with

multiplicities. On the other hand, the fibre of tu�zu
�.T vX / at x is the space of

D–jets of holomorphic maps into Xs at D , which is also naturally identified with
H 0.OXs ;D.D//.
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Proof of Lemma 4.11 Because u is a smooth section, it does not map to any critical
points of � Œn� . The index only depends on u only through its homotopy class; hence, by
making small perturbations to u, we may arrange that u has generic properties. Namely,
we can assume that it is transverse to each stratum of the diagonal in X Œn� , and hence
only intersects the diagonal in its top stratum (ie, there are no triple self-intersections).
Moreover, we may suppose that, for any such intersection point u.s/, there is a small
disc Ds � S centred at s over which u is either holomorphic or antiholomorphic,
according to the sign of the intersection: having identified the self-intersection points
u.s/, we adjust the almost complex structure on X so that it becomes integrable in a
neighbourhood of Xs .

In this situation, we can again construct a “parametrisation” of u as a commutative
diagram

Tu
zu //

tu

��

X

�~~}}
}}

}}
}}

S:

Here tuW Tu ! S is a degree n map of smooth surfaces whose fibre over x is
Supp.u.x//, except when u.x/ hits the diagonal. In the latter case, u is locally
(anti)holomorphic, and Tu can be constructed in the way discussed in the preamble to
this proof. Thus tu has simple ramification. We still have an isomorphism of complex
vector bundles u�T v Symn

S .X / Š tu�zu
�.T vX /: the previous lemma gives such an

isomorphism near the branch values, and there is then an obvious (and canonical)
extension to the rest of S .

The image of zu is an embedded surface U in X ; the branch points of tu (in Tu ) map to
tangencies with the fibres of X . Of these tangencies, some (NC , say), have coincident
orientations with the fibre of X , and some (say N� ) have opposite orientation. The
two local models for tu are respectively z 7! z2 and z 7! xz2 . In this context, the
Riemann–Hurwitz formula reads

�.Tu/D n�.S/� .NCCN�/:

On the other hand, for a complex line bundle L! Tu ,

(15) hc1.tu�L/; ŒS �i D hc1.L/; ŒTu�iC
1

2
.NC�N�/:
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We now calculate

ind.u/D 2hc1.u
�T vX Œn�/; ŒS �iC n�.S/ (Riemann–Roch)

D 2hzu�c1.T
vX /; ŒTu�iCNC�N�C n�.S/ (by Equation (15))

D 2hzu�c1.TX /� zu���c1.TS/; ŒTu�i

CNC�N�C n�.S/ (since TX D T vX ˚��TS )

D 2hzu�c1.TX /; ŒTu�i � n�.S/CNC�N� (since deg.tu/D n)/

D 2hzu�c1.TX /; ŒTu�i ��.Tu/� 2N� (Riemann–Hurwitz).

We can now make the link with the homology class A, since

hzu�c1.TX /; ŒTu�i D hc1.TX /;Ai:

If N� D 0, we can homotope the almost complex structure on X so that it preserves
T U , whereupon the adjunction formula gives

��.Tu/DA �A� hc1.TX /;Ai:

If N� > 0 then we may take U to be almost complex except at the N� orientation-
reversing vertical tangencies. There is a relation

��.Tu/C kN� DA �A� hc1.TX /;Ai

for a universal integer k ; indeed, k is the first Chern class of the trivial C2 –bundle
over the disc, �, relative to a certain trivialisation over its boundary. Hence

ind.u/D hc1.TX /;AiCA �A� .kC 2/N�:

The cheapest way to deduce that k D�2 is to observe that (there is some example in
which) one can deform an initial u0 2 sect.X Œn�/ which has N� D 0 to a homotopic
section u1 which is generic and has N� > 0. We have ind.u0/D ind.u1/, but the only
way this can occur is if k D�2. The result now follows.

The Spinc –structure sD ��1
X
.A/ corresponding to A is LA˝scan , where LA is the line

bundle with a section with transverse zero-locus A; thus c1.s/D c1.TX /C 2PD.A/.
Since c1.TX /2 D 2e.X /C 3�.X /, one has A2Chc1.TX /;Ai D d.s/, where d.s/

is as in Equation (14).

We now turn to broken fibrations, and to one of the results previewed in Part I of this
pair of papers.
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Theorem D Suppose that u 2 sect.X Œ��;Q/ represents the Spinc –structure s, ie that
��.u/D s. Then the index of u is

ind.u/D d.s/:

A part of the proof is to verify the result by hand for each of two broken fibrations (and
at least one section u in each case). The attaching surface in one of these fibrations is
a torus; in the other, a pair of Klein bottles. We do this now.

Example 4.13 This example is a broken fibration � W X ! S2 . The total space is
X DXC[X0[X� where XC is a trivial T 2 –bundle over a north-polar disc DC ; X�
is a trivial S2 –bundle over the south-polar disc D� ; and these are joined in the trivial,
“untwisted”, way by a broken fibration X0 over the equatorial annulus. The vanishing
surface Q � @XC is a torus, and there is a section u of .DC; @DC/! .XC;Q/ of
Maslov index 0. Thus ind.u/D 1. In fact, for a standard almost complex structure, the
moduli space of pseudo-holomorphic sections is S1 .

It is easy to see that e.X /D2 and b1.X /D1, so b2.X /D2 and, since there is a section,
�.X / D 0 (in fact, as shown in the last section of [1], X Š .S1 �S3/#.S2 �S2/).
The section u can be completed to a section v over S2 , which we may take to be
pseudo-holomorphic (adjusting the almost complex structure on X nZ ). We have
Œv� � Œv�D 0, so by the adjunction formula, hc1.X nZ/; Œv�i D 2.

The Spinc –structure s associated with u has c1.s/D 2Œfibre�C 2Œv�. Note here that,
on X nZ , c1.s/D c1.X nZ/C 2PDŒu�, and that one can calculate the intersection of
c1.X nZ/C 2PDŒu� with a surface in X nZ as a sum of two intersection numbers.
Thus c1.s/

2 D 8, and d.s/D 2� 1D 1.

Example 4.14 In this example of a broken fibration X !S2 (a homotopy–S2�S2 ),
the vanishing surface Q is the union of two Klein bottles. We have X DXC[X0[X� ,
where XC! DC and X�! D� are now trivial S2 –bundles. The equatorial part
X0 is a broken fibration with two circles of critical points, mapping to parallel circles
(the “tropics”). The fibre over the equator is S2[S2 , and the monodromy around the
equator interchanges the two components. The vanishing Klein bottle Q� � S2�@D�
is
S

z2S1 lz � fzg, where lz is the circle z1=2R[f1g�C[f1gDS2 . The fibration
is symmetric under reflection in the equator in the base S2 ; in particular, the other
Klein bottle QC is the reflection of the first.

We have �1.X /D f1g (as one verifies with a little care) and e.X /D 4, so b2.X /D 2.
There exists a two-fold section, so the fibres are nontrivial in homology and the signature
is zero.
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There is a section u� over D� with boundary on Q� , given by u�.z/D 0 2C � S2 .
This has Maslov index C1. There is a similar section uC over DC . Their union,
uD uC[u� , has index ind.u/D 2.1C 1/D 4.

To calculate c1.s/
2 for the associated Spinc –structure s, we look more closely at

H2.X IZ/. Observe that there is a two-fold section s , given on D� by s.z/D f0;1g,
and similarly on DC . In the equatorial annulus, s.z/ is given by one point on each of
the two components of the fibre Xz . Moreover, we can arrange firstly that S WD im.s/
is pseudo-holomorphic for some almost complex structure compatible with the broken
fibration, and secondly that S is an embedded sphere with ŒS � � ŒS �D 4. By adjunction,
hc1.X nZ/; ŒS �i D 6. Notice that S is homologous inside X nZ to another surface S 0

transverse to u and meeting im.u/ with (multiplicity C1) at 0 2DC and at 0 2D� .
Thus hc1.s/; ŒS �i D 6 C 2:2 D 10. We also have hc1.s/;Fi D 2, where F is an
equatorial fibre. Hence c1.s/D 2ŒS �C2F . Then c1.s/

2D 24, and d.s/D 4D ind.u/.

Proof of Theorem D We will show that ind.u/� d.s/ is some universal multiple
of the number of tori, plus a universal multiple of the number of Klein bottles. The
foregoing computations, showing that ind.u/� d.s/D 0 in each of the two examples
above, then complete the proof of the theorem.

The argument is a little less intricate when SDS2 and there is just one critical circle Z ,
so we will deal with that case then indicate how it is generalised. So, S 0DSCqS� , the
union of two discs, and there is an orientation-reversing diffeomorphism z� W SC! S� .

One can think of u as a section .uC;u�/ of X
Œn�
C �SC z�

�X Œ�1�
� . The Riemann–Roch

theorem for surfaces with boundary gives the index of u as

ind.u/D �Q.u/C nC .n� 1/;

where �Q.u/ is the Maslov index for u relative to Q, when u is considered as a section
of X

Œn�
C � z�

�X Œn�1�
� . We compute this index in a number of steps.

Step 1 Consider the matching condition Q lying over @SC . At a homotopical level, we
can make a sequence of simplifications. Let Y D ��1.@SC/ and xY D ��1.�.@SC//.

(1) xY contains a distinguished braid, B a two-fold section of Y ! S1 , associated
with the broken fibration: see the discussion at the beginning of Section 4.1 in
Part I. Using Remark 4.2 from Part I, we can isotope Q through totally real
subbundles so that, over an open set U � xY Œn�1� of points Œx1; : : : ;xn�1� with
xi ¤ nd.B/, we have QŠ xY Œn�1��S1 Q as an S1 –bundle over xY Œn�1� . Further-
more, the embedding Q!Y sends .Œx1; : : :xn�1�I q/ to Œx1; : : : ;xn�1; q�2Y Œn� .
Such a totally real isotopy leaves Fredholm indices unaltered.
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(2) Suppose � D .
; x
 / 2 sect.Q). We can perturb x
 to another section of xY n�1

which avoids U , and lift the homotopy to Q, so obtaining a homotopic section
of Q.

(3) After a further (generic) perturbation, 
 does not intersect the diagonal in Y Œn� ,
and x
 does not intersect the diagonal in xY Œn�1� .

When � satisfies point (3), we can canonically associate with it an n–fold covering
t
 W T
 ! S1 ; an .n� 1/–fold covering tx
 W Tx
 ! S1 ; and maps

z
 W T
 ! Y; zx
 W Tx
 ! xY

such that 
 D z
 ı t�1

 and x
 D zx
 ı t�1

x
 . We then have


 �T vY Œn� D .t
 /�z

�T vY; x
 �T v xY Œn�1�

D .tx
 /�zx

�T v xY :

By point 2, T
 is isomorphic to a disjoint union S1[Tx
!S1 . Moreover, 
 �T vY Œn�Š

q�T vY ˚ x
 �T v xY Œn�1� , where qW S1!Qi is the restriction of 
 to S1 � T
 . To put
this more plainly: 
 consists of a section q of the vanishing surface Qi � Y , together
with an .n� 1/–fold section disjoint from Qi which matches with the .n� 1/–fold
section x
 of xY .

With a generic u 2 sect.X Œ��;Q/ we can associate, as in the proof of Lemma 4.11,
a surface with boundary Tu , a branched covering tuW Tu ! S 0 , and a smooth map
zuW Tu!X 0 , such that zu ı t�1

u D u and

u�T vX Œ��
D .tu/�zu

�T vX 0:

T vQ defines a (linearised) boundary condition for deformations of u, and this translates
into a boundary condition for deformations of .Tu; zu/. We understand the boundary
condition using point (1): Tu has a distinguished component C over @SC , on which the
map zu is q . On this boundary component, the boundary condition is q�T vQ� q�T vY .
The remaining components of Tu over @SC , say 
1; : : : ; 
k , are matched with the
components of Tu over @S� . On each pair 
i , the boundary condition is the diagonal
Lagrangian matching condition diag
�

i
T v xY � 


�
i T v xY ˚ 
 �i T v xY .

Step 2 We can go further by joining up the matching ends of Tu , eliminating the
diagonal boundary condition. We have S D S 0 [N , where N is an annulus. We
can find a covering Ttunnel ! N which joins up with Tu to give a surface with
boundary Tjoined D T [ Ttunnel with a map tjoinedW Tjoined! S . Moreover, there is a
map vD ujoinedW Tjoined!X , lifting tjoined and extending zuW Tu!X 0 . The boundary
@Tjoined maps diffeomorphically to @SC under tjoined , while ujoined.@Tjoined/�Q. Now,
one has

�Q.u/D �Q.v/C .NC�N�/;
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where NC and N� are numbers of branch points of Tjoined! S , as in the proof of
Lemma 4.11. (This is a small modification of (15).)

Step 3 The next step is to cap off Tjoined —not in X , but in a manifold XZ;f obtained
by surgery on X along Z . That is, we choose a framing f for Z , excise a small
neighbourhood Z�D3 of Z from X , and glue in D2�S2 in its place. Then @Tjoined

bounds a standard embedded disc D in XZ .

Notice that the framings can be chosen according to a standard recipe. If Q is a torus,
we may parametrise a neighbourhood of Zi Š S1 as S1 �D3 in such a way that
QD S1�f.x;y; 0/ W x2Cy2 D 1g � @.S1�D3/ and such that the curve im.q/�Q

is S1�f.1; 0; 0/g. If Q is a Klein bottle, we can choose fix some other model in which
Q and q appear in a standard way in @.S1 �D3/.

The almost complex structure J on X nZ then extends to an almost complex structure
J 0 on X �Z;f WD XZ;f n fpg, where p is a point in the added D2 �S2 . There is no
obstruction to choosing J 0 so that the disc D is pseudo-holomorphic.

Now D has complex normal bundle, and tangents to Q form a real subbundle over
@D . There is therefore a Maslov index �Q.D/, which is actually zero when Q is a
torus. We can pin down our universal model in the Klein bottle case by stipulating that
the Maslov index (which can be any odd integer) should be 1.

Let W D Tjoined[
S

i Di be the capped surface, and wW W !XZ;f the natural map
extending v . The complex line bundles v�T vX and ND=XZ;f

are isomorphic over
the common boundary of Tu and D , so join together to give a line bundle L!W .
We then have

(16) �Q.ujoined/C�Q.D/D 2hc1.L/; ŒW �i:

Notice that there is a degree n map pW W ! S extending tuW Tu ! S 0 . We now
compute as in Lemma 4.11:

ind.u/D �Q.u/C .2n� 1/ (Riemann–Roch)

D �Q.ujoined/C .2n� 1/CNC�N� (by Step 2)

D 2hc1.L/;W i ��Q.D/C .2n� 1/CNC�N� (by Equation (16))

D 2hw�c1.TX �Z;f /�w
�p�c1.TS/; ŒW �i ��Q.D/

C .2n� 1/CNC�N� (splitting w�TX �Z;f )

D 2hw�c1.TX �Z;f /; ŒW �i ��Q.D/� 2n� 1CNC�N� .deg.p/D n/

D 2hw�c1.TX �Z;f /; ŒW �i ��Q.D/��.W /� 2N�� 1 (Riemann–Hurwitz)

D hw�c1.TX �Z;f /; ŒW �iCw�ŒW � �w�ŒW ���Q.D/� 1: (adjunction)
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The last line uses the variant of the adjunction formula discussed in the proof of Lemma
4.11.

Thus ind.u/ differs from ŒW �2Chc1.TX �Z;f /;W i by �Q.D/C 1, which is 1 or 2,
depending on the topology of Q. But c1.TX �Z;f /

2 differs from 2�.XZ;f /C3�.XZ;f /

just by contributions (“Hopf invariants”) from the singularities of p [14]. These depend
only on the topology of Q. It follows that

ind.u/�
1

4
Œc1.sW /

2
� 2e.XZ;f /� 3�.XZ;f /�

depends only on the topology of Q, where sW is the J 0–canonical Spinc –structure on
X �Z;f , twisted by PD.W /. Hence the same is true of ind.u/� d.s/. This establishes
our claim.

We now drop the assumptions that S D S2 and that Z is a single circle. By the index
formula of Lemma 3.3, we now have

ind.u/D �Q.u/C
X

Si2�0.S 0/

�.Si/�.Si/

where �Q.u/ is a generalised Maslov index. One can form Tjoined and v as before, and
�Q.u/D�Q.v/C .NCCN�/. The computation now proceeds as before. It shows, as
claimed, that ind.u/�d.s/ is a universal multiple of the number of torus components
of Q, plus a universal multiple of the number of Klein bottle components.

4.5 The relative theory: Floer homology

We now begin to lay out the relative version of the theory—the version for broken
fibrations over surfaces with boundary. We begin by setting out the special features of
Floer homology for relative symmetric products of fibred three-manifolds. These groups
first appear, in connection with Seiberg–Witten theory, in the work of D Salamon [28].
They are studied in the author’s thesis [23] and also by Usher [39], who noticed how to
achieve the monotonicity condition explained below.

4.5.1 Topological sectors Let .Y; �/ be a surface bundle over S1 , † D ��1.Œ0�/

its fibre, j 2 J.T vY / a vertical complex structure, and Y Œn� D Symn
S1.Y / the relative

symmetric product. Let H1.Y IZ/n �H1.Y IZ/ be the affine subgroup of classes 

with 
 � Œ†�D n. As discussed in the last section, there is a “tautological” map

aW �0 sect.Y Œn�/!H1.Y IZ/n:

Assuming † connected, this map is surjective and, if n > 1, also injective (see the
proof of Proposition 4.8).
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The map � W H1.Y IZ/! Spinc.Y /, sending 
 to PD.
 / � tcan , maps H1.Y IZ/ bi-
jectively to the subset Spinc.Y /nC�.†/=2 of Spinc –structures t with hc1.t/; Œ†�i D

2nC�.†/. We put

HF�.Y; t/D
M


2.�ıa/�1.t/

HF�.Y
Œn�; 
 /:

The group HF�.Y; t/ should really be notated as HF�.Y
Œn�; � Œn�; tI�/, since it de-

pends upon a choice of closed two-form �. The matter of choosing � takes us back
to the homomorphism �n;� constructed at the beginning of this paper. The monodromy
m of Y ! S1 is only defined modulo isotopies, but by choosing a suitable two-form
on Y we can find a lift zm to the symplectic mapping class group of †. We can then
apply �n;� to it. Thus we choose � to be a fibrewise-Kähler form whose monodromy
represents �n;�.m/.

The adjustable parameters in this procedure are the choice of lift zm of the monodromy
m, and the value of �. There is no obligation to make the same choices for different t,
but we can pick out a canonical, t–dependent choice by insisting that a monotonicity
condition holds. This is the topic of the following paragraphs.

4.5.2 Periods and monotonicity Consider the mapping torus T.�/ of a self-diffeo-
morphism � 2 DiffC.M / of a connected manifold M: Assume that �.x/ D x ; we
then use x as a basepoint of M , and cx (the “constant section at x”) as a basepoint
for the twisted free loopspace sect.T.�//.

Lemma 4.15 The map eW sect.T.�//!M given by evaluation at Œ0� 2 S1 gives rise
to an exact sequence

�2.M /= im.1���/! �1.sect.T.�//; cx/
e�
! �1.M /�! 1

where �1.M /� � �1.M / is the group of invariants.

A very similar assertion appears in M Poźniak’s thesis [27].

Proof The evaluation map e is a Serre fibration—just like the evaluation map LM !

M on the free loopspace—and the sequence can be obtained from the associated exact
sequence of homotopy groups. However, it can also be derived directly.

Think of loops in sect.T.�// as maps �W S1 � Œ0; 1�!M satisfying �.t; 1/ D � ı
�.t; 0/. Given a based loop 
 W S1!M representing a �–invariant class Œ
 �, a choice
of homotopy ��
 ' 
 gives rise to a loop in �1.sect.T.�//; cx/, hence e� maps
onto �1.M /� . One obtains a map d W �2.M /! �1.sect.T.�//; `/ by modifying the
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constant loop at l by a map .D2; @D2/! .M; fxg/, where D2 is embedded as a small
disc inside S1 � Œ0; 1�. Elements of �2.M / shape s���s then lie in the kernel of d ,
and im.d/� ker.e�/. Moreover, if Œ�� 2 ker.e�/ then, after a homotopy, � is constant
along S1 � f0g, and so after a further homotopy differs from l by a map supported
in a disc contained interior of S1 � Œ0; 1�. Hence Œ�� 2 im.d/. If Œr � 2 �2.M / lies
in ker.d/ then one choose a nullhomotopy f�tgt2Œ0;1� of �0 (the image of r ). Then
e ı�t defines a 2–sphere s in M , and one has r ' s���s .

Proposition 4.16 If n> 2, the natural map

pW �1 sect.Y Œn�; 
 /!H2.Y IZ/DH 1.Y IZ/;

is injective, with cokernel isomorphic to Z=n.

Proof When n > 2 one has �2.Symn.†// D Z: this is true when n� 0 because
Symn.†/ is then a projective space bundle over a torus. It then follows for all n� 3

by descending induction, using the Lefschetz hyperplane theorem. The action of ��
on �2 is trivial. After homotoping the monodromy of Y Œn� so that it has a fixed point,
the previous lemma then gives the upper row in the following commutative diagram:

0 ����! Z ����! �1 sect.Y Œn�; 
 / ����! H1.Symn.†//� ����! 0??y ??y ??y
0 ����! H2.†/ ����! H2.Y / ����! H1.†/

� ����! 0

The lower row is the short exact sequence describing homology for a mapping torus;
the maps in it are the ones induced by inclusion of a fibre and by intersection with
a fibre. The vertical maps are the “tautological” ones. The one on the right is an
isomorphism; that on the left is injective, with cokernel Z=n. By the snake lemma,
�1 sect.Y Œn�; 
 /!H2.Y IZ/ is also injective with cokernel Z=n.

The Chern class of T vY Œn� is given, in the notation of the introduction, by

(17) c1.T
vY Œn�/D .c1.T

vY /Œ1�C 1Œ2�/=2:

The two sides agree on the fibres Symn.†/ since the restrictions of c1.T
vY /Œ1� and

1Œ2� are respectively .2�2g/�† and 2n�†�2�† . One way to prove this formula is to
use Grothendieck–Riemann–Roch (the calculation is very similar to that of the index
in [37]). As pointed out to the author by Michael Usher (private communication), it
has a more concrete expression:

hc1.T
vY Œn�/; Œ��i D hc1.T

vY /C 2PD.
 /;p.�/i=2D hc1.t
 /;p.�/i=2;
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where � is a loop in sect.Y / based at 
 and t
 D �.
 /. This can also be verified
directly, using the method of Lemma 4.11.

Now, Floer homology for an LHF .T ! S1; �/ is at its simplest when the homomor-
phism

Œ��W �1.sect.T /; 
 /! Z

is a multiple of the index homomorphism defined by c1.T
vT /. This is the “mono-

tonicity” condition, and has been exploited by a number of authors (most relevantly, by
Seidel [33] in connection with the mapping class group). In our set-up, monotonicity
can be achieved provided that n¤��.†/=2.

Lemma 4.17 Fix a Spinc –structure tD t
 2Spinc.Y /2nC�.†/ , where 2nC�.†/¤ 0.
Put

W� D .1C�n/ .w�/
Œ1�
�
�

2
1Œ2� 2H 2.Y Œn�IR/;

w� D
�PD.
 /C .�.†/C 2n/�1c1.t
 /

1C�n
; � > �

1

n
:where

Then the following monotonicity relation holds: W� � .2=.�.†/C 2n//c1.T
vY Œn�/

vanishes on �1.sect.Y Œn�; 
 /.

Proof Take w 2H 2.Y IR/ with hw; Œ†�i D 1. On Y Œn� we consider the class

W D .1C�n/ wŒ1��
�

2
1Œ2�; � > 0

(cf Equation (1)). One has

hW; Œ��i D h.1C�n/ w��PD.
 /;p.�/i:

We have learned that

c1.T
vY Œn�; Œ��/D

1

2
hc1.t
 /;p.�/i:

If we put w D w� D .1C�n/�1.�PD.
 /C .�.†/C 2n/�1c1.t
 / then we will have,
W DW� , hw; Œ†�i D 1, andD

W��
2

�.†/C 2n
c1.T

vY Œn�/; Œ��
E
D 0:

We can express this lemma in terms of monodromy. Fix an area-form ˛ on † of
total area 1, and let m 2 �0 DiffC.†/ be the monodromy of Y ! S1 . Lift it to
zm 2 Aut.†; ˛/=Ham.†; ˛/ by specifying that the class Œ˛ zm� of the closed two-form
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˛ zm induced by ˛ on T. zm/ should equal w , as in the lemma. The monodromy of the
form � constructed in the lemma is then �n;�. zm/.

In this paper we have usually insisted that � be strictly positive, so it is worth noting
that for the last lemma that would be an unnecessary stricture.

We now go back to the Floer homology group HF�.Y; t/ which we incompletely
defined above. We can complete the definition by specifying that the closed, fibrewise-
symplectic two form on Y Œn� should be drawn from the convex set of closed, fibrewise-
Kähler two-forms, representing the class W� for some �� 0.

The monotonicity property established in the lemma tells us that we can define Floer ho-
mology over Z, not ƒZ . Indeed, two index-zero trajectories with the same asymptotic
limits must also have the same area (the argument is given in [33], for example).

Thus, adopting these Z coefficients, HF�.Y; t/ is a finitely generated abelian group.
The convexity of the set of allowed two-forms (and the contractibility of the space of
allowed vertical almost complex structures) implies that HF�.Y; t/ is a well-defined
group, up to canonical isomorphism.

We have not included � in the notation, and in fact HF�.Y; t/ is independent of �� 0,
up to isomorphism. Indeed, it is a general principle (proved by Y-J Lee) that fixed-
point Floer homology HF�.T; �0/ does not change under a deformation f�tgt2Œ0;1�

provided that (i) the groups are well defined for all t , over the same coefficient ring,
and (ii) the periods do not change either. Condition (ii) means, more precisely, that
the energy (or action) homomorphism Œ�t �W K!R on the subgroup ker.c1.T

vT //�

�1.sect.T /; 
 / (where 
 is a reference section, acting as a basepoint), should be
constant along the deformation. When this is satisfied, the subgroup HF�.T; �t /
 ,
corresponding to the component of sect.T / that contains 
 , is independent of t . The
proof uses Lee’s delicate bifurcation analysis [20]; see also the discussions in [19; 39].

We can make the following conclusion.

Proposition 4.18 Given Y and t D t
 2 Spinc.Y /2nC�.†/ , where either n � g or
n� .g�1/=2, there is a Floer homology group HF�.Y; t/ which is a finitely generated
abelian group, and is an invariant of .Y; �; t/.

For Y D S1�†, with its trivial fibration over S1 , the PSS isomorphism relating Floer
homology to ordinary homology gives

HF�.Y; tn/ŠH�.Symn.†/IZ/;

as Z=2–graded abelian groups, where tn is given by c1.tn/D .2nC�.†//pr�
2
Œo†�.

One has HF�.Y; t
0/D 0 when c1.t

0/ is not the pullback of a class on †.
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4.5.3 Extending closed two-forms defined on the boundary There are relative
invariants which take the form of homomorphisms with values in the groups HF�.Y; t/,
defined as in (10).

Suppose .X; �/ is a broken fibration over a surface-with-boundary S . Label the
components of @S as incoming or outgoing, and decompose Y D @X as Yin [ Yout

accordingly.

Recall the procedure discussed in Section 2 as a preamble to Theorem 2.5. As in that
discussion, we let S 0 be the complement of a neighbourhood of �.Z/ � S (where
Z is the one-dimensional part of the critical set), and X 0 DX jS 0 . Let s 2 Spinc.X /

be a Spinc –structure such that hc1.s/; Œfibre�i D 2d . There is then a locally constant
function �W S 0!Z�0 such that �.s/C�.Xs/=2D d for all regular values s , and we
can form the relative Hilbert scheme X Œ��! S 0 .

Recall that the Floer homology HF�.Yout; t
out/ is defined using a two-form �out on
Y
Œ��

out with

Œ�out�D .1C��/ .w�/
Œ1�
�
�

2
1Œ2�

w� D
�PD.
in/C .2d/�1c1.t
in/

1C��
; �� �

1

�
:where

The same goes for the Floer homology associated with the incoming boundary. We can
then extend Œ�out� (and its incoming version) to X Œ�� as the class

(18) .1C��/ .W�/
Œ1�
�
�

2
1Œ2� 2H 2.X Œ��

IR/:

The notation Œ1� and Œ2� make sense on the relative Hilbert scheme, as distinct from the
relative symmetric product: the definition is as at the beginning of this paper, except
that the universal divisor is replaced by the universal sheaf. We refer to Part I, Section
3 for further details.

By Lemma 2.4, this class is represented by an admissible two-form �, in the sense
of Definition 2.3, provided that � > 0. We can moreover arrange that � extends both
�out and its incoming version �in .

Finally, Theorem 2.5 applies to give us a Lagrangian matching condition Q for
.X Œ��; � Œ��; �/ associated with s. Notice that, according to this prescription, we
choose a different two form �, and hence are obliged to use a different Q, for each
Spinc –structure (which, however, we decline to notate). This is the price of working
with the canonical, finitely generated Floer homology groups.
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4.5.4 Relative Lagrangian matching invariants Using the last paragraph, we con-
clude that one gets functorial relative invariants

L.X ;�/.s/W HF�.Yin; tin/!HF�.Yout; tout/;

for any admissible Spinc –structure (cf Part I, Section 1). These are defined as an
instance of (10), with no marked points, save for a caveat we shall come to momentarily.
The fibration is X Œ��! S 0 , equipped with a form � representing the class defined by
formula (18), as discussed in the last paragraph. The Lagrangian matching condition Q

then arises as in Theorem 2.5.

The caveat is that we only count sections representing the Spinc –structure s. To be
precise, consider the space sect.X Œ��;QIxin;xout/ of sections of the cylindrical-end
completion of .X Œ��;Q/, asymptotic to fixed sections xin and xout over the ends. There
is a natural map �� W �0 sect.X Œ��;QIxin;xout/! Spinc.X /, defined in just the same
way as in (13).

Thus, to define L.X ;�/.s/ one counts finite-action, index 0 pseudo-holomorphic sections
v of the cylindrical-ends completion of .X Œ��;Q/ such that ��.v/D s.

Since we are not using Novikov coefficients, it is important to check that the count is
finite. When inf.�/� 2, ��.v/ determines the free homotopy class of v over X Œ�� . By
“free” we mean that we allow homotopies through sections which do not end on xin and
xout . This claim is a straightforward variant of Proposition 4.8. Thus any two sections
(v and v0 , say) on which �� agree differ by an element .u1;u2/ of �1.sect.Yin;xin//�

�1.sect.Yout;xout//, encoding the difference between free and constrained homotopy.
We are only interested in rigid (ie, index zero) pseudo-holomorphic sections. For these,
the indices of u1 and u2 must sum to zero. The monotonicity property (Lemma 4.17)
then implies that the energies of v and v0 are equal. Gromov–Floer compactness then
implies that the count is finite.

4.5.5 Quantum module structure By applying (10) to cylinders Y � Œ0; 1�! S1�

Œ0; 1�, with one marked point in the base, one finds that HF�.Y; t/ is a module over
ZŒU �. Here U acts by quantum cap product with a codimension-two cycle:

U � c D ıx \ c:

It decreases degree by 2 (the degree comes into play when one imposes relative gradings
on HF�.Y; t/). Elements l 2H1.†IZ/ also act (decreasing degree by 1):

l � c D ı
 \ c;
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where 
 is a loop in a fibre, representing l . Hence HF�.Y; t/ becomes a module over
the ring

ZŒU �˝ƒ�H1.Y IZ/:

At this point it is easy to check that the groups HF�.Y; t/ and the elements L.X ;�/.s/

give a field theory having the familiar properties set out in the introduction to Part I.

The only point there which we have not yet addressed is the somewhat unorthodox
grading properties of the groups; we deal with that next.

5 Geometric gradings for Floer homology groups

Our treatment of the gradings of the Floer homology groups, and of the degrees of
the cobordism-maps, is a variation of the conventional method in symplectic Floer
theory. It was motivated by treatment of gradings and degrees in Kronheimer–Mrowka’s
monopole Floer homology theory (see Kronheimer–Mrowka [16] and Kronheimer–
Mrowka–Osváth–Szabó [17]), and it highlights the similarity to that theory.

If Y is an oriented three-manifold, the set J.Y / of homotopy classes of oriented two-
plane fields has a convenient algebro-topological description which we now summarise.
Spinc –structures provide a convenient formulation (which seems to originate in [16];
see also the introduction to [17]), but the substance is in Pontrjagin’s homotopy-
classification of maps Y ! S2 [26].

An oriented two-plane field effects a reduction of structure group of T Y ˚ "1 ("1 the
trivial real line bundle) from SO.3/ to U.1/� U.2/, and hence determines a Spinc –
structure. We write J.Y; t/ for the set of homotopy classes of oriented two-plane fields
underlying t 2 Spinc.Y /. One obtains a transitive Z–action on J.T; t/ by modifying
two-plane fields via automorphisms of T Y supported in a ball B3 � Y : n 2 Z sends
Œ�� to Œ˛�n��, where ˛nW .B

3; @B3/ ! .SO.3/; f1g/ is a smooth map of degree 2n,
acting on T Y via a trivialisation of TB3 . When c1.t
 / is torsion, the Z–action is
free; otherwise, its stabiliser is the divisibility div.c1.t// of c1.t/ in H 2.Y /=torsion.
We declare that div.c/D 0 when c is a torsion class, so that J.T; t/ is always identified,
up to a shift, with Z= div.c1.t//.

Now suppose that X is a cobordism from Y0 to Y1 , ji 2 J.Yi ; ti/ for i D 0; 1, and
s 2 Spinc.X / a Spinc –structure which restricts to ti 2 Spinc.Yi/. Write

j0
s
� j1

if there is an almost complex structure I on X which induces the Spinc –structure s

and preserves representatives for j0 and j1 . Given j0 and s, there is a unique j1 such
that j0

s
� j1 , so this relation defines a map of Z–sets J.X; s/W J.Y0; t0/! J.Y1; t1/.
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Kronheimer–Mrowka’s monopole Floer homology group HM�.Y; t/ is graded by
J.Y; t/.5 Thus HM�.Y; t/ is the direct sum of subgroups HMj .Y; t/ indexed by
j 2 J.Y; t/; any two homogeneous elements have a relative degree in Z= div.c1.t//.
The cobordism map for .X; s/ sends HMj0

to HMJ .X ;s/.j0/ . The following theorem
asserts that the same is true in the symplectic Floer homology of symmetric products
of fibred three-manifolds.

Theorem 5.1 Let .Y0; �0;J0/ be a bundle of Riemann surfaces over an oriented
1–manifold. Let t0 2 Spinc.Y / be an admissible Spinc –structure. Then HF�.Y0; t0/

carries a functorial grading by J.Y; t0/. Given a broken fibration .X; �/ realising a
cobordism from Y0 to Y1 , and an admissible Spinc –structure s with sjYi D ti , the
cobordism map

L.X ;�/.s/W HF�.Y0; t0/!HF�.Y1; t1/

sends HFj0
to HFj1

, where j1 D J.X; s/.j0/.

To prove this result, we attach to each generator 
 for the Floer complex a mem-
ber � of the Z–set of reductions of structure group of the vector bundle 
 �T vY Œn�

from Sp.2n;R/ to O.n/. These “graded sections” .
; �/ are related to the two-plane
fields involved in the monopole grading through a variant of the Pontrjagin–Thom
construction.

Definition 5.2 Let .T 2nC1; �; �/ be a locally Hamiltonian fibration (LHF) over S1 .
� A grading for a section 
 2 sect.T / is a reduction � of the structure group of the

vector bundle 
 �.T vT / from Sp.2n;R/ to the diagonally embedded subgroup
O.n/. Thus � is the isomorphism class of a pair consisting of a principal O.n/–
bundle P ! S1 and an isomorphism P �O.n/ Cn Š 
 �T vT . The pair .
; �/
is called a graded section.

� A grading for 
 determines a Lagrangian subbundle ƒ� � 
 �T vT , up to
homotopy: ƒ� D P �O.n/ Rn � P �O.n/ Cn D 
 �T vT . We say that .
; �/ is
even if ƒ� is an orientable vector bundle; otherwise it is odd.

The space sectgr .T / of graded sections is a covering space of sect.T /. The fibre is
�1.Sp.2n;R/=O.n//DZ. Given a graded section .
0; �0/ and a path � Df
tgt2Œ0;1�

in sect.T / starting at 
0 , path lifting gives a grading �1 for 
1 . For any other grading
� 0

1
, we write ı.�0; �

0
1
/ for the difference � 0

1
� �1 . If �0 and � 0

1
are both even, one has

ı.�0; �
0
1/D 2c1.�I �0; �

0
1/;

5Monopole Floer homology has three basic versions, signified by various decorations, as well as
perturbed and local-coefficient variants. The grading properties are common to all of these; we do not,
however, consider the completed groups HM�.Y; t/ .
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where c1.�I �0; �
0
1
/ is the relative Chern number—the Euler number of ��T vT relative

to a trivialisation over the boundary which lifts �0 and � 0
1

.

The connection between graded sections and index problems in Floer theory begins to
emerge when one looks at the set yJ .T; Œ
 �/ of homotopy classes of graded sections
of T representing the same class as 
 in �0 sect.T /. Recall that the indeterminacy
in the relative grading of two homotopic sections 
 , 
 0 which are horizontal (and so
represent generators for the Floer complex) is 2N
Z, where

N
ZD hc1.T
vT /; �1.sect.T /; 
 /i:

But gradings �0 , �1 for the same section 
 are homotopic if and only if

�1� �0 � 0 mod 2N
 :

Thus the action of Z upon yJ .Y; Œ
 �/ is transitive with stabiliser 2N
 .

5.1 Lifting to yJ .T; Œ
�/

We now explain how to assign a grading to each generator for the Floer complex.

A generator is a section 
 of T !S1 which is horizontal with respect to the connection
determined by � , ie, �. P
 .t/; v/D 0 for all t 2 S1 and all v 2 T v


.t/
T . Because 
 is

horizontal, there is a canonical symplectic connection on 
 �T vT . One says that 
 is
nondegenerate if the monodromy of this connection has no fixed points besides zero.
We wish to assign a grading to a nondegenerate horizontal section.

What a nondegenerate horizontal section gives us is

� a symplectic vector bundle �! S1 ;

� a symplectic connection r on � such that the monodromy Lr does not have 1
as an eigenvalue.

r determines an O.n/–reduction of � as follows: Choose a symplectic vector bundle
�! xD and an isomorphism �W �j@ xD Š � . By trivialising � one obtains, a fortiori, a
reduction �� of � to the orthogonal group. However, there is also a Conley–Zehnder
index CZ.�;r/ 2 Z.6 We assign to 
 the unique grading � such that

ı.��; �/D CZ.�;r/:

6This number is derived from the usual Conley–Zehnder index for paths in the symplectic group as
follows. One chooses an extension of ��r to a symplectic connection on � and a trivialisation of � along
a radial arc, whereupon one obtains a path in the symplectic group from the identity to the monodromy of
r . This has a CZ index.
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Notice that the parity of � coincides with the usual parity (or mod 2 Conley–Zehnder
index) of .�;r/, derived from the sign of det.id�Lr/.

Proposition 5.3 The grading � does not depend on the extension �.

Proof Suppose �0 and �1 are two such extensions, inducing gradings �0 , �1 . Glue the
two copies of the disc together along their common boundary, reversing the orientation
on the first copy; likewise, glue the two vector bundles together to obtain �! S2 . We
can evaluate the Chern number 2c1.�/ in two ways. First, by the additivity properties
of the Conley–Zehnder index,

2c1.�/D CZ.�1;r/�CZ.�0;r/:

Second, let f0 , f1 be symplectic trivialisations of � which lift the gradings �0 , �1 (if
both are even) or �0C 1, �1C 1 (if both are odd). Then

2c1.�/D 2c1.�1If1/� 2c1.�0If1/

D 2c1.�1If1/� 2c1.�0If0/C .�0� �1/

D .�1� ��1
/� .�0� ��0

/C .�0� �1/

D CZ.�1;r/�CZ.�0;r/C .�0� �1/:

Hence �1� �0 D 0.

We have therefore established a grading map 
 7! y
 D .
; �/. It is evidently compatible
with the Floer-theoretic index: Suppose one has an LHF .E; �;�/ over the cylinder
S1 � Œ0; 1�, realising a cobordism between nondegenerate locally Hamiltonian fibre
bundles .Y0; �0; �0/ and .Y1; �1; �1/. Let � be a smooth section such that @� D

1� 
0 is horizontal. Then one has

ı.y
0; y
1/D CZ.�/:

5.1.1 Relation to two-plane fields We now specialise to surface-bundles Y ! S1

and their relative symmetric products Y Œn� D Symn
S1.Y /. A section 
 2 sect.Y Œn�/

determines a homology class Œ
 � 2H1.Y IZ/, and therefore a Spinc –structure t
 D

PD.
 / � tcan .

The object of this section is to compare the Z–sets yJ .Y; Œ
 �/ and J.Y; t
 /. A first task
is to compare the stabilisers 2N
Z and div.c1.t
 //Z.

Lemma 5.4 div.c1.t
 // divides 2N
 , which in turn divides 2.nC 1�g/.

Geometry & Topology, Volume 12 (2008)



Lagrangian matching invariants for fibred four-manifolds: II 1527

Proof For a class � 2H2.Y
Œn�IZ/ represented by a loop f
tgt2S1 of sections 
t 2

sect.Y Œn�/ one has, by Equation (17),

hc1.T
vY Œn�/; �i D

1

2
hc1.T

vY /C 2h;p.�/i

where p.�/2H2.Y IZ/ is the class tautologically determined by � , and h2H 2.Y IZ/D
H1.Y IZ/ that determined by 
0 . Thus hc1.T

vY Œn�/; �iDhc1.t
 /;p.�/i=2, and 2N

is a multiple of div.t
 /.

That N
 divides nC 1�g is due to the fact that cmin.Symn.†//D jnC 1�gj.

We define a map
t W yJ .Y; Œ
 �/! J.Y; t
 /

in three stages:
(1) To define t.
; �/, we first perturb 
 so that it does not meet the diagonal. It

then defines an embedded 1–manifold in Y , and the grading is represented by a
line subbundle l� of its normal bundle.

(2) The Œ��; ��–subbundle of l� exponentiates to a surface in Y . The boundary of
this surface is a 1–submanifold 
 0 with a natural (outward-pointing) framing.
We call 
 0 the framed double of .
; �/.

(3) We can twist T vY along 
 0 (as we can for any framed 1–submanifold transverse
to T vY ) using the inverse of the Pontrjagin–Thom construction. The framing
determines a tubular neighbourhood 
 0�D2 ,!Y . Projection onto D2 , followed
by the collapsing map D2!D2=@D2 D S2 gives a map of the neighbourhood
to S2 which extends to a map ˛W Y ! S2 . In the presence of a trivialisation of
T Y , any two plane-fields � , � 0 differ by a map ˛W Y ! SO.3/=SO.2/D S2 .
Conversely, given a map ˛W Y ! S2 , one can twist the plane-field � to a new
plane-field � 0 D ˛ � � . Applying this twisting to the neighbourhood of 
 0 , with
the trivialisation determined by the framing, and the map ˛W Y ! S2 , we obtain
a plane-field ˛ �T vY . This field is t.
; �/.

The difference in Euler classes, e.t.
; �//� e.T vY /, is Poincaré dual to Œ
 0�D 2Œ
 �,
hence t.
; �/ does represent t
 .

Lemma 5.5 t is a map of Z–sets.

Proof It is evident that there is a universal constant c such that t.
; �C1/D t.
; �/Cc .
The Pontrjagin–Thom map is a map of Z–sets: when one adds a twist to the framing
of a submanifold, the resulting two-plane field changes by C1. But adding two to
the grading � results in adding two twists to the framing of 
 0 (one twist for each
component, if � is even), hence c D 1.
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5.1.2 Cobordism maps Suppose .X; �;�/ is a Lefschetz fibration over a surface
with boundary, realising a cobordism between .Y0; �0; �0/ and .Y1; �1; �1/.

Fix sections ˛i 2 sect.Yi/; r 2 N ; and a component ˇ of the space of sections �
of X Œn� with @� D ˛1 � ˛0 . A grading of ˛0 extends to a unique trivialisation of
��T vX Œn� , up to homotopy, and this defines a map

yJ .X; ˇ/W yJ .Y0; ˛0/! yJ .Y1; ˛1/:

This map encodes the degree of the cobordism map HF.X; ˇ/ on Floer homology, in
the sense that L.X ;�/.sˇ/ maps HF� .Y0; t˛0

/ into HF yJX;ˇ.�/
.Y1; t˛1

/.

Lemma 5.6 The diagram

yJ .Y0; Œ
0�/
yJX;ˇ

����! yJ .Y1; Œ
0�/

t

??y ??yt

J.Y0; t
0
/

JX;sˇ
����! J.Y1; t
1

/

commutes.

Proof It suffices to construct an almost complex structure, representing sˇ and pre-
serving the two-plane fields t.
i ; �i/, where �0 and �1 extend to a grading f�tgt2Œ0;1�

for a homotopy � D f
tgt2Œ0;1� .

We may assume that 
0 and 
1 are disjoint from the diagonals in Y
Œr �
i , and that �

intersects the strata of the diagonal � � Hilbn
S .X / transversely. Then � hits only

the top stratum of �, and the intersections are isolated points. The subset � 0 � X

determined by � is an embedded surface, and the intersections with � appear as points
fp1; : : : ;pkg where � 0 is tangent to the fibres of X .

Suppose, for the time being, that � is disjoint from the diagonal. We may then take � 0 to
be pseudo-holomorphic, with respect to an almost complex structure I on X preserving
the vertical distribution ker.D�/. The idea is to define an new almost complex structure
by “twisting along the double of � 0”. The procedure is similar to the one used to define
the map t . One obtains a new almost complex structure ˛ �I WD˛I˛�1 from I from any
map ˛W X! SO.TX /=U.TX; I/. But along � 0 we can choose a unitary trivialisation
of TX (by trivialising T� 0 and T vX j� 0 ). Then, near � 0 , SO.TX /=U.TX; I/ is
identified with SO.4/=U.2/DS2 . In a tubular neighbourhood D2�� 0 of � 0 , we take ˛
to be the composite .D2�� 0; @D2�� 0/! .D2; @D2/! .S2;�/! .SO.4/=U.2/; Œid�/.
This defines a twisted almost complex structure I 0D ˛ �I , compatible with the twisted
tangent distribution on @X .
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It remains to deal with the vertical tangencies. The failure of the square to commute is
given N� ��, where N is some constant. It follows that, for Lefschetz fibrations on
closed four-manifolds, one has ind.�/�d.s�/DN� ��. Hence N D 0 by Lemma
4.11 (the Lefschetz fibration case of Theorem D).

The proof of Theorem 5.1 is now almost complete; all that remains is to check functo-
riality for broken fibrations. If .X; �/ is a broken fibration, realising a cobordism from
Y0 to Y1 , and ˇ 2 �0 sect.X Œ��;Q/, we define yJ .X; ˇ/ by sending .
0; �0/ to the
.
1; �1/, where 
1� 
0 D @� for a representative � of ˇ , and there is a trivialisation
of ��T vX Œ�� compatible with 
0 , 
1 and T vQ. Then yJ .X; ˇ/ defines the degree of
the map ˆ.X; ˇ/ on Floer homology, and we must compare t ı yJ .X; ˇ/ with JX ;sˇ ı t .
Again, the fact (Theorem D) that ind.ˇ/ equals d.sˇ/ when X is closed implies that
the discrepancy must be zero.

6 Calculations

We now compute the Lagrangian matching invariants in some simple cases, and show
that they coincide with Seiberg–Witten invariants. The calculations presented here are
limited to situations where (i) the monodromies around either side of each circle of
critical values are trivial, or (ii) one considers Symn only for n� 1.

6.1 First examples

6.1.1 Trivial bundle over a disc Let †��!� be the trivial bundle over the unit
disc. Let sd be the Spinc –structure with hc1.s/; Œ†�i D d D �.†/C 2n, and td its
restriction to †�S1 . When sd is admissible, the relative invariant is an element

L.sd / 2HF�.†�S1; td /;

the “fundamental class”. The ring ZŒU �˝ƒ�H1.†IZ/ operates on HF�.†�S1; td /.
Indeed, l 2H1.†IZ/ acts by l �xD�.l/\x , where �W H1.†IZ/!H 1.Symn.†/IZ/
is the usual �–isomorphism (see, eg, Part I, Section 3.6), and \ is quantum cap product.
The degree two element U acts by U �xD �\x (� as in the introduction to this paper).
By the PSS isomorphism, the elements m �L.sd / give a basis for HF�.†�S1/ as m

runs over monomials

mD U i
˝ l1 ^ � � � ^ ln�i ; 0� i � n:

So we have an isomorphism

ˆW ZŒU �˝ƒ�H1.†IZ/!HF�.†�S1; td /;

�i
˝ l1 ^ � � � ^ ln�i 7! U i

� .l1 � � � ln�1 �L.sd //:
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If we reverse the orientation of the disc, we obtain a map L_W HF�.†�S1; td /!Z.
This sends U n �L to 1, and all the other basis elements m �L to 0.

We can describe the action of ZŒU �˝ƒ�H1.†IZ/ on HF�.†�S1; td / by quoting
Bertram and Thaddeus’ formulae [2] for the quantum cup product on Symn.†/. We
have

l �ˆ.c/Dˆ.l � c/; l 2H1.†IZ/

(the quantum product with classes of odd degree is undeformed, as always). We also
have

U �ˆ.c/Dˆ.� � c/; n� .g� 1/=2

for dimension reasons. However,

U �ˆ.�i/Dˆ.�iC1
C �g�nCi � �g�n�

i/; n� g > 0;

where �m D �
m=m! for m� 0, and �m D 0 for m< 0 (recall that � 2ƒ2H1.†/D

ƒ2H 1.†/� is the cup-product form).

When g D 0, one has U � �i D �iC1C �i�n (negative powers are read as zero). In
particular,

U nC1
� D id:

6.1.2 The trivial S 2 –bundle over S 2 This example, the fibre bundle

pr2W S
2
�S2

! S2;

is included just to show how to use the field theory before it gets mixed up with
other ingredients. We use the basis .ŒS2 � fptg�; Œfptg �S2�/ for homology. Consider
the homology class .m; n/, n � 1 and its associated Spinc –structure s.m; n/. It has
c1.s/D PD.2C 2m; 2C 2n/ and d.s.m; n//D 2ŒmnCmC n�.

We compute L.S2�S2;pr2/
.s.m; n// by splitting the two-sphere into the southern hemi-

sphere D� and northern hemisphere DC . We have

LS2�S2;pr2
.s.m; n//D LDC.U

mnCmCn
�LD�/D LDC.U

n
�U m.nC1/

�LD�/:

Here LD� is the invariant associated with the southern hemisphere D� ,

LD� 2HF�.S
2
�S1; t2C2n/;

where hc1.tk/; ŒS
2 � fpt:g�i D k . By the PSS isomorphism,

fLD� ;U �LD� ; : : : ;U
n
�LD�g

is a Z–basis for HF�.S
2 � S1; t2C2n/. Because of the structure of the quantum

cohomology just quoted, U nC1 �LD� DLD� , and U n �U m.nC1/ �LD� DU n �LD� D
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ˆ.Œ�n�/ is a primitive element of Floer homology. Moreover, this element maps to
1 2 Z under LDC W HF�.S

2 �S1; t2C2n/! Z.

Hence

LS2�S2;pr2
.s.m; n//D

(
U .mC1/.nC1/�1; n� 1; m� 0

0; n� 1; m< 0:

We can compare this result with the Seiberg–Witten invariants. By the wall-crossing
formula, we have

SW�
S2�S2.s.m; n//D

(
U .mC1/.nC1/�1; n� 0; m� 0

0; n� 1; m< 0:

The superscript � designates Taubes’ chamber for a symplectic form !S2 ˚!S2 .

6.1.3 A broken fibration on .S 1�S 3/ # .S 2�S 2/ This broken fibration, � W X!
S2 , was introduced in Example 4.13. Recall its structure:

� Over the southern hemisphere, X�!D� is a trivial torus-bundle. The vanishing
torus Q� @X� is l � @D� , where l � T 2 is the projection of a line in R2 to
R2=Z2 , so Q is Lagrangian with respect to the standard, product symplectic
form.

� Over an equatorial annulus, X0 ! A is the elementary broken fibration con-
structed from Q.

� Over the northern hemisphere, XC ! DC is a trivial S2 –bundle. There are
two possible ways to glue @XC to @X0 , corresponding to the two elements
of �1.SO.3//. We choose the “untwisted” gluing, for which the union X D

XC [X0 [X� is diffeomorphic to .S1 � S3/ # .S2 � S2/ (the other gluing
gives .S1�S3/ # P2 # P2 ; see Auroux–Donaldson–Katzarkov [1, Section 8.2]).

For the standard complex structure J0 on T 2 �D� , the only holomorphic sections
of X� ! D� with boundary on Q are the constant sections cx , x 2 l , and since
ind.cx/D 1, J0 is regular. These constant sections represent a class ˇ 2H2.X;ZIZ/
with ˇ � ŒT 2�D 1. The corresponding Spinc –structure sˇ has c1.sˇ/D .2; 2/ in the
basis for H2.X IZ/ given by .F;S/, where F is the fibre class and S is represented
by a square-zero section. Hence

LX ;�.sˇ/D˙1˝� 2A.X /D ZŒU �˝ƒ�H 1.X IZ/;

where � is the generator for H 1.X IZ/DZ. This is in agreement with the Seiberg–
Witten invariant SWX .sˇ/, calculated in the Taubes chamber of a compatible near-
symplectic form.
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We can compute the invariants for more general Spinc –structures using our field theory.
Note that the Lagrangian matching invariants for n–fold sections of X� and .n� 1/–
fold sections of XC are well defined for any n> 0.

Write sp;q for the unique Spinc –structure on X with c1.sp;q/D .2p; 2q/. The relative
homology class ˇC .n� 1/S CmF 2H2.X;ZIZ/ has associated Spinc –structure
sˇC.n�1/SCmF D smC1;n . The virtual dimension of the moduli space is d.smC1;n/D

2n.mC 1/� 1.

We shall calculate the invariant of smC1;n (m� 0) by splitting S2 into its three parts
D� , A and DC . By the gluing rule,

LX ;�.smC1;n/D LDC ı .U
n.mC1/�1

�LA/ ı .l �LD�/:

The relative invariant of D� is the element LD� Dˆ.1/ 2HF�.T
2 �S1; t2n/, and

l �LD� Dˆ.l/. The relative invariant LA for X0!A is a map

H�.Symn.T 2/IZ/DHF�.T
2
�S1; t2n/

!HF�.S
2
�S1; t2n/ŠH�.Symn�1.S2/IZ/:

The map LA is identified with the map on homology of symmetric products induced
by the fundamental class of the correspondence yV . Monotonicity ensures that there
are no “quantum corrections”: two holomorphic sections with the same asymptotic
limits and the same index must also have the same energy, and the horizontal sections
are exactly the ones with zero energy. Thus LA sends ˆ.l/ to ˆ.1/.

Next, U nmCn�1 �ˆ.1/DU n�1 �ˆ.1/Dˆ.�n�1/. Finally, LDC maps ˆ.�n�1/ to 1.

We deduce that

LX ;�.smC1;n/D

(
˙U n�1˝�; m� 0; n� 0I

0; m< 0; n� 0:

This is again in agreement with the Seiberg–Witten invariants, calculated in the Taubes
chamber of a compatible near-symplectic form.

The same method applies also to the broken fibration on .S1�S3/#P2#P2 mentioned
above.

6.1.4 Connected sum with P2 This is one of the topological examples from [1].
Start with a broken fibration � W X ! S with an isolated critical point c . Let D � S

be a small disc containing �.c/. There is a torus Q � ��1.@D/, the union of the
vanishing cycles for radial paths in D . Then there is a broken fibration � 0W X ! S 0
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which coincides with � outside D , and which contains a circle Z of critical points
mapping to a small circle in D . The manifold X 0 is diffeomorphic to X # P2 .

Let ˇ 2H2.X
0;ZIZ/ be a class with ˇ � Œ†�D 1, where † is a fibre over a point in

@D (so ˇ � Œx†�D 0 for fibres x† over the centre of D ).

Proposition 6.1 We have LX 0;� 0.sˇ/D 0:

Proof Choose a near-symplectic form ! on X 0 such that Q is Lagrangian. The
monodromy of � 0 around @D is a Dehn twist �L 2Aut.†/ about the circle LDQ\†.
We analyse the element L 2HF�.Y; t/, where Y is the mapping torus of the Dehn
twist �L on † and t the restriction of sˇ .

Notice first that L2HFodd.Y; t/. It is known by Seidel’s work [31] that HFodd.Y; t/Š

H1.†;LIZ/, by an isomorphism which is equivariant under the action by symplectic
automorphisms of † on the two sides. If ı 2 Aut.†; !j†/ acts as the identity near
L, then ı�.L/D L, because ı induces an automorphism of the LHF Y ! S1 which
acts trivially on Q. But we can obtain any element of Sp.H1.†/IZ/ which fixes ŒL�
from such a ı , so there are no nonzero elements of H1.†;LIƒZ/ fixed by all the
automorphisms ı . The result follows.

6.1.5 A broken fibration on .S 1 �S 3/ # .S 2 �S 2/ # P2 In this example we take
a step in the direction of an “isotropic blow-up” formula for Lagrangian matching
invariants. This involves a model for the differentiable blow-up of a broken fibration
described in [1]. This model is unusual in that there is a compatible near-symplectic
form for which the exceptional sphere is isotropic. The sphere lies over an arc in the
base connecting an isolated critical value and a point on a circle of critical values.7

Rather than studying the isotropic blow-up process in general, we apply it to our
earlier example on .S1 �S3/ # .S2 �S2/ and to a variant of that example on .S1 �

S3/ # P2 # P2: Let y� W yX ! S2 be either of the following two broken fibrations:

� The set of critical values is the union of the equator and the point 0 2D� .

� The regular fibres over D� have genus 1. In the fibre T 2 D y��1.1/, the
vanishing cycle for the path Œ0; 1� is a nonseparating circle L. The vanishing
surface Q� y��1.@D�/ has Q\T 2 DL.

� The fibres over DC have genus 0, so yXC WD y��1.DC/ is a trivial bundle
S2 �DC!DC .

7In four-dimensional symplectic geometry, Lagrangian two-spheres have self-intersection �2 , but in
near-symplectic geometry there are other possibilities, including isotropic .�1/–spheres.
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� There are two possible ways of gluing @ yXC to yX0 . One of these has total space
yX Š .S1 �S3/ # .S2 �S2/ # P2 , the other yX Š .S1 �S3/ # P2 # P2 # P2 ).

We will only consider those homology classes ˇ 2H2. yX ;ZIZ/ with ˇ � ŒT 2�D 1, so
the fibration over DC is irrelevant. A useful local model is the fibration

qW .z; w/ 7! z2
Cw2

on Er Df.z; w/2C2 W jq.z; q/j � r; .jzj2Cjwj2/2�jq.z; w/j2� �g, with its standard
symplectic form !C2 and Lagrangian boundary condition

Qr
D

[
s2@ xD.0Ir/

Qr
s ; Qr

s D s1=2S1

(where S1 is the unit circle in R2 �C2 ). This model was carefully analysed by Seidel
[34, Section 2.3]. For the standard almost complex structure, the holomorphic sections
with boundary on Qr are given by

ur
a;˙.s/D .asCxa;˙i.as�xa//; jaj2 D r=2:

Moreover, all the sections ur
a;˙ are regular.

We can embed E1 as a subfibration of yX�! D� (its complement is then a trivial
fibration). We are then free to shrink the base from D� D xD.0I 1/ to xD.0I r/, using
the Lagrangian boundary condition Qr . By the degeneration argument of [34, Lemmas
2.14 and 2.15] when r is sufficiently small, every pseudo-holomorphic section of
yX�j xD.0I r/! xD.0I r/ lies inside Er , and is therefore one of the ur

a;˙ .

It is important to note that the circles in Qr traced out by ur
a;C and ur

a;� are not
mutually homologous, since they intersect transversely at a single point. Hence when
we embed E.r/ into X� , ur

a;C and ur
a;� represent distinct homology classes ˇC ,

ˇ� . Thus we have moduli spaces of sections Mr
ˇC
D fur

a;C W jaj
2 D r=2g and Mr

ˇ�
D

fur
a;� W jaj

2D r=2g. Each is diffeomorphic to S1 (by ur
a;˙ 7!

p
2r�1=2a) but precisely

one of these diffeomorphisms is orientation-preserving (another consequence of Seidel’s
degeneration argument, which shows that Mr

ˇ�
[Mr

ˇC
is the boundary of a moduli

space M0 Š S1� Œ�1; 1�). Let �� T 2 be a loop representing the generator of �1. yX /,
and intersecting L transversely at a point. Then the evaluation maps evCW Mr

ˇC
!L

and ev�W Mr
ˇ�
! L are both transverse to �. The fibre product moduli spaces,

Mr
ˇ˙
�ev˙ �, are singletons, each consisting of one point, counted with the same signs.

Hence
L yX ;y�.sˇ˙/D "Œ��;
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where "D˙1 is a common sign. Moreover, L yX ;y�.sˇ0/D 0 for every other class ˇ0

with ˇ0 �T 2 D 1.

To compare with Seiberg–Witten theory, let us take yX Š .S1 �S3/#.S2 �S2/#P2 .
We use the basis .S;S 0;E/ for H2. yX IZ/, where S D ŒS2 � fptg�, S 0 D Œfptg �S2�,
E the class of a .�1/–sphere in P2 . For the Spinc –structure sp;q;k with c1.sp;q;k/D

2pSC2qS 0C.2kC1/E , one has d.sp;q;k/D 2pq�k.kC1/�1. For the classes ˇ˙
one has p D q D 1 and d.sˇ˙/D 1, and it follows that fsˇC ; sˇ�g D fs1;1;0; s1;1;1g.
By the blow-up formula for Seiberg–Witten invariants, one has

SW�
yX
.s1;1;k/D

(
˙Œ��; k 2 f0; 1g;

0; k … f0; 1g:

6.2 Separating model for X1 # X2

There is a simple realisation of the connected sum (not fibre sum!) of broken fibrations.

Suppose �i W Xi ! S , i D 1; 2, are broken fibrations over the same base. Take a
simultaneous regular value s 2 S , and a small coordinate disc .�; 0/ ,! .S; s/. There
is then a broken fibration � W X ! S such that

� ��1.S n�/D ��1
1
.S n�/t��1

2
.S n�/, and on this region � is the disjoint

union of �1 and �2 ;

� X crit\��1.�/ is a circle;

� s is a regular value and the fibre Xs D �
�1.s/ is the connected sum of fibres

��1
1
.s/ #��1

2
.s/.

The construction is best understood pictorially (see Figure 1).

Lemma 6.2 X ŠX1 # X2 .

Proof We need to find a separating three-sphere. We work over the unit disc �,
taking the circle of critical values to be fjzj D 1=2g. As the connected sum of two
surfaces, the central fibre ��1.0/ contains a separating circle L (drawn in the figure).
Over each ray frei� W 0 � r � 1=2g � �, there is a disc in X bounded by L and
containing exactly one critical point of � . Let Y be the union (over � 2 Œ0; 2��) of
these discs. It is the union of a copy of D2 �S1 (lying over fjzj � 1=4g) and a copy
of S1 �D2 (over 1=4 � jzj � 1=2), joined in the obvious way along their common
boundary S1 �S1 . Hence Y is diffeomorphic to S3 . The complement X nY breaks
into two components X 0i ŠXi nB4 , so X ŠX1 # X2 .
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Figure 1: Connected sum of broken fibrations. The first diagram shows the
disjoint union of two surface-bundles over the disc. One converts them the
disjoint union into a broken fibration as in the second diagram.

6.2.1 Vanishing of the invariant The Lagrangian matching invariant of the con-
nected sum of broken fibration vanishes:

Theorem F L.X1#X2;�1#�2/.s/D 0 for each admissible Spinc –structure s.

The admissible ones are essentially those corresponding to n1 points on †1 and n2

points on †2 , where ni �
1
2
g.†i/� 1 for i D 1; 2 (though one could do a little better

than this). The precise definition was given in Section 4.2.

Proof L.X1#X2;�1#�2/.s/ factors through the map on homology induced by the fun-
damental class Œ yVL�:

Œ yVL�W H�.Symn.†1[†2/IZ/!H�.Symn�1.†1#†2/IZ/:

But here L � †1#†2 is the loop separating the two connect summands, so the
fundamental class map is zero (Part I, Lemma 3.18).

6.3 Dimensional reduction

The cobordism category of broken fibrations contains a much simpler category CMorse

in which all the structures have S1 –symmetry.

An object of CMorse is a triple .†; c; r/ consisting of a closed, oriented surface with a
locally constant function cW †! S1 and r 2H0.†IZ/. A morphism .Y; f; a/ from
.†1; c1; r1/ to .†2; c2; r2/ is a cobordism Y , equipped with a circle-valued Morse
function f W Y ! S1 with no interior maximum or minimum, and a homology class
a 2H1.Y; @Y [ crit.f /IZ/. There are two requirements on a: its boundary must be

@aD r2� r1C

X
x2crit.f /

.�1/ind.x/C1Œx� 2H0.@Y [ crit.f /IZ/;
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and the number a\ ŒF �� dim.H1.F //=2 must be constant as F ranges over regular
fibres F of f .

One obtains a broken fibration from a morphism in CMorse by crossing with the identity
map idW S1! S1 .

6.3.1 Elementary cobordisms A basic case to consider is one where Y is an ele-
mentary cobordism C�elem from † to x†; the Morse function f is real valued, and has
a single critical point, of index C1.

This gives rise to an invariant

L.sd /W HF�.†�S1; td /!HF�.x†�S1; td /;

where sd is the unique Spinc –structure which is pulled back from C�elem and which
satisfies hsd ; Œ†�i D d WD �.†/C 2n. Under the PSS isomorphisms of Floer and
singular homology, this is the map

Œ yVL�W H�.Symn.†/IZ/!H��1.Symn�1.x†/IZ/:

We can also consider an elementary cobordism CCelem running in the opposite direction
(so the Morse function has one critical point, of index 2). Its invariant is the adjoint
homomorphism (with respect to Poincaré duality)

H�.Symn�1.x†/IZ/!H�C1.Symn.†/IZ/

It is not difficult to give completely explicit formulae for these maps, but what is
more illuminating is to observe that they are the same as the maps that arise in a
well-known .2C 1/–dimensional TQFT, described in [30; 4], which we shall call the
Segal–Donaldson model. This can be characterised as follows.

Definition 6.3 The admissible .2C 1/–dimensional cobordism category of degree d

is the category in which an object is an oriented 2–manifold, and a morphism is an
“admissible cobordism” Y equipped with a line bundle which has degree d over the
incoming and outgoing ends. Admissible means that either

@Y D∅; H1.Y IZ/Š Z; or

@Y ¤∅; H1.@Y IZ/!H1.Y IZ/ is onto.

The Segal–Donaldson model is a TQFT on the category of admissible .2 C 1/–
dimensional cobordisms, ie a functor from this category to super Q–vector spaces,
preserving the multiplicative structures (disjoint union; super tensor product) and
dualities. For our purposes, the morphisms are defined only up to a sign ˙1.
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Theorem 6.4 (Donaldson [4]) For any sequence of nonnegative integers n0; n1; : : : ,
there is a unique TQFT Vd on the degree–d admissible cobordism category, defined
over Q, such that

Vd .†/D
M
i�0

ni ƒi†

for connected surfaces †, as representations of the mapping class group �0 DiffC.†/.
Here ƒi† denotes ƒg.†/�iH1.†IQ/. If Y 3 is closed, so that there is a unique line
bundle L of degree d , then

Vd .Y;L/D
X

i

niai ;

where A.Y /D˙.a0C
P

iai.t
iCt�i// is the normalised Alexander polynomial of Y .

(“Unique” means up to natural isomorphism.) We shall take Vd to be the unique TQFT
with

Vd .†/D
M
j�1

jƒdCj†:

This is of interest because then

Vd .†/ŠH�.Symn.†/IQ/

as representations of �0 DiffC.†/, where d D �.†/C 2n.

We do not know that Lagrangian matching invariants give a TQFT; they depend, in
principle, on the fibrations. However, if we show that L.sd / coincides with Vd .C

�
elem/

then our field theory must coincide with Vd .

Lemma 6.5 Considered as a map H�.Symn.†/IZ/!H�.Symn�1.x†//, LDL.sd /

satisfies the following properties:

(1) Let .˛; x̨/ 2 H1.†IZ/ � H1.x†IZ/ be such that the images of ˛ and x̨ in
H1.C

�
elemIZ/ are equal. Then x̨ ^L.x/D L.˛^x/.

(2) U �L.x/D L.U �x/ and �x† �L.x/D L.�† �x/.

(3) On the degree 1 part H1.†IZ/DH 1.Symn.†/IZ/, L is given, up to sign, by
x 7! x\ ŒL�.

Moreover, L is uniquely characterised (up to sign) by these properties.
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Proof The first two properties are instances of (11). The third is another way of
writing the equation pr1�Œ

yVL�D ŒıL� for the fundamental class of the vanishing cycle
yVL (see Part I, Lemma 3.18).

For the uniqueness, we note that by (2) it suffices to show that L is uniquely determined
on the images of the maps ƒkH1.†IZ/!H k Symn.†/IZ/ sending x1 ^ � � � ^ xk

to �.x1/[ � � � [�.xk/; this is a simple consequence of (1) and (3).

One can easily verify from Donaldson’s model that the Donaldson–Segal map Vd .C
�
elem/

satisfies these same properties.

Corollary 6.6 Vd .C
�
elem/D˙L, and Vd .C

C
elem/ is its adjoint ˙L_ (the Lagrangian

matching invariant of CCelem �S1 ).

This has the following consequence.

Theorem E Let Y be a closed 3–manifold with H1.Y IZ/Š Z, and f W Y ! S1 a
Morse function with connected fibres and no extrema. Let

id�f W S1
�Y ! S1

�S1

be the corresponding broken fibration, and let sd be an admissible Spinc –structure on
S1 �Y which is pulled back from Y . Then

LS1�Y;id�f .sd /D˙
X
i�0

iadCi ;

where A.Y /D˙.a0C
P

i�0 ai.t
i C t�i/ is the Alexander polynomial.

The assumption H1.Y IZ/ Š Z implies that such Morse functions exist. It may be
possible to push the argument through for a general Y with b1 > 0, replacing the
Alexander polynomial by the Milnor–Turaev torsion.
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[27] M Poźniak, Floer homology, Novikov rings and clean intersections, PhD thesis, Uni-
versity of Warwick (1994)

[28] D A Salamon, Seiberg-Witten invariants of mapping tori, symplectic fixed points, and
Lefschetz numbers, from: “Proceedings of 6th Gökova Geometry-Topology Confer-
ence”, Turkish J. Math. 23 (1999) 117–143 MR1701642

[29] M Schwarz, Cohomology operations from S1 –cobordisms in Floer homology, PhD
thesis, ETH-Zürich (1995)
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