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A desingularization of the main component of
the moduli space of genus-one stable maps into P”"

RAVI VAKIL
ALEKSEY ZINGER

We construct a natural smooth compactification of the space of smooth genus-one
curves with & distinct points in a projective space. It can be viewed as an analogue of
a well-known smooth compactification of the space of smooth genus-zero curves, that
is, the space of stable genus-zero maps 97?0,;{ (P", d). In fact, our compactification
is obtained from the singular space of stable genus-one maps 97?1,;{ (P", d) through
a natural sequence of blowups along “bad” subvarieties. While this construction is
simple to describe, it requires more work to show that the end result is a smooth space.
As a bonus, we obtain desingularizations of certain natural sheaves over the “main”
irreducible component 97?(1)’,{ (P",d) of 9771,1{ (P, d). A number of applications
of these desingularizations in enumerative geometry and Gromov—Witten theory
are described in the introduction, including the second author’s proof of physicists’
predictions for genus-one Gromov—Witten invariants of a quintic threefold.

14D20; 53D99

1 Introduction

1.1 Background and applications

The space of degree—d genus—g curves with &k distinct marked points in P” is generally
not compact, but admits a number of natural compactifications'. Among the most
prominent compactifications is the moduli space of stable genus—g maps, Sﬁg, (P d),
constructed by Gromov [9] and Fulton—-Pandharipande [6]. It has found numerous
applications in classical enumerative geometry and is a central object in Gromov—Witten
theory. However, most applications in enumerative geometry and some results in GW-
theory have been restricted to the genus-zero case. The reason for this is essentially
that the genus-zero moduli space has a particularly simple structure: it is smooth and
contains the space of smooth genus-zero curves as a dense open subset. On the other

1We call a space 90 a compactification of 90 if 9 is compact and contains M. In particular, It
need not be dense in 9.
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hand, the moduli spaces of positive-genus stable maps fail to satisfy either of these two
properties. In fact, ,‘ﬁg,k (P™, d) can be arbitrarily singular according to Vakil [19]. Itis
thus natural to ask whether these failings can be remedied by modifying iﬁg, r(P".d),
preferably in a way that leads to a range of applications. As announced in [20] and
shown in this paper, the answer is yes if g=1.

We denote by 91y 4 (P", d) the subset of 97?1’;( (P", d) consisting of the stable maps
that have smooth domains. This space is smooth and contains the space of genus-
one curves with k distinct marked points in P” as a dense open subset, provided
d >3. However, M, ;(P",d) is not compact. Let iﬁ?}k (P, d) be the closure of
M, x(P",d) in the compact space 9711,;( (P",d). While 971(1”,( (P", d) is not smooth,
it turns out that a natural sequence of blowups along loci disjoint from Iy x (P", d)
leads to a desingularization of i)ﬁ?’ x(P".d), which will be denoted by 97(‘1) (P, d).

The situation is as good as one could possibly hope. A general strategy when attempting
to desingularize some space is to blow up the “most degenerate” locus, then the proper
transform of the “next most degenerate locus”, and so on. This strategy works here,
but with a novel twist: we apply it to the entire space of stable maps 97?1,;{ (P, d).
The most degenerate locus is in fact an entire irreducible component, and blowing it
up removes it>. Hence one by one we erase the “bad” components of 97t1’ (P d).
Each blowup of course changes the “good” component 971(1), « (P", d), and miraculously
at the end of the process the resulting space ﬁ?,k (P",d) is nonsingular. We note
that this cannot possibly be true for an arbitrary g, as Mg x (P", d) behaves quite
badly [19]. The sequential blowup construction itself is beautifully simple. It is
completely described in the part of Section 1.2 ending with the main theorem of the
paper, Theorem 1.1. However, showing that 971(1) «(P",d) is in fact smooth requires a
considerable amount of preparation (which takes up Sections 2.1-4.2) and is finally
completed in Section 4.3.

Since the smooth space ﬁJVT?’k (P", d) is obtained from Qﬁ?’k (P", d) by blowing up
along loci disjoint from M, x (P",d), ﬁt?’k(]?”, d) is a smooth compactification
of M, x(P",d). One would hope that there is a modular interpretation of this new
compactification, and that one could then for example use this interpretation to construct
the space 977(1) «(P",d) directly and show that it is smooth. Unfortunately, we have
not managed to do this.

The desingularization 97??’,( (P",d) of ﬁ?’k (P, d) possesses a number of “good”
properties and has a variety of applications to enumerative algebraic geometry and

2Blowing up an irreducible component of a stack will result in the component being removed (or
“blown out of existence”), and the remainder of the stack is blown up along its intersection with the
component in question.
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Desingularization of moduli space of genus-one stable maps 3

Gromov—Witten theory. It has already been observed by Fontanari [5] that the cohomol-
ogy of ,‘552(1) «(P",d) behaves in a certain respect like the cohomology of the moduli
space of genus-one curves, ./\711’;(. The space SFDVT?,k (P™,d) can be used to count
genus-one curves in P”, mimicking the genus-zero results of Kontsevich—-Manin [11]
and Ruan-Tian [17] (though perhaps not their simple recursive formulas). Proceeding
analogously to the genus-zero case (eg similar to Pandharipande [16], Vakil [18], and
Zinger [23]), Theorem 1.1 can then be used to count genus-one curves with tangency
conditions and singularities. In all cases, such counts can be expressed as integrals
of natural cohomology classes on 97??,,( (P",d) or 971?,,{ (P",d). Integrals on the
latter space can be computed using the localization theorem of Atiyah—Bott [1], as
93’2‘1),]( (P", d) is smooth and inherits a torus action from P” and 9711,;( (P", d).

We next discuss two types of applications of Theorem 1.1 in Gromov—Witten theory,
as well as a bonus result of this paper, Theorem 1.2. It is shown by Zinger in [24]
and [26] that the space 971(1’, «(P",d) has a natural generalization to arbitrary almost
Kéhler manifolds and gives rise to new symplectic reduced genus-one GW-invariants.
These reduced invariants are yet to be constructed in algebraic geometry. However,
the spaces 971(1),,( (P", d) do possess a number of “good” properties and give rise to
algebraic invariants of algebraic manifolds; see the first and last sections of [20]. It is
not clear whether these are the same as the reduced genus-one invariants, but it may be
possible to verify this by using Theorem 1.2.

Theorem 1.1 also has applications to computing Gromov—Witten invariants of complete
intersections, once it is combined with Theorem 1.2. Let a be a nonnegative integer.
For a general s€ HY(P", Opn(a)),

Y =5 10)cP"
is a smooth hypersurface. We denote its degree—d GW-invariant by GW?’ K (d:r),ie
GW) (d:v) = (¥, [ Mg (Y. )]™)  forall  yeH*(Mgi(Y.d):Q).

Suppose 4l is the universal curve over iﬁg, r (P, d), with structure map 7 and evalua-

tion map ev:
ev

1l P
M, 1 (P, d).
It can be shown that
(1-1) GW{ ((d:9) = (Y -e(mxev* Opn(a)). [Mo 1 (P". d)))
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4 Ravi Vakil and Aleksey Zinger

for all we H *(Sjto’k (P",d); Q); see Beauville [2] for example. The moduli space
Mo x (P",d) is a smooth orbifold and

mxev*Opn(a) — Mo 1 (P", d)

is a locally free sheaf, ie a vector bundle. The right-hand side of (1-1) can be computed
via the classical localization theorem of Atiyah and Bott [1]. The complexity of this
computation increases quickly with the degree d, but it has been completed in full
generality in a number of different ways by Bertram [4], Gathmann [7], Givental [8],
Lee [12] and Lian—Liu—Yau [14].

If n=4,so Y is a threefold, then

d(a—5)+2

Y . —
GWY, (d:9) = ==

GW¢ (d: )
+ (¥ - e(xev*Opn(a)), [M] 1 (P4, d)])

for all primary ¥ eH*(i)?tl,k(IP"‘, d);Q); see Li and Zinger [13, (1.5) and (1.12)].
This decomposition generalizes to arbitrary complete intersections Y and perhaps even
to higher-genus invariants. The sheaf

(1-2)

(1-3) eV Opn(a) — Sﬁ?ﬁk(IP"t,d)

is not locally free. Nevertheless, its euler class is well-defined: the euler class of every
desingularization of this sheaf is the same, in the sense of [25, Subsection 1.2]. This
euler class can be geometrically interpreted as the zero set of a sufficiently good section
of the cone

Vi — Mo (P4 d),

naturally associated to the sheaf (1-3)*; see the second part of the next subsection and
Lemma 5.1.

One would hope to compute the last expression in (1-2) by localization. However,
since the variety 9)??’ «(P*.d) and the cone V{’: « are singular, the localization theorem
of [1] is not immediately applicable in the given situation. Let

7: M9 (P4, d) — MO (P4, d)

be the projection map. As a straightforward extension of the main desingularization
construction of this paper, we show that the cone

7V — MY (P d)

3 Vld’k is a variety such that the fibers of the projection map to 97??, k (P*, d) are vector spaces, but not
necessarily of the same dimension.
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Desingularization of moduli space of genus-one stable maps 5

contains a vector bundle
Sd $H0 4
Vig — 9)?1’k(IP’ ,d)

of rank da =rk V{{ k |9ﬁ? (B d4)> see Theorem 1.2. It then follows that

(1 - ey Opn (@), [T (P4, )]) = (1 -e (V). RS (B, )

(1-4) 7y e(V4,), [, (P4
=<7‘[ W'e(VLk)a[ml,k(P ’d)])

The last expression above is computable by localization. In fact, it is computed explicitly
by the second author in [28], confirming the prediction of Bershadsky—Cecotti—-Ooguri—
Vafa [3] for genus-one GW-invariants of a quintic threefold.

Remark Another approach to computing positive-genus GW-invariants has been
proposed by Maulik—Pandharipande in [15]. In contrast to the approach of Li—Zinger
in [13], it applies to arbitrary-genus invariants, but can at present be used to compute
invariants of only low-dimensional and/or low-degree complete intersections.

The main desingularization construction of this paper is the subject of Section 4, but
its key aspects are presented in the next subsection. The construction itself and its
connections with Sections 2 and 3 are outlined in Section 1.3. We suggest that the
reader return to Sections 1.2 and 1.3 before going through the technical details of
the blowup constructions in Sections 2—4. In the next subsection, we also describe a
natural sheaf over E)Tﬁ(l) (P, d) which is closely related to the sheaf wyev*Opn(a)
over 97?‘1),,( (P™,d). It is shown to be locally free in Section 5. Finally, all the data
necessary for applying the localization theorem of [1] to 97‘((1”,{ (P",d) and e(lA/'{{k) is
given in Section 1.4. In Appendix A, we list the most commonly used notation.

Throughout this article we work with Deligne—-Mumford stacks. They can also be
thought of as analytic orbivarieties. As we work with reduced scheme structures
throughout the paper, we will call such objects simply varieties. Also, all immersions
will be assumed to be from smooth varieties.*

The authors would like to thank Jun Li for many enlightening discussions and the
referees for timely responses with many detailed suggestions. The first author was
partially supported by the NSF grant DMS—0228011; the second author was partially
supported by an NSF Postdoctoral Fellowship.

4The notion of “immersion” is often called “unramified” in algebraic geometry.
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6 Ravi Vakil and Aleksey Zinger

1.2 Description of the desingularization

The moduli space 9t; k(P",d) has irreducible components of various dimensions. One
of these components is 97?‘1), x(P", d), the closure of the stratum 9y x (P", d) of stable
maps with smooth domains. We now describe natural subvarieties of 9711,1( (P, d)>
which contain the remaining components of 97?1,;{ (P", d). They will be indexed by
the set

Ai(d. k) ={o=(m; Jp,Jp):meZt, m=<d; [k]=JpUJB},
where [k]=A{1,...,k}.

For each o€ A;(d, k), let M, 5 (P", d) be the subset of 97?1’/( (P", d) consisting of
the stable maps [C, u] such that C is a smooth genus-one curve E with m smooth
rational components attached directly to E, u|g is constant, the restriction of u to
each rational component is nonconstant, and the marked points on E are indexed
by the set Jp. Here P stands for “principal component”, B stands for “bubble
component”, and A stands for “admissible set”. Figure 1 shows the domain of an
element of M, ,(P", d), where 0=(3; {2}, {1}), from the points of view of symplectic
topology and of algebraic geometry. In the first diagram, each shaded disc represents
a sphere; the integer next to each rational component C; indicates the degree of u|c; .
In the second diagram, the components of C are represented by curves, and the pair
of integers next to each component C; shows the genus of C; and the degree of u|c; .
In both diagrams, the marked points are labeled in bold face. Let 8711,0 (P",d) be
the closure of M ,(P",d) in 577{1,;( (P, d). The space 5)7?1,0 (P, d) has a number
of irreducible components. These components are indexed by the splittings of the
degree d into m positive integers and of the set Jp into m subsets. However, we do
not need to distinguish these components.

It is straightforward to check that

My, (P".d) =M (P".d)u | ) My o(P".d).
oeA;(d.k)

Dimensional considerations imply that if o =(m; Jp, Jg)€ A1(d, k) and m <n, then
97?1,0 (P, d) is a union of components of 97?1,/( (P", d). The converse holds as well:
97?1,,, (P, d) is contained in 97??,,( (P",d) if m>n by [24, Theorem 2.3]. However,
we will use the entire collection A (d, k) of subvarieties of 97?1,;( (P, d) to construct
255?(1), «(P",d). The independence of the indexing set .4;(d, k) of n leads to a number

>In fact, these will be substacks of the stack ﬁl,k (P",d). They can also be thought of as analytic
sub-orbivarieties of the analytic orbivariety 901, 4 (P", d). As we work with reduced scheme structures
throughout the paper, we will call such objects simply varieties.
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Desingularization of moduli space of genus-one stable maps 7

of good properties being satisfied by our blowup construction; see (2) of Theorem 1.1
and the second part of this subsection. It may also be possible to use this construction
to define reduced genus-one GW-invariants in algebraic geometry; this is achieved in
symplectic topology by the second author in [26].

dy
2 2 (0,dy) PP
d 0, d») s s
1 " (1,0) 1 (0. d3) di,dy,d3>0

Figure 1: The domain of an element of 1 (P”, d)

We define a partial ordering < on the set A;(d, k) by
(1-5) o'=(m';Jp,Jg) <o=(m;Jp.Jp) if o'#0, m<m, and JpCJp.

This relation is illustrated in Figure 2, where an element o of A, (d, k) is represented
by an element of the corresponding space IM; ,(P”, d). We indicate that the degree
of the stable map on every bubble component is positive by shading the disks in the
figure. We show only the marked points lying on the principal component. The exact
distribution of the remaining marked points between the components is irrelevant.

<

Figure 2: Examples of partial ordering (1-5)

Choose an ordering < on A;(d, k) extending the partial ordering <. The desingular-
ization

7 MO L (P, d) — MO (P, d)
is constructed by blowing up Sﬁl’k (P", d) along the subvarieties Dﬁl,a (P",d) and
their proper transforms in the order specified by <. In other words, we first blow up
97?1,/((1[””, d) along Sjtl,gmm(IP’”, d), where

Omin = (1; @, [k])

Geometry € Topology, Volume 12 (2008)



8 Ravi Vakil and Aleksey Zinger

is the smallest element of A;(d, k). We then blow up the resulting space along the
proper transform of 9711,(,2 (P",d), where o, is the smallest element of A;(d, k)—
{Omin}. We continue this procedure until we blow up along the proper transform of
97?1,%“ (P", d), where

omax = (d; [k], ©)

is the largest element of A;(d, k). The variety resulting from this last blowup is the
proper transform fm?, «(P".d) of i)ﬁ(l)’ «(P".d), as all other irreducible components
of My x (P", d) have been “blown out of existence”.

We describe the first interesting case of this construction, ie for 971(1’ O(IP’Z, 3), in detail
in [20]. The space sm‘l’ O(IP’Z, 3) is a smooth compactification of the space of smooth
plane cubics. It has a richer structure than the naive compactification, P°, does.

Theorem 1.1 Suppose n,d € Z™*, k € 71, < is an ordering on the set A{(d, k)
extending the partial ordering <, and
70 L (P, d) — MY L (P", d)

is the blowup of 2771(1)’,( (P, d) obtained by blowing up 97?1,/( (P, d) along the subvari-
eties My o (P", d) and their proper transforms in the order specified by <.

(1) The variety 97I(1) « (P", d) is smooth and is independent of the choice of ordering <
extending <.

(2) Forall m<n, the embedding 97?(1)’,{ (P, d)—)f)?l‘l),k (P™, d) lifts to an embedding
MY 1 (P™, d) —> M) 1 (P", d)
and the image of the latter embedding is the preimage of 97??, «(P™, d) under 7.

(3) The blowup locus at every step of the blowup construction is a smooth subvariety
in the corresponding blowup of M (P, d).

(4) All fibers of 7 are connected.

Remark While in Section 4 we analyze the blowup construction starting with the
reduced scheme structure on 9y  (P”, d), Theorem 1.1 applies to the standard scheme
structure on My , (P”, d) as well. It is known that the space

M (P d) =T, ")~ | Do (P d),
o€A;(d,k)

consisting of stable maps with no contracted genus-one component, is a smooth stack
(as such maps are unobstructed; see for example Proposition 5.5(c) of [18]). Thus, its

Geometry € Topology, Volume 12 (2008)



Desingularization of moduli space of genus-one stable maps 9

scheme-theoretic closure, 97?‘1)’,( (P", d), is reduced. During the blowup process all
other components of 9, x (P”, d) are “blown out of existence”, as is any nonreduced
scheme structure.

In Theorem 1.1 and throughout the rest of the paper we denote by Z7 the set of
nonnegative integers. We analyze the sequential blowup construction of Theorem 1.1
in Section 4 using the inductive assumptions (I 1)—(715) of Section 4.3. One of these
assumptions, (/3), implies the second part of the first statement of Theorem 1.1, as
different choices of an ordering < extending the partial ordering < correspond to
different orders of blowups along subvarieties that are disjoint. For example, suppose

0o = (2:2,{1,2}), o1 = (2:{1},{2}). and oy = (2:{2}.{1}).

While 97?1,01 (P",d) and 97(1,02 (P",d) do intersect in ﬁl,z(P”,d), their proper
transforms are disjoint after the blowup along 97?1,(,@ (P, d). The second statement
of Theorem 1.1 follows immediately from the description of the blowup construction
in this and the next subsections, as each step of the construction commutes with the
embeddings of the moduli spaces induced by the embedding P —>P".

The main claim of this paper is that 9?7,((1) «(P", d) is a smooth variety. The structure
of imeiffk(IP’”, d) is well understood; see [18, Prop. 5.5(c)] for example. In partic-
ular, i)ﬁ?ffk (P",d) is smooth. Below we describe the structure of the complement
MY 1 (P", d) of M (P, d) in MY, (P",d).

If J is a finite set and g is a nonnegative integer, we denote by M g,J the moduli
space of stable genus—g curves with |J| marked points, which are indexed by the
set J. Similarly, we denote by iﬁg, 7 (P",d) the moduli space of stable maps from
genus—g curves with marked points indexed by J to P". If jeJ, let

evj: Mg s (P, d) — P"
be the evaluation map at the marked point labeled by ;.
If o=(m; Jp, Jp) is an element of A;(d, k), we define

Mo:p = My fmiugp-

m m
E)jlt(.J';B(IP)n’d) = {(bI’ .. ?bM) € nﬁo,{O}UJi(andi): dj>0, Zdlzd’

i=1 i=1

m
L] i=7s: evolbi,)=evo(bi) Vv izelml}.

i=1

Geometry € Topology, Volume 12 (2008)



10 Ravi Vakil and Aleksey Zinger

There is a natural node-identifying surjective immersion
lg: Ma;Pxﬁta;B(Pn, d) — 97tl,a(IP)ns d) C 97tl,k(IP)n» d).

As before, P denotes “principal component”, and B denotes “bubble components”.
This immersion descends to the quotient

i (Ma;Pxﬁa;B(Pn»d))/Ga — 97(1,0(1[””, d),

where G, = S, is the symmetric group on m elements. If m >3, 75 is not an
isomorphism as some subvarieties of the left side are identified. An example of a
point on the right which is the image of two points on the left is given in Figure 3. In
addition to the conventions used in Figure 1, in the first, symplectic-topology, diagram of
Figure 3 we leave the components of the domain on which the map is constant unshaded.
The subvarieties identified by the map ¢, get “unidentified” after taking the proper
transform of 97?1,,, (P, d) in the blowup of Sﬁlﬁk (P, d) at the step corresponding to

o =max{o'eA(d k):0'<0o}.

This is insured by the inductive assumption (/13) in Section 4.3 and implies the
third statement of Theorem 1.1. For example, if m=3 and k=0 as in Figure 3, the
“identified” subvarieties are “unidentified” after the blowup of the proper transform of
M1, (2;0,0)(P". d).

(07 dl)
dy da (0.0) 0.0
d, ds (0,0) ©.45)
(1,0) (0. ds)

0=(3;0,9), di+dy+ds+ds=d, di,dy,dz,ds>0
Figure 3: A point in 97?1,0 (P",d) CS)??I,O (P", d) with two preimages under 7,

Remark Throughout the paper, we use 9 (fraktur font) to denote moduli spaces of
stable maps, of genus zero or one, into P”. We use M (calligraphic font) to denote
moduli spaces of stable curves.

For each i €[m], let

mi: Mo, g(P", d) — |_| Mo qoyus; (P". di)
di>0,J;CJp

Geometry € Topology, Volume 12 (2008)



Desingularization of moduli space of genus-one stable maps 11

be the natural projection onto the i —th component. We put
m
FU;B = @ni*LOa
i=1

where L —>9770,{0}u 7; (P", d;) is the universal tangent line bundle for the marked
point 0. In Sections 2.3 and 3.4, we construct blowups

ﬁa;P =71,(m],Jp)- MU;P E/\le,([m],lp) — MU;P E/\711,[m]|_|Jp
and

o B=T0,(m).75)° Mo:B(P"d)=Mo (). 1) (P"d) —> P Fo. s=P F (] s ).
We also construct a section

(1—6) 50;355([”1]’JB) € F(éﬁg;B(Pn, d);E*;B®ﬁ:;BnHtF(,:BeV3TPn)’

o

where evy: M, p(P", d) — P" and TPF,.5: PFsp —> My p(P", d)
are the natural evaluation map and the bundle projection map, respectively, and
Eg;p=E — My, p(P". d) =M, (), 1) (P". d)
is a line bundle. This line bundle is the sum of the tautological line bundle
Yo;8 —> P Fo:p

and all exceptional divisors. The section Dy, g is transverse to the zero section. Thus,
its zero set,

(1-7) Z4:p(P".d) = D, 5(0) C My, p(P". d),

is a smooth subvariety. The boundary 893%(1),k (P",d) of 97?‘1)’,{ (P",d) is a union of
smooth divisors:

oM, (P".d)= | ) Z5(P".d)/Go. where Z5(P".d) = Mo, pxZq;p(P".d);
oeA(d,k)

see the inductive assumptions (/7) and (/8) in Section 4.3 and Figure 4. By the
inductive assumption (/6) and (/7), the normal bundle of Z,(P",d) in M x (P",d)
is the quotient of the line bundle

]La;P & ﬁ:;BVU;B — MU;PXZO';B(]P)n’ d)
by the G4 —action, where

Ly;p=L — MU;P E/\A;ll,([rn],lp)

Geometry € Topology, Volume 12 (2008)



12 Ravi Vakil and Aleksey Zinger

is the universal tangent line bundle constructed in Section 2.3. Thus we conclude that
,‘55?(1)7 « (P", d) is smooth, as the open subset Dﬁ‘iffk (IP", d) is smooth, and its complement
is a union of smooth divisors whose normal sheaves are line bundles (ie with their
reduced induced scheme structure, they are Cartier divisors).

—_—~ ~ ly ~

MO’;P X ZU;B(]P)nvd) Sﬁ(l)’k(]?",d)
Jﬁa;P ‘ﬁo;B Jf[

_ _ ly —

./\/lg;p X WU;B(Pn,d) m(l)’k(]?”,d)

Figure 4: Changes in the boundary structure of 971(1’, «(P", d) under the desingularization

Remark 1 In the Gromov—Witten theory, the symbol E is commonly used to denote
the Hodge vector bundle of holomorphic differentials. It is the zero vector bundle in
the genus-zero case. The line bundles over moduli spaces of genus-zero curves and
maps we denote by [E, with various decorations, play roles analogous to that of the
Hodge line bundle over moduli spaces of genus-one curves. The most overt parallel
is described at the end of Section 2.2. There are deeper, more subtle, connections as
well; compare the structural descriptions of Lemmas 3.8 and 4.10, for example.

Remark 2 Throughout this paper, the symbols D and ©, with various decorations,
denote vector bundle sections related to derivatives of holomorphic maps into P” and
of holomorphic bundle sections. In most cases, such bundle sections are viewed as
vector bundle homomorphisms.

The final claim of Theorem 1.1 follows from the fact that 5)7?‘1)’ «(P".d) is unibranch
(locally irreducible). If w: Y — X is a surjective birational map of irreducible varieties,
and 71 (x) is not connected for some x € X, then X is not unibranch at x.

We next describe a desingularization of the sheaf wxev*Opn(a) and of the correspond-
ing cone Vfl,k over MY ; (P",d). Let =7*4 be the pullback of &l by 7:

~ b3 ev

i1 It pr

| |

MY (P, d) —= 9, (P", d).

For each 0 €A (d, k), let
VU;B — E)Fto';B(IP)n, d)

Geometry € Topology, Volume 12 (2008)



Desingularization of moduli space of genus-one stable maps 13

be the cone induced by the sheaf Op~ (a), similarly to Vg &> see Section 5.2 for details.
It is a vector bundle of rank da-+1. We note that

~%yyd ke~ * _
T Vl,k|§g(]P’”,d) - nB{NO;BJTIP’FJ:BV‘”B|Za:B(]P’”,d)}/G”’

where 78 Mg.pxZq.p(P".d) —> Z4.5(P".d)

is the projection map. Let £L=y*®“ where y —>P" is the tautological line bundle.

Theorem 1.2 Suppose d,n,acZ™ and keZt.

(1) The sheaf w47 *ev*Opn(a) over 971(1),,{ (P", d) is locally free and of the expected
rank, ie da.

2) If T/Jf’:k Cﬁ*V{{k is the corresponding vector bundle and o € A;(d, k), then there
exists a surjective bundle homomorphism

~

.~ * _ * ~* * *
DoiB' Tg;BTPF,.5VoiBlZ, y@n.a) — o 8®7o:87PF,, s V0 L
over Z,;B(IP’”, d) such that
~4 . -
Viklz, @n.ay = (75 ket Do;p) [ Go.
(3) Tms*ev*Opn(a) = mxev*Opn(a) over 97?(1),,(([?”, d).
The first two statements of this theorem can be used to compute expressions like (1-4)

via the classical localization theorem and the short exact sequence (1-10) below. We
prove them by working with the cone

P My (L.d) — My 1 (P", d).

The sheaves mxev*Opn(a) and 7.7 *ev*Opn(a) are the sheaves of (holomorphic)
sections of

Vﬁk = ﬁ],k (E’ d)‘g_n(l)!k(]l)n’d) — ﬁt?’k(]})n, d)

and ﬁ*V{{ > respectively; see Lemma 5.1. In Section 5.4, we lift the blowup construc-
tion of Section 3.4 to My x (L, d). In particular, we blow up 9, x (L, d) along the
subvarieties

Mio(L,d)=p~ (Mic(P".d),  oeAdk)

and their proper transforms. The end result of this construction, which we denote
by MY (L. d), is smooth for essentially the same reasons that 99 ; (P, d) is. The
only additional input we need is Lemma 5.7, which is a restatement of the key result
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14 Ravi Vakil and Aleksey Zinger

concerning the structure of the cone V & obtained by the second author in [25]. The
bundle

7 MO (L, d) —> MY 4 (", d)

of vector spaces of the same rank contains ﬁ)vt(l’ «(P",d) as the zero section. Thus, p
is a vector bundle. There is a natural inclusion

M 1 (L, d) —> T, 4 (L, d).

All sections of 7?*97?1’;( (L, d) must in fact be sections of ﬁ?,k (L,d) and thus the
sheaf w7 *ev*Opn(a) is indeed locally free. The bundle map

Do;B =D (m],Jp)

of the second statement of Theorem 1.2 is described in Section 5.2. It is the “vertical”
part of the natural extension of the bundle map 50; B from stable maps into P” to
stable maps into L. Finally, the last statement of Theorem 1.2 is a consequence of the
last statement of Theorem 1.1; see Lemma 5.2. At this point, this observation does not
appear to have any applications though.

Remark By applying the methods of Section 5 and of [25], it should be possible to
show that the standard scheme structure on 9y x (P", d) is in fact reduced.

1.3 Outline of the main desingularization construction

The main blowup construction of this paper is contained in Sections 4.2 and 4.3. Itis a
sequence of idealized blowups along smooth subvarieties. In other words, the blowup
locus i)ﬁ" I at each step comes with an idealized normal bundle A% It is a vector
bundle (of the smallest possible rank) containing the normal cone N for im" L. After
taking the usual blowup of the ambient space along E)JT" !, we attach the zdealzzed
exceptional divisor
gide =P Nide
along the usual exceptional divisor
E=PN CE®

The blowup construction summarized in Theorem 1.1 is contained in the idealized
blowup construction of Section 4. The latter turns out to be more convenient for describ-
ing the proper transforms of Dﬁ?, « (P", d), including at the final stage, ie i)ﬁ‘l), (P".d).

The ambient space 975‘17 « ateach step 0 €{0}UA;(d, k) of the blowup construction
contains a subvariety 9t . for each 0*€A;(d, k). We take M7  to be the idealized
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Desingularization of moduli space of genus-one stable maps 15

except10nal divisor for the idealized blowup just constructed, ie along zma I Ifo*<o
or o*>0, MY ] o+ is the proper transform of i)ﬁ” o* OF M,y o (P, d), respectlvely

Every immersion (5+ of Section 1.2 comes with an idealized normal bundle /\/L‘gi .
It is a vector bundle of the smallest possible rank containing the normal cone to the
immersion (s (see Definition 4.1). It is given by

N = @rpLiongail i o® = ("5 Tp).

i€[m*]

where Tp,TR. Mg*;PXﬁg*;B(Pn, d) — MO*;P,QFTU*;B(P", d)

are the component projection maps. In the case of Figure 1, Mldi is a rank-three
vector bundle encoding the potential smoothings of the three nodes. At each step o
of the blowup construction, s+ induces an immersion (4 g+ ONto im" . Like the
domain of (4*, the domain of (4 5+ splits as a Cartesian product. If o* >0 the second
component of the domain does not change from the previous step, while the first is
modified by blowing up along a collection of disjoint subvarieties, as specified by
the inductive assumption (/9) in Section 4.3. The idealized normal bundle N ide , 1S
obtained from N ide o by twisting the first factor in each summand by a subset. of the
exceptional d1V1sors as specified by the inductive assumption (/11). These blowup
and twisting procedures correspond to several interchangeable steps in the blowup
construction of Section 2.3. For 0* =0, the first component in the domain of ;1 4
has already been blown up all the way to ./\710; p and the first component of every
summand of /\/Lige_ Lo has already twisted to the universal tangent line bundle L, ie

Nlde

lo—1.0

@ npl@ngnLo=npl ® npFyp —> Ma;pxiﬁta;B(P”, d),

i€[m]

if o=(m; Jp, Jp). In particular, the domain of i5 4,

PN® = My.pxPF,.p,

lo—1,0

still splits as a Cartesian product! The idealized normal bundle for ¢4 o is the tautological
line for IP’/\/'Lide_

id -
‘/V‘llair = ijlige_l,g - H;HJ@TL—;VFO:B = H;L®HEVU§B‘
On the other hand, if 0* <o, the domain of (5 + is obtained from the domain of
lo—1,0+ by blowing up the second component along a collection of disjoint subvarieties,
as specified by the inductive assumption (/4) in Section 4.3. This corresponds to
several interchangeable steps of the blowup construction in Section 3.4. By the time
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16 Ravi Vakil and Aleksey Zinger

we are done with the last step of the blowup construction in Section 4.3, IP F;. p has
been blown up all the way to M. g(P", d). In the 0* <o case,

Nide — Nide

lo,o* lo—1,0%"

o—1

since Dﬁl’a*

is transverse to smf{;l .

We study the proper transform 97??’(0) of ﬁ?,k (P",d) in 97?‘1’, « by looking at the
structure of

2% = ta_(l,* (971‘1”(0)).
Given a finite set J, there are natural bundle sections
sj €T(My,;: LI®E"), jeJ, and Do e T (Mo goyus (P".d): Li®evgTP");
see Sections 2.2 and 3.2, respectively. By Lemma 4.10, the intersection of
Zge =t (MY 4 (P", )
with the main stratum Mg+, pxMg+. gp(P", d) of Mg*;pxﬁa*;B(P”, d) is
20, = {beMgr;pxMgx, p(P", d): ker Dy |p #10}},

where Do+ € T'(Mgx; pxMy+; p(P", d); Hom(N* , n s E*@mfevg TP")),

Lo’
Dg*

k. * % . *
whLi@nhnl Lo = mpsi®@mpm; D, Vie[m™].

In addition, if N/ Zg* C N'Li;iea
m

is the normal cone for the immersion (g, ¢ zo, into
o

B3

‘1’ (0)’ then

NZ((,)* ‘20* = ker Dy

zZ0,
and NV 22* is the closure of N Zg*

=0
closure of N'Z .. 20,

a nonvanishing section

20, in foi . By Lemma 4.5, ./\f}fg* is still the

but now in /\/Ligz* , for all 0 <o*. In Section 2.3, we construct

5i e T(My,;; L*®E*) ~ T (M s; C)

obtained by twisting s; by some exceptional divisors. Since §; agrees with s; on

M=, p, we can replace s; with §; in the descriptions of Dg, ZUO* ,and \V Z_g*

20,
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Desingularization of moduli space of genus-one stable maps 17

above. In particular, N Zg;‘ ~1 is the closure of

NZ, 20, =npl®mp keng*;B‘Zo* C npL®nj Fox:B,
where Dy+;g € ' (Mo+;g(P", d); Hom(Fo+; g, evg TP")),
Da*;B 7*Lo = 7T,'*D0 ViE[m*].

The bundle homomorphism D, +. g induces a section
50 € F(P FG*;B; V:;B®7T];FG*ABCV3TPH)'
By the previous paragraph and Lemma 4.5, Z_g: is the closure of
Ma=:p xDg (NP For:pyy o gy C Mow:p X P For:p
and J\/’Zg: = n;‘,L(X)n;yU;B}Z—U*.

Since MY ; (P, d) Eﬁ?“}j* (P™, d) is the proper transform of 97?‘1’10) in 97?‘1“]3*

7 -1

Z * =
o Omax,0

(M L (P, d))
is still the closure of

MU*;P X 551(O)HPFG*;B‘MO*.B(Pn,d) C /\70*;1’ x ﬁa*;B(Pn’ d).

On the other hand, in the process of constructing the blowup E)Aﬁg; B(P",d) of PFy+.p
in Section 3.4, we also define a bundle section

Do+ € F(ﬁta*;B(Pn’ d); E*;B®ﬁ:;3”ﬂ§Fg*»BeV3TPn)

o
by twisting 50 by the exceptional divisors. In particular,

D, p(O)NP Fye =Dy (0)NPF,

§B|9ﬁa*:B(P",d) *QB‘S)JTU*:B(IP’",d)'

Since 50*; B is transverse to the zero set, we conclude that
Zox = MG*;p X D;ﬂ};B(O),
as stated in Section 1.2.

Finally, the role played by the blowup construction of Section 2.4 in the blowup
construction of Section 3 is similar to the role played by the construction of Section 2.3
in the construction of Section 4. In the case of Section 3, we blow up a moduli space
of genus-zero stable maps, P Fx, ), along certain subvarieties 97(8, 0 and their proper
transforms. These subvarieties are images of natural node-identifying immersions (g .
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18 Ravi Vakil and Aleksey Zinger

The domain of ¢ , splits as the Cartesian product of a moduli space of genus-zero curves
and a moduli space of genus-zero maps, defined in Sections 2.4 and 3.3, respectively. As
we modify 97?8’ 0 by taking its proper transforms in the blowups of P F(yx ;) constructed
in Section 3.4, the first factor in the domain of the corresponding immersion changes by
blowups along collections of smooth disjoint subvarieties, as specified by the inductive
assumption (/6). This change corresponds to several interchangeable steps in the
blowup construction of Section 2.4. By the time we are ready to blow up the proper
transform of i)ﬁo , the first component of the domain of the corresponding immersion
has been blown up all the way to /\/lo ,op » the end result in the blowup construction of
Section 2.4.

In the blowup construction of Section 3.4, we twist a natural bundle section
by the exceptional divisors to a bundle section
5(&_]) € F(Q,R(&J)(Pn, d), E*®”&(x,1)”l§mx J)GV:;T]P’”).

The two sections enter in an essential way in the main blowup construction of this paper.
It is also essential that D(x J) 1s transverse to the zero set. The section Do is transverse
to the zero set outside of the subvarieties zmo 0.0 and vanishes identically along zmo 0.0° Its
derivative in the normal direction to (¢ , is described by Lemma 3.11, using Lemma 3.8.
The bundle sections s; over a moduli space of genus-zero curves defined in Section 2.2
and modified in Section 2.4 enter into the expression of Lemma 3.8. In fact, this
expression is identical to the expression for Dy+ above, ie in the genus-one case. We
use Lemma 3.11 to show that with each newly twisted version of 50 is transverse to
the zero set outside of the proper transforms of the remaining subvarieties i)ﬁo , ie the
ones that have not been blown up yet; see the inductive assumption (/4) in Sec‘uon 3.4.
In particular, at the end of the blowup construction of Section 3.4, we end up with a
twisted version of ﬁo , which we call 5(& J)» Which is transverse to the zero set.

1.4 Localization data

Suppose the group G=(S1)"*! or G=(C*)"*! acts in a natural way on the projective
space P". In particular, the fixed locus consists of n+1 points, which we denote
by po,..., pn, and the only curves preserved by G are the lines passing through
pairs of fixed points. The G —action on P” lifts to an action on Djtl,k (P",d) and on
,‘55?‘1), «(P",d). The fixed loci of these two actions that are contained in Sﬁ‘iffk (P",d)
and their normal bundles are the same and are described in Sections 27.3 and 27.4 of
Mirror Symmetry [10]. We note that the four-term exact sequence [10, (27.6)] applies
to such loci.
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In this subsection, we describe the fixed loci of the G —action on 97?? «(P",d) that are
contained in 999 ; (P", d) and their normal bundles. To simplify the discussion, we
ignore all automorphism groups until the very end of this subsection.

The boundary fixed loci Zf will be indexed by refined decorated rooted trees T.
Figure 5 shows such a tree [ and the corresponding decorated graph I’ =n(f). In
[10, Section 27.3] the fixed loci Zr of the G —action on 97Ig,k(IP’", d) are indexed
by decorated graphs I'. If I" is a decorated graph such that Zt is a G —fixed locus
contained in 897?1,/( (P, d), we will have

2Ny @) =#( | ] 2F).
x(T)=r

where T denotes a refined decorated rooted tree.

Figure 5: A refined decorated rooted tree and its decorated graph

We now formally describe what we mean by a refined decorated rooted tree and
its corresponding decorated graph. A graph consists of a set Ver of vertices and a
collection Edg of edges, ie of two-element subsets of Ver. In Figure 5, the vertices are
represented by dots, while each edge {v, vy} is shown as the line segment between
vy and vy. A graph is a tree if it contains no loops, ie the set Edg contains no subset
of the form

{{vi v} {va. v} {ow. vi . Vi,...,uN€EVer, N>1.

A tree is rooted if Ver contains a distinguished element vq. It is represented by the
large dot in the first diagram of Figure 5. A rooted tree is refined if Ver—{vy} contains
two, possibly empty, distinguished subsets Ver4 and Very such that

VeryNVerg =@ and {vg,v}€Edg V veVeryUVery.
We put

Edg, = {{vo, v} vEVer+} and Edg, = {{vo, v} vEVerO}.
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20 Ravi Vakil and Aleksey Zinger

The elements of Edg, and Edg, are shown in the first diagram of Figure 5 as the thick
solid lines and the thin dashed lines, respectively. Finally, a refined decorated rooted
tree is a tuple

(1-8) = (Ver, Edg; vg; Vert, Verg; 1, 0, 17),
where (Ver, Edg; vg; Ver4, Verp) is refined rooted tree and
u: Ver—Veryg —> {O, ....n}, 0:Edg-Edgy,— Z*, n:{l,....k} —> Ver
are maps such that
(i) p(vr)=p(v2) and 3({vo, v1})=0({vo, v2}) for all vy, vy€Very;
(ii) if vy €Very, vy €Ver—Verg—Ver4, and {vg, v, } €Edg, then
p(vy) # p(v2) or  d({vo, v1}) #0({vo, v2});
(iii) if {vy, vo}€Edg and v, &€ VergU{vy}, then
p(2)#p(vy) ifvigVerp  and  p(va)#p(vo) if vy €Verp;
(iv) if vy €Verg, then {vy, v, }€Edg for some v, € Ver—{vg} and
val(vy) = ‘{vz € Ver: {vl,vz}eEdg}‘ + ‘{le[k]: n(l)=v1‘ >3;

V) Yoenag,0(€) 2 2.

In Figure 5, the value of the map @ on each vertex, not in Very, is indicated by the
number next to the vertex. Similarly, the value of the map 0 on each edge, not in Edg,,
is indicated by the number next to the edge. The elements of the set [k]=[3] are shown
in bold face. Each of them is linked by a line segment to its image under 7. The first
condition above implies that all of the thick edges have the same labels, and so do
their vertices, other than the root vy. By the second condition, the set of thick edges
is a maximal set of edges leaving vy which satisfies the first condition. By the third
condition, no two consecutive vertex labels are the same. By the fourth condition, there
are at least two solid lines, at least one of which is an edge, leaving from every vertex
which is connected to the root by a dashed line. The final condition implies that either
the set Edg, contains at least two elements or its only element is marked by at least 2.

A decorated graph is a tuple
I = (Ver,Edg: g, 1,0, 1),
where (Ver, Edg) is a graph and
g: Ver — 7T, u: Ver — {0,...,n}, 0: Edg — 7T, n: [k] — Ver
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are maps such that

p(vy) # pu(va) i {vg,v2}€Edg.

The domain [k] of the map 7 can be replaced by any finite set. A decorated graph can
be represented graphically as in the second diagram of Figure 5. In this case, every
vertex v should be labeled by the pair (g(v), u(v)). However, we drop the first entry
if it is zero. If T is a refined decorated rooted tree as in (1-8), the corresponding
decorated graph I' is obtained by identifying all elements of Very with vg, dropping
Edg, from Edg, and setting

1, ifv=vg;
g(v)={

0, otherwise.

In terms of the first diagram in Figure 5, this procedure corresponds to contracting the
dashed edges and adding 1 to the label for vy.

The fixed locus Zr of Eﬁtlyk (P, d) consists of the stable maps u from a genus-one
nodal curve X, with k& marked points into P” that satisfy the following conditions.
The components of 3, on which the map u is not constant are rational and correspond
to the edges of I'. Furthermore, if ¢={v{, v,} is an edge, the restriction of u to the
component X, . corresponding to e is a degree—d(e) cover of the line

1 n
PPM(”])’pM(Uz) cP

passing through the fixed points p;(,,) and py(,). The map u|x,, , is ramified only
OVer pu(v,) and py(y,)- In particular, u|y, , is unique up to isomorphism. The
remaining, contracted, components of X, correspond to the vertices v & Ver such that

val(v) + g(v) = 3.

For such a vertex v, g(v) specifies the genus of the component corresponding to v.
The map u takes this component to the fixed point p(v). Thus,

Zr ~ Mr= l_[ M () wal(v)

vEVer

[10, Section 27.3]. For the purposes of this definition, /\710,1 and /\710,2 denote one-
point spaces. For example, in the case of the second diagram in Figure 5,

Zp &~ Mp= My 10xMo s x MG, x Mg | ~ My 1.

In this case, Zr is a locus in 97?1,3(]?”, 22), with n>3.
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If T is a refined decorated rooted tree as in (1-8), we put
Edg(vo) = {{vo. v1}€Edg: vy €Ver} and Jy, = {l €[k]: n(/)=vo}.
Similarly, for each veVery, we set
Edg(v) = {{v, vy }€Edg: v; EVer—{vo}} and Jy = {le[k]: /,L(Z)Zv}.

If e={v,v;} is an element of Edg(v) for some v e Very or of Edg(vy)—Edg, with
v=vy, let (Ver,, Edg,) be the branch of the tree (Ver, Edg) beginning at v with the
edge e. We put

Jo={le[k]: p(l)eVere—{v}}  and  de= Y ().

e’€Edg,
Let I, be the decorated graph defined by

fe = (Vere’Edge;geEOv He, erolEdgev ne),
where
Lo () = {u(v’), if v/ #v; n(l), iflelde;
e =

v, if /=0;

w(ve), if v/ = Ne: {0} Je —> Vere, ne(l) = {
0 ’ - b

see Figure 6 for two examples.

Figure 6: A refined decorated rooted tree and some of its components graphs

If e is an element of Edg(vo)—Edg, or of Edg(v) for some v & Very, let

e Mo (o, (P, de)
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be the fixed locus corresponding to the decorated graph T.. We put
O—(f) = (lEdg(Uo)l, Jv()’ [k]_Jv()) € Al (d7 k)s '/\f;/lf;P = MO(?);P;

ZF.p= l_[ Zg, x 1_[ (MO,{O}LIEdg(v)I_IJv X HZfe> - Sﬁa(f‘);B(IP’”,d);

e€Edg(vo)—Edg, VE&Verp e€EBdg(v)

Fr.p= @ Leyo C Fofy.p — 2F.p
eEEng’_

where L€;0_>Zfe is the tangent line bundle for the marked point 0. If e={vg, v}
is an element of Edg , let

[Edg,|-2, ifon(D)=1;

p+(I) = p(vr), 04(T) =0(e), dim+(r):{|Edg+|—1, ifo, (F)>2.

By the assumption (i) above, the numbers ;L+(f) and D+(f‘) are independent of the
choice of e€Edg . Furthermore, if e, e €Edg , then the line bundles L,.o and L,
are G —equivariantly isomorphic. Thus,

Fpp~CFel@ L, if ecEdg,.
The group G acts trivially on CIEdg4! | et

;o {{(we)eeEdg+€<CEdg+ : Zeegdg+we=0}, if o4(0)=1;
I';B

CEdey ifo(T)>2;

= ~ 7 dim (T
Zg.p = P(Ff p®Leo) & 2 g x PAT+D),
While the moduli space Mm o (F): g(P".d) isablowup of P F (F). > hone of the blowup
loci intersects ZI:, B Thus,
Zg.p C Dﬁa(f);B(P”, d).
In fact, gf“B C ga(f“)-B(Pn’ d).
We put Zg = Msg.p X Zg. -
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By the above, gﬁ is a fixed point locus in 97?? «(P".d). For example, in the case of
the first diagram in Figure 6,

o(T) = (7:{2}.{1.3}), MF;P = My @72
Z.p = (M0,3XM8,2XM3,1> x (M(zmxﬂg,zxﬂg,o ~{pty;
T 2 Ay 2
rka;B:rkF/f;B=3’ Zf‘;BNP ’ 2 ~ My 7, 2pxP*

The weight of the G —action on the line Lo is 1/2 of the weight of the G—action on

TpoPp,.p, 110, Sects 27.1 and 27.2].

We next describe the equivariant normal bundle A/ ZVI: of 51: in S)Aﬁ? «(P".d). Let

W, 5.5 D) 2TiB 7 2B

be the normal bundle of Zf‘- p in m o (®): g(P", d). This normal bundle can easily be
described using [10, Section 27.4]. Let

Leo. ifop(D)=1;

- = = 4 I /.
Py, = Foyn/ (Fr p®Leo) ~ PLewo & {{0}, if o, (F)>2,

e’ €Edg(vg)—Edg™

where e is an element of Edg, . The normal bundle of 51:_ p in 97?0 : (P".d) is
given by

Nz

= _ " ~ * * —
@D T =N o @) P BV, 8L ®F g

~

(o2

where y,.  =—>Pd4m+ T jg the tautological line bundle. Since none of the exceptional
dimy T -

divisors intersects ZF; B

(1-9) Es; Ze., = Vaimy F®Le;o-
Since the section 5(,; B is transverse to the zero set, the normal bundle of va, p in
Zy@).pP".d) is
= = * *
Nz o p@naZte =Na o @nay 28/ Vi, £®Le0®TuwyP")
by (1-6) and (1-7). Finally,

~

NZp =Nz o @n.a)25.8 P Lo p®Vim, ®Leo.
since the normal bundle of ga(f)(P”, d) in ﬁ?,k (P".d) is L §). p®Yy(F: B

Geometry € Topology, Volume 12 (2008)



Desingularization of moduli space of genus-one stable maps 25

In order to compute the last number in (1-4), we also need to determine the restriction
of the vector bundle Vl k to Z . By Theorem 1.2 and (1-9), there is a short exact
sequence of vector bundles

(1-10)  0—> 9ﬁk\§f — V4 e FOLLa®Lyu(wy) —> 0

N ~
o();B ‘Z~ ydim_;,_ r

over gf . This exact sequence describes the euler class of the restriction of ’17{1 r to 51: .
If o=(m;Jp,Jp)eAi(d, k),

ml/Pl. (m—1)!

m|+1p|
() (L} p). Mo:p) = 54 :

by [27, Corollary 1.2]. This is the only intersection number on /ﬁg; p needed for
computing the last number in (1-4) and the integrals of the cohomology classes on
97?(1), « (P", d) that count elliptic curves in P” passing through specified constraints. For
more general enumerative problems, such as counting curves with tangency conditions
and with singularities considered by the first author in [18] and the second author
in [23], respectively, one would need to compute the intersection numbers of the form

(Po@sp- [Tvf Mop).  where o+ Y Bi=ml+1Jpl.

leJp leJp

Theorem 1.1 in [27] gives a recursive formula for such numbers. The recursion is on
|m|+|Jp|, ie the total number of marked points. The starting data for the recursion is
the well-known number (W 15 /\/ll,l): 1/24.

In the above discussion we ignored all automorphism groups. As in [10, Chapter 27],
the rational function for each refined decorated rooted tree I obtained following the
above algorithm and applying the localization theorem of [1] should be divided by the
order of the appropriate automorphism group A :

1“ = ‘Aut(f)‘- 1_[ o(e).

e€Edg—Edg

|A
For example, in the case of the first diagram in Figure 6,

|Az|=1-(17-2°-3%) =864
2 Blowups of moduli spaces of curves

2.1 Blowups and subvarieties

In this section we construct blowups of certain moduli spaces of genus-one and genus-
zero curves; see Sections 2.3 and 2.4. The former appear in Section 4.3 as the first
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factor in the domain of the proper transforms of the immersion ¢, of Section 1.2. The
latter play the analogous role in Section 3.4, where we blow up certain moduli spaces of
genus-zero maps. In turn, these last blowups describe the second factor of the domain
of maps induced by ¢ in Section 4.3; see Section 1.3 for more details.

We begin by introducing convenient terminology and reviewing standard facts from
algebraic geometry. If M is a smooth variety and Z is a smooth subvariety of M, let

NaZ=TM|z/TZ
be the normal bundle of Z in M. We denote by
JT%‘: TM|z —>N/\7IZ

the quotient projection map.

Definition 2.1 Let M be a smooth variety.

(1) Smooth subvarieties X and Y of M intersect properly if XNY is a smooth
subvariety of M and

T(XNY)=TX|xny NTY |xny.°

(2) If Z is a smooth subvariety of M, properly intersecting subvarieties X and ¥
of M intersect properly relative to Z if

77 (T(XNY)|xnvnz) = 75(TX |xnvnz) N7 (TY xnynz) C N Z.

For example, if X and Y are two smooth curves in a projective space that intersect
without being tangent to each other, then X and Y intersect properly (but not transver-
sally, unless the dimension of the projective space is 2). If X, Y, and Z are three
distinct concurrent lines that lie in a plane, then they intersect properly pairwise, but
X and Y do not intersect properly relative to Z .

Definition 2.2 If M is a smooth variety, a collection { M o} peA of smooth subvarieties
is properly intersecting if M, and M, intersect properly relative to M, for all
P1. p2. p3€A.

61n other words, the scheme-theoretic intersection of X and Y is smooth. If the set-theoretic
intersection X NY is smooth, the second part of this condition is also equivalent to the injectivity of the
natural homomorphism
TX|xny/T(XNY) — TM/TY.
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If Z is a smooth subvariety of M, let
m: Bl Z/\7l — M

be the blowup of M along Z. If X is a subvariety of M, we denote by Prz X the
proper transform of X in Blz.M, ie the closure of 7~ (X—Z) in BlzM.” The next
lemma follows from a local computation. (The local geometry of a proper intersection
is particularly simple.)

Lemma 2.3 Let M be a smooth variety.

(1) If X and Z are properly intersecting subvarieties of M, then Prz X is a smooth
subvariety of Blz M and
Per = BlezX.

(2) IfX,Y,and Z are pairwise properly intersecting subvarieties of M and X and
Y intersect properly relative to Z, then Prz X and PrzY are properly intersecting
subvarieties of Prz M and

Prz X NPrzY =Prz(XNY).

(3) IfX,Y, Z,and Z' are pairwise properly intersecting subvarieties of M and
X and Y intersect properly relative to Z and Z', then Prz X and PrzY intersect
properly relative to Prz Z’.

Corollary 2.4 If M is a smooth variety, {/\7lp}pe A Is a properly intersecting col-
lection of subvarieties of M, and p € A, then {PrMpMp/}p/eA_{p} is a properly
intersecting collection of subvarieties of Bl M, M.

Remark By our definitions, properly intersecting subvarieties are necessarily smooth
subvarieties of smooth varieties.

2.2 Moduli spaces of genus-one and -zero curves

In this subsection, we describe natural subvarieties of moduli spaces of genus-one
and -zero curves and natural bundle sections over these moduli spaces. These bundle
sections and their twisted versions introduced in the next two subsections are used in
Sections 3.4 and 4.3 to describe the structure of the proper transforms of 97?‘1), (P d).
Below we also state the now standard facts about these objects that are used in the next
two subsections.

7For the purposes of these definitions we do not require that M and X be smooth.
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If I is a finite set, let

Ai() ={(Ip. k- keK}): K#2: I= | | Iis |Ix|=2 VkeK}:
ke{P}UK

Ao() ={(Ip. {k:keK}): K#@: I= | | Ix: [Ik|=2 VkeK;
KEPIUE K+ Ip] 22}

(2-1)

If p=(Ip,{Ix: keK}) is an element of {(/,)}U.A;(]), we denote by M, , the
subset of M j consisting of the stable curves C such that

(i) C is a union of a smooth torus and | K| projective lines, indexed by K;

(i1) each line is attached directly to the torus;

(iii) the marked points on the line corresponding to k€ K are indexed by I, .

Let /\711, o be the closure of M , in /\711’ 1 - Figure 7 illustrates this definition, from
the points of view of symplectic topology and of algebraic geometry. In the first
diagram, each circle represents a sphere, or P!, In the second diagram, the irreducible
components of C are represented by curves, and the integer next to each component
shows its genus. Similarly, if

p=Wp,{Ix:keK}) e {(I.9)}uAs(]),
let My, be the subset of Mo,{o}u 1 consisting of the stable curves C such that

(i) the components of C are indexed by the set { P}LIK;
(ii) for each ke K, the component Ci, of C is attached directly to Cp;

(iii) for each k € K, the marked points on Cj are indexed by .

We denote by /\710,,0 the closure of M , in ./\710’{0}“. This definition is illustrated
in Figure 8. In this case, we do not indicate the genus of the irreducible components in
the second diagram, as all of the curves are rational.

The next lemma follows from the fact that for any nodal curve, the deformations of the
nodes are independent. More precisely, in the dual to the first-order deformation space
of a nodal curve, the vectors corresponding to the smoothings of each node are linearly
independent.

Lemma 2.5 If g=0,1 and I is a finite set, the collection {Mg,p}pEAg(I) is properly
intersecting.
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Ip={i1,iz}

K=1{1,2,3)

Iy ={i3,i4}

Iy =\is.is}

I3 ={i7, 13,19}
Ip={i}
K=1{1,2,3)
Iy ={iz, i3}
Iy ={i4,is}
I3 ={is, 7,18}

Figure 8: A typical element of /\710,,,

We define a partial ordering on the sets Ag (/) for g=0, 1 by setting
(2-2) o'=(Ip. {1, keK'}) < p=(Ip.{Ix: k€K})

if p’# p and there exists a map ¢: K—> K’ such that I CI(;(k) for all k€ K. This
condition means that the elements of M can be obtained from the elements of M, by
moving more points onto the bubble components or combining the bubble components;
see Figure 9. In the g =0 case, we define the bubble components to be the components
not containing the marked point 0.

Figure 9: Examples of partial ordering (2-2)

In the blowup constructions of the next two subsections we will twist certain line
bundles over moduli spaces of curves and homomorphisms between them. In the rest
of this subsection we describe the relevant starting data.

Foreach iel, let L; —>/\711, 7 be the universal tangent line bundle at the marked
point labeled i . Let E— M ; be the Hodge line bundle of holomorphic differentials.
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The natural pairing of tangent vectors with cotangent vectors induces a section
si € T'(My,7;Hom(L;, E¥)).

Explicitly, {si(C:wD}(C.¥]) = Y, yw
it [CleMis [CowleLile=Ty@C. [C.¥]eElc=H"(C; T*0),

and x;(C)eC is the marked point on C labeled by i .

In the genus-zero case, the line bundle L0—>M0,{0}u 7 will be one of the substitutes
for E. We note that for every pelP!, there is a natural isomorphism between the tangent
space TpPl of P! at p and the space of holomorphic differentials HO(P'; T*P!®
O@2p)) on P! that have a pole of order two at p. More precisely, let w be a
meromorphic function on P! such that p is the only zero of w and this zero is a
simple one. We can then view w as a coordinate around p in P'. Every tangent vector
ve TI,IP’1 can be written as

d
v=cw(v)%, cw(v) eC.

We define the isomorphism

d
v: TP — H'PL T*P'@0OQ2p) by v— 9y = Cw(:}#

If w’ is another meromorphic function on P! such that p is the only zero of w’ and
this zero is a simple one, then

;W ;L ,8 dw Ccw(V)
= aw+p - dw’ = (aw+pB)?’ cw () = 5
cw () dw (V) dw
— B R

Thus, the isomorphism y is well-defined. If i €I, we define the section

03 si € T (Mo gopursHom(Li, Lg)) by {si((C:wD}(C,v]) = Yo, oy
if  [CleMoour. [CowleLile=Ty;)C. [C.v]€Lolc="Txy(c)C-

We note that in both cases the section s; vanishes precisely on the curves for which the
point i lies on a bubble component. In fact,

@4 si'0)= Y My, where Be(I:i)={(Ip.{Ip})eA(I):iclp}.
pEBg (15i)
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2.3 A blowup of a moduli space of genus-one curves

Let I and J be finite sets such that / is nonempty. In this subsection, we construct a
blowup

Ty,1,J)- Ml,([,]) — Ml,]u]
of the moduli space /\711, 7uJ s |I]+1 line bundles
E, Zi—>/\711,(1,1), iel,
and |/| nowhere vanishing sections
5 € T(My, 7.7y Hom(L;, E%)), iel.

Since the sections §; do not vanish, all |7/|+ 1 bundles L; and E* are explicitly
isomorphic. They will be denoted by IL and called the universal tangent line bundle.

The smooth variety M 1,(1,J) 1s obtained by blowing up some of the subvarieties M, 0
defined in the previous subsection, and their proper transforms in an order consistent
with the partial ordering <. The line bundle [ is the sum of the Hodge line bundle
E and all exceptional divisors. For each given i €1, L; is the universal tangent line
bundle L; for the marked point i minus some of these divisors. The section §; is
induced from the pairing s; of the previous subsection.

With I and J as above and Ag(/UJ) as in (2-1), let
(2-5)  Ag(1.J) ={((IpuJp). {IxUJy: keK})eA,(IUJ): I} #D VkeK}.

We note that if pe Ay (/LUJ), then pe Ay (1, J) if and only if every bubble component
of an element of M, carries at least one element of /. Furthermore,

(2-6) Bg(IUJ:i) C Ag(1,J)  Viel.

If |I|4]J|>2, with respect to the partial ordering < the set .4;(/, J) has a unique
minimal element:

Pmin = (Q’ {IUJ})'
Let < be an ordering on A (7, J) extending the partial ordering <. We denote the
corresponding maximal element by pmax. If peA(1, J), we put

max{p'€ A;(1,J): p'<p}, if p7 Pmin;

2-7) p—1= |
0, if £ = Pmin>

where the maximum is taken with respect to the ordering <.
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We now describe the starting data for the inductive blowup procedure involved in
constructing the space M (7,7) and the line bundle I over M (7,7). Let

MY gy =Mugus. Eo=E— M{ ;. M} ,=M,Vpedi(.J).
Foreach iel, let

Lo,=L; — Ml (.J) and S0,i = Si € F(M?’(I,J);Hom(LO,i,IE;)).

By (2-4), soi = D M .
p*eB(IUJ;i)

Suppose pe.A; (I, J) and we have constructed

(I1) ablowup m,_i: Ml . J)—>/\/l1 (1.7 of Ml (D), such that np 1 1s an iso-
morphism outside of the prermages of the spaces /\/l o with ,0 <p—1;

(12) line bundles L, 1,—)./\/11 (I oy foriel and IE,o—1—>-/\/ll (1 7y’

(I3) sections s, ,GF(M Hom(Lp_l,i,IE;_l)) foriel.

1(1 J)’

For each p*>p—1, let ./\/lp be the proper transform of MO o in j\/l1 K I - We
assume that

(14) the collection {M },0 *e A, (I1,J),p*>p—1 18 properly intersecting;
(I5) foralliel,

5521,4(0) = >, M

p*eB(IUJ i), p*>p—1

The assumption (/5) means that we will gradually be killing the zero locus of the
section s;. We note that all five assumptions are satisfied if p—1 is replaced by 0.

If p is as above, let
~ . AP 01
TTp- MI(IJ) ’Mr(IJ)
be the blowup of /\/l1 ( I s along Mp . We denote by /\/l'O the correspondrng

exceptional divisor. If p*>p, let /\/l o C/\/l1 () be the proper transform of /\/l
If

(2-8) p=(IpuJp. {IUJi: keK})
and i €/, we put
7y Lp—1,i, ifiglp; B _
2-9) Lp,i= ~,O* p—1,i _ : ¢ P Ep:np*Ep—l®O(M'll)
Ty Lp—1,i®O=Mf ), ifielp; o
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*

The section 7 ps

Sp—1,i induces a section

Sp.i € F(ﬂf,(l,J); Hom(L,,;, ﬁp*E:;—l))'

This section vanishes along /\7lll) 0 by the inductive assumption (/5) if i /p. Thus,
Sp,i induces a section

Spi € I‘(Mf’( 1.y Hom(L,1, E7)).

We have now described the inductive step of the procedure. It is immediate that the
requirements (/1)—(73) and (I5) are satisfied, with p—1 replaced by p, are satisfied.
Corollary 2.4 and the assumption (/4) imply that the assumption (/4) with p—1
replaced by p is also satisfied.

We conclude the blowup construction after the pmax step. Let
Mian=MP 0 E=Eg:  Li=Lpyi 5i=Spe.i  Viel

By (I5), with p—1 replaced by pmax, and (2-6), the section §; does not vanish. We
note that by (/1), the stratum

My a.n CMia.n

. . . . . _p
consisting of the smooth curves is a Zariski open subset of Ml’( 1.7) for all p e

{0}uA (L, ).

By the next lemma, different extensions of the partial order < to an order < on
A1 (1, J) correspond to blowing up along disjoint subvarieties in different orders. Thus,
the end result of the above blowup construction is well-defined, ie independent of the
choice of the ordering < extending the partial ordering <.

Lemma 2.6 Suppose p, p'€A; (1, J) are such that p£p" and p'£p. If p#p', then
the spaces ./\/lﬁ”p and Mﬁ’,p, are disjoint for some p<p, p’.
Proof (1) Suppose

p=(IpUJp {UTy - keK}) and o' = (IpUJp AT 0T} keK').
For each k€ K and k'€ K, let

o = ((I=1)U(I —=Jp), Tk UJi}) € A1, ),
P = ((I=I )T =JL), T 0d;Y) € A1, ).
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o, . _0 _0 o . . _0 _ L 4
By definition, ./\/ll’pk and Ml’p are divisors in /\/ll’(l”,)—/\/ll,]u],

/
k/

A (O Wil Wi A 40
Mlsp = m Ml:pk’ and Mlno/ = ﬂ M

1,,0;(,'
keK k’eK’

Furthermore, if /\71(1) o NM° o # &, then either
£ E) k/

LUy C I, Udy,. LU D Iudy,,  or (IxUJp) N(I,UJL) = @.

(2) Suppose ./\71(1) pﬂ/\7l(1), o # . By the above, there exist decompositions

K=KiukKeu | |Ky and K =K,uKkju ||k
I'eK’, leK

and a bijection ¢: Ko—> K| such that

LUJ SI,UJ, VkeKp. lI'eKy,  LUJ 21I,uJ, Vk'eK) leKy.
oy /

We note that the subsets K4 and K’ of K and K’ are nonempty. For example, if
K were empty, then we would have p’ < p, contrary to our assumptions. Let

7= (IpuJp, {IyuJi: ke KoUK +UK' }) € A (1, J)
be given by

LUJy, ifkeKoUK4;

IpuJp=(IpNIp)U(JpNJp), LUy =
pUJp=UpNIp)U(JpNJp) KUJk {Illcu(]];’ if ke K/,

For example, if p corresponds to the second diagram on the right side of Figure 9 and p’
corresponds to either the first or the third diagram on the right side, then p corresponds
to the diagram on the left side of Figure 9. By definition, p< p, p’. Furthermore,

i40 70 i40
MMy C M5
Thus, by Lemma 2.5, Corollary 2.4, and (2) of Lemma 2.3,
vid vid vid
Ml’p ﬂMl’p/ C Ml,(I,J)

is the closure of the empty set.
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2.4 A blowup of a moduli space of genus-zero curves

Suppose R is a nonempty finite set and o= (1}, J;);ex is a tuple of finite sets such that
I} #2 and |I;|+]|J;|>2 for all /[eR. Let

Moo =][Mogourusy, — and  Fo=@n/Lo— Mo,,
lerR S
where L —>/\7lo,{o}|_| 1;uJ; 1s the universal tangent line bundle for the marked point 0
and
mry: Mo,p —> Mo foyuruy,
is the projection map. In this subsection, we construct a blowup
700,0- MO:Q — PF,
of the projective bundle P F, over /\710,9. We also construct line bundles
IE, Z(l,i)—>M0,Q’ iel;, [eR,
and nowhere vanishing sections

E(l,i) S F(/QO,Q; Hom(Z(l’,-), E*)), iel;, [eX.

In particular, all line bundles Z(l,,-) and E* are explicitly isomorphic. They will be
denoted by L and called the universal tangent line bundle.

Similarly to the previous subsection, the smooth variety ﬂo,g is obtained by blowing up
the subvarieties ./\710, o defined below and their proper transforms in an order consistent
with a natural partial ordering <. The line bundle E is the sum of the tautological line
bundle

Vo —> PFy

and all exceptional divisors. For every /eX and i €1}, Z(l,i) is nl*Li minus some of
these divisors. The section 5 ;) is induced from the pairings s; of Section 2.2.

With o as above and A (/;, J;) as in (2-5), let

Ao (@) ={(R+, (p1)1ex): @ #RL CRipre{(1;UJ1, D) UAG (I, J)V I €X;
pr=11UJ;, @) VIeR-R 1 (Rp, (p)iex) # (R, ([jUJ], D)ien)}-

We define a partial ordering on Ay(0) by setting

2-11) p'=(N4. (0)rex) < p= (R, (p1)ren)

if p'#p, R CR, and for every /€N either p;=p;, p;=<p;, or p;=(I;UJ;, D). Let <
be an ordering on A( (o) extending the partial ordering <. We denote the corresponding

(2-10)
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minimal and maximal elements of A¢(0) by pmin and pmax, respectively. If peAqy(0),
we define

p—1 €{0juAo(0)
as in (2-7).

If peAg(o) is as in (2-11), let

A A _ A A _ *
Mo,y =] Moy Fp= P 7 LO‘MO,Q C Fo,
leR leR+

and M ,=PF,c M} ,=PF,.

The spaces /\718 0 and /\718 p can be represented by diagrams as in Figure 10.

R=1{1,2,3} R=1{1,2,3}

+ L UJy|=2 - [ UJy|=2
|[IuJz|=I30J3] =3 |[IuJz|= 13073 =3

+ R, =1{1,2,3) + R, =1{2,3)
p1=U1UJy,9) 1= 1UJy,9)

+ p2=(1UJ2,0) + p2# (I2UJ2,0)
p3=(131J3,0) p3=(131J3,0)

Figure 10: Typical elements of ./qg’ o and ﬂg, o

The trees of circles attached to the vertical lines correspond to the tuples p;, with
conventions as in the first, symplectic-topology, diagram in Figure 8. For each such
tree, the marked point 0 is the point on the line. We indicate the elements of ¥ CR
with plus signs next to these points. Note that by (2—10), every dot on a vertical line for
which the corresponding tree of circles contains more than one circle must be labeled
with a plus sign. From Lemma 2.5, we immediately obtain the following lemma:

Lemma 2.7 Suppose R is a nonempty finite set and o= (I;, J;);en Is a tuple of finite
sets such that I} # @ and |I;|+|J;| =2 forall [eR. If Ay(o) is as above, the collection
{/\/lg p}pe Ao (o) 18 properly intersecting.

We now describe the starting data for the sequential blowup construction of this
subsection. Let

Eo=y, — M ,=PF, and  Logn=mg 7 Li— M{, Vi€l IeX,

We take 50,(1,i) € F(/qg,g; Hom(Lg (.5, Eg))
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to be the section induced by 7 o™ l* si, with s; defined by (2-3). It follows immediately
from (2—4) that

-1 A 40
Soj(l’l)(()) - Z MO,p*,

p*€By(0:l,i)
where  Bo(0:/,1) = | (N+. (pr)rrex) € Ao(0):
Ry =R—{/}and pp=TpUJ}, D) VI'eR, or
Ry =R, peBo(1;UuJy:i), pr=IpUdy, D) Vl/e&—{l}}.

The rest of the construction proceeds as in Section 2.3. The analogue of (2-9) now is

S . if /[¢Ry or

@-12)  Lygp=q ° b0 pr#U1WJ1, @), i 11, p;
TpLlp 1,00 ® O(—/\/lg,p , otherwise;

(2-13) E, =7} ]Ep_1®(9(ﬂg,p).

As before, we take
A A _ ~pmax. T _ .
MO;Q - MO,Q ’ ]E - ]Epmax’
Ly = Lo,y and Sqp =sp..0i) Vi€l [eX.

The analogue of the inductive assumption (/5) insures that each section 5(; ;) does not
vanish. The statement and the proof of Lemma 2.6 remain valid in the present setting,
with only minor changes. Thus, the end result of the above blowup construction is
again well-defined, ie independent of the choice of the ordering < extending the partial
ordering <.

3 A blowup of a moduli space of genus-zero maps

3.1 Blowups and immersions

In this section we construct blowups of certain moduli spaces of genus-zero maps; see
Sections 3.3 and 3.4. As outlined in Section 1.3, these blowups appear in Section 4.3
as the second factor in the domain of the immersions induced by the immersions (s of
Section 1.2.

As in Section 2, we begin by introducing convenient terminology and reviewing standard
facts from algebraic geometry. If 91 is a variety, we denote its Zariski tangent space
and its tangent cone by T and 7' C901, respectively. If X is a smooth variety (but not
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necessarily equidimensional), we recall that a morphism 1y: X — 90 is an immersion
if the differential of ¢y,
dix: TX — 3 TCIM,

is injective at every point of X . Let
Im® iy = {peM: i (p)|=2} and Ny =3 TCM/Imduy
be the singular locus of 1y and the normal cone of 1y in 9, respectively. We denote by
T Gy TCM — Ny
the projection map. If Z is a subvariety of 9, let
lz: £ —> Mm

the inclusion map.

Definition 3.1 Let 90 be a variety.

(1) Animmersion ty: X —> 9 is properly self-intersecting if for all x1,x,€X such
that 1y (x1)=tx (x2) and sufficiently small neighborhoods U; of x; and U, of x; in
X

TCLX(xl)(lX(Ul)ﬂLX(Uz)) =In’ldtx|xl ﬂIrndL)(|x2 C TCLX(XI)QFT. 8

(2) If ix: X— M and 1y: Y — N are immersions such that ty is properly self-
intersecting, ty is properly self-intersecting relative to 1y if for all x;,x, € X and
yeY such that

x (x1) = (x2) =1y ()
and for all sufficiently small neighborhoods U; of x; and U, of x; in X,

755 |, (T Coy () (x (UNNex (U2)) = iy | Imdix |y, Oy | Imd g vy C NGy |,

This definition generalizes Definition 2.1; see the paragraph following the latter for
some examples.

Definition 3.2 If 91 is a variety, a collection {t,: X, —>9M},e4 of immersions is
properly self-intersecting if for all py, p2, p3 €A the immersion ¢, Lity, is properly
self-intersecting relative to ¢y, .

The next lemma follows from a local computation. (The local geometry of a proper
self-intersection is particularly simple.)

8We emphasize that intersections are taken to be set-theoretic intersections unless otherwise noted.
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Lemma 3.3 Suppose 9N is a variety and Z is a smooth subvariety of 901.

(1) Ifix: X —> 90 is an immersion such that the immersion LyUtz: XuzZ—Mis
properly self-intersecting, then ty lifts to an immersion

Przux: Bl&l(z)X —)Blzf)?t S.t. ImPrziy =PrzImuy.

(2) Ifinaddition vy is properly self-intersecting relative to t z , then Pr z1x is properly
self-intersecting and
Im*Przixy =Prz Im® 1y.

(3) Ifin addition ty: Y —>90 is an immersion such that .yl 1y Ltz is properly self-
intersecting and ty is properly self-intersecting relative to vy, then Prz vy is properly
self-intersecting relative to Przty . Furthermore,

{Prti}_l (PrzImuy) = Pri (Z)L;(l (Imty).

Remark Since we always require that the blowup locus be smooth, an implicit
conclusion of (1) of Lemma 3.3 is that L)_(l (Z) is a smooth subvariety of X ; this is
immediate from the local situation. Note that X itself is smooth, as it is the domain of
the immersion ty .

Corollary 3.4 Suppose M is a variety and {to: Xo —>97?}Q€ A is a properly self-
intersecting collection of immersions. If o € A is such that i, is an embedding,
then {Prim,,to }o'e A—{o} I a properly self-intersecting collection of immersions into
Blim ., M.

Like Lemma 3.3, the next lemma follows from a local computation, using the simple
geometry of a proper self-intersection.

Lemma 3.5 Suppose M is a smooth variety, Z is a smooth subvariety of 90,
txy: X — 9N is an immersion such that the immersion tx Utz is properly self-
intersecting. Let

52 =]z

€A

be the decomposition of L}l (Z) into path components. If there exist a splitting

No=L—x

iel
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and a subset I, of I for each o€ A such that

(3-1) x|z, TZ[TZy = P Lilz, VYoeA
iel—I,
then Noczie =@ (7 Li ® Q) O(-Ep)).
iel i€el,

where E, is the component of the exceptional divisor for the blowup : Bll)—(l ( Z)X —
X that projects onto Z,,.

We note that by (1) of Definition 3.1, the homomorphism
x|y, TZ[TZo—> Ny =5 T [Imdux

induced by the inclusions is injective. Thus, we can identify ty |}Q TZ / TZ, with a
subbundle of N, , as we have done in Lemma 3.5.

3.2 Moduli spaces of genus-zero maps

In this subsection, we describe natural subvarieties of the moduli space of genus-zero
maps and a natural bundle section over them. This bundle section induces other bundle
sections, introduced in the next two subsections, that are used in the blowup construction
of Section 4.3 to describe the structure of the proper transforms of 971(1)’ r(P".d); see
Section 1.3 for more details. Below we also state two well-known facts in the Gromov—
Witten theory, Lemmas 3.6 and 3.7, and a more recent result, Lemma 3.8.

If deZ™ and J is a finite set, let
(3-2)  Ao(d.J)={(m:Jp,Jp):meZT , m=<d; J=JpUJp, m+|Jp|>2};
Mo, 0,0)(P". d) = Mo goyus (P". d).
If o=(m;Jp,Jp) € Ap(d, J), let My (P",d) be the subset of ﬁo’{o}uJ(P”,d)
consisting of the stable maps [X, #] such that
(i) the components of ¥ are X;=P! with i e{P}[m];
(ii) u|g, is constant and the marked points on X p are indexed by the set {0}LIJp;

(iii) for each i €[m], X; is attached to X p and u|x, is not constant.

We denote by 97?0,0 (P",d) the closure of My (P", d) in ﬁo,{o}uJ(IP’”, d).
Figure 11 illustrates this definition, from the points of view of symplectic topology
and of algebraic geometry. In the first diagram, each disk represents a sphere, and we
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shade the components on which the map u is nonconstant. In the second diagram, the
irreducible components of 3 are represented by lines, and the integer next to each
component shows the degree of u on that component. In both cases, we indicate the
marked points lying on the component X p only.

jl dl
m=3, Jp={J1}
d, di,dr,d3>0
. di+d,+ds=d
0 J1 0 d3

Figure 11: A typical element of Mg (P", d)

We define a partial ordering on the set .4y(d, J) by setting
(3-3)  o'=m';Jp,Jg) <o=(m;Jp,Jp) if o'#o0, m'<sm, JpCJp.

Similarly to Section 2.2, this condition means that the elements of 9y - (P", d) can
be obtained from the elements of My ,(P", d) by moving more points onto the bubble
components or combining the bubble components; see Figure 12. As in the g=0 case
of Section 2.2, the bubble components are the components not containing the marked
point 0.

<

Figure 12: Examples of partial ordering (3-3)

Lemma 3.6 Ifoy,0,€A0(d,J), 01#0, 0140, and 6,401, then
Moo, (P, d) N Mo,5,(P", d) C Mo 5(0,.00)(P". d),
where (01,07) =max {o'€Ag(d, J): 0’ <01, 07}.
If 6 (01, 07) is not defined, 97?0,01 (P",d) and 9720,02 (P, d) are disjoint.
For example, if ; and o, correspond to the two diagrams on the right side of Figure 12,

then (01, 02) corresponds to the diagram on the left side of Figure 12. Lemma 3.6
is immediate from the definition of the topology on 9y 03,7 (P",d). It can also
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be easily deduced from [16, Subsection 3.2] by an argument similar to the proof of
Lemma 2.6.

If o=(m; Jp, Jp) is an element of Ay(d, J), let

ﬁo;B(Pn, d) C l—[ |_| g?to’{o}u.]l. (]Pn, dl)
i€[m] d;>0,J;CJp

and T 97IU;B(}P)H’ d) - |_| E’jlt(),{()}l_l.li (Pl’l’ dl)a ie[m]’
di>0,J;CJp

be as in Section 1.2. Since each of the spaces ﬁo,{o}u 7;(P", d;) is smooth and each
of the evaluation maps

evo: Mo goyus; (P, di) — P
is a submersion, the space 97?0; B(P", d) is smooth. We denote by
(B4) 151 Mo (oyupmpusy xMe;g(P", d) —> Mo o (P", d) C Mo 03,7 (P". d)
the natural node-identifying map. It descends to an immersion

To: (Mo gosumutp *Me: 8 (P". d)) [ Sm —> Mo o307 (P". d).

Let 7p,mp: Mo oyupmiusp XMe:s(P", d) — Mo toyupmusps Mo: 8 (P", d).
be the natural projection maps.
Lemma 3.7 If d € Z1 and J is a finite set, the collections {toYoeayd,r) and

{lo}oea(a,7) of immersions are properly self-intersecting. If o € Ag(d, J) is as
in (3-3),

M7y C | Moo (P d)  and N, = €D npLi®npn} Lo.

o’/ <o i€[m]
If in addition 6’ € Ay(d, J), 0’ <o, and ¢’ is as in (3-3), then
l;l(ﬁo’G/(Pn,d)) = ( U Mo,p) Xﬁg;B(Pn,d),

pEAp(0307)
where Ag(0;0") = {p=(IpUJp. {I}uJk: ke K})eAo(Im], Jp): |K|+|Ip|=m"}

Geometry € Topology, Volume 12 (2008)



Desingularization of moduli space of genus-one stable maps 43

and Ay([m], Jp) and /\710,,0 are as in Section 2.2. Finally, if pe Ag(o;0’) is as above,
TMo o (", d) / T (Moo xIMy. p(P". d))

= @ n;L,’®7T;JTi*L0.

iG[m]—Ip

*
to ‘MO,pX%;B(Pnsd)

The first claim in the second sentence and the claim of the third sentence in Lemma 3.7
follow immediately from the definition of the topology on ﬁo,{o}u J(P" d). The
remaining claims are also restatements of standard facts in GW-theory; they all follow
from the description of the tangent bundle of ﬁo,{o}u J(P" d) in [10, (27.6)].

We finish this subsection by describing a natural bundle section
Do € T'(Mo 10307 (P", d), Hom(Lo; evg TP"))

which plays a central role in the rest of the paper. An element [b]eiﬁoj{o}u J(P". d)
consists of a prestable nodal curve ¥ with marked points and a map u: ¥—>P". One
of the marked points is labeled by 0. We denote it by x¢(b). We define Dqy by

Do, = dutlxo8): Tro3)E — Tevow) P

If il—)f)j?o,{o}u J (P, d) is the universal curve and ev: ${—>P” is the natural evalua-
tion map, then Dy |p, is simply the restriction of dev|, () to the vertical tangent bundle

of 4[. The bundle section Dy vanishes identically along the subvarieties 9710,0 (P", d)
with ce Ay(d, J).

Lemma 3.8 IfdeZ™ and J is a finite set, the section Dy is transverse to the zero set
on the complement of the subvarieties 97?0,0 (P",d) with 0 € Ag(d, J). Furthermore,
for every

UE(m; Jp,JB) € .A()(d, J),

the differential of Dy,
VDy: N, —> 13 Hom(Lg,evgTP") = nj LyQm pevg TP",
in the normal direction to the immersion (s is given by

VD,

k. * %k ,
i Li®nhat Lo = wpsi®@mpm; Dy Vie[m],

where s; is the homomorphism defined in Section 2.2.

The first claim of the lemma is an immediate consequence of the fact that

H' (Z;u*TP"®0(-2z)) = {0}
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for every genus-zero stable map (X, #) and a smooth point z€X such that the restriction
of u to the irreducible component of ¥ containing z is not constant. The second
statement of the lemma follows from [21, Theorem 2.8].

3.3 Initial data

If R and J are finite sets and d is positive integer, let

Mo, x,s)(P". d) = {(bl)lex e [ [0 copu0, P".dp): diezt. > " dj=d:

ler ler
| |7i=7: evolbr) =evo(by) vz,z/ex};
lerR
Mo, o0, (" d) = | br)rex € [ Mo oy (P d): dyeZ*, Y dy=di;
ler ler

LI 7i=7: evolby=evolbr) ¥ 1.1'exy,
IS

where My oy, (P", dj) is the subset of ﬁto’{o}u_]l (P, d;) consisting of stable maps
with smooth domains. For each /e, let

i Mo, e,y (P d) — | | Mo goyus, B". d))
d;>0,J;CJ

be the projection map. We put

Fav,) =P/ Lo.
leR

where L —>9710’{0}|_| 7, (P", dp) is the universal tangent line bundle for the marked
point 0. In the next subsection, we construct a blowup

70,08,0): Mo, ox,7)(P", d) — P Fix, 1)
of the projective bundle P F(yx, sy over 97?0,(& 7)(P",d) and a line bundle
E — Do 0,7y (P". d).
We also describe a natural bundle section

ﬁ(&’*’) € F(ﬁto’(x’”(Pn’ d); IE*(X”TS:(R,J)T[I)P!{’F(N,J)evg TP”)’

where TP Fs. - IP’F(&J) — 97?0,(&1) (Pn, d)

is the bundle projection map. This section is transverse to the zero set.
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Similarly to Section 2.4, the smooth variety i)ﬁo ,,)(P", d) is obtained by blowing
up the subvarieties Dﬁo (IP’” d) defined below and their proper transforms in an order
consistent with a natural partial ordering <. The line bundle E is the sum of the
tautological line bundle

Yw,J) — PFx 0

and all exceptional divisors. The section 5(& J) 1s induced from the sections n,* Dy,
with /eX, where Dy is as in Section 3.2.

If X, J, and d are as above, let
Ao(R:d, J) = {((Ul)leanB)3 (01,2)€1(0,2)}UAo(d}, J1,p)s (07)1ex7#(0)en;

Y di=d, J:JBu|_|J,,P}.

leR leR

We define a partial ordering < on A(R; d, J) by setting

(3-5) 0'=((0))1ex. Jg) < 0=((01)1ex. JB)

if o'#0 and for every /R either o7=07, (0}, @)=<(07, @), or 6;=0. If o€ Ao(R; d, J)
is as in (3-5), we put

Np(0) ={/eRi0;#0}  and V(o) = {/eR:0;=0}.

Here P and S stand for the subsets of principal and secondary elements of R, respec-
tively; see the next paragraph. Note that

o' <0 = Rp(@)CRp(0). Rp(o) #D VoeAR:d. J),
(3-6) 0= ((my; J1,P)iexp (o) (0)iexs (o) IB)

for some m; and J; p. Choose an ordering < on A (R;d, J) extending the partial
ordering <. We denote the corresponding minimal and maximal element by Qmin
and omax , respectively. For every o€ Aq(R; d, J), define

o—1e€{0juA (R;d, J)
as in (2-7).
If oe Ap(R;d, J) is as in (3-5), let

Moo (P",d) = {(br)iex € [ [ Mo,0y.01, m®" di): Y di=ds | | J1,5=1:
leR leR leR

eVo(bll):eVo(blz) A4 11, lzex}.
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This is a subset of 97?0,(&])(}””, d). With e=P, S, we define

F 0 — *L ‘_ CF N n .
o IED 7 Loj g gy © FOD g ,@r.a)
e&.(Q)

Let MG ,(P".d) =P Fop CMY ;) (P".d)=P Fy ).

From Lemma 3.6, we immediately obtain

Lemma 3.9 If 01,02€A0(R;d, J), 01702 01402, and 02 01, then
Moo, P".d) NG, (P".d) C 9”8,5(@1,@2@”’ d),
where 0(01.02) =max {0'€Ao(R; d, J): ¢'<01. 02}

If 9(01, 02) is not defined, 97(8 QI(P”, d) and 97?8 0 (P, d) are disjoint.

With o as (3-6), let

op= ([ml]v Jl,P)]egP(Q)v RB(Q) = NS(Q)I—' I_l [ml]’ JB(Q) = JBa GQ = 1_[ Sm1~
1€Rp(Q) 1eXp(0)

With /\718 op 38 in Section 2.4, we denote by

L0,0: M)

337 70 70
0.0p %X Mo.85(0). 7500 (P". d) —> Mg ,(P",d) CMg 5y (P".d)

the natural node-identifying map induced by the immersions (g, g, 5) in (3-4). It
descends to an immersion

T0.0° (M3 o XMo,(85(0).75(0)) (P> d)) [ Go —> MG .y (P", d).

Let
. 440 %7 10 )
mp, g Mg 5, X Mo, xp(0). 7500 P". d) —> Mg 4, Mo, 5(0).750)) P, d)

be the projection maps.

For the rest of this section, as well as for Section 4, we take

Mo.x.7) = Mo,y (P", d), Mo, x..y = Mo x.7)(P". d),
MY sy = MG .7y P d), MY, =M (P".d) ¥ oeAy(N:d. ]).

for any pair (R, J) as above.
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Lemma 3.10 If R and J are finite sets and d € Z, the collections

{to.otoedosa, )y and  {lo,o}oeAo(:d,T)

of immersions are properly self-intersecting. If

Q*E((m}k? J]ﬂ:P)lERp(Q*)i (0)16x5(g*)’ J;) € A()(&, d, J)7

— 0
then Im®7p o+ C U My o
Q/<Q*
Now= @ D rblogosrirsyl & 13530 il
leRp(e*) i€[m] leRs(0*)

where Eg and L (; ;) are as in Sections 2.4. If 0, 0* € Ag(R: d, J), ¢ is as (3-6), and
0=<0*, then

-1 (fm0 A 40 317
o0+ (Mo o) = ( U Mo,p) Mo, (% 5(0"), /50"
pEAy(0*;0)

where  Aq(0*;0)
= {,0= (Rp(0), (17 pUJ1. P [ U5 K €KY jeg(om) €A0(0D):

KT} pl=my ¥ [ €¥p(e)]

and Ao (0p) and ﬂg , are as in Section 2.4. Finally, if pe Ag (0*; 0) is as above,

* b ~0 e
oo S0 = Mo o [ T (M3 ,xT
0.0% |49 %o s 0r.a o L 000/ T (Mo px Mo, 45 0%), I5(0*))

= & D 75 Lo.a.y®757( 5 Lo
1eXp(0*)—Rp(0) i€[m]]

& P PBriLown®rpasLo.

1eXp(0) ie[mf]—l,’fp

The normal bundle MO,Q* for the immersion (g o+ splits into horizontal and vertical
bundles:

_ArL T
Mo,o* - MO,Q* ®M().g*'
It is immediate from the definitions that
T % * Kk * *
Nigoe =100 (Yt ®Fess) = npEg®@ 1 (P 7/ Lo.

leRs ()

Geometry € Topology, Volume 12 (2008)



48 Ravi Vakil and Aleksey Zinger

The horizontal normal bundle ./\/’d)‘g
identifying immersion ’

is the pullback of the normal bundle for the node

*

Mo g% X Mo, (8 p(0").T5(0*) — Moo+ (P", d) C Mo, %7

induced by the immersions Lop T ) in (3—4) by the bundle projection map npF,. -
The normal bundle for this immersion is the sum of component-wise normal bundles
given by Lemma 3.7. The remaining claims of Lemma 3.10 follow easily from the
corresponding statements of Lemma 3.7 as well.

We note that for every o*€ Ag(R; d, J),

Ao(ep) = || Aoe*:0).

o=e*
Furthermore, if 01,02 €A0(R; d, J) are such that o1, 02 <0*, then
pr€Ao(@™i01), pr€Ao(0™;02), pPI=p; =  oi1=02

Thus, we can choose an ordering < on Ag(0p) extending the partial ordering < of
Section 2.4 such that

01<02, pieAo(0™;01), p5eAo(0™;02) = Py <Pz

whenever 01,0, € Ag(R;d, J) are such that 91, 0, <0*. In the next subsection, we
will refer to the blowup construction of Section 2.4 corresponding to such an ordering.

Via the projection maps 7;, the bundle sections Dy of Section 3.2 induce a linear
bundle map

D(N,J): F(R’J) — evz;TIP’”
over 97?0,(& J) - In turn, this homomorphism induces a bundle section
~~ MO0 . _ M0
Dy € F(?mo’(&]), EE‘X’”I;F(&J)GVS TIP’”), where Eg = yx.j) — zmo’(&]).
This section vanishes identically on the subvarieties 93,?8’ 0 of 97?3,(& S with o €

As(R:d, J).

Lemma 3.11 The section 50 is transverse to the zero set on the complement of the
subvarieties smg o+ With 0*eAyg(R; d, J). Furthermore, for every o* € Ag(R;d, J) as
in Lemma 3.10, the differential of Dy,

I~ * * * * n\ _ _kmk * sk n
VDy: MO_Q* —> g o> (E0®7TPF(R.J)CVOTP ) =npE Q@ugevy TP",
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in the normal direction to the immersion Lo o+ is given by

S %k ) * % . * *
VDo w5 Lo.a.i®mhml Lo T pSo,,iy®T g Do ¥V i€m;]. [eRp(0),

VDolyr = 7pid®75Dixp(e). a0,

where s¢, (1) is the homomorphism defined in Section 2.4.

This lemma follows immediately from Lemma 3.8.

3.4 Inductive construction

We are now ready to describe the inductive assumptions for our construction of the
blowup

. GPOmx Gy 770 — A0

7o0,,7)° M8,y =Mo.8,.0) (P, d) —> Mg 1y =g 5.y (P, ).
Suppose o€ Ap(N;d, J) and we have constructed
(I1) ablowup

. gne—1 70
To—1: Mo %,y Mo,%,7)

such that 7,1 is an isomorphism outside of the preimage of the spaces 97[8 o

with ¢’ <p—1;
(12) aline bundle E,_4 —>9ﬁg (é 7))’

. ~ o— 1

(I3) asection Dy € F(imo (X J),EZ_I®JIQ*_I7T];,F(RJ)6V;TIP’”).

For each o*>p—1, let

1 1
MG v =M L (P",d) CME . )

be the proper transform of S}JV? o in SLRO (x n We assume that

(I4) the section DQ 1 is transverse to the zero set on the complement of the subvari-
eties i)ﬁg o with o*>p—1 and vanishes identically along these subvarieties;

(I5) lfel,Qzer(&;d, J) are such that 01 #02, 01402, 027401, and 0—-1<p1, 02,
then

if 0(01,02)>0—1;

otherwise,

~ o1
mQ 1 mgﬁ@ RS mO,E(Ql,QZ)’
0,01 0,02 =g

where 0(01,0>) is as in Lemma 3.10.
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We also assume that for all o*€Ay(X;d, J) such that p*>p—1:

(16) the domain of the G+ —invariant immersion ty_1 o+ induced by tg o+ is

oo (0—1)
Mol X Mo, (8509, 750* )
max {peAo(0*:0) : if 3o'e Ag(R; d, J)
where po+(0—1) = o'<o—-1.0'<0"}. sto'=o-1.0'<0"
0, otherwise;

(I7) if o’eAg(R;d, J) is such that o—1<0’ <™, then
-1 ho—1 0o (@—1) - .
Lm0+ (M6 o) :( U Mo, )Xfmo,mg(a*),JB(g*)»
pEA(0*;0")

s o1
(I8) Im*To_y o CUpoi<pr<or Mg o » Where

— | Por e am Jpre—1
lo—1,0*: (Moi,; Xmos(RB(Q*)aJB(Q*)))/GQ* - imo,(x,])’

is the immersion map induced by (51 o+ .
Furthermore, we assume that
(19) the collections of immersions
{to—1,0* boreAgid, 1), 07 >0—1  and  {lo—1,0* }o—1€A0(N;d, 1), 0% >0—1

are properly self-intersecting.

Finally, for all p*€Ay(R:d, J) such that o*>p—1:

(I10) ¢* Ep—1 = n}",IEpQ*(Q_I), where

o—1,0*
L Sper(e—1) | 0o+ (0—1)
wp, gt Mo X Mo, 0,750 —> Moipr - Mo, ats0*).75(0")

are the two projection maps;
(I11) if o* is as in Lemma 3.10, then the normal bundle for the immersion Lo—1,0% 18

given by
1 T
/\[LQ—I,Q* = N @N

lo—1.0% lo—1.0*

= B PBrilo-e-n.0o®TEni Lo
leRp(0*) i€[m]]

&7HE} . (o-n®75 D 7 Lo.
e85 (0")
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= Po* (Q 1)

where L por (0—1),(1,i) E po+ (0— 1)—>/\/l are the line bundles constructed

in Section 2.4;

(I12) the differential of D,_;,
VDQ 1N e = Lo o (IE* | ®T, IJT]P,F(N J)eVOTIP’”)
= JrPIEp (o- 1)®7TBCV0T]P)’1,
in the normal direction to the immersion t,—1 o+ is given by

* * *
VD,- 1‘”13 Lp s (0—1).(.H®T L7 () Lo = T pSpge (0= 1)) ®T BT (1,1 Do

for all i €[mj], /eRp(0*) and

VDo-1|yr |, = mpd®TED (0. 750"

1.o*

where Spox(0—1),(L,i) is the homomorphism defined in Section 2.4.

By the inductive assumption (/4), the loci on which the sections 59 fail to be transverse
to the zero set shrink and eventually disappear. For each o, the behavior of 59 in
the directions normal to the “bad” locus is described by (/12). By the inductive
assumption (I5), if ¢; and g, are noncomparable elements of (Ag(N;d, J), <),
the proper transforms of 97(85 o1 and E)Aﬁg, 0 become disjoint by the time either is
ready to be blown up for any ordering < extending the partial ordering <. Similarly
to Sections 2.3 and 2.4, (/5) will imply that the end result of the present blowup
construction is independent of the choice of an extension <. By (/6), our blowup
construction modifies each immersion ¢g o+ by changing the first factor of the domain
according to the blowup construction of Section 2.4, until a proper transform of the
image of (g o+ is to be blown up; see below. By (/8), by the time this happens the
immersion 1o o+ induced by (¢ o+ transforms into an embedding. Thus, all blowup loci
are smooth.

We note that all of the assumptions (/1)—(712) are satisfied if p—1 is replaced by 0. In
particular, (/5) is a restatement of Lemma 3.9, while (/4) and (/12) are the two parts
of Lemma 3.11. The statements (/7)—-(/11), with p—1 replaced by 0, are contained
in Lemma 3.10.

If o€ Ag(R;d, J) is as above, let
=~ . anpe
ot My, (x N mo (x J)

be the blowup of Dﬁo & ) along ‘.mg , which is a smooth subvariety by the inductive
assumption (/8). We denote the exceptlonal divisor for this blowup by i)ﬁg If o*>0,
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let 97?5’ o* Cﬁtg’ ®.7) be the proper transform of ﬁ?g; . We put
(3-7) Eo=#3E 1 ® O(M ).

The section ﬁg 5Q_1 vanishes identically along the divisor 9713 o Thus, it induces a
section
Do € T(M 5y Eg®7p7p p 5, V0 TP"),

where 7w, = my_107,.
The inductive assumptions (I1)—(73), with p—1 replaced by p, are clearly satisfied,
while (15), (18), and (19) follow from (2) of Lemma 3.3 and Corollary 3.4. On the
other hand, by (16), the domain of the immersion ¢,_1 4 is

CrPele—1)  am o 7

Mo%n X Mo, m4(0),75@) = Mo,op X Mo, (5(0),75(0)-
where /\70,91, —>/\78 op is the blowup constructed in Section 2.4. By (I11), the
normal bundle for the immersion ¢, 1 , is given by

Nypor o= @ @ ”;Lpg(e—l),(l,i)®”§”5,i)L0 ® H;E:Q(g—l)®n§ @ 7 Lo

1eRp (o) i€[my] leRs(0)
= @ @ nf,L@n;n(”}’i)Lo ® nplQmny @JTI*LO
1eRp (o) ig[my] leXs(0)

= 7pL ® T3 F(xp(0).75(0))

where L—> M 0,0p 18 the universal tangent line bundle constructed in Section 2.4. We
also note that by (710),

L—lo (Eg*_l ®n;F(RJ)eV3TIP") =npl® ngn];,FmB(g)JB(g))evéT]P’”.
By (112), the differential of 5Q_1 in the normal direction to the immersion ¢, 18
given by
VDg-1 = 7pid ® T3 D(p(0).J5(e))-
Thus, if

. ~ M 1770 170 N
to.or PNy o ~ Mogp X Mo, xp(@0.750» — Moo C mO,(NJ)
is the immersion induced by ty_1 o, then
-~ ~ v 770 .
to.0Pe=75Do € T(Mo,op XM (% (0),75(00)* lore (BEo®T0 TP £, 1y Vo T P"))
v 7,0 .
= T (Mo.op Mo 14 (0). 750"

% % * * n
7B (V850 750) OF Fos pior.spian V0 T E™):

Geometry € Topology, Volume 12 (2008)



Desingularization of moduli space of genus-one stable maps 53

Lemmas 3.10 and 3.11 thus imply that the restriction of the section 5 to the exceptional
divisor EITIQ is transverse to the zero set away from the subvarieties Qﬁ 0.0* with p*>0.
Thus, by the inductive assumption (/4) as stated above, (I4) is satisfied with p—1
replaced by o.

We now verify that the remaining inductive assumptions are satisfied. If o<p™, but
o#e”,
ho—1 ~ apo—1
P+ (@) = po(0—1)  and Mg . NMG =2,

by definition and by (75), respectively. It then follows that

_ ~ 0 N NI R ,
lo,o* = lo—1,0%» My o+ "M o =g My, Vo' >o.
. . _ ~ =~
Lo Eo =151 g+ Eo—1. N+ =Ni, i« and VDy=VD, ;.

Thus, the inductive assumptions (16), (17), and (110)—(112), as stated above, imply
the corresponding statements with p—1 replaced by o.

Suppose that <™. By (16) and (1) of Lemma 3.3, the domain of the immersion ¢, o*
induced by the immersion t,_1 o+ is the blowup of

~oox(0—1)
Mof)g; X Mo, (R5(0%),75(0*))

. Jo—1 :
along the preimage of 93?0, 0 under (y_1 o+ in

pg (Q 1)

T p gy (g—1) X1d: M xDMo, (85 (0*).T5(0*) — M 0% XM, (%5 (0*),T5(@*)-

By (I7), this preimage is

=P *(9 1) —
U M52 ") x Do p09.780°)-
pE€A(0*;0)

By the last paragraph of Section 2.4 and the second paragraph after Lemma 3.10,

*(0—1) *(0—1)
M A M =g ¥y, paedo(0*;i0), pr1#pa

0,01 0,02
Thus, by the construction of Section 2.4, the blowup of Mp" *(e=D along
U Mpg* (e—1)
pEA(0*;0)
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is /\/lpgg *(© , as needed for the inductive statement (/6), with o—1 replaced by o. For
the same reasons, (110) (2-13), and (3 7) imply that

e

— A0 _
= ”PEPQ*(Q—U ® ® ”;O(Mo,p) = ”;EPQ*(Q)-
pE€Ap(0*;0)

Thus, the inductive statement (/10), with o—1 replaced by p, is satisfied. The
assumption (/7) is checked similarly, using (3) of Lemma 3.3.

We next determine the normal bundle for the immersion (4 o+. By the construction
of Section 2.4, the restrictions of the line bundles Lp +(o—1),(, ,) and IElp +(o—1) O
the complement of the exceptional divisors in M"@* (e~1) are T[ (0 _1)L0 «,i) and

p lo— I)Eo Thus, by the last statement of Lemma 3.10, (11 1) and the inductive

assumptlons (I1) above and in Section 2.4,

1 ﬂ *(0—1)
T, /T 0T X Mo, (85 (0%) T8 (0*)))

XMo, (kg (0*%). T g(0*))

= &y P rrL,,. (g—l),(l,i)®”§ﬂ("},i>Lo
1eXp(0*)—Rp(0) ic[m?]

& B Drrloen.an®TEriLo
leXp(o) ie[m]]-I}p

for all peAy(0*;0) as in the statement of Lemma 3.10. Let

Ip(p) = {(1.1): 1€Xp(0). i €1} p}.

From Lemma 3.5, we then obtain

Npw= D D ( 7p L py (0-1).Li) ®7 B (1 iy Lo ®”PO( 2. Mp,p))

1eRp(0*) i[m]] p€Ap(e*;0),(1,i)elp(p)
® 158}, @7 D i Losnp0(- Y W)
leRg(0™) pE€Ap(0*;0)
=D D ErLop.an®mpnjLo)®npE; ®15 €D 7/ Lo.
leRp(0*) ie[m}] leRg(0™)

The last equality above follows from (2—12) by the same argument as in the previous
paragraph. We have thus verified that the inductive assumption (/11), with p—1
replaced by g, is satisfied. Finally, the inductive assumption (/12) and the continuity
of the two bundle sections involved in the identity in (/12), with o—1 replaced by o,
imply (/12) with p—1 replaced by o.
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We conclude this construction after the blowup at the pmax step. Let

mo’(x"])(Pn, d) = gﬁg?](aé,J)’ E = EQmax’ D(x’_[) = DQmaX‘

By the inductive assumption (/4), applied with p—1 replaced by gmax, the section
5(& J) 1s transverse to the zero set. As in the previous two subsections, the final result
of this blowup construction is independent of the order < chosen to extend the partial
ordering < on Ay(R; d, J), as can be seen from (75).

4 A blowup of a moduli space of genus-one maps

4.1 Idealized blowups and immersions

In this section we describe the main blowup construction of this paper. This is the
sequential idealized blowup construction for 9711,1( (P", d) with the initial data and
the inductive step specified in Sections 4.2 and 4.3, respectively. This construction is
outlined in Sections 1.2 and 1.3.

In contrast to the situations in Sections 2 and 3, the variety 9711’;{ (P", d) is singular.
In order to describe the structure of 9t k(P", d), we introduce the notion of idealized
normal bundle for an immersion. Recall that the domain of an immersion is assumed
to be a smooth variety.

Definition 4.1 Suppose M is a variety and txy: X — 9 is an immersion. An
idealized normal bundle for the immersion tx is a vector bundle /\/'L‘)C(le over X such

id
that N,y CNE.

Remark An idealized normal bundle is of course not unique; an idealized normal
bundle plus any other vector bundle is still an idealized normal bundle. If the image
of 1y is an irreducible component of 9, an idealized normal bundle of the smallest
possible rank still need not be unique; it can be twisted by any divisor in X disjoint
from the preimage under ty of the other components of 9. For each of the immersions
we encounter in the next subsection, there is a natural choice for J\/Lige. These idealized
normal bundles also transform in a natural way under blowups and proper immersions,
as described in Lemma 4.3 below.

Suppose O is a variety, Z is a smooth subvariety of 9, and J\/Lige is an idealized
normal bundle for the embedding tz of Z into M. Let

5251[))./\/12 CBIZ?)?I

Geometry € Topology, Volume 12 (2008)



56 Ravi Vakil and Aleksey Zinger

be the exceptional divisor for the blowup of 9 along Z. We denote by Bligei)?t the
variety obtained by identifying Blz 9t with

gide = P/\/’Li;e
along £z . We will call
ide; Bligei)?t — M
the idealized blowup of 9 along Z and
£¥¢ C BIFM

the idealized exceptional divisor for w'% . (Caution: the idealized exceptional divisor is
not necessarily a divisor!) More generally, we will call

ﬂ:ﬁt—)ﬁ

an idealized blowup of M if 7 is a composition of idealized blowups along smooth
subvarieties. In practice, idealized blowup is simply a convenient term. In the inductive
assumption (/1) in Section 4.3 below, it can be replaced by morphism of varieties,
as the remaining inductive assumptions describe all the relevant properties of this
morphism. Let

yz — E5°

be the tautological line bundle. Note that the normal bundle of £ CEiZde in
Prz9 = Bl;M
is ¥z|e, . This observation implies the first statement of Lemma 4.3 below.

Our strategy is as follows. We begin with a space with a properly self-intersecting
collection of immersions, each with an idealized normal bundle. These are the immer-
sions (; with 0 € A;(d, k) defined in Section 1.2; their images are the subvarieties
97?1,,, (P"*,d) of 9721,;{ (P, d). The idealized normal bundle for the immersion (4 is
the direct sum of the deformation spaces of the nodes between the contracted genus-one
curve and the noncontracted genus-zero curves that are identified by ¢, . At each stage,
one of our immersions is an embedding, and we blow it up, replacing it with its idealized
exceptional divisor. The exceptional divisor of the blowup of the main component
is the intersection of the new main component with the idealized exceptional divisor.
Then after each step, we have a new properly self-intersecting collection of immersions.
Moreover, there is a natural idealized normal bundle for each of the proper transforms
of the immersions we have “yet to blow up”.

We now say this more explicitly. Lemmas 4.2 and 4.3 below are direct extensions
of Corollary 3.4 and Lemma 3.5. The first lemma states that if we have a properly
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self-intersecting collection of immersions, one of which is an embedding, then upon
blowing up the embedding, we still have a properly self-intersecting collection of
immersions. It is immediate from the definition of “properly self-intersecting”, by
checking in local coordinates.

The second part of the second lemma follows from Lemma 3.5 with only one change.
Instead of writing

@) Ny=@L  ad  Ney =P (Lo @ O-E,))

iel iel iely

as in the statement of Lemma 3.5, we are saying that if there is a natural inclusion
N, ¥ C@ie 7 Li, then we get a natural inclusion

Nocziy CED (7*Li @ @ O(—Eyp)).
iel iely
The vector bundles on the right sides of the two expressions in (4—1) are the original
idealized normal bundle and the new idealized normal bundle.

Lemma 4.2 Suppose 9 is a variety, {to: Xo—>IM}oec4 is a properly self-intersect-
ing collection of immersions, and o € A is such that i, is an embedding. If /\/'Li;je is an
idealized normal bundle for t, , then

{Prlm‘(rt”/}a’eA—{a} U {lgide }

Imto

is a properly self-intersecting collection of immersions into Blil‘;ftoiﬁt.

Lemma 4.3 If 9 is a variety, Z is a smooth subvariety of 9, and J\/Lige is an
idealized normal bundle for 7, then

ide

Loide =Yz
£z

is an idealized normal bundle for the immersion tgide . Suppose in addition that 1y , A,
Zy,and E, are as in Lemma 3.5 and /\/ti)‘:e is an idealized normal bundle for tx . If
there exist a splitting
Ne=PL —x
iel

and a subset I, of I for each o€ A such that (3—1) holds, then

Nt =D (" Lie @ O(-Ey)

iel iel,

is an idealized normal bundle for the immersion Przix .
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Definition 4.4 Suppose M is a variety, 1xy: X — 90 is an immersion, IMC is a
subvariety in 901, and TCINO C T9HN is the tangent cone of I in M (T CM° not
necessarily reduced). The subvariety 9° is proper relative to 1y if

diy TCi'ON°) = 5 TCM® NImdiy C 5 TM
and the map
4-2) L}TCﬁoltg,l(D_ﬁO)/ImdLX|TCL;,1(9_710) — L}Tﬁt/lmdt)( C./V?j,e

induced by inclusions is injective, with its image being reduced.

The left-hand side of (4-2) denotes the family of cones over L)_(l (9M°) such that for
each x EL)_(I (M)

170
L}'}TCE)JI |L}1(9_720)/ImdLX|TCL}1(5IO) N

is the quotient by the minimal vector subspace of Imdix|x =dix (Tx X) containing
the cone Im d X|TxC 5 @) If7cC L}l (91°) is a vector bundle, the two conditions
in Definition 4.4 are equivalent.

If MO is a subvariety of 9 which is proper relative to an immersion ty: X —> 0,
we denote by

N g0 C x TO/Imdiy C N

the image of the homomorphism (4-2). We will call MXIS_JZO the normal cone of

Lemma 4.5 Suppose_ﬁ is a variety, ty: X _—>ﬁt is an immersion with an idealized

normal bundle /\/Li;e, IO is a subvariety of MM which is proper relative to 1y , and
ZC Z=i' (M)

is such that N, g is the closure of N, g0z in N}S°.

(1) If X is a smooth subvariety of MM, then PryM is proper relative to the immer-
sion (gide ,
X ide 0
EIIY NPryIM” C Ex
is the closure of PMXD??O |z in E)i?e, and

N, e Py 0 = VX |gidepry 50
X

(2) If Z is a smooth subvariety of 9 disjoint from 1y (Z) and /\flige is an idealized
normal bundle for 7, then Prz9M° is a proper subvariety of the blowup Bllgefm
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relative to the immersion Przux and Ny, b 570 is the closure of N, 5m0|z in

Nide

Przix

The first part of (1) essentially follows from the universal property of blowing up: if
0 is blown up along Z, then the proper transform of 9° in M (the scheme-theoretic
closure of 9M°—Z in the blowup) is the blowup of 90t° along 9°NZ, and the normal
bundle to the exceptional divisor in Blgon 29710 is the restriction of the normal bundle
of the exceptional divisor in Bl ~9. The statement (1) is the etale-local version of this.
Part (2) is clear by working in local coordinates.

4.2 Preliminaries

In this subsection, we state a number of known facts concerning the moduli space
9721,1( (P, d) that insure that the inductive requirements of the next subsection are
satisfied at the initial stage of the inductive construction. Lemmas 4.6—4.9, with the
exception of one statement, are well-known in Gromov—Witten theory and are obtained
similarly to Lemmas 3.6 and 3.7. We show that the last statement of Lemma 4.7 is
simply a reinterpretation of a standard fact concerning moduli spaces of stable maps.

Let (A;(d, k), <) be the partially ordered set of triples described in Section 1.2. Tt
has a unique minimal element and a unique maximal element:

Omin = (17 a, [k]) and Omax — (ds [k]7 @)

Let < be an order on A, (d, k) extending the partial ordering <. Forevery 0€A4(d, k),
we define

o—1e{0juA,(d, k)
as in (2-7). For each element o =(m; Jp, Jg) of A;(d, k), let

(4-3) MY , =My o (P",d) C MY =M, 4 (P", d)
be the subvarieties defined in Section 1.2.
Warning Note that ﬁ?,k denotes the entire moduli space 97?1,/{ (P",d) and not

the main component 972(1)’ «(P",d). Similarly to Sections 2 and 3, the superscript 0
indicates the 0—th stage in the blowup process.

Lemma 4.6 If oy = (my;Jy.p,J1.B) and 03 = (my; Jo.p, J2.p) are elements of

Ai(d. k), 017#02, 01 £02, and 03 A0, then
10 0 10
ml,m mgﬁl,ﬂz C mlﬁ(m,az)’

where 5(01,02) = (min(my,my); Ji;pNJo;p. J1;8UJ2;B).
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With o as above, we define
Ip(0) =Rp(0) =[m], Jp(o) = Jp, Jp(o) = JB, Go = Sm.
As in Section 1.2, we denote by
. 40 = 30 370
lo,o- Ml,(lp(a),Jp(a)) x mO,(NB(U),JB(a)) - iml,a - iml,k»
where Mo, (%5(0),75(0) = Mo,a5(0),750) P". d),

the natural node-identifying map and by

— . Wil %7 0
0,00 (M} (150).750)) *P0.85(0).T5(0)) / Go —> T &

the induced immersion. Let

. A 40 a7 A 40 )
7P, BB MY (11(6).75 () T0,85(0),75() ™ M1 (1p0).7p(0)) T0,8p(0),75(c))

be the two projection maps.

Lemmad.7 Ifd,neZ% and keZ™, {L0,0foeA, (d,k) and {100 }ge A, (d,k) are prop-
erly self-intersecting collections of immersions. If o*=(m*: Jp, J5)€ A1 (d. k),

Im*7p 6+ C U My 5 and /\/'[10.60* = @ npLi®mpm; Lo
o/<0* i€[m*]

is an idealized normal bundle for 1o o .

We deduce the last claim of this lemma from the deformation-obstruction exact se-
quence (24.2) in [10] as follows. Suppose

(2, u] = 0,0+ ([ZPIx[Zp.up]) € 973(1),0*’
where [Xp.up]= ([Ei» Mi]),-e[m*] € 97?0,(&3(0*),]3(0*))'
By [10, (24.2)], there exists a natural homomorphism

Jeui Tk (P, d)]| g g = Def(S, u) —> Def(),

where Def(X, u) and Def(X) denote the deformations of the stable-map pair (X, u)
and the deformations of the curve ¥ (with its marked points), respectively. As [X, u]
is considered as the image of [X p]x[X g, up] under 1 o+, there are m™* distinguished
nodes of 3. These are the nodes of ¥ that do not correspond to either the nodes of
¥ p or the nodes of any of the curves X; with i €[m*]; see Figure 13. Let

Def(Xp, Xp) C Def(X2)
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be the deformations of ¥ that do not smooth out the distinguished nodes of . Since
the smoothing of a given node of X is parametrized by the tensor product of the tangent
lines to the two branches of X at the node, we have an exact sequence

0 —> Def(Zp, Sp) —> Def(X) 12 Aride

Lo o — 0.

[Z,u]

We denote by
Def(Xp, (Zp,up)) C T 4 (P”, d)\[z’u] = Def(Z, u)
the kernel of the map

j£0 j5.u: Def(T, u) — N%

Lo,o*

[ZpIx[ZB.uBl

The space Def(E p.(Zp,u B)) consists of deformations of (X, u#) that do not smooth
out the m™* distinguished nodes of X. Thus,

Def(Sp, (Sp.up)) ~ Def(Ep) ® Def(Ep, up)
o _
=TM; (1p6%),7p )21 D TMo,(x5(0%),J5(0*) (S 5,u5]-

The isomorphism from the right-hand side to the left-hand side is given by dig o*.
Thus, the homomorphism jxojyx , induces an injection

Nig os 15,0 = TCDjtl,k(]P’”,d)‘[z’u]/lmdto,a* — Nide

to,o* I[Zp]x[ZB,uBl’
as needed.
1
1 1o.o*
3 X ) %
2
3
distinguished
nodes

Figure 13: A point in the domain of ¢y, and its image in 97?1,/( (P",d)
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Lemmad4.8 Ifd,n, k, and o* are as in Lemma 4.7, 0 € A;(d, k) is as above, and
o <o, then

-1 (g0 Wil 337
oo+ (M) 5) = ( U Ml,p) X Mo, (8p(0*).T5(0*))
peAp(0*30)

where Ap(c*;0) = {,0=(1P|_|JP,{Ik|_IJk: kEK})GAl([P(U*), JP(U*)) :
|K|+|1p|=m]|

and A1(Ip(c*), Jp(c™*)) and /\71(1) pEMI,p are as in Section 2.2. Furthermore, if
pEAp(c™;0) is as above,
too* |50 T, [T (M3 %Mo (8569, 750
0 MI'DX%’(xB(G*)!JB(G*)) 1,0 1,,0 05( B(O' )a B(U ))
= @ npLi®npm] Ly.

ielp(oc*)—1Ip

Lemmad4.9 Ifd,n, k,o,and o™ are as above, then

—1 (om0 A\ 10 537
o0 O ) = M (o pon < (U Tho).
0€Ap(0;0%)

where Ag(0:0%)={0=((01)1ex3(0)-/B) €A0(RB(0): d. Jp(0)): |[Rp(0)|=m"},
and Ao(Rpg(0);d, Jg(0)), Rp(0), and 97?0,9 EQ?IO,Q(P”,d) are as in Section 3.3.
Furthermore, if o€ Ag(0;0™) is as above,

* 770 70 m
Lo’a}M?,(lpw),Jp(a))XﬁO.QTimlﬂ‘f*/T(Mls(IP(U)’JP(U))Xmo’Q)

— @ npLi®ugmn; Lo,
ieRp(0)

where Rp(0) CRp(0) is as in Section 3.3.

We note that for every 6*€ A (d, k),

Ai(Ip(0*), Jp(0™) = | | Ap(c™;0).

o<0*

Furthermore, if 01,0, €A1(d, k) are such that 1,0, <0™, then

p1€Ap(c*;i01), p2€Ap(c™i02), p1<p2 - 01<03.
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Thus, we can choose an ordering < on Ay (Ip(c*), Jp(c*)) extending the partial
ordering < of Section 2.3 such that

01<03, p1€Ap(c*;01), preAp(c™;07) = r1<p02,

whenever 01,0, € A1(d, k) are such that o1, 05 <o™*. In the next subsection, we will
refer to the blowup construction of Section 2.3 corresponding to such an ordering.

Similarly, if 0’€ A (d, k),
Ao(Rp(0"):d, Jp(0") = | | AB(0";0).

o’'<o
Furthermore, if 01,0, €.A1(d, k) are such that ¢’ <01, 05, then
01€Ap(0";01), 02€AB(0";02), 01<02 = 01<03.

Thus, we can choose an ordering < on Ag(Rp(c”);d, Jp(c’)) extending the partial
ordering < of Section 3.3 such that

01<07, 01€Ap(0’;01), 02€AB(0";07) - 01<02,

whenever o1,0,€A4;(d, k) are such that 6’ <0, 0, . In the next subsection, we will
refer to the blowup construction of Section 3.4 corresponding to such an ordering.

We denote by the main component 972(1)’ «(P", d) of the moduli space 97?1,;{ (P",d) by

,‘m?’(o). IfoeA(d, k), we put

20 —1 (a0 _ , —1(a10 710 .

Z5 =14 (ml,(o)) =l (iml,(o)ﬁ Eml,or)’

Zg = Lojol (97?(1)’(0)0 sml,a) - Z},’, where My , =My o (P". d).

We denot.e by /\/ z9 C./\/'L‘(‘)jfr the normal cone N, |39 = for |5y in 971?’(0). Its
structure is described in Lemma 4.10 below. Let

Do,o € T(MY, (1,0, (o) ¥ DN0.0850).T5(0)): Hom(N®  Tp Eg @ gevg TP"))
be the section defined by
DO,O’

% . * % .
nhLi®uhiat Lo = T pSo,i®mpn; Do, Vie[m],
where 59 ; and Dy are as in Sections 2.3 and 3.2, respectively.

Lemma 4.10 ForalloeA,(d, k), 97?? 0) is a proper subvariety of 971(1)’,{ relative to
the immersions (¢, and g . Furthermore,

Z9 = {be M 1p(0)0p ()Mo, (8 5(0), J5(0)) - KeT Do o |5 #{0}}

Nzg‘zg zkerDo’g|Zg.
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: Z0 0 ;0 10 I Z0
Finally, Z5 is the closure of Z5 in MY (1. () 700 *P0,(85(0),J5(0)) and NZ) is
the closure of N'Z° | 20 in N 'de

This lemma is a consequence of [24, Theorem 2.3] and related results. In particular, the
first claim in the second sentence of Lemma 4.10 is a special case of the first statement
of [24, Theorem 2.3]. The second claim is nearly a special case of the last statement
of [24, Theorem 2.3], but some additional comments are required. Theorem 2.3 in [24]
by itself is a purely topological statement, as it describes the topological structure
of a neighborhood of each stratum of (g U(Z ) in i)ﬁ 1.00)" On the other hand, by
[22, Subsection 4.1], N Z? ‘ 20 is contained in ker Dy . The second claim in the
second sentence of Lemma 4.10 can then be obtained from a dimension count and a
comparison of the gluing construction used in the proof of [24, Theorem 2.3] with the
analysis of limiting behavior in [22, Subsection 4.1]. This comparison implies that the
gluing parameter in the analytic construction of [24] agrees to the first two orders in the
zero limit with the smoothing parameter in algebraic geometry. Thus, N Z,O ‘ zo must
be equal to ker Dy . These considerations also imply the first claim of Lemma 4.10.
Alternatively, suppose that d <n. If the moduli space 9.720 o is nonempty, then m <n
and thus for a Zariski open subset Z,.; of ZO

I <dimNZp|, =1=dimkerDos|,

(44)
=  NZ, =

270;1.

Since Dy is transverse to the zero set over Zg, the second claim in the second
sentence of the lemma follows from (4—4), if d <n. The general case follows from the
observation that

My o (P",d) = {[Z,uleM; o(P" d): u(x)cP"}
and the d <n case.

The first claim in the last sentence of Lemma 4.10 can be obtained by combining
the first statement of [24, Theorem 2.3], the m =1 case of [21, Theorem 2.8], and
the Implicit Function Theorem. It also follows immediately from the last claim of
Lemma 4.10. The latter can be deduced from [24, Theorem 2.3] as follows. Suppose
first that m <n. In this case, [21, Theorem 2.8] implies that Zg admits a stratification

=0
acA
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such that Z,.; is a Zariski open subset of fg ,

Ze1 C 22 dmNZp=1VbeZ,,,
(4-5) max {dim N§2|b:b62¢,;a} < codimzy Zo;a YaeA,

see the next paragraph. Let

20 =PNZCPNI® |5

Nea

be the exceptionil divisor for the blowup of 971(1)’ 0) Qong 2)7?(1)’ - Since all irredgcible
components of Z2 must be of the same dimension, Z2 must be the closure of Z?| 20
by (4-5). This closure property remains valid even if we do not assume that m <n for
the following reason. Let pte Prtd be any point not contained in P”. Let

7 P (p — PO
be the corresponding linear projection. It induces projection maps

o: {[Z, uleM? , (P9 d): ptgu(T)} — MY, (P". d),
g: {[2, u;v]€ Z2 (P d): ptdu(T)} — Z2(P", d).

The latter map takes gg(P”+d,d)|Zg(Pn+d 4 gg(P”,dﬂzg(Pn 4)- Since the
closure of

Z9P" d)| 50 @rra gy

contains 2?00 (P", d), it follows that so does the closure of gg (P", d)|zg (@n q)- This
observation implies the last claim of Lemma 4.10.

We conclude this subsection by briefly describing the stratification mentioned above.
A stratum IMr, of 97(0,(&3(0),]3(0)) corresponds to a tuple I'p=(I'g;;)1exz(0) Of
dual graphs, all of which are trees. The vertices of I'p.; correspond to the irreducible
components of the domain of the stable map b; in the definition of 9710,(;{ 5(0),Jp(0)) at
the beginning of Section 3.3. Each vertex v of I'g.; is labeled by a nonnegative integer,
which specifies the degree of the stable map b; on the corresponding component 3.
There is an edge in I'p.; between two vertices if and only if the two corresponding
components of the domain share a node. In addition, there are tails attached at some
vertices of I'g.;, which are labeled by the indexing set for marked points of the map b;,
ie J; p in the notation of Section 3.3. Let vl* be the vertex of I'p.; to which the tail
corresponding to the marked point 0 is attached. If the degree of v;‘ is positive, let

x1(T) = x1(Tpy) = {v/}.
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Otherwise, denote by x;(I'p) the set of positive-degree vertices of I'p.; that are not
separated from v;k by a positive-degree vertex. Suppose

b=(b1)1exp(0) € Mry = Mo (8p(0).J5(0) N 1_[ Mrp., with by =[%;, uy]
IGRB(O')
as in the paragraph preceding Lemma 3.8. If /eXp(0) and v:vl*, let

Im Dy |p =ImDylp, = Imduy|y ;) C Tevy)P"

If v is a vertex of I'g,; different from v;", we denote by Im Dy | the image of d{u;|x,}
at the node of X corresponding to the edge of I'p.; that leaves v on the unique path
from v on v/ in I'g;. Note that if v € x;(I'p), the image of this node under u;
is evy(b). We set

x@ = | | x(Ta).

IG&B (o)
With b as above, let

codimD|p, = }X(FB)} —dimSpan{ImDv|b: veyx; ('), IGRB(J)}.
For each pair a=(I'p, i), where u€Z is such that

(4-6) max (1, |x(Cp)|—n) < u < [x(Tp)|.

we put Zrga = {beﬁﬁpB:codimD|b=u}.
By the first statement of [24, Theorem 2.3],

Zao = |_|ZU;0D where Zoa = MI,IP(O’)UJP(O’)XZFB;OP
o

The disjoint union is taken over all pairs o =(I", i) as described above. From transver-
sality as in the first claim of Lemma 3.8, it is easy to see that
codimoyy. . Zrge = (1 — (|x(TB)|—)) 1

> n—(x(Tp)l—pn):

see the end of [25, Subsection 2.3], for example. The above inequality follows from
the first inequality in (4-6). By (4-7), if m=|Rpg(0)|<n,

(4-7)

codlng Zoa = codlmngB Zrga+ COdlmg_nO,(RB(a),JB(o))mFB

— im i &
cod M1.1p)uJp @) XMo.(Rp(0).Jg0) O

z?
> (n—|x(Tp)|+1) + (Ix(Tp)|=IRp(0)]) — (n—|Rp(0)[+1) = u—1.
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On the other hand, by the last statement of [24, Theorem 2.3],
max {dim N Z0|p: b€ Zgia} = 1.
We conclude that
max {dim N§00|b: bGZU;a} =< codimzy Z5;0 + 1.

The equality holds if and only if w=1 and I'p is a tuple of one-vertex graphs, ie the
image of M 1,(0)uJp(e) XMy under (o, is contained in MMy ;. This observation
concludes the proof of the stratification claim made in the previous paragraph.

4.3 Inductive construction

This subsection is the analogue of Section 3.4 in the present situation. Suppose o €

Ai(d, k) and we have constructed

(I1) anidealized blowup m5_1: 97?‘1’7{1 —>972?’k s_uch that 75— is an isomorphism
outside of the preimages of the subvarieties i)ﬁ(l’ o With o' <o—1;

(I12) for each o’ €{(0)}U.A;(d, k), a subvariety 97(‘17_0} of 97?‘1’7(1 such that

1,07

o’eAi(d,k)

My =MV UM me (M) =M, Vo' {(0)}UA (d. k),

and Sﬁf;L is the proper transform of 97?(1)’ o+ for 0*=(0) and for all 0* €

Ai(d, k) such that 6*>0—1.
We assume that

(13) forall 1,0,€A1(d, k) such that 61#0,, 01 £ 0,2, 0,401, and o—1<0q,0,,

— o~ .
me I nomo~! - 2)ﬁl,ﬁ(mﬂz)’ it 5(01,02)>0-1;
1,01 Loa ) _ &, otherwise,

where 6 (01, 05) is as in Lemma 4.6.

We also assume that for every o’ € A1(d, k) such that 0’ <o—1:

(14) 97?‘1’;} is the image of a G,/ —invariant immersion

Y NQU/(U_I) yno—1
to—1.0"" Mi,(Up 0,700 XM 8501 T507) — Pk -
if I0* e A,(d. k)

max {p€Ag(0’:0%): 0’ <0* <o—1},
s.t.o'<o*<o—1;

where @4/(0—1) =

0, otherwise,
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and
NQG’(U_I) _NQG’(U_I) n
My 807,750 = 0,85 07,7500 L D)
is the blowup of 971(0” Rp(01).T5(0") (IP", d) constructed in Section 3.4;

(I5) if o*€A((d, k) is such that c—1<o™* and 0’ <c™, then

—1 Ho—1 ~ THhoo(0—1)
lot1,0/ (M 52) = Mitp(e).7p0) ¥ ( U 755, )
Q€ Ag(0’;0%)

h0,(0—1) _ SHos(0—1) . . 0, (0—1)
where 9T, ) =9ﬁ0, " (P", d) is the subvariety of mto’(xB ©.75(0")

described i}l Section 3.4;
(16) an idealized normal bundle for the immersion (;_; 4/ is given by

ide
lo—1.07

=mpL @B, (6—1)Y (856", T5(0")-

Y ~Qa’(0_1)
where TR, Tp: ML(IP(O-/)’JP(O-/)) X mo,(RB(a’),JB(a’))

~ i QO-I(U_I)
—> M 1p©).7p0) Mo 8 p(07),75(07))

are the two projection maps and IL—)/VIL( Ip(a”),Jp(c”)) 18 the universal tangent
line bundle of Section 2.3;

(I7) Z‘;,_l = ! (97(‘7,?5)) is the closure of

o—1,0’ 1
5 = M tponimion X (Do oo (0) — ) e
o’ - 1,(1})(0 )7JP(U )) Qo-/(U_l) 0,0
0€AB(RB(c/):d.Jg(c’))
0,/ (0—1)<e

. o/ ~Q0/(0'—1)
in My (1p(67),7p (0 XM 8 5 (07), 75 (07 A0

zo—1 _ _ _ ide
NZO./ = j\/’la—l,a’lwz?,?()l) N

T 1,07

Z_U,_l
is the normal cone for Lg_1,0/|97t‘1’,z(}) in 97(‘1’7{1 ;
(I8) the immersion map
_ Y THhos(0—1) o —1
lo—1,0"" (Ml,(lp(a’);lp (a’))Xmo,(xB(a/),JB(a/)))/Go’ - fm(f,k

induced by t5—1 ¢ is an embedding.
Furthermore, we assume that for every 6*€ A1 (d, k) such that 60*>0—1:
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(19) the domain of the G4+ —invariant immersion (s_j o+ induced by (g o+ is

T Pox (0—1) —
Ml,(lp(a*),Jp(a*)) X Mo, (Rp(0%),Tp(0*))
max {peAp(c*;0”): if do’eA(d, k)
where  pgx(0—1) = 0/50—1,0’«7*}, st.o’'<o—1,0'<0™;
0, otherwise,

and Mf"&g;; Tp(c%)) —>./\711, Ip(6*)uJp(c*) 18 the blowup constructed in
Section 2.3;

(110) if o’eA;(d.k) is such that o—1 <o’ <0o™*, then
-1 Tro—1 ifPo*(0—1) m .
e @) = (U M) XD o) a0
pEApP(c*;0")

(I11) if o* is asin Lemma 4.7, an idealized normal bundle for the immersion ty_1 o

is given by
'A/‘Li:efl‘(,* = @ H;Lpa*(o’—l),i®ﬂgﬂi*l/0’
i€[m*]
. _p(r*(o'_l) 337
where  7p, g1 M%(1 L (6%). 1p (0% X 00,85 (0%), T (%))

T Po* (0—1) o
— MU p(0%),7p %) PM0.85(6%).T5(0*)

are the two projection maps and L, _, (¢—1),i —s M -1 is the line

1,(Ip(c*),Jp(c*))
bundle constructed in Section 2.3;

(112) Zo! ELU__II’ - (97?‘1’;01)) is the closure of
0 A fPo* (U_l) 1
Zgx C M1,(Ip(a*),JP(a*))XmO,(RB(o*),JB(o*))

and the normal cone
2"_1 = —_
N o* A[Lo—l.o*lm?,(ol)

for t5—1,5+| 225! is the closure of N 20,

: ide
m
20, 0,

lo—1,0%"’

(113) Im* 51,6 CUp—1<o/<o* Mo~! where

1’0./ s

- . ifPox(0—1) M o—1
to—1.0%" (M 10 7m0 < PM0,(85(0%), T (0*))) / Gox —> T,

is the immersion map induced by t5_1 ¢+ .
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Finally, we assume that

(114) the collections {ts—1,6'}o’e 4, (d,k) AN {lo—1,0’}o’e A, (d,k) Of immersions are
properly self-intersecting;

(I15) forall 6’€A (d, k), the subvariety im‘l’ (é) of i)ﬁl © 1s proper relative to the

immersions (51,6 and lo—1 5.

By the inductive assumption (/3), if oy and o0, are noncomparable elements of
(A1(d, k), <), the proper transforms of DJTO o1 and smo become disjoint by the time
either is ready to be blown up for any orderlng < extendmg the partial ordering <.
Similarly to the three blowup constructions encountered previously, (3) will imply
that the end result of the present blowup construction is independent of the choice of
an extension <. By (/9), our blowup construction modifies each immersion (¢ ¢*
by changing the first factor of the domain according to the blowup construction of
Section 2.3, until a proper transform of the image of 1 s+ is to be blown up; see
below. By (/11) and (/13), in the process, the singular locus of ¢y s+ disappears
and the first component in every summand of N ide . gets twisted to L. In particular,
all blowup loci are smooth. On the other hand, by the inductive assumptions (/7)
and (I8), for 6’ <o—1 the intersection of the proper transform of zml (0) with the
proper transform of the exceptional divisor Sﬁ" o+ 1s an embedding of a subvarlety of
a smooth variety. The singular locus of this subvariety is annihilated by the time the
entire blowup construction is complete, according to the inductive assumptions (/7)
above and the inductive assumption (/4) in Section 3.4. These assumptions imply that
the proper transform of 971(1), 0) after the final blowup step is smooth.

We note that all of the assumptions (/1)—(/15) are satisfied if c—1 is replaced by 0.
In particular, (/3) is a restatement of Lemma 4.6, while (I110)—(I15) are contained in
Lemmas 4.7, 4.8, and 4.10.

If ceA (d, k) is as above, let
ot 971‘1’k — 97t‘1’7€1

be the idealized blowup of Dﬁ" * ! along M2, which is a smooth subvariety by the

l,o0 °
inductive assumption (/13). We denote the idealized exceptional divisor,
ide ide
97?(17;1 - '/\/la Lo’

by 971‘1730. For each o’ €{(0)}LI(A;(d, k)—{o}), we denote by

0 o—1 o
s.‘)jtl,g/ C Bla_jtcl;';l ml’k C ml,k
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the proper transform of 97?‘1’;} .Let mg=my_107,.

The inductive assumptions (/1) and (/2), with o —1 replaced by o, are clearly
satisfied, while (73), (I8) for 0’#0, and (I113)—(115) follow from (2) of Lemma 3.3,
Corollary 3.4, and Lemma 4.5. On the other hand, by (19), the domain of the immer-
sion Lg_1,5 18

400 (0—1) 337 A 337
Mo Tp(@) *T0.085(0),750) = M1,Up(0),7p @) XMo,(85(0),75.0)-

By (I11), the chosen idealized normal bundle for the immersion t(5_1 ¢ is given by

@8) N =D npLoyo-1,i®7pm Lo =1L ® 7h Fxp(0),75(0))-

lo—1,0
i€[m]

Thus, the domain of the immersion (5, induced by (5—1 4 is
id v 0
PNE o = Mitp©),7p0) * Mo (8 5(0),75(0))
— A 0o (o)
= Mi1.tp©).7p©0) * M85 (0),750))"

By the first statement of Lemma 4.3, an idealized normal bundle for the embedding
lo,o 1S the tautological line bundle over P/\/Li;i‘il o 1e

N = apL®TpV(8p(0).J5(0) = TPLOTRT) () V(85(0).J5(0))-

Thus, the inductive assumptions (/4) and (16), with 0’=0 and o—1 replaced by o,
are satisfied. The same is the case with (/8), since the map 15_1 » is an embedding
by (113).

We also note that by the first statement of Lemma 4.9, the inductive assumptions (/1)
and (/2), and the last statement of Lemma 3.3,

e (G4 = Miipraron < (U Do)

0€AB(0;0*)

for all 0*€Aq(d, k) such that 0 <o ™*. In addition, by the last statement of Lemma 4.9
y = TMI-L/T(M XM o) C Nide
La_l’a}Ml,(IP(a).JP(a))Xfm(),Q Lot [ T(Mip(@).00)*Moe) to-Lo

is a vector bundle for all o€ Ag(0;0*) and

* ho—1
o101ty 1 piors piorx o T W0 [ T(M1,(p0),750)*M0.0)

= @ n;Li®JT;;JTi*L0.
ieXp (o)
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Thus, by the first equality in (4-8),

. _ _ _
L"_l"’}/\711.(1p<a>,1p(a))><97?o,g Tsm({"’*/T(MI’UP(”)’JP("))XWO’Q)

=7pl® @ ngn; Lo
ieRp(0)
=apl @ g Fp.p.

It follows that

Lajal (971(17,0*) = U P(rpL ® HEFQ;P)}/\711,(1,)(0),Jp(a>)><9_7&).g
0€Ag(0;0™*)

= Mi,(1p@). 0@ ( U PFQ§P)
0€Ap(050%)

— AA — l)
= Mi,p(0).7p(0) X ( U imo,g)
0€Ap(0o;0%)

7 . rr( )
= Mi,(1p(0).Jp (@) X ( U o557 )
e€Ag(0;0%)

as needed for the inductive assumption (/5) with c—1 replaced by o and ¢’ =0
Furthermore, by (112), N §g ~1 is the closure of
Z0|  _
NZU|Z§,’ = kerDO’”|M1,1P(a)ujp(a)X%.(NB(U).JB(G))

= ”;;L ® ﬂ; ker D(xB(U)a‘,B(U)) |M)’(RB(0)'JB(O_))

in 73 LT Fist5(0),J5(0)) - Where D(xz(0),J5(0)) is the bundle homomorphism de-
scribed in Section 3.3. Thus, by the first statement of Lemma 4.5,

27 =1, (M] o)
is the closure of
M, (1p©),7p0)) X VD EP Fx5(0),750) | 90,08 5 01,7501 * Pob=0}

in /\711,( Ip(0), JP(O-))Xﬁth(gTB?(O_) T5())" The inductive assumption (I7), with 0’ =0
and o—1 replaced by o, now follows from the first statement of Lemma 3.11.

We next verify that the inductive assumptions (/4)—(77) hold for 0’ <o, with o—1
replaced by o. If 0’/ 40, then

06/ (0) = 067 (0—1) and ﬁf;} N 972(1’;1 =g,
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by definition and (/3), respectively. It then follows that

lo,o’ = lo—1,0"> Nlde = Nlde

lo,o’ lo—1.0""
M] o NG o =M} MM L YV o*e{(0)}UA;(d. k).

* — *
,0 1,0

Thus, the inductive assumptions (/4)—(17), as stated above, imply the corresponding
statements with 0—1 replaced by o.

Suppose that 6/ <o . By (I4) and (1) of Lemma 3.3, the domain of the immersion
lg,o induced by t15_1 o/ is the blowup of

—~ o Oy (0’—1)
M (1p6"),7p @) X Mo 8 5 (07, 75(07))

along the preimage of smgf;l under (5_; 5 in

: Y NQJ’(U_I)
dx7g,,(0-1) Mi,(1p0"),7p @) Mo 8 5 (07,75 (67))

=~ 10
—> M 1p9),7p 6N Mo (83 (07), T3 (07))"

By (7I5), this preimage is

Y T (r’( _1)
Miaponasen > (95 ).
0€Ag(0/;0)

By the inductive assumption (/5) in Section 3.4 and the second paragraph after
Lemma 4.9,

0o (0—1 0o (0—1 .
imf,",gf" )ﬂimf,",gz(" "=z VYoi.0:€A5(0":0). 01702

Qo' (0'—1)

Thus, by the construction of Section 3.4, the blowup of 97?0 (Rp(0).J5(0")) along

U g,

e€Ap(07;0)

is 9728"’(';2)(0,) Tpn) 38 needed for the inductive statement (/4), with o—1 replaced
by o. The inductive requirement (/5) is obtained by the same reasoning, using the
last statement of Lemma 3.3.

Since 97(‘1’;1 is not contained in 97?‘1’ ;} , the bundle homomorphism

* yo—1 ide
La—l,a’Tgﬁl,a 'A/‘LC,_I’G/

must be surjective on every fiber over L;ll 0,(97?‘1’;1) by (/14). Thus, the inductive

assumption (16), for 0’ <o, continues to hold. Furthermore, by (/7) and the last
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statement of Lemma 3.3, fg, is the closure of

~ ~ _ S04 (0—1
Mi,Up (o), Tp(07) X (DQU}(U—I)(O) - U o ))
o€ Ag(Rp(o/):d.Jg(c’))
0,/ (0—1)<o
~ ~ _ = 05/ (O
= Mi,Up(6"),7p(0") X (DQO/I(J—I)(O)_ U o, - U mﬁfg( ))
o€Ap(0/;0) o€ Ag(Rp(o/):d.Jg(c’))
057 (0)<e

in Ml,(lp(a/)’h,((,/))ximgj’(/é;)(a/)JB(a,)). By the construction of Section 3.4,

~

D ~
05/ (0—1) | 57857 (@) _ -
7 My g (0.5 " ocap© )M o

=D |
007 | 5007 @ B -
“ Mo.x g’ T @) Uoeag©/:0)M5 o

Since 590,((,) is transverse to the zero set outside of the subvarieties 97(31; © Wwith
0>007(0) by the inductive requirement (/4) in Section 3.4, we conclude that the first
part of the inductive assumption (/7), with 0—1 replaced by o, is satisfied. The second
part follows from the last statement of Lemma 4.5.

It remains to verify the inductive assumption (/9)—(/12), with 0—1 replaced by o.
Suppose 0*€ A1 (d, k) is such that o0 <o ™. If 0 £0*, then

Po*(0) = pox(0—1) and ﬁ?;ﬁ N 97?‘1’;1 =g,
by definition and (/3), respectively. It then follows that

loo* = lo—1,0% Nlde =N1de

lo,o* lo—1,0%’
M e VMG, =M ANMI} Vo' e{(0)}UA (d k).

1,0/

Thus, the inductive assumptions (/9)—(112), as stated above, imply the corresponding
statements with o0—1 replaced by o.

Suppose that 0 <o *. By (/9) and (1) of Lemma 3.3, the domain of the immersion
lo,o+ induced by t5_1 o+ is the blowup of

i7Po*(0—1) o
Ml,(lp(a*),Jp(a*)) X Mo, (Rp(0%),T5(0*)

along the preimage of 971‘17;1 under t5_1 o+ in

s 1. A fPo* (o—1) m
T pe (0 =1) XA M7 1 (00, 7 (0%)) <00, 5 (%), 75 (0%)

- ‘/\71lsIP(U*)UJP(U*)Xﬁoa(RB(U*)s-’B(U*))‘
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By (110), this preimage is
_,00*(0'—1) Sh7
( U M ) X Mo, (% p (%), T5(0*))-
pEAp(0*;0)

By Lemma 2.6 and the paragraph after Lemma 4.9,

g Po* (0—1 T Po*(0—1 )
Mfl},pl(a )me,pz(U ) = V,Ol,,OzeAp(O*,O), o1 75102.

pox(0—1)

Thus, by the construction of Section 2.3, the blowup of /\711 (Ip(c*).Tp(c

Y e

pEAp(c*;0)

) along

is /\71';) ’”&ff(z*)’ Tp(oy)® 8 needed for the inductive statement (19), with c—1 replaced
by o. The inductive assumptions (/10) and (/11) are verified similarly, using the last
statement of Lemma 3.3 and Lemma 4.3. The argument for (/11) is nearly identical to
the verification of the inductive assumption (/11) in Section 3.4. Finally, the inductive
requirement (/12), with 0 —1 replaced by o, follows from the last statement of
Lemma 4.5, along with the assumptions (/1) and (72).

We conclude this blowup construction after the o« step and put

i)Jt(l),k (Pn’ d) = 97{‘1’?’(38)’ ﬁ = namax

giome»  and Z,(IP’”, d) = Z‘,’m“.
1.(0)
The inductive assumptions (I 1)—(Z8) imply that
7 ) L (P, d) — MY L (P". d)

is a desingularization as described in Section 1.2. By ([I3), the final result of this
blowup construction is independent of the choice of full ordering < extending the
natural partial ordering < on A;(d, k).

5 Proof of Theorem 1.2

5.1 Pushforwards of vector bundles

In this section we prove Theorem 1.2 by lifting the construction of Section 4 from
stable maps into P”* to stable maps into (the total space of) the line bundle £ associated
to the locally free sheaf Opn(a).

Let t: L—>P”" be the bundle projection map. We denote by Sjtl,k (L, d) the moduli
space of degree—d stable maps from genus-one curves with & marked points into L.
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The projection map t induces a morphism,
p: My, (L, d) — My (P, d),  [Z,u]—[Z,70ul

Since no fiber of £ contains the image of a nonconstant holomorphic map, the ghost
components of (X, T ou) are precisely the same as the ghost components of (X, u).
We note that

PN (S, u) = HO(Z:u*L) / Aut(E, u).

In particular, p is a bundle of vector spaces, but of two possible ranks: da and da-+1.
Let Sy denote the sheaf of (holomorphic) sections of

P30 @n.ay: Mk (L, d)|9—,@‘k(]},,n,d) s M (P, d).
Similarly, denote by S  the sheaf of sections of
p: ﬁ*g?tl’k(g, d) _>93"[(1)’k(]?n’d)’

where T 971(1) (P d )—>97?(1), « (P", d) is the desingularization map of Theorem 1.1:

M, 4o (L, d)—2s My 4 (L. d)

K |

i)3}(1),1((1?)"» d—* . My (P, d)

Lemma 5.1 With notation as in Theorem 1.2 and above,

(1) the sheaves S, and m«ev*Opn(a) over 971(1),,( (P", d) are isomorphic;

(2) the sheaves Sy and w47 *ev* Opn (a) over S)Aﬁ(l)’k (P",d) are isomorphic.

Let 4, be the universal curve over 9711’;{ (L, d)|39 , (pn,q)> With structure map 7.
and evaluation map ev,. The projection map 7 induces a morphism p on i so that
the diagram

ot "
D

Up 1

e |

My 1 (L, d)|ﬁ?‘k(w,d)_p> Mo (P, d)
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commutes. Suppose WCE)?T?,k (P", d) is an open subset.
(1) An element
s € {mxev* Opn(a)} (W) = HO(x 1 (W); ev* L)

induces a morphism 5 w1 (W)—L so that ev=705. In turn, 5 induces morphisms
Js and fs to My (L, d)|5n9 , pr,a) and Lz,

1wy —Ls Se—2f
| .
W S 3 (L) 5

k(L. Dl @n.a)

so that §=ev o fs Then

evopo fy=toevso fy=t05=ev: 1 (W) —> P" — po fs =idy,

since mo po f; = po feom. Thus, fy€S,(W). It is immediate that the map
{rxev* Opn (@) }(W) — S (W), s —> f,

induces a sheaf homomorphism.

(ii) Conversely, let 0 €Sp (W), ie 0: W —>97(1,k (L, d) is a morphism such that
poo =idy . Since Uy =p*u,

W) = Ul =o*Y,.

Thus, o lifts to a morphism

G (W) =0*Uy — Up.
Let go=ev,oo. Then

TOgy =TOEV,LO00 =€EVO POoa = eV,
ie g€ HO(n~1(W);ev*L). It is immediate that the map
S (W) — {n*ev*(’)]pn (a)}(W), 0o — go,

induces a sheaf homomorphism. Furthermore,

gr,=s Vse {n*ev*(’)]pn (a)}(W) and Jeo =0 Yo eSc(W).
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These observations imply the first statement of Lemma 5.1. The second claim is proved
similarly.

Let MY 4 (L.d) C My 4 (L. d)

be the closure of the locus of maps from smooth domains. We show in Section 5.4 that
the proper transform MY ; (L. d) of MY 4 (L. d) in

Ty 4 (L. d) — MY (P, d)
is smooth. Similarly to the case of 971(1) « (P", d), the main stratum of 971? (L.d),

ML (L. d) = Ty o (L. )| gy, gy = D a (L) = ) p7' (Intg,,.0).
’ oeA(d,k)

is smooth. On the other hand, by the inductive assumption (/1) and the last paragraph
of Section 5.4, for each o€ A (d, k)

S)j’\-:t(l),k (E’ d) N p_l (Im LUmaxra)

is the image of a smooth variety under the bundle homomorphism j__ lifting the
embedding 75, o of Section 4.3. Thus,

ﬁ??’k (L,d)yn p_1 (Imtamax,g)
is a smooth subvariety of iﬁ?’k (£,d). As its normal cone in ﬁ)VT(l),k (L,d) is a line

bundle by the inductive assumption (/1) of Section 5.4 for every o € A;(d, k), we
conclude that the entire space im?, « (L, d) is smooth. Furthermore, the fibers of

7 MO (L. d) —> MY 4 (P", d)

are vector spaces of the same rank and 97(‘1) « (L, d) contains ﬁ)v?(l) «(P",d) as the zero
section. Thus, p is a vector bundle.

Lemma 5.1 and the previous paragraph imply (1) of Theorem 1.2. The second claim of
this theorem is obtained in the last paragraph of Section 5.4. Finally, (3) of Theorem 1.2
follows from (4) of Theorem 1.1 and the following lemma.
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Lemma 5.2 Suppose 7: M—>M is a morphism between varieties, ${—> 90 is a
flat family of curves, L—> 4l is a line bundle, and 7: §—>9M and £L—> 4 are the
pullbacks of 3\ and L via 7 :

If the morphism 7 is surjective and its fibers are compact and connected, then

Since L is locally trivial, Lemma 5.2 follows from
7xOg = Oy

In turn, this identity follows from the fact that every holomorphic function on a compact
connected variety is constant. Thus, if Wil is any open subset and f is a holomorphic
function on n_l(W)Cil then f is constant on the fibers of 7, ie ]’ 7* f for some
holomorphic function f on w.

5.2 Construction of bundle homomorphism

In this subsection we describe the surjective bundle homomorphism that appears
in the second statement of Theorem 1.2; see Proposition 5.5. The construction of
this homomorphism is similar to the construction of the homomorphism 5(& J) in
Sections 3.3 and 3.4.

Let £L—P" be a line bundle as in Section 1.2. If J is a finite set, let
Vo = Mo o3us (£, d) — Mo goyus (P", d)
be the corresponding cone. In particular, if [X, u]eﬁto’{o}u J(P",d), then
v0|[23u] = H°(Z:u*L)/Aut(Z, u).
In this, genus-zero, case, this is a vector bundle of the expected rank. Let

VET(S;u*L) — T(E; T*SQu*L)
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be the pullback of the standard Hermitian connection in £ by u. We define
Do € T'(Mo soyus (P", d); Hom(Lo®Vy, evi L))
= I'(Mo o3us (P", d); Hom(Lo, Hom(Vy, evy L))
= T'(Mo 1o3us (P", d); Hom(Vo, Hom(Lo, ev§ L))
by Dok = V'|xpma) YESH (Zu*L),

where xo(X2,u) € X is the marked point labeled by 0 as before. We note that D
vanishes identically on the subvarieties Mg o (P”, d) with o € Ay(d, J) defined in
Section 3.2.

If R and J are finite sets, let
e, Var,s) — Mo, s)(P". d)

be the vector bundle induced by £, where 97?0,(& 7)(P",d) is as in Section 3.3. It is
immediate that

Vi) = {(Si)iexé@ 7 Vo evo (&) =evo(&ir) Vi i'€R} = Mo x.1y (L, d).
ieR

Note that for every o =(m; Jp, Jp)€Ao(d, J),
teVo=15V(m1,75) — Mo 1o3uim1ng s XMo,(ml, ) (B". ).

where ¢, is as in Section 3.2.

Lemma 53 IfdeZ™, J, L, and V, are as above, the bundle homomorphism
Do € T'(Mo 10117 (P", d); Hom(Vy, L ®evg L))

is surjective on the complement of the subvarieties 97(0,0 (P"*,d) with o€ Ayg(d, J).
Furthermore, for every

o=(m;Jp,Jp) € Ao(d, J),
the differential of ©,

VD¢: N,, — 15 Hom(Vy, Lg®evy L) = p Ly Q@ gHom(V (1, 75)- eVo L),
in the normal direction to the immersion (s is given by

VD,

_ * . * ___k .
ﬂ;Li@]’L’ETEi*L() —_— JTPS1®7TB7TI @0 Vl (S [m],

where s; is the homomorphism defined in Section 2.2.
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Lemma 5.3 can viewed as the analogue of Lemma 3.8 for vector bundle sections. The
first claim of Lemma 5.3 is an immediate consequence of the fact that

H'(Z;u*L®0(-22)) = {0}

for every genus-zero stable map (X, ) and a smooth point z€3: such that the restriction
of u to the irreducible component of ¥ containing z is not constant. The second
statement follows from [25, Lemma 4.2].

With notation as in Section 3.3, let
Dw.J) € F(S)FTO’(&J)(]P’”, d); Hom(Vx, y), Hom(Fx 1), evgﬁ)))
= T'(Mo, .y (P", d); Hom(Fx ), Hom(Vx 1y, evg L))
= T'(Mo, .7y (P", d); Hom(Fx, 1y®Vx.1). eV L))
be the homomorphism defined by
B {n,.*so, if j=i;
i Lo®miVo 0, otherwise;

Dx,J) Vi, jeR.

It induces a section
Do el (2)7?8,(&])(?", d); Hom(y(x, ). Jrﬁ';F(N'J) Hom(V(x, 7). evg L))
50 .
=L (Mg x5y (P". d): Hom(np g Vi) Eg®7f  eve L))

This section vanishes identically on the subvarieties 9718 Q(]P’”, d) of 97?8 ® J)(IP’”, d)
with o€ Ay(R; d, J), defined in Section 3.3.

Lemma 5.4 The bundle homomorphism
Dy € F(S)j?g’(N’J)(P”, d); Hom(yrf;F(M) Vn,J) E:)‘@n;(&]) evg L))

is surjective on the complement of the subvarieties 9728 o+ (P", d) with o*eAo(R; d, J).
Furthermore, for every 0* € Ag(R; d, J) as in Lemma 3.10, the differential of 50,
VOo: Ny s —>LJ’Q*HOH1(7TI;F(N,J)V(x’_]), IEE@JT}';(NJ)eVzE)
= 7 pEg®@m gHom(Vins(0%).75(0"))> €V0 L)
in the normal direction to the immersion Lo o+ is given by
\o R

% ) % % . * *
mpLo.a.n®wgni Lo HPSO,(l,l)®ﬂBn(l,i)®0 Vi E[Wll ]’ IE&P(Q )s

V50}NJQ* = mpid®TED 8 (0*), /5 ("))
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where s¢, (1) is the homomorphism defined in Section 2.4.
This lemma follows immediately from Lemma 5.3.

Proposition 5.5 With notation as above, there exists a surjective bundle homomor-
phism
D) € T (Mo ox,0)(P". d):

* * Tk * * *
Hom(nO,(&J)nPF(x,J) V). E ®n0,(&1)nPF(x,J)eV0£))

- 50|]P>F° ’

such that 5
®,J) ‘]P’FO &

R.J)

where P FQ ) =P Fu.r)

— Y M @ d) C MY sy (P d). Mg x5y (P d).
e€eAo(R;d,J)

In fact, in the notation of Section 3.4, for every o €{0}U.Ay(R; d, J) there exists a
bundle homomorphism

~ o) . * % * *__% *
©Q S F (WO’(&J) 5 HOm(JTQ ﬂ]P’F(;Q’J) V(R,J) N ]EQ®7TQ T[PF(;.;,J)eVOE))
such that
(i) the restrictions of 59 and 50 to PF (0& ) agree;
(i1) 5Q is surjective outside of the subvarieties 97?8’ o* with o*>0;
(ii1) 5Q vanishes identically on the subvarieties 97?’3 o with o*>0;

(iv) for each o* >, the differential of D ¢ 1n the normal direction to the immer-
sion (g o+ is given as in the statement of Lemma 5.4, but with sq (; ;) replaced

by Sp,«(0),1,i) -

Similarly to the construction of the bundle sections 59 in Section 3.4, we construct

the bundle homomorphisms 5Q inductively starting with 50 and twisting by the
exceptional divisor at each step. The inductive assumptions (i)—(iv) are analogous to
(13), (I4), and (112) in Section 3.4 and are verified similarly. Of course, we take

5(R,J) = ﬁgmax'
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5.3 Structure of the cone V{” k

In this subsection we describe the structure of the cone
po: My k(L. d) — My 1 (P",d),
restating the primary structural result of [25].
For each element 6 =(m; Jp, Jg) of A;(d, k), let
Vi =MoL, d) = pg' (M} ;) CV] =M1 k(L. ),

with 971(1) o as in Equation (4-3). The subvarieties 9711,(, (Z, d)_of 97?1,/{(5, d) can
also be defined analogously to the subvarieties 1y (P”, d) of M, x (P",d); see the
beginning of Section 1.2. Similarly to Section 4.2, let

. . =0 0 0
Jo.ot MY (1p0),7p(0)) X V85(©0).75(0) = Vio C Vik

be the natural node-identifying immersion so that the diagram

—0 j0,0’ 0 0
M 1p@)ipe) X Vas@ise) —— Vie C Vik

id Po,o lPO

iq0 7 Lo.o T30 370
My ap@)ipe) X Pop@.ipe) —— M, C M,

commutes.

Lemma 5.6 Ifd,neZ% and keZ™, the collection {Jo,0}oeA, (d k) of immersions

is properly self-intersecting. For every o € A1(d, k),
Ny = {idxpo.g } NG5,

is an idealized normal bundle for jg 4.
The differential dpg of pg induces a surjective linear map
Imdjy s — Imdige.
Since the fibers of pq are vector spaces, it follows that dpy induces an injection
JooTCVY  [Imdjo s —> 1§ ;, TCMY 4 [Imdigq.

Thus, Lemma 5.6 follows from Lemma 4.7.
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We denote by V? ) the main component 97?‘1)’ « (L, d) of the moduli space m, k(L. d).
If oeAi(d, k), we put

Wf,) = jo,_(;l (V?,(())) = jo,_al (V?,(O)ﬂ V?,a)'

Note that {idxpo,a} (W(?) = Z_ao = ‘o_,zy (ﬁ?,(o))'

0 ~ pfide : 10
Let NWg CN  be the normal cone A/}o,alv? for jo,olyyg in VY () Its structure

is described in L;gmma 5.7 below. Let D¢, be (t(ﬁe section of the bundle
Hom(7 3V (% 5(0).75(0)- Hom(N;(* . mEEG®75evg L))
= Hom(Ng* . 7pEg @7 sHom V(s 5 (0),75(0))- €V £))

over M?,(IP(U),JP(O_))Xm()’(&B(o-),_]B(o-)) defined by

goaaln;Li@mEni*Lo = mpsi®mpn; Do, Vi€[m],
where s; and ®¢ are as in Sections 2.2 and 5.2, respectively. If & EJT;V(;: 5(0),J5(0))>
we will view D & as a homomorphism

@0’05: N@de =Nide

* * * *
Jo.o ‘g .0 ‘{idxpogg}(g) > nplEy®@mpevy

L ‘ {idx po.o }(§)

Lemma 5.7 Forall e A (d, k), V? ) is a proper subvariety of V? « relative to the
immersion jo . The homomorphism

NWg — {idxpoo}*N'Zg

induced by dpy is injective. Furthermore,

Wel 2o = {E€TEV850). 7500 | 29 ke D008 50|00 1 F1OH
NWf,’}é = ker {Do,q £} }J\/’Zgl{idxpo e '/\[Jl(()iecr v 5€W3}gg-

Finally, WY is the closure of WY| 20 In

70
M. (15.(0), 7500 XV R5(0),750)
and N'W? is the closure of NW? }Wg in /\/}gif :

)
Since the fibers of pg are vector spaces, the first two sentences of this lemma follow from
Lemma 4.10. The middle claim of Lemma 5.7 is a restatement of [25, Lemma 3.4]. The
remaining claims of the lemma follow from [25, Lemma 3.4] by dimension counting,
similarly to the argument following Lemma 4.10.
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Remark It may appear that the statement of Lemma 5.7 depends on the choice of a
hermitian connection (or metric) in the line bundle £L—P”". As explained in detail in
[25, Subsection 3.3], the dependence is only on the holomorphic structure of L, as the
case should be.

5.4 Desingularization construction
In this subsection we lift the inductive blowup construction of Section 4.3 to the cone
.0 70

For each 0 €A4(d, k), let lk—n V « be the pullback of PO Lk to 93?

— 0
Lk =7o V Vik
Po Po
— T —o
M — M
For each o'€ A, (d, k), let
71
la’ ka‘s:nff o (V k|£m" )
The bundle homomorphisms jo , lift to bundle homomorphisms onto V7 o covering
the immersion ¢4,/ of Section 4.3:
by £y Joo' Ly c e
L,UIp(a"),Jp(0) X Ty, (0) PF.s) Y ®B(0),JB(0")) 1,0/ 1,k
/ .
o'<o: Jid [pw, Jp"
A A Qo"(g) Lo’ 337 317
Ml,(IP(U/)ajP(U/)) X mo ,(8p(0"),JB(c”)) m(l’ o’ C 93?‘1’,16
— 05/ (0) Jo.o’ o o
My Upon.Tpe) X VRB©).7567) Lor C Vik
/ .
o'>0: Jid lpm, Jpa
ifPo’ (0) ST7 lo,o’ 37
M (o). Tp ) > P0,05(0"), T5(07) M C MY,

The collection {is,6'}57e.,(d,k) Of immersions is properly self-intersecting by the
inductive assumption (/14) of Section 4.3. Thus, by the same argument as in the
paragraph following Lemma 5.6, so is the collection {js,5/}5/¢ 4, (d,k) - Furthermore,

D NI, = {idxpaar N

lo,0’
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is an idealized normal bundle for js /. These two observations also follow from
Lemma 5.6 by induction using Lemmas 4.2 and 4.3.

Lemma 5.8 IfoeA,(d k), Vﬁ;l is a smooth subvariety of Vﬁ;l and
Do Vﬁk — ﬁ?,k

is the idealized blowup of Vf;l along Vf;l .

Recall from Section 4.3 that the immersion
To-1.0" (M1,p©).7©@)XD0,0850).7500) / Go —> M1 € MT!
induced by t5—1, is an embedding and
o 971‘17!,( — 971‘17;1
is the idealized blowup along 971‘1’;1 . Thus, the immersion
Jo-1.0t (Mi1,(1p@).7p @) V850),7500)/ Go — Vg C V!
induced by j,_1, is also an embedding and Vf;l is a smooth subvariety of Vﬁ;l .
Let Ag: YV —> Vﬁ;l
be the idealized blowup along Vf’;l . Since

j\/}ge—l,a = {lprc—l,U} M‘f"_l,o
and the linear map
j:—l,UTCVi;l/Im dja—l,a — L:_I,UTCQ?I?}l /Im dLO'—I,U

induced by dp,—; is injective, py—; lifts to a map p over the blowdown maps 7, :

o o—1
v Vik
D Po—1
o g ro—1
SInl,k S):nl,k

Then p and the top arrow 7, factor through a morphism f to 75 Vi’;l:
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We show in the next paragraph that f* is an isomorphism. Since 75V} kl =V7 o this
implies the second statement of Lemma 5.8.

By construction, the maps
Tyt 97I‘1’k — 97t‘1’7€1 and Tg: YV —> V{’;l
are isomorphisms on the complements of the idealized exceptional divisors

o _ cide YO o _ cide
o 259—)1(17;1 le,k al’ld 1,0, =(€v?—;1 CV.

Thus, f: V—7;V;  is an isomorphism over the complement of 971‘1” o 1N 971‘1” k
particular, f is linear on all fibers of p. Furthermore,

TV % }W ={({, v)eIP’./\/"de lxv;’k g (€)= po—1(v)}.

On the other hand, since

id idi
Nlcfl Pg 1-/\/-le

Vi
by (5-1), we have

Pg P Nlde 1—{(U Z)GV?k XPNlde S Po—1(v)= ”a(g)}

Thus, the restriction of f* to V7 o must interchange v and £, ie itis a Vector bundle
isomorphism over 93?1 k- Fmally, EITI" ! is a smooth subvariety of Vf . and

(zm Yy ):TS)JT‘{;:TCDR‘I’;C mTVﬁ; cchl,;.

Thus, similarly to (1) of Lemma 3.3, the proper transform of 97(‘1’7(1 in V is the blowup
of Sm" s along

mt mz =mo!

1,0 °

ie V contains E)JT” ks the zero section. The map f must be the identity on sm
Since f isa hnear isomorphism on all fibers of p by the above, it then follows that f
is an isomorphism everywhere.
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Remark If Vﬁ;l is a vector bundle over 97?‘1’7(1 , the second statement of Lemma 5.8
applies to standard blowups of 97?‘1’7(1 and V{’;f as well. However, the second statement
does not generally apply to standard blowups in the setting of Lemma 5.8, as the
analogue of the morphism f may not be surjective.

By the inductive assumption (/1) of Section 4.3, the projection map 7, is an isomor-
phism outside of the subvarieties V7 , with o’ <o . We denote by

Vi C Wik
the proper transform of V? ) For each '€ A;(d, k), let

5 = Joo VT () = Joo (V5 )NV 1)

By the inductive assumption (/15) of Section 4.3, 97?‘1” 0) is a proper subvariety of
93?‘1’, r With respect to the immersion (5. Thus, by the same argument as in the
paragraph following Lemma 5.7, the subvariety Vﬁ 0) of Vﬁ « 1s proper with respect
to the immersion j4 . Furthermore, if

NWZ = NW;_ e CN%

1,(0) Jo' .o

denotes the normal cone for js/ s|yyo, in V] 0)’ then the homomorphism
o >
NWE, — {idx po.o Y * N 22,

induced by dpg is injective. These two observations also follow from Lemma 5.7 by
induction using Lemma 4.5.

If O’/E.Al(d,k), let

205 = Dy (O NP Fi1p(o1),0p0)

Mo,k p (o). Jg0)

By the inductive assumptions (/7) in Section 4.3 and (/4) in Section 3.4,
= 1 (=
Zg’ = ta,a’ (gﬁtlr,(o))

is the closure of ﬂl,(lp(a/)’Jp(g/))xgg/.B in

Y i Qo7 (0)
M (1p0"),7p @) X Mo 8 5 (07, 75(07))

for all o€ A (k,d) such that 0/ <o.

Suppose 0 €{0}UA;(d, k) and 0’ € A;(d, k). We claim that
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(11) if 0’<o, then WY, is the closure of

Mi(1p(0),7p ) ¥ ket Dol 30,
C Mi,(1p(0"),Tp(0") X TP Fyy V8 5(01),T5(0)-
M Up©).Ip©@) X Ty, (0)TB Fes sy Y®B(07),T5(07)
in Mi,(1p0),7p(0") X Ty (0) P Fos. sy V(85(0),J5(0") and

N 0/ _N1de

(12) if o’>0, then W2, and NWY, are the closures of

P (0)
Wa’|z° C Ml ,Up(0’), Jp(a/))XV(NB(o’) Jp(0"))> M1 ,Up(0’), Jp(a/))XV(NB(a’),JB(a’))
ide ide
and NW ’ WO I () C'/\[jlo a’|W2/|ZO ./V;o /,./\[la

in Mfo(/l(gza/) I (0/))XV(& 5(67),J5(0")) and in /\/}S;,, respectively.

If 0 =0, the assumption (/1) is trivially satisfied, while (/2) constitutes part of
Lemma 5.7. Suppose o € A;(d, k) and the two assumptions hold with o replaced
by o—1. By Lemma 5.8, V9 Lk is the idealized blowup of V77 I along Vi Thus,
by the last statement of Lemma 4.5 both of the inductive assumptlons contlnue to hold
for o’#0.

On the other hand, let

Zo:8 = {DE€Mo,4(0),75(0) keI D), 75(0) 70}
Wo:p = 1E€V5(0), 7500 | 20:5°
ker {D 5(0), /50N ke Do yior s pian oy o6 7 (O3
NWg?B ={Ev): EEW{(’);B’ UEker{go’aé}‘kerD(xB(cr),JB(a))lpa_l,U(s)}
C Pg—1,6F85(0).75(0))-
By the inductive assumption (/12) in Section 4.3,
27710 (M (15 0),790) XT0,085(0).75(0)) = M1, (1p(0).7p(0)) X203 B:

0 _ I *
J|M1,(Ip(0).JP(a))XZU:B - T[P]L ® T[B kerD(xB(U)y-]B(U))'
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By the inductive assumption (/2) above, Lemma 5.7, and the inductive assump-
tion (/11) in Section 4.3, W2~! and NWZ ™! are the closures of

#{0}}
h

0 .
Wolzo = {8€7 V85007500 |20 ker iDo.0€} v 20100 1

and NWUO‘W3|ZO = {(5, v): EGWao\zg’ UEker{@O,oE}{N?fgl

{idxpg. o (&)
C N Ni 1
in M,(1p(0),7p(0) Y 88(0).J5()) and in
N =L ® gDy o Fp(0),5(0))-

As before,

7P, B M, (1p(0).Jp (@) X VR (©0).75(0) — M1,Up(0).Jp @) VRE(©).J5(0)

are the projections onto the principle and bubble components. The bundle homomor-
phisms s; and 5; of Section 2.3 agree on

Mi,Up(0),7p(0) € M1,Up(0),Tp(0) M1,Up(0),Tp(0)-

The homomorphism §; is an isomorphism from Z,- to E* over Ml,( Ip(0),Jp(0))» and
both line bundles are isomorphic to L. It follows that WJ ~land N )4%4 ~1 are the
closures of

My tp@).Ipen x Wep  and L@ TN W p

in My, (15(0),7p(6)) X V(R (0).J5(c)) and in
N =rpL®nppi 1 o Fatp(0),I5(0))-

Jo—1.,0
Thus, by the first statement of Lemma 4.5,
_ -1

We = o (V1 )
is the closure of
P(np L@ g N Wy, p) = Mi(1p(0),7p(0) X PAW,.

= M, (1p(0).7p(0)) X kerDolz0
” ~
CPNE | = MiUp@©),Jp @)X TP Fis s, VB (0),T5(0):

ie the first part of the inductive assumption (I1) for ¢’=0 is satisfied. Furthermore,
by the second part of (1) of Lemma 4.5,

NWE = Yot |y = ([0 poc} Vg1 yyg = (i0%poa} "N [yye = N |-
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We have thus verified the second part of the inductive assumption (/1) for 6’ =0

Since the immersions 74,5 With 0’ <o are embeddings by the inductive assumption (/8)
in Section 4.3, so are the immersions

Joo': (Mi(p(0). 1000 X5, (o) s, Y850 I5@)) | Gor —> Vi 5 TV

induced by js ¢ . In particular, all of the morphisms

Jommo't (Mi(1p(67),7p6) X0 (8 (071, 7507) T Fos.sy V50, I50) [ Go’
—> Vi C VP = 7M1 (L. d)

1,07 1,

are embeddings. On the other hand, by the inductive assumption (/1),

Wa/ = Wg;nax = jg;:x,a/ (ﬁt?,k (£, d)) = ja;alx,a’ (V;I,"Z“S))

is the closure of
M, (1p ). 7p@07) ¥ kerDolz0,
C M (1p (67,77 0) 70, (85.(07),5(0/) TP Foss sy Y R0, T5 (67):

By Proposition 5.5 and the inductive assumption (/8) in Section 4.3, this closure is

M1, Uup(),7p (7)) XKt D(1p(67),7p(0') | 2

9
o/:B

= ~—1
where Zo:B = D(1 p(a’),Jp (0/))(0).

Since the bundle section 5( Ip(c”"),Jp(c")) 18 transverse to the zero set, Z,/; B is a smooth
subvariety of Mo (1, (07),7p (7)) (P". d) and

Wor —> Mi,1p(07),Jp(07) * Zo';B
is a smooth vector bundle by Proposition 5.5. We conclude that
T 4 (L.d) NV

is a smooth subvariety of 97(‘1) k(L. d) forall o’e Ay x(k,d). Its normal cone is a line
bundle by the inductive assumption (/1).
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Appendix A Most frequently used symbols and notation

9

Q
7t 7t

=NAI >

]
Yo YN,J)
i
Sp,i

Si
Sp.(L.0)
51,

Ag(D), Ag(1.])
Ao (o)

Ag(d. k)

.A()(N; d, J)

Dy, Dy

Dw,gy» D)
Dy, Dy

E

E,, E

Fo, Fex,g)
Fo;p. Fo;s
Go

Im%:

Lj

Ly, L;
Lpaiy> La,i

L
L

degree of stable maps to P”

number of marked points for genus-one stable maps
dimension of projective space, P”"

the sets of rational numbers, of complex numbers
the sets of all, positive, nonnegative integers

(... k)

tautological line bundles on P Fy, P Fx j)

pairing of L; with [E on M ; and with Ly on Mg ouz; p30
pairing of L,; with E, on /\71';)’(1’]), peAI(I,J);p33
nondegenerate pairing of L; with E on /\711,( 1,7)>p33
pairing of L, ;5 with E, on M{ . p€Ag(); Section 2.4
nondegenerate pairing of Z(l’,-) with E on /ﬁo,g; p37

collections of subvarieties of M g1 0f M g, J1uJ P28, p31
collection of subvarieties of P Fy,, o=(I;, J;)jen; p 35
collection of subvarieties of iﬁg,k (P", d); p6, p40
collection of subvarieties of P F(n sy; p45

“derivatives” of maps at the 0—th marked point; p43, p 80
“sums” of various Dy, Dg; p48, p8l

induced derivatives over ﬁ)vlf& NP 52,p82 _

Hodge line bundle of holomorphic differentials on M

liEe bundles on Mf’(l’,!)’ /\711,({,]), peA(1,J),or /\718’9,
Moo, pEAI(©). 0r Y ¢ 1. Mo e,y (B".d)., peAi(Nid. ],
obtained from E, or y,, or yx,7): p32, p37, p52

vector bundles over Mo,g, 97?0,(&1)(19”, d);p35,p4d
subbundles of Fx ), 0€Ao(R;d, J); p46

symmetry group of the immersions (4, tg* o5 p 10

singular locus of immersion ¢; p 38

universal tangent line bundle for j—th marked point over M a.J
or Mg s (P, d), jeJ

line bundles on AZII)MJL ./\A/-il,(]”[), peAI((I,J);p32
line bundles on M'g’g, Moo, 'OGL%(Q); P3Z

universal tangent line bundle on My 7,5y, Mo ; p31, p35
the line bundle associated to the sheaf Op=(a), a>0
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Me,s
Mgp
MY MY .

— ~
/\:l1,(1,1); M,

MU;P9MO’;P

M,D

O’Q ’

MO,Q
Mg s (P", d)
Mg o (P, d)

@U;B(Pn’ d)
Mo, x,)(P". d)

710 el
mO,Q*’ mO,Q*

o
930,(&,])

o
ml,k

MY (P, d)
me 4 (P, d)

N,
ide
[
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