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A desingularization of the main component of
the moduli space of genus-one stable maps into P n

RAVI VAKIL

ALEKSEY ZINGER

We construct a natural smooth compactification of the space of smooth genus-one
curves with k distinct points in a projective space. It can be viewed as an analogue of
a well-known smooth compactification of the space of smooth genus-zero curves, that
is, the space of stable genus-zero maps SM0;k.P

n; d/ . In fact, our compactification
is obtained from the singular space of stable genus-one maps SM1;k.P

n; d/ through
a natural sequence of blowups along “bad” subvarieties. While this construction is
simple to describe, it requires more work to show that the end result is a smooth space.
As a bonus, we obtain desingularizations of certain natural sheaves over the “main”
irreducible component SM0

1;k.P
n; d/ of SM1;k.P

n; d/ . A number of applications
of these desingularizations in enumerative geometry and Gromov–Witten theory
are described in the introduction, including the second author’s proof of physicists’
predictions for genus-one Gromov–Witten invariants of a quintic threefold.

14D20; 53D99

1 Introduction

1.1 Background and applications

The space of degree–d genus–g curves with k distinct marked points in Pn is generally
not compact, but admits a number of natural compactifications1. Among the most
prominent compactifications is the moduli space of stable genus–g maps, SMg;k.P

n; d/,
constructed by Gromov [9] and Fulton–Pandharipande [6]. It has found numerous
applications in classical enumerative geometry and is a central object in Gromov–Witten
theory. However, most applications in enumerative geometry and some results in GW-
theory have been restricted to the genus-zero case. The reason for this is essentially
that the genus-zero moduli space has a particularly simple structure: it is smooth and
contains the space of smooth genus-zero curves as a dense open subset. On the other

1We call a space SM a compactification of M if SM is compact and contains M . In particular, M

need not be dense in SM .
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hand, the moduli spaces of positive-genus stable maps fail to satisfy either of these two
properties. In fact, SMg;k.P

n; d/ can be arbitrarily singular according to Vakil [19]. It is
thus natural to ask whether these failings can be remedied by modifying SMg;k.P

n; d/,
preferably in a way that leads to a range of applications. As announced in [20] and
shown in this paper, the answer is yes if gD1.

We denote by M1;k.P
n; d/ the subset of SM1;k.P

n; d/ consisting of the stable maps
that have smooth domains. This space is smooth and contains the space of genus-
one curves with k distinct marked points in Pn as a dense open subset, provided
d�3. However, M1;k.P

n; d/ is not compact. Let SM0
1;k.P

n; d/ be the closure of
M1;k.P

n; d/ in the compact space SM1;k.P
n; d/. While SM0

1;k.P
n; d/ is not smooth,

it turns out that a natural sequence of blowups along loci disjoint from M1;k.P
n; d/

leads to a desingularization of SM0
1;k.P

n; d/, which will be denoted by �M0
1;k.P

n; d/.

The situation is as good as one could possibly hope. A general strategy when attempting
to desingularize some space is to blow up the “most degenerate” locus, then the proper
transform of the “next most degenerate locus”, and so on. This strategy works here,
but with a novel twist: we apply it to the entire space of stable maps SM1;k.P

n; d/.
The most degenerate locus is in fact an entire irreducible component, and blowing it
up removes it2. Hence one by one we erase the “bad” components of SM1;k.P

n; d/.
Each blowup of course changes the “good” component SM0

1;k.P
n; d/, and miraculously

at the end of the process the resulting space �M0
1;k.P

n; d/ is nonsingular. We note
that this cannot possibly be true for an arbitrary g , as Mg;k.P

n; d/ behaves quite
badly [19]. The sequential blowup construction itself is beautifully simple. It is
completely described in the part of Section 1.2 ending with the main theorem of the
paper, Theorem 1.1. However, showing that �M0

1;k.P
n; d/ is in fact smooth requires a

considerable amount of preparation (which takes up Sections 2.1–4.2) and is finally
completed in Section 4.3.

Since the smooth space �M0
1;k.P

n; d/ is obtained from SM0
1;k.P

n; d/ by blowing up
along loci disjoint from M1;k.P

n; d/, �M0
1;k.P

n; d/ is a smooth compactification
of M1;k.P

n; d/. One would hope that there is a modular interpretation of this new
compactification, and that one could then for example use this interpretation to construct
the space �M0

1;k.P
n; d/ directly and show that it is smooth. Unfortunately, we have

not managed to do this.

The desingularization �M0
1;k.P

n; d/ of SM0
1;k.P

n; d/ possesses a number of “good”
properties and has a variety of applications to enumerative algebraic geometry and

2Blowing up an irreducible component of a stack will result in the component being removed (or
“blown out of existence”), and the remainder of the stack is blown up along its intersection with the
component in question.
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Gromov–Witten theory. It has already been observed by Fontanari [5] that the cohomol-
ogy of �M0

1;k.P
n; d/ behaves in a certain respect like the cohomology of the moduli

space of genus-one curves, SM1;k . The space �M0
1;k.P

n; d/ can be used to count
genus-one curves in Pn , mimicking the genus-zero results of Kontsevich–Manin [11]
and Ruan–Tian [17] (though perhaps not their simple recursive formulas). Proceeding
analogously to the genus-zero case (eg similar to Pandharipande [16], Vakil [18], and
Zinger [23]), Theorem 1.1 can then be used to count genus-one curves with tangency
conditions and singularities. In all cases, such counts can be expressed as integrals
of natural cohomology classes on SM0

1;k.P
n; d/ or �M0

1;k.P
n; d/. Integrals on the

latter space can be computed using the localization theorem of Atiyah–Bott [1], as�M0
1;k.P

n; d/ is smooth and inherits a torus action from Pn and SM1;k.P
n; d/.

We next discuss two types of applications of Theorem 1.1 in Gromov–Witten theory,
as well as a bonus result of this paper, Theorem 1.2. It is shown by Zinger in [24]
and [26] that the space SM0

1;k.P
n; d/ has a natural generalization to arbitrary almost

Kähler manifolds and gives rise to new symplectic reduced genus-one GW-invariants.
These reduced invariants are yet to be constructed in algebraic geometry. However,
the spaces �M0

1;k.P
n; d/ do possess a number of “good” properties and give rise to

algebraic invariants of algebraic manifolds; see the first and last sections of [20]. It is
not clear whether these are the same as the reduced genus-one invariants, but it may be
possible to verify this by using Theorem 1.2.

Theorem 1.1 also has applications to computing Gromov–Witten invariants of complete
intersections, once it is combined with Theorem 1.2. Let a be a nonnegative integer.
For a general s2H 0.Pn;OPn.a//,

Y � s�1.0/� Pn

is a smooth hypersurface. We denote its degree–d GW-invariant by GWY
g;k.d I �/, ie

GWY
g;k.d I /�

˝
 ;
�SMg;k.Y; d/

�vir˛ for all  2H�
�SMg;k.Y; d/IQ

�
:

Suppose U is the universal curve over SMg;k.P
n; d/, with structure map � and evalua-

tion map ev:

U

�
��

ev // Pn

SMg;k.P
n; d/:

It can be shown that

(1–1) GWY
0;k.d I /D

˝
 � e���ev�OPn.a/

�
;
�SM0;k.P

n; d/
�˛

Geometry & Topology, Volume 12 (2008)
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for all  2H�.SM0;k.P
n; d/IQ/; see Beauville [2] for example. The moduli space

SM0;k.P
n; d/ is a smooth orbifold and

��ev�OPn.a/ �! SM0;k.P
n; d/

is a locally free sheaf, ie a vector bundle. The right-hand side of (1–1) can be computed
via the classical localization theorem of Atiyah and Bott [1]. The complexity of this
computation increases quickly with the degree d , but it has been completed in full
generality in a number of different ways by Bertram [4], Gathmann [7], Givental [8],
Lee [12] and Lian–Liu–Yau [14].

If nD4, so Y is a threefold, then

GWY
1;k.d I /D

d.a�5/C2

24
GWY

0;k.d I /
C ˝ � e.��ev�OPn.a//;

�SM0
1;k.P

4; d/
�˛(1–2)

for all primary  2H�.SM1;k.P
4; d/IQ/; see Li and Zinger [13, (1.5) and (1.12)].

This decomposition generalizes to arbitrary complete intersections Y and perhaps even
to higher-genus invariants. The sheaf

(1–3) ��ev�OPn.a/ �! SM0
1;k.P

4; d/

is not locally free. Nevertheless, its euler class is well-defined: the euler class of every
desingularization of this sheaf is the same, in the sense of [25, Subsection 1.2]. This
euler class can be geometrically interpreted as the zero set of a sufficiently good section
of the cone

Vd
1;k �! SM0

1;k.P
4; d/;

naturally associated to the sheaf (1–3)3; see the second part of the next subsection and
Lemma 5.1.

One would hope to compute the last expression in (1–2) by localization. However,
since the variety SM0

1;k.P
4; d/ and the cone Vd

1;k are singular, the localization theorem
of [1] is not immediately applicable in the given situation. Let

z� W �M0
1;k.P

4; d/ �! SM0
1;k.P

4; d/

be the projection map. As a straightforward extension of the main desingularization
construction of this paper, we show that the cone

z��Vd
1;k �! �M0

1;k.P
4; d/

3Vd
1;k is a variety such that the fibers of the projection map to SM0

1;k.P
4; d/ are vector spaces, but not

necessarily of the same dimension.

Geometry & Topology, Volume 12 (2008)



Desingularization of moduli space of genus-one stable maps 5

contains a vector bundle �Vd
1;k �! �M0

1;k.P
4; d/

of rank daD rkVd
1;k jM0

1;k
.P4;d/ ; see Theorem 1.2. It then follows that

˝
 � e���ev�OPn.a/

�
;
�SM0

1;k.P
4; d/

�˛� ˝ � e�Vd
1;k/;

�SM0
1;k.P

4; d/
�˛

D ˝z�� � e.�Vd
1;k/;

��M0
1;k.P

4; d/
�˛
:

(1–4)

The last expression above is computable by localization. In fact, it is computed explicitly
by the second author in [28], confirming the prediction of Bershadsky–Cecotti–Ooguri–
Vafa [3] for genus-one GW-invariants of a quintic threefold.

Remark Another approach to computing positive-genus GW-invariants has been
proposed by Maulik–Pandharipande in [15]. In contrast to the approach of Li–Zinger
in [13], it applies to arbitrary-genus invariants, but can at present be used to compute
invariants of only low-dimensional and/or low-degree complete intersections.

The main desingularization construction of this paper is the subject of Section 4, but
its key aspects are presented in the next subsection. The construction itself and its
connections with Sections 2 and 3 are outlined in Section 1.3. We suggest that the
reader return to Sections 1.2 and 1.3 before going through the technical details of
the blowup constructions in Sections 2–4. In the next subsection, we also describe a
natural sheaf over �M0

1;k.P
n; d/ which is closely related to the sheaf ��ev�OPn.a/

over SM0
1;k.P

n; d/. It is shown to be locally free in Section 5. Finally, all the data
necessary for applying the localization theorem of [1] to �M0

1;k.P
n; d/ and e.�Vd

1;k/ is
given in Section 1.4. In Appendix A, we list the most commonly used notation.

Throughout this article we work with Deligne–Mumford stacks. They can also be
thought of as analytic orbivarieties. As we work with reduced scheme structures
throughout the paper, we will call such objects simply varieties. Also, all immersions
will be assumed to be from smooth varieties.4

The authors would like to thank Jun Li for many enlightening discussions and the
referees for timely responses with many detailed suggestions. The first author was
partially supported by the NSF grant DMS–0228011; the second author was partially
supported by an NSF Postdoctoral Fellowship.

4The notion of “immersion” is often called “unramified” in algebraic geometry.
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1.2 Description of the desingularization

The moduli space SM1;k.P
n; d/ has irreducible components of various dimensions. One

of these components is SM0
1;k.P

n; d/, the closure of the stratum M1;k.P
n; d/ of stable

maps with smooth domains. We now describe natural subvarieties of SM1;k.P
n; d/5

which contain the remaining components of SM1;k.P
n; d/. They will be indexed by

the set

A1.d; k/�
˚
�D.mIJP ;JB/Wm2ZC; m�d I Œk�DJPtJB

	
;

where Œk�D f1; : : : ; kg:
For each �2A1.d; k/, let M1;� .P

n; d/ be the subset of SM1;k.P
n; d/ consisting of

the stable maps ŒC;u� such that C is a smooth genus-one curve E with m smooth
rational components attached directly to E , ujE is constant, the restriction of u to
each rational component is nonconstant, and the marked points on E are indexed
by the set JP . Here P stands for “principal component”, B stands for “bubble
component”, and A stands for “admissible set”. Figure 1 shows the domain of an
element of M1;� .P

n; d/, where �D.3I f2g; f1g/, from the points of view of symplectic
topology and of algebraic geometry. In the first diagram, each shaded disc represents
a sphere; the integer next to each rational component Ci indicates the degree of ujCi

.
In the second diagram, the components of C are represented by curves, and the pair
of integers next to each component Ci shows the genus of Ci and the degree of ujCi

.
In both diagrams, the marked points are labeled in bold face. Let SM1;� .P

n; d/ be
the closure of M1;� .P

n; d/ in SM1;k.P
n; d/. The space SM1;� .P

n; d/ has a number
of irreducible components. These components are indexed by the splittings of the
degree d into m positive integers and of the set JB into m subsets. However, we do
not need to distinguish these components.

It is straightforward to check that

SM1;k.P
n; d/D SM0

1;k.P
n; d/[

[
�2A1.d;k/

SM1;� .P
n; d/:

Dimensional considerations imply that if �D.mIJP ;JB/2A1.d; k/ and m�n, then
SM1;� .P

n; d/ is a union of components of SM1;k.P
n; d/. The converse holds as well:

SM1;� .P
n; d/ is contained in SM0

1;k.P
n; d/ if m>n by [24, Theorem 2.3]. However,

we will use the entire collection A1.d; k/ of subvarieties of SM1;k.P
n; d/ to construct�M0

1;k.P
n; d/. The independence of the indexing set A1.d; k/ of n leads to a number

5In fact, these will be substacks of the stack SM1;k.P
n; d/ . They can also be thought of as analytic

sub-orbivarieties of the analytic orbivariety SM1;k.P
n; d/ . As we work with reduced scheme structures

throughout the paper, we will call such objects simply varieties.

Geometry & Topology, Volume 12 (2008)
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of good properties being satisfied by our blowup construction; see (2) of Theorem 1.1
and the second part of this subsection. It may also be possible to use this construction
to define reduced genus-one GW-invariants in algebraic geometry; this is achieved in
symplectic topology by the second author in [26].

2

1

d1

d2

d3

2

.1; 0/

.0; d1/

.0; d2/

.0; d3/1

�D.3I f2g; f1g/

d1Cd2Cd3 Dd

d1; d2; d3>0

Figure 1: The domain of an element of M1;� .P n; d/

We define a partial ordering � on the set A1.d; k/ by

(1–5) � 0��m0IJ 0P ;J 0B�� ���mIJP ;JB

�
if � 0¤�; m0�m; and J 0P�JP :

This relation is illustrated in Figure 2, where an element � of A1.d; k/ is represented
by an element of the corresponding space M1;� .P

n; d/. We indicate that the degree
of the stable map on every bubble component is positive by shading the disks in the
figure. We show only the marked points lying on the principal component. The exact
distribution of the remaining marked points between the components is irrelevant.

�
2

Figure 2: Examples of partial ordering (1–5)

Choose an ordering < on A1.d; k/ extending the partial ordering �. The desingular-
ization

z� W �M0
1;k.P

n; d/ �! SM0
1;k.P

n; d/

is constructed by blowing up SM1;k.P
n; d/ along the subvarieties SM1;� .P

n; d/ and
their proper transforms in the order specified by <. In other words, we first blow up
SM1;k.P

n; d/ along SM1;�min.P
n; d/, where

�min � .1I∅; Œk�/

Geometry & Topology, Volume 12 (2008)
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is the smallest element of A1.d; k/. We then blow up the resulting space along the
proper transform of SM1;�2

.Pn; d/, where �2 is the smallest element of A1.d; k/�
f�ming. We continue this procedure until we blow up along the proper transform of
SM1;�max.P

n; d/, where
�max D .d I Œk�;∅/

is the largest element of A1.d; k/. The variety resulting from this last blowup is the
proper transform �M0

1;k.P
n; d/ of SM0

1;k.P
n; d/, as all other irreducible components

of SM1;k.P
n; d/ have been “blown out of existence”.

We describe the first interesting case of this construction, ie for SM0
1;0
.P2; 3/, in detail

in [20]. The space �M0
1;0
.P2; 3/ is a smooth compactification of the space of smooth

plane cubics. It has a richer structure than the naive compactification, P9 , does.

Theorem 1.1 Suppose n; d 2ZC , k 2 xZC , < is an ordering on the set A1.d; k/

extending the partial ordering �, and

z� W �M0
1;k.P

n; d/ �! SM0
1;k.P

n; d/

is the blowup of SM0
1;k.P

n; d/ obtained by blowing up SM1;k.P
n; d/ along the subvari-

eties SM1;� .P
n; d/ and their proper transforms in the order specified by <.

(1) The variety �M0
1;k.P

n; d/ is smooth and is independent of the choice of ordering <
extending �.

(2) For all m�n, the embedding SM0
1;k.P

m; d/�!SM0
1;k.P

n; d/ lifts to an embedding�M0
1;k.P

m; d/ �! �M0
1;k.P

n; d/

and the image of the latter embedding is the preimage of SM0
1;k.P

m; d/ under z� .

(3) The blowup locus at every step of the blowup construction is a smooth subvariety
in the corresponding blowup of SM1;k.P

n; d/.

(4) All fibers of z� are connected.

Remark While in Section 4 we analyze the blowup construction starting with the
reduced scheme structure on SM1;k.P

n; d/, Theorem 1.1 applies to the standard scheme
structure on SM1;k.P

n; d/ as well. It is known that the space

Meff
1;k.P

n; d/� SM0
1;k.P

n; d/�
[

�2A1.d;k/

SM1;� .P
n; d/;

consisting of stable maps with no contracted genus-one component, is a smooth stack
(as such maps are unobstructed; see for example Proposition 5.5(c) of [18]). Thus, its

Geometry & Topology, Volume 12 (2008)
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scheme-theoretic closure, SM0
1;k.P

n; d/, is reduced. During the blowup process all
other components of SM1;k.P

n; d/ are “blown out of existence”, as is any nonreduced
scheme structure.

In Theorem 1.1 and throughout the rest of the paper we denote by xZC the set of
nonnegative integers. We analyze the sequential blowup construction of Theorem 1.1
in Section 4 using the inductive assumptions (I1)–(I15) of Section 4.3. One of these
assumptions, (I3), implies the second part of the first statement of Theorem 1.1, as
different choices of an ordering < extending the partial ordering � correspond to
different orders of blowups along subvarieties that are disjoint. For example, suppose

�∅ D
�
2I∅; f1; 2g�; �1 D

�
2I f1g; f2g�; and �2 D

�
2I f2g; f1g�:

While SM1;�1
.Pn; d/ and SM1;�2

.Pn; d/ do intersect in SM1;2.P
n; d/, their proper

transforms are disjoint after the blowup along SM1;�∅.P
n; d/. The second statement

of Theorem 1.1 follows immediately from the description of the blowup construction
in this and the next subsections, as each step of the construction commutes with the
embeddings of the moduli spaces induced by the embedding Pm�!Pn .

The main claim of this paper is that �M0
1;k.P

n; d/ is a smooth variety. The structure
of Meff

1;k.P
n; d/ is well understood; see [18, Prop. 5.5(c)] for example. In partic-

ular, Meff
1;k.P

n; d/ is smooth. Below we describe the structure of the complement
@�M0

1;k.P
n; d/ of Meff

1;k.P
n; d/ in �M0

1;k.P
n; d/.

If J is a finite set and g is a nonnegative integer, we denote by SMg;J the moduli
space of stable genus–g curves with jJ j marked points, which are indexed by the
set J . Similarly, we denote by SMg;J .P

n; d/ the moduli space of stable maps from
genus–g curves with marked points indexed by J to Pn . If j 2J , let

evj W SMg;J .P
n; d/ �! Pn

be the evaluation map at the marked point labeled by j .

If �D.mIJP ;JB/ is an element of A1.d; k/, we define

SM� IP D SM1;Œm�tJP
;

SM� IB.Pn; d/D
n
.b1; : : : ; bm/ 2

mY
iD1

SM0;f0gtJi
.Pn; di/W di>0;

mX
iD1

diDd I
mG

iD1

JiDJBI ev0.bi1
/Dev0.bi2

/ 8 i1; i22Œm�
o
:

Geometry & Topology, Volume 12 (2008)
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There is a natural node-identifying surjective immersion

�� W SM� IP�SM� IB.Pn; d/ �! SM1;� .P
n; d/� SM1;k.P

n; d/:

As before, P denotes “principal component”, and B denotes “bubble components”.
This immersion descends to the quotient

x�� W
� SM� IP�SM� IB.Pn; d/

�ı
G� �! SM1;� .P

n; d/;

where G� � Sm is the symmetric group on m elements. If m� 3, x�� is not an
isomorphism as some subvarieties of the left side are identified. An example of a
point on the right which is the image of two points on the left is given in Figure 3. In
addition to the conventions used in Figure 1, in the first, symplectic-topology, diagram of
Figure 3 we leave the components of the domain on which the map is constant unshaded.
The subvarieties identified by the map x�� get “unidentified” after taking the proper
transform of SM1;� .P

n; d/ in the blowup of SM1;k.P
n; d/ at the step corresponding to

z� Dmax
˚
� 02A1.d; k/W � 0��

	
:

This is insured by the inductive assumption (I13) in Section 4.3 and implies the
third statement of Theorem 1.1. For example, if mD3 and kD0 as in Figure 3, the
“identified” subvarieties are “unidentified” after the blowup of the proper transform of
SM1;.2I∅;∅/.Pn; d/.

d1

d2

d3

d4

.1; 0/

.0; 0/

.0; 0/

.0; d1/

.0; d2/

.0; d3/

.0; d4/

�D.3I ;;;/; d1Cd2Cd3Cd4 Dd; d1; d2; d3; d4>0

Figure 3: A point in SM1;� .P n; d/�SM1;0.P n; d/ with two preimages under x��

Remark Throughout the paper, we use M (fraktur font) to denote moduli spaces of
stable maps, of genus zero or one, into Pn . We use M (calligraphic font) to denote
moduli spaces of stable curves.

For each i2Œm�, let

�i W SM� IB.Pn; d/ �!
G

di>0;Ji�JB

SM0;f0gtJi
.Pn; di/

Geometry & Topology, Volume 12 (2008)
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be the natural projection onto the i –th component. We put

F� IB D
mM

iD1

��i L0;

where L0�!SM0;f0gtJi
.Pn; di/ is the universal tangent line bundle for the marked

point 0. In Sections 2.3 and 3.4, we construct blowups

z�� IP��1;.Œm�;JP /W �M� IP� �M1;.Œm�;JP / �! SM� IP� SM1;Œm�tJP

z�� IB��0;.Œm�;JB/W �M� IB.Pn;d/��M0;.Œm�;JB/.P
n;d/ �! PF� IB�PF.Œm�;JB/:

and

We also construct a section

(1–6) �D� IB��D.Œm�;JB/ 2 �
��M� IB.Pn; d/IE�� IB˝z��� IB��PF�IB ev�0T Pn

�
;

where ev0W SM� IB.Pn; d/ �! Pn and �PF�IB W PF� IB �! SM� IB.Pn; d/

are the natural evaluation map and the bundle projection map, respectively, and

E� IB�zE �! �M� IB.Pn; d/��M0;.Œm�;JB/.P
n; d/

is a line bundle. This line bundle is the sum of the tautological line bundle


� IB �! PF� IB

and all exceptional divisors. The section �D� IB is transverse to the zero section. Thus,
its zero set,

(1–7) �Z� IB.Pn; d/� �D�1
� IB.0/� �M� IB.Pn; d/;

is a smooth subvariety. The boundary @�M0
1;k.P

n; d/ of �M0
1;k.P

n; d/ is a union of
smooth divisors:

@�M0
1;k.P

n; d/D
[

�2A1.d;k/

�Z� .Pn; d/
ı

G� ; where �Z� .Pn; d/D �M� IP��Z� IB.Pn; d/I

see the inductive assumptions (I7) and (I8) in Section 4.3 and Figure 4. By the
inductive assumption (I6) and (I7), the normal bundle of �Z� .Pn; d/ in �M1;k.P

n; d/

is the quotient of the line bundle

L� IP ˝ z��� IB
� IB �! �M� IP��Z� IB.Pn; d/

by the G� –action, where

L� IP�L �! �M� IP� �M1;.Œm�;JP /

Geometry & Topology, Volume 12 (2008)



12 Ravi Vakil and Aleksey Zinger

is the universal tangent line bundle constructed in Section 2.3. Thus we conclude that�M0
1;k.P

n; d/ is smooth, as the open subset Meff
1;k.P

n; d/ is smooth, and its complement
is a union of smooth divisors whose normal sheaves are line bundles (ie with their
reduced induced scheme structure, they are Cartier divisors).

fM� IP � eZ� IB.Pn; d/ �M0
1;k
.Pn; d/

M� IP � SM� IB.Pn; d/ SM0
1;k
.Pn; d/

Q��

��

Q�� IP Q�� IB Q�

Figure 4: Changes in the boundary structure of SM0
1;k.P

n; d/ under the desingularization

Remark 1 In the Gromov–Witten theory, the symbol E is commonly used to denote
the Hodge vector bundle of holomorphic differentials. It is the zero vector bundle in
the genus-zero case. The line bundles over moduli spaces of genus-zero curves and
maps we denote by E, with various decorations, play roles analogous to that of the
Hodge line bundle over moduli spaces of genus-one curves. The most overt parallel
is described at the end of Section 2.2. There are deeper, more subtle, connections as
well; compare the structural descriptions of Lemmas 3.8 and 4.10, for example.

Remark 2 Throughout this paper, the symbols D and D, with various decorations,
denote vector bundle sections related to derivatives of holomorphic maps into Pn and
of holomorphic bundle sections. In most cases, such bundle sections are viewed as
vector bundle homomorphisms.

The final claim of Theorem 1.1 follows from the fact that SM0
1;k.P

n; d/ is unibranch
(locally irreducible). If � W Y�!X is a surjective birational map of irreducible varieties,
and ��1.x/ is not connected for some x2X , then X is not unibranch at x .

We next describe a desingularization of the sheaf ��ev�OPn.a/ and of the correspond-
ing cone Vd

1;k over SM0
1;k.P

n; d/. Let �UDz��U be the pullback of U by z� :

�U
�

��

z� // U

�

��

ev // Pn

�M0
1;k.P

n; d/
z� // SM0

1;k.P
n; d/:

For each �2A1.d; k/, let

V� IB �! SM� IB.Pn; d/

Geometry & Topology, Volume 12 (2008)
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be the cone induced by the sheaf OPn.a/, similarly to Vd
g;k

; see Section 5.2 for details.
It is a vector bundle of rank daC1. We note that

z��Vd
1;k

ˇ̌�Z� .Pn;d/
D ��B

˚z��� IB��PF�IBV� IBj�Z�IB.Pn;d/

	ı
G� ;

where �BW �M� IP��Z� IB.Pn; d/ �! �Z� IB.Pn; d/

is the projection map. Let LD
 �˝a , where 
�!Pn is the tautological line bundle.

Theorem 1.2 Suppose d; n; a2ZC and k2xZC .

(1) The sheaf ��z��ev�OPn.a/ over �M0
1;k.P

n; d/ is locally free and of the expected
rank, ie da.

(2) If �Vd
1;k�z��Vd

1;k is the corresponding vector bundle and �2A1.d; k/, then there
exists a surjective bundle homomorphism�D� IBW z��� IB��PF�IBV� IBj�Z�IB.Pn;d/

�! E�� IB˝z��� IB��PF�IB ev�0L

over �Z� IB.Pn; d/ such that�Vd
1;k

ˇ̌�Z� .Pn;d/
D ���B ker�D� IB

�ı
G� :

(3) z����z��ev�OPn.a/D ��ev�OPn.a/ over SM0
1;k.P

n; d/.

The first two statements of this theorem can be used to compute expressions like (1–4)
via the classical localization theorem and the short exact sequence (1–10) below. We
prove them by working with the cone

pW SM1;k.L; d/ �! SM1;k.P
n; d/:

The sheaves ��ev�OPn.a/ and ��z��ev�OPn.a/ are the sheaves of (holomorphic)
sections of

Vd
1;k � SM1;k.L; d/

ˇ̌
SM0

1;k.P
n;d/
�! SM0

1;k.P
n; d/

and z��Vd
1;k , respectively; see Lemma 5.1. In Section 5.4, we lift the blowup construc-

tion of Section 3.4 to SM1;k.L; d/. In particular, we blow up SM1;k.L; d/ along the
subvarieties

SM1;� .L; d/D p�1
�SM1;� .P

n; d/
�
; � 2A1.d; k/;

and their proper transforms. The end result of this construction, which we denote
by �M0

1;k.L; d/, is smooth for essentially the same reasons that SM0
1;k.P

n; d/ is. The
only additional input we need is Lemma 5.7, which is a restatement of the key result
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14 Ravi Vakil and Aleksey Zinger

concerning the structure of the cone Vd
1;k obtained by the second author in [25]. The

bundle
zpW �M0

1;k.L; d/ �! �M0
1;k.P

n; d/

of vector spaces of the same rank contains �M0
1;k.P

n; d/ as the zero section. Thus, zp
is a vector bundle. There is a natural inclusion�M0

1;k.L; d/ �! z��SM1;k.L; d/:
All sections of z��SM1;k.L; d/ must in fact be sections of �M0

1;k.L; d/ and thus the
sheaf ��z��ev�OPn.a/ is indeed locally free. The bundle map�D� IB � �D.Œm�;JB/

of the second statement of Theorem 1.2 is described in Section 5.2. It is the “vertical”
part of the natural extension of the bundle map �D� IB from stable maps into Pn to
stable maps into L. Finally, the last statement of Theorem 1.2 is a consequence of the
last statement of Theorem 1.1; see Lemma 5.2. At this point, this observation does not
appear to have any applications though.

Remark By applying the methods of Section 5 and of [25], it should be possible to
show that the standard scheme structure on SM1;k.P

n; d/ is in fact reduced.

1.3 Outline of the main desingularization construction

The main blowup construction of this paper is contained in Sections 4.2 and 4.3. It is a
sequence of idealized blowups along smooth subvarieties. In other words, the blowup
locus SM��1

1;�
at each step comes with an idealized normal bundle N ide . It is a vector

bundle (of the smallest possible rank) containing the normal cone N for SM��1
1;�

. After
taking the usual blowup of the ambient space along SM��1

1;�
, we attach the idealized

exceptional divisor
E ide � PN ide

along the usual exceptional divisor

E � PN � E ide:

The blowup construction summarized in Theorem 1.1 is contained in the idealized
blowup construction of Section 4. The latter turns out to be more convenient for describ-
ing the proper transforms of SM0

1;k.P
n; d/, including at the final stage, ie �M0

1;k.P
n; d/.

The ambient space SM�
1;k

at each step �2f0gtA1.d; k/ of the blowup construction
contains a subvariety SM�

1;�� for each ��2A1.d; k/. We take SM�
1;�

to be the idealized
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exceptional divisor for the idealized blowup just constructed, ie along SM��1
1;�

. If ��<�
or ��>� , SM�

1;�� is the proper transform of SM��
1;�� or SM1;��.Pn; d/, respectively.

Every immersion ��� of Section 1.2 comes with an idealized normal bundle N ide
��� .

It is a vector bundle of the smallest possible rank containing the normal cone to the
immersion �� (see Definition 4.1). It is given by

N ide
��� D

M
i2Œm��

��P Li˝��B��i L0 if �� D .m�IJ�P ;J�B/;

where �P ; �BW SM��IP�SM��IB.Pn; d/ �! SM��IP ; SM��IB.Pn; d/

are the component projection maps. In the case of Figure 1, N ide
��� is a rank-three

vector bundle encoding the potential smoothings of the three nodes. At each step �
of the blowup construction, ��� induces an immersion ��;�� onto SM�

1;�� . Like the
domain of ��� , the domain of ��;�� splits as a Cartesian product. If ��>� , the second
component of the domain does not change from the previous step, while the first is
modified by blowing up along a collection of disjoint subvarieties, as specified by
the inductive assumption (I9) in Section 4.3. The idealized normal bundle N ide

��;�� is
obtained from N ide

���1;�� by twisting the first factor in each summand by a subset of the
exceptional divisors, as specified by the inductive assumption (I11). These blowup
and twisting procedures correspond to several interchangeable steps in the blowup
construction of Section 2.3. For ��D� , the first component in the domain of ���1;�

has already been blown up all the way to �M� IP and the first component of every
summand of N ide

���1;�
has already twisted to the universal tangent line bundle L, ie

N ide
���1;�

D
M
i2Œm�

��P L˝��B��i L0 D ��P L˝��BF� IB �! �M� IP�SM� IB.Pn; d/;

if �D.mIJP ;JB/. In particular, the domain of ��;� ,

PN ide
���1;�

D �M� IP�PF� IB;

still splits as a Cartesian product! The idealized normal bundle for ��;� is the tautological
line for PN ide

���1;�
:

N ide
��;�
D 
N ide

���1;�
D ��P L˝��B
F�IB � ��P L˝��B
� IB:

On the other hand, if ��<� , the domain of ��;�� is obtained from the domain of
���1;�� by blowing up the second component along a collection of disjoint subvarieties,
as specified by the inductive assumption (I4) in Section 4.3. This corresponds to
several interchangeable steps of the blowup construction in Section 3.4. By the time
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16 Ravi Vakil and Aleksey Zinger

we are done with the last step of the blowup construction in Section 4.3, PF� IB has
been blown up all the way to �M� IB.Pn; d/. In the ��<� case,

N ide
��;�� DN ide

���1;�� ;

since SM��1
1;�� is transverse to SM��1

1;�
.

We study the proper transform SM�
1;.0/

of SM0
1;k.P

n; d/ in SM�
1;k

by looking at the
structure of

xZ��� D ��1
�;��

�SM�
1;.0/

�
:

Given a finite set J , there are natural bundle sections

sj 2 �. SM1;J IL�j˝E�/; j 2J; and D0 2 �
�SM0;f0gtJ .P

n; d/IL�0˝ev�0T Pn
�I

see Sections 2.2 and 3.2, respectively. By Lemma 4.10, the intersection of

xZ0
�� � ��1

��
�SM0

1;k.P
n; d/

�
with the main stratum M��IP�M��IB.Pn; d/ of SM��IP�SM��IB.Pn; d/ is

Z0
�� D

˚
b2M��IP�M��IB.Pn; d/W kerD�� jb¤f0g

	
;

D�� 2 �
� SM��IP�SM��IB.Pn; d/IHom.N ide

��� ; �
�
P E�˝��Bev�0T Pn/

�
;where

D��
ˇ̌
��

P
Li˝��B��i L0

D ��P si˝��B��i D0; 8 i2Œm��:

In addition, if N xZ����N ide
��;�� is the normal cone for the immersion ��;�� j xZ�

��
into

SM�
1;.0/

, then

N xZ0
��
ˇ̌
Z0
��
D kerD��

ˇ̌
Z0
��

and N xZ0
�� is the closure of N xZ0

��
ˇ̌
Z0
��

in N ide
��� . By Lemma 4.5, N xZ��� is still the

closure of N xZ0
��
ˇ̌
Z0
��

, but now in N ide
��;�� , for all �<�� . In Section 2.3, we construct

a nonvanishing section

zsi 2 �. SM1;J IL�˝E�/� �. SM1;J IC/

obtained by twisting si by some exceptional divisors. Since zsi agrees with si on
M��IP , we can replace si with zsi in the descriptions of D�� , Z0

�� , and N xZ0
��
ˇ̌
Z0
��

Geometry & Topology, Volume 12 (2008)
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above. In particular, N xZ���1
�� is the closure of

N xZ0
��
ˇ̌
Z0
��
D ��P L˝��B kerD��IB

ˇ̌
Z0
��
� ��P L˝��BF��IB;

D��IB 2 �
�SM��IB.Pn; d/IHom.F��IB; ev�0T Pn/

�
;where

D��IB
ˇ̌
��

i
L0
D ��i D0 8 i2Œm��:

The bundle homomorphism D��IB induces a section�D0 2 �
�
PF��IBI 
 �� IB˝��PF��IB ev�0T Pn

�
:

By the previous paragraph and Lemma 4.5, xZ���� is the closure of

�M��IP � �D�1
0 .0/\PF��IB

ˇ̌
M��IB.Pn;d/

� �M��IP �PF��IB

N xZ���� D ��P L˝��B
� IB
ˇ̌
xZ��
��
:and

Since �M0
1;k.P

n; d/��M�max
1;k

.Pn; d/ is the proper transform of SM��
1;.0/

in SM�max
1;k

,

�Z�� � ��1
�max;��

��M0
1;k.P

n; d/
�

is still the closure of�M��IP � �D�1
0 .0/\PF��IB

ˇ̌
M��IB.Pn;d/

� �M��IP � �M��IB.Pn; d/:

On the other hand, in the process of constructing the blowup �M� IB.Pn; d/ of PF��IB
in Section 3.4, we also define a bundle section�D��IB 2 ���M��IB.Pn; d/IE�� IB˝z��� IB��PF��IB ev�0T Pn

�
by twisting �D0 by the exceptional divisors. In particular,�D�1

��IB.0/\PF��IB
ˇ̌
M��IB.Pn;d/

D �D�1
0 .0/\PF��IB

ˇ̌
M��IB.Pn;d/

:

Since �D��IB is transverse to the zero set, we conclude that�Z�� D �M��IP � �D�1
��IB.0/;

as stated in Section 1.2.

Finally, the role played by the blowup construction of Section 2.4 in the blowup
construction of Section 3 is similar to the role played by the construction of Section 2.3
in the construction of Section 4. In the case of Section 3, we blow up a moduli space
of genus-zero stable maps, PF.@;J / , along certain subvarieties �M0

0;%
and their proper

transforms. These subvarieties are images of natural node-identifying immersions �0;% .
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The domain of �0;% splits as the Cartesian product of a moduli space of genus-zero curves
and a moduli space of genus-zero maps, defined in Sections 2.4 and 3.3, respectively. As
we modify �M0

0;%
by taking its proper transforms in the blowups of PF.@;J / constructed

in Section 3.4, the first factor in the domain of the corresponding immersion changes by
blowups along collections of smooth disjoint subvarieties, as specified by the inductive
assumption (I6/. This change corresponds to several interchangeable steps in the
blowup construction of Section 2.4. By the time we are ready to blow up the proper
transform of �M0

0;%
, the first component of the domain of the corresponding immersion

has been blown up all the way to �M0;�P
, the end result in the blowup construction of

Section 2.4.

In the blowup construction of Section 3.4, we twist a natural bundle section�D0 2 �
�
PF.@;J /I 
 �.@;J /˝��PF.@;J/ev�0T Pn

�
by the exceptional divisors to a bundle section�D.@;J / 2 ���M.@;J /.Pn; d/I�E�˝��0;.@;J /��PF.@;J/ev�0T Pn

�
:

The two sections enter in an essential way in the main blowup construction of this paper.
It is also essential that �D.@;J / is transverse to the zero set. The section �D0 is transverse
to the zero set outside of the subvarieties �M0

0;%
and vanishes identically along �M0

0;%
. Its

derivative in the normal direction to �0;% is described by Lemma 3.11, using Lemma 3.8.
The bundle sections si over a moduli space of genus-zero curves defined in Section 2.2
and modified in Section 2.4 enter into the expression of Lemma 3.8. In fact, this
expression is identical to the expression for D�� above, ie in the genus-one case. We
use Lemma 3.11 to show that with each newly twisted version of �D0 is transverse to
the zero set outside of the proper transforms of the remaining subvarieties SM0

0;%
, ie the

ones that have not been blown up yet; see the inductive assumption (I4) in Section 3.4.
In particular, at the end of the blowup construction of Section 3.4, we end up with a
twisted version of �D0 , which we call �D.@;J / , which is transverse to the zero set.

1.4 Localization data

Suppose the group GD.S1/nC1 or GD.C�/nC1 acts in a natural way on the projective
space Pn . In particular, the fixed locus consists of nC1 points, which we denote
by p0; : : : ;pn , and the only curves preserved by G are the lines passing through
pairs of fixed points. The G–action on Pn lifts to an action on SM1;k.P

n; d/ and on�M0
1;k.P

n; d/. The fixed loci of these two actions that are contained in Meff
1;k.P

n; d/

and their normal bundles are the same and are described in Sections 27.3 and 27.4 of
Mirror Symmetry [10]. We note that the four-term exact sequence [10, (27.6)] applies
to such loci.
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In this subsection, we describe the fixed loci of the G –action on �M0
1;k.P

n; d/ that are
contained in @�M0

1;k.P
n; d/ and their normal bundles. To simplify the discussion, we

ignore all automorphism groups until the very end of this subsection.

The boundary fixed loci �Zz� will be indexed by refined decorated rooted trees z� .
Figure 5 shows such a tree z� and the corresponding decorated graph �D�.z�/. In
[10, Section 27.3] the fixed loci Z� of the G–action on SMg;k.P

n; d/ are indexed
by decorated graphs � . If � is a decorated graph such that Z� is a G–fixed locus
contained in @SM1;k.P

n; d/, we will have

Z� \ SM0
1;k.P

n; d/D z�
� G
�.z�/D�

�Zz��;
where z� denotes a refined decorated rooted tree.
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Figure 5: A refined decorated rooted tree and its decorated graph

We now formally describe what we mean by a refined decorated rooted tree and
its corresponding decorated graph. A graph consists of a set Ver of vertices and a
collection Edg of edges, ie of two-element subsets of Ver. In Figure 5, the vertices are
represented by dots, while each edge fv1; v2g is shown as the line segment between
v1 and v2 . A graph is a tree if it contains no loops, ie the set Edg contains no subset
of the form˚fv1; v2g; fv2; v3g; : : : ; fvN ; v1g

	
; v1; : : : ; vN 2Ver; N�1:

A tree is rooted if Ver contains a distinguished element v0 . It is represented by the
large dot in the first diagram of Figure 5. A rooted tree is refined if Ver�fv0g contains
two, possibly empty, distinguished subsets VerC and Ver0 such that

VerC\Ver0 D∅ and fv0; vg2Edg 8 v2VerC[Ver0:

We put

EdgC D
˚fv0; vgW v2VerC

	
and Edg0 D

˚fv0; vgW v2Ver0

	
:
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The elements of EdgC and Edg0 are shown in the first diagram of Figure 5 as the thick
solid lines and the thin dashed lines, respectively. Finally, a refined decorated rooted
tree is a tuple

(1–8) z� D �Ver;EdgI v0IVerC;Ver0I�; d; �
�
;

where .Ver;EdgI v0IVerC;Ver0/ is refined rooted tree and

�W Ver�Ver0 �!
˚
0; : : : ; ng; dW Edg�Edg0 �! ZC; �W f1; : : : ; kg �! Ver

are maps such that

(i) �.v1/D�.v2/ and d.fv0; v1g/Dd.fv0; v2g/ for all v1; v22VerC ;

(ii) if v12VerC , v22Ver�Ver0�VerC , and fv0; v2g2Edg, then

�.v1/¤ �.v2/ or d.fv0; v1g/¤d.fv0; v2g/I
(iii) if fv1; v2g2Edg and v2 62Ver0[fv0g, then

�.v2/¤�.v1/ if v1 62Ver0 and �.v2/¤�.v0/ if v12Ver0I
(iv) if v12Ver0 , then fv1; v2g2Edg for some v22Ver�fv0g and

val.v1/�
ˇ̌fv22VerW fv1; v2g2Edggˇ̌C ˇ̌fl2Œk�W �.l/Dv1

ˇ̌� 3I
(v)

P
e2EdgCd.e/� 2.

In Figure 5, the value of the map � on each vertex, not in Ver0 , is indicated by the
number next to the vertex. Similarly, the value of the map d on each edge, not in Edg0 ,
is indicated by the number next to the edge. The elements of the set Œk�DŒ3� are shown
in bold face. Each of them is linked by a line segment to its image under �. The first
condition above implies that all of the thick edges have the same labels, and so do
their vertices, other than the root v0 . By the second condition, the set of thick edges
is a maximal set of edges leaving v0 which satisfies the first condition. By the third
condition, no two consecutive vertex labels are the same. By the fourth condition, there
are at least two solid lines, at least one of which is an edge, leaving from every vertex
which is connected to the root by a dashed line. The final condition implies that either
the set EdgC contains at least two elements or its only element is marked by at least 2.

A decorated graph is a tuple

� D �Ver;EdgIg; �; d; ��;
where .Ver;Edg/ is a graph and

gW Ver �! xZC; �W Ver �! ˚
0; : : : ; ng; dW Edg �! ZC; �W Œk� �! Ver
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are maps such that

�.v1/¤ �.v2/ if fv1; v2g2Edg:

The domain Œk� of the map � can be replaced by any finite set. A decorated graph can
be represented graphically as in the second diagram of Figure 5. In this case, every
vertex v should be labeled by the pair .g.v/; �.v//. However, we drop the first entry
if it is zero. If z� is a refined decorated rooted tree as in (1–8), the corresponding
decorated graph � is obtained by identifying all elements of Ver0 with v0 , dropping
Edg0 from Edg, and setting

g.v/D
(

1; if vDv0I
0; otherwise:

In terms of the first diagram in Figure 5, this procedure corresponds to contracting the
dashed edges and adding 1 to the label for v0 .

The fixed locus Z� of SM1;k.P
n; d/ consists of the stable maps u from a genus-one

nodal curve †u with k marked points into Pn that satisfy the following conditions.
The components of †u on which the map u is not constant are rational and correspond
to the edges of � . Furthermore, if eDfv1; v2g is an edge, the restriction of u to the
component †u;e corresponding to e is a degree–d.e/ cover of the line

P1
p�.v1/

;p�.v2/
� Pn

passing through the fixed points p�.v1/ and p�.v2/ . The map uj†u;e
is ramified only

over p�.v1/ and p�.v2/ . In particular, uj†u;e
is unique up to isomorphism. The

remaining, contracted, components of †u correspond to the vertices v2Ver such that

val.v/Cg.v/� 3:

For such a vertex v , g.v/ specifies the genus of the component corresponding to v .
The map u takes this component to the fixed point �.v/. Thus,

Z� � SM��
Y
v2Ver

SMg.v/;val.v/

[10, Section 27.3]. For the purposes of this definition, SM0;1 and SM0;2 denote one-
point spaces. For example, in the case of the second diagram in Figure 5,

Z� � SM�� SM1;10� SM0;3� SM2
0;2� SM8

0;1 � SM1;10:

In this case, Z� is a locus in SM1;3.P
n; 22/, with n�3.
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If z� is a refined decorated rooted tree as in (1–8), we put

Edg.v0/D
˚fv0; v1g2EdgW v12Ver

	
and Jv0

D ˚l2Œk�W �.l/Dv0

	
:

Similarly, for each v2Ver0 , we set

Edg.v/D ˚fv; v1g2EdgW v12Ver�fv0g
	

and Jv D
˚
l2Œk�W �.l/Dv	:

If eDfv; v1g is an element of Edg.v/ for some v2Ver0 or of Edg.v0/�Edg0 with
vDv0 , let .Vere;Edge/ be the branch of the tree .Ver;Edg/ beginning at v with the
edge e . We put

Je D
˚
l2Œk�W �.l/2Vere�fvg

	
and de D

X
e02Edge

d.e0/:

Let z�e be the decorated graph defined by

z�e D
�
Vere;EdgeIge�0; �e; de�djEdge

; �e/;

�e.v
0/D

(
�.v0/; if v0¤vI
�.v0/; if v0DvI �eW f0gtJe �! Vere; �e.l/D

(
�.l/; if l2JeI
v; if lD0I

where

see Figure 6 for two examples.

0
2

1

21
3

2

1
3

21

1

2

2 2

3
1

e1 2 1

3
2

e2

1
11

1
3

0 3 1

0

z�e1
D

0 3 2 1 1

0

z�e2
D

Figure 6: A refined decorated rooted tree and some of its components graphs

If e is an element of Edg.v0/�Edg0 or of Edg.v/ for some v2Ver0 , let

Zz�e
� SM0;f0gtJe

.Pn; de/
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be the fixed locus corresponding to the decorated graph z�e . We put

�.z�/D �jEdg.v0/jIJv0
; Œk��Jv0

� 2A1.d; k/; �Mz�IP D �M
�.z�/IP I

xZz�IB D
Y

e2Edg.v0/�Edg0

Zz�e
�

Y
v2Ver0

� SM0;f0gtEdg.v/tJv �
Y

e2Edg.v/

Zz�e

�
� SM

�.z�/IB.P
n; d/I

Fz�IB D
M

e2EdgC
LeI0 � F

�.z�/IB �! xZz�IB;

where LeI0�!Zz�e
is the tangent line bundle for the marked point 0. If eDfv0; v1g

is an element of EdgC , let

�C.z�/D �.v1/; dC.z�/D d.e/; dimC.z�/D
(
jEdgCj�2; if dC.z�/D1I
jEdgCj�1; if dC.z�/�2:

By the assumption (i) above, the numbers �C.z�/ and dC.z�/ are independent of the
choice of e2EdgC . Furthermore, if e; e02EdgC , then the line bundles LeI0 and Le0I0
are G –equivariantly isomorphic. Thus,

Fz�IB �CjEdgCj˝LeI0 if e2EdgC:

The group G acts trivially on CjEdgCj . Let

F 0z�IB D
(˚
.we/e2EdgC2CEdgC WPe2EdgCweD0

	
; if dC.z�/D1I

CEdgC ; if dC.z�/�2I�Zz�IB D P
�
F 0z�IB˝LeI0

�� xZz�IB �P dimC.z�/:

While the moduli space �M
�.z�/IB.P

n; d/ is a blowup of PF
�.z�/IB , none of the blowup

loci intersects �Zz�IB . Thus,

�Zz�IB � �M
�.z�/IB.P

n; d/:

In fact, �Zz�IB � �Z
�.z�/IB.P

n; d/:

We put �Zz� D �Mz�IP � �Zz�IB:
Geometry & Topology, Volume 12 (2008)
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By the above, �Zz� is a fixed point locus in �M0
1;k.P

n; d/. For example, in the case of
the first diagram in Figure 6,

�.z�/D �7I f2g; f1; 3g�; �Mz�IP D �M1;.Œ7�;f2g/;

xZz�IB D
� SM0;3� SM6

0;2� SM5
0;1

�
�
� SM2

0;3� SM4
0;2� SM3

0;1

�
� fptgI

rk Fz�IB D rk F 0z�IB D 3; �Zz�IB � P2; �Zz� � �M1;.Œ7�;f2g/�P2:

The weight of the G –action on the line LeI0 is 1=2 of the weight of the G –action on
Tp0

P1
p0;p1

[10, Sects 27.1 and 27.2].

We next describe the equivariant normal bundle N �Zz� of �Zz� in �M0
1;k.P

n; d/. Let

NSM
�.z�/IB.Pn;d/

xZz�IB �! xZz�IB
be the normal bundle of xZz�IB in SM

�.z�/IB.P
n; d/. This normal bundle can easily be

described using [10, Section 27.4]. Let

F�z�IB D F
�.z�/IB

ı
.F 0z�IB˝LeI0/�

M
e02Edg.v0/�EdgC

Le0I0 ˚
(

LeI0; if dC.z�/D1I
f0g; if dC.z�/�2;

where e is an element of EdgC . The normal bundle of �Zz�IB in �M
�.z�/IB.P

n; d/ is
given by

N�M
�.z�/IB.Pn;d/

�Zz�IB DNSM�.z�/IB.Pn;d/
xZz�IB˚ 
 �dimC z�˝L�eI0˝F�z�IB;

where 
dimC z��!P dimC z� is the tautological line bundle. Since none of the exceptional
divisors intersects �Zz�IB ,

(1–9) E� IB
ˇ̌�Zz�IB D 
dimC z�˝LeI0:

Since the section �D� IB is transverse to the zero set, the normal bundle of �Zz�IB in�Z
�.z�/IB.P

n; d/ is

N�Z
�.z�/IB.Pn;d/

�Zz�IB DN�M
�.z�/IB.Pn;d/

�Zz�IBı�
 �dimC z�˝L�eI0˝T�.v0/P
n
�

by (1–6) and (1–7). Finally,

N �Zz� DN�Z
�.z�/IB.Pn;d/

�Zz�IB˚L
�.z�/IP˝
dimC z�˝LeI0;

since the normal bundle of �Z
�.z�/.P

n; d/ in �M0
1;k.P

n; d/ is L
�.z�/IP˝
�.z�/IB .

Geometry & Topology, Volume 12 (2008)



Desingularization of moduli space of genus-one stable maps 25

In order to compute the last number in (1–4), we also need to determine the restriction
of the vector bundle �Vd

1;k to �Zz� . By Theorem 1.2 and (1–9), there is a short exact
sequence of vector bundles

(1–10) 0 �! �Vd
1;k

ˇ̌�Zz� �! Vd

�.z�/IB
ˇ̌�Zz�IB �! 
 �

dimC z�˝L�eI0˝L�.v0/ �! 0

over �Zz� . This exact sequence describes the euler class of the restriction of �Vd
1;k to �Zz� .

If �D.mIJP ;JB/2A1.d; k/,˝
c
jmjCjJP j
1

.L�� IP /; �M� IP
˛D mjJP j � .m�1/!

24
;

by [27, Corollary 1.2]. This is the only intersection number on �M� IP needed for
computing the last number in (1–4) and the integrals of the cohomology classes on
SM0

1;k.P
n; d/ that count elliptic curves in Pn passing through specified constraints. For

more general enumerative problems, such as counting curves with tangency conditions
and with singularities considered by the first author in [18] and the second author
in [23], respectively, one would need to compute the intersection numbers of the formD

c
ˇ0

1
.L�� IP / �

Y
l2JP

 
ˇl

l
; �M� IP

E
; where ˇ0C

X
l2JP

ˇl D jmjC jJP j:

Theorem 1.1 in [27] gives a recursive formula for such numbers. The recursion is on
jmjCjJP j, ie the total number of marked points. The starting data for the recursion is
the well-known number

˝
 1; SM1;1

˛D1=24.

In the above discussion we ignored all automorphism groups. As in [10, Chapter 27],
the rational function for each refined decorated rooted tree z� obtained following the
above algorithm and applying the localization theorem of [1] should be divided by the
order of the appropriate automorphism group Az� Wˇ̌

Az�
ˇ̌D ˇ̌Aut.z�/ˇ̌ � Y

e2Edg�Edg0

d.e/:

For example, in the case of the first diagram in Figure 6,ˇ̌
Az�
ˇ̌D 1 � �13 � 25 � 33/D 864:

2 Blowups of moduli spaces of curves

2.1 Blowups and subvarieties

In this section we construct blowups of certain moduli spaces of genus-one and genus-
zero curves; see Sections 2.3 and 2.4. The former appear in Section 4.3 as the first
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factor in the domain of the proper transforms of the immersion �� of Section 1.2. The
latter play the analogous role in Section 3.4, where we blow up certain moduli spaces of
genus-zero maps. In turn, these last blowups describe the second factor of the domain
of maps induced by �� in Section 4.3; see Section 1.3 for more details.

We begin by introducing convenient terminology and reviewing standard facts from
algebraic geometry. If SM is a smooth variety and Z is a smooth subvariety of SM, let

N SMZ � T SMjZ
ı

T Z

be the normal bundle of Z in SM. We denote by

�?Z W T SMjZ �!N SMZ

the quotient projection map.

Definition 2.1 Let SM be a smooth variety.

(1) Smooth subvarieties X and Y of SM intersect properly if X\Y is a smooth
subvariety of SM and

T .X\Y /D TX jX\Y \T Y jX\Y :
6

(2) If Z is a smooth subvariety of SM, properly intersecting subvarieties X and Y

of SM intersect properly relative to Z if

�?Z
�
T .X\Y /jX\Y\Z

�D �?Z �TX jX\Y\Z

�\�?Z �T Y jX\Y\Z

��N SMZ:

For example, if X and Y are two smooth curves in a projective space that intersect
without being tangent to each other, then X and Y intersect properly (but not transver-
sally, unless the dimension of the projective space is 2). If X , Y , and Z are three
distinct concurrent lines that lie in a plane, then they intersect properly pairwise, but
X and Y do not intersect properly relative to Z .

Definition 2.2 If SM is a smooth variety, a collection f SM�g�2A of smooth subvarieties
is properly intersecting if SM�1

and SM�2
intersect properly relative to SM�3

for all
�1; �2; �32A.

6In other words, the scheme-theoretic intersection of X and Y is smooth. If the set-theoretic
intersection X\Y is smooth, the second part of this condition is also equivalent to the injectivity of the
natural homomorphism

TX jX\Y =T .X\Y / �! T SM=T Y:
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If Z is a smooth subvariety of SM, let

� W BlZ SM �! SM
be the blowup of SM along Z . If X is a subvariety of SM, we denote by PrZ X the
proper transform of X in BlZ SM, ie the closure of ��1.X�Z/ in BlZ SM.7 The next
lemma follows from a local computation. (The local geometry of a proper intersection
is particularly simple.)

Lemma 2.3 Let SM be a smooth variety.

(1) If X and Z are properly intersecting subvarieties of SM, then PrZ X is a smooth
subvariety of BlZ SM and

PrZ X D BlX\Z X:

(2) If X , Y , and Z are pairwise properly intersecting subvarieties of SM and X and
Y intersect properly relative to Z , then PrZ X and PrZ Y are properly intersecting
subvarieties of PrZ

SM and

PrZ X \PrZ Y D PrZ .X\Y /:

(3) If X , Y , Z , and Z0 are pairwise properly intersecting subvarieties of SM and
X and Y intersect properly relative to Z and Z0 , then PrZ X and PrZ Y intersect
properly relative to PrZ Z0 .

Corollary 2.4 If SM is a smooth variety, f SM�g�2A is a properly intersecting col-
lection of subvarieties of SM, and � 2A, then fPr SM�

SM�0g�02A�f�g is a properly
intersecting collection of subvarieties of Bl SM�

SM.

Remark By our definitions, properly intersecting subvarieties are necessarily smooth
subvarieties of smooth varieties.

2.2 Moduli spaces of genus-one and -zero curves

In this subsection, we describe natural subvarieties of moduli spaces of genus-one
and -zero curves and natural bundle sections over these moduli spaces. These bundle
sections and their twisted versions introduced in the next two subsections are used in
Sections 3.4 and 4.3 to describe the structure of the proper transforms of SM0

1;k.P
n; d/.

Below we also state the now standard facts about these objects that are used in the next
two subsections.

7For the purposes of these definitions we do not require that SM and X be smooth.
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If I is a finite set, let

A1.I/D
˚�

IP ; fIk W k2Kg�WK¤∅I ID
G

k2fPgtK

Ik I jIk j�2 8 k2K
	I

A0.I/D
˚�

IP ; fIk W k2Kg�WK¤∅I ID
G

k2fPgtK

Ik I jIk j�2 8 k2KI
jKjCjIP j�2

	
:

(2–1)

If �D.IP ; fIk W k2Kg/ is an element of f.I;∅/gtA1.I/, we denote by M1;� the
subset of SM1;I consisting of the stable curves C such that

(i) C is a union of a smooth torus and jKj projective lines, indexed by K ;

(ii) each line is attached directly to the torus;

(iii) the marked points on the line corresponding to k2K are indexed by Ik .

Let SM1;� be the closure of M1;� in SM1;I . Figure 7 illustrates this definition, from
the points of view of symplectic topology and of algebraic geometry. In the first
diagram, each circle represents a sphere, or P1 . In the second diagram, the irreducible
components of C are represented by curves, and the integer next to each component
shows its genus. Similarly, if

�D.IP ; fIk W k2Kg/ 2 ˚.I;∅/	tA0.I/;

let M0;� be the subset of SM0;f0gtI consisting of the stable curves C such that

(i) the components of C are indexed by the set fPgtK ;

(ii) for each k2K , the component Ck of C is attached directly to CP ;

(iii) for each k2K , the marked points on Ck are indexed by Ik .

We denote by SM0;� the closure of M0;� in SM0;f0gtI . This definition is illustrated
in Figure 8. In this case, we do not indicate the genus of the irreducible components in
the second diagram, as all of the curves are rational.

The next lemma follows from the fact that for any nodal curve, the deformations of the
nodes are independent. More precisely, in the dual to the first-order deformation space
of a nodal curve, the vectors corresponding to the smoothings of each node are linearly
independent.

Lemma 2.5 If gD0; 1 and I is a finite set, the collection f SMg;�g�2Ag.I / is properly
intersecting.
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Figure 7: A typical element of SM1;�
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I1 Dfi2; i3g
I2 Dfi4; i5g
I3 Dfi6; i7; i8g

Figure 8: A typical element of SM0;�

We define a partial ordering on the sets Ag.I/ for gD0; 1 by setting

(2–2) �0��I 0P ; fI 0k W k2K0g�� ���IP ; fIk W k2Kg�
if �0¤� and there exists a map ' WK�!K0 such that Ik�I 0

'.k/
for all k2K . This

condition means that the elements of M�0 can be obtained from the elements of M� by
moving more points onto the bubble components or combining the bubble components;
see Figure 9. In the gD0 case, we define the bubble components to be the components
not containing the marked point 0.
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1
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Figure 9: Examples of partial ordering (2–2)

In the blowup constructions of the next two subsections we will twist certain line
bundles over moduli spaces of curves and homomorphisms between them. In the rest
of this subsection we describe the relevant starting data.

For each i 2I , let Li�! SM1;I be the universal tangent line bundle at the marked
point labeled i . Let E�! SM1;I be the Hodge line bundle of holomorphic differentials.
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The natural pairing of tangent vectors with cotangent vectors induces a section

si 2 �
� SM1;I IHom.Li ;E

�/
�
:˚

si.ŒCIw�/
	
.ŒC;  �/D  xi .C/wExplicitly,

ŒC�2 SM1;I ; ŒC; w�2Li jCDTxi .C/C; ŒC;  �2EjCDH 0.CIT �C/;if

and xi.C/2C is the marked point on C labeled by i .

In the genus-zero case, the line bundle L0�! SM0;f0gtI will be one of the substitutes
for E. We note that for every p2P1 , there is a natural isomorphism between the tangent
space TpP1 of P1 at p and the space of holomorphic differentials H 0.P1IT �P1˝
O.2p// on P1 that have a pole of order two at p . More precisely, let w be a
meromorphic function on P1 such that p is the only zero of w and this zero is a
simple one. We can then view w as a coordinate around p in P1 . Every tangent vector
v2TpP1 can be written as

v D cw.v/
@

@w
; cw.v/ 2C:

We define the isomorphism

 W TpP1 �!H 0.P1IT �P1˝O.2p// by v �!  v D cw.v/ dw

w2
:

If w0 is another meromorphic function on P1 such that p is the only zero of w0 and
this zero is a simple one, then

w0 D w

˛wCˇ H) dw0 D ˇ dw

.˛wCˇ/2 ; cw0.v/D
cw.v/

ˇ

H) cw0.v/ dw0

w02
D cw.v/ dw

w2
:

Thus, the isomorphism  is well-defined. If i2I , we define the section

si 2 �
� SM0;f0gtI IHom.Li ;L

�
0/
�

by
˚
si.ŒCIw�/

	
.ŒC; v�/D  v

ˇ̌
xi .C/w

if ŒC�2 SM0;f0gtI ; ŒC; w�2Li jCDTxi .C/C; ŒC; v�2L0jCDTx0.C/C:
(2–3)

We note that in both cases the section si vanishes precisely on the curves for which the
point i lies on a bubble component. In fact,

(2–4) s�1
i .0/D

X
�2Bg.I Ii/

SM1;�; where Bg.I I i/D
˚�

IP ; fIBg
�2Ag.I/W i2IB

	
:
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2.3 A blowup of a moduli space of genus-one curves

Let I and J be finite sets such that I is nonempty. In this subsection, we construct a
blowup

�1;.I;J /W �M1;.I;J / �! SM1;ItJ

of the moduli space SM1;ItJ , jI jC1 line bundles

zE; zLi �! �M1;.I;J /; i2I;

and jI j nowhere vanishing sections

zsi 2 �
� �M1;.I;J /IHom. zLi ; zE�/

�
; i2I:

Since the sections zsi do not vanish, all jI jC1 bundles zLi and zE� are explicitly
isomorphic. They will be denoted by L and called the universal tangent line bundle.

The smooth variety �M1;.I;J / is obtained by blowing up some of the subvarieties SM1;� ,
defined in the previous subsection, and their proper transforms in an order consistent
with the partial ordering �. The line bundle zE is the sum of the Hodge line bundle
E and all exceptional divisors. For each given i2I , zLi is the universal tangent line
bundle Li for the marked point i minus some of these divisors. The section zsi is
induced from the pairing si of the previous subsection.

With I and J as above and Ag.ItJ / as in (2–1), let

(2–5) Ag.I;J /D
˚�
.IPtJP /; fIktJk W k2Kg�2Ag.ItJ /W Ik¤∅ 8 k2K

	
:

We note that if �2Ag.ItJ /, then �2Ag.I;J / if and only if every bubble component
of an element of M� carries at least one element of I . Furthermore,

(2–6) Bg.ItJ I i/�Ag.I;J / 8 i2I:

If jI jCjJ j�2, with respect to the partial ordering � the set A1.I;J / has a unique
minimal element:

�min �
�
∅; fItJ g�:

Let < be an ordering on A1.I;J / extending the partial ordering �. We denote the
corresponding maximal element by �max . If �2A1.I;J /, we put

(2–7) ��1D
(

maxf�02A1.I;J /W �0<�g; if �¤�minI
0; if �D�min;

where the maximum is taken with respect to the ordering <.
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We now describe the starting data for the inductive blowup procedure involved in
constructing the space �M1;.I;J / and the line bundle L over �M1;.I;J / . Let

SM0
1;.I;J / D SM1;ItJ ; E0 D E �! SM0

1;.I;J /;
SM0

1;� D SM1;� 8 �2A1.I;J /:

For each i2I , let

L0;i DLi �! SM0
1;.I;J / and s0;i D si 2 �

� SM0
1;.I;J /IHom.L0;i ;E

�
0/
�
:

By (2–4), s�1
0;i .0/D

X
��2B1.ItJ Ii/

SM0
1;�� :

Suppose �2A1.I;J / and we have constructed

(I1) a blowup ���1W SM��1

1;.I;J /
�! SM0

1;.I;J /
of SM0

1;.I;J /
such that ���1 is an iso-

morphism outside of the preimages of the spaces SM0
1;�0 with �0���1;

(I2) line bundles L��1;i�! SM��1

1;.I;J /
for i2I and E��1�! SM��1

1;.I;J /
;

(I3) sections s��1;i2�. SM��1

1;.I;J /
IHom.L��1;i ;E

�
��1

// for i2I .

For each ��>��1, let SM��1
1;�� be the proper transform of SM0

1;�� in SM��1

1;.I;J /
. We

assume that

(I4) the collection f SM��1
1;��g��2A1.I;J /;��>��1 is properly intersecting;

(I5) for all i2I ,
s�1
��1;i.0/D

X
��2B1.ItJ Ii/;��>��1

SM��1
1;�� :

The assumption (I5) means that we will gradually be killing the zero locus of the
section si . We note that all five assumptions are satisfied if ��1 is replaced by 0.

If � is as above, let
z��W SM�

1;.I;J /
�! SM��1

1;.I;J /

be the blowup of SM��1

1;.I;J /
along SM��1

1;�
. We denote by SM�

1;�
the corresponding

exceptional divisor. If ��>� , let SM�
1;��� SM�

1;.I;J /
be the proper transform of SM��1

1;�� .
If

(2–8) �D �IPtJP ; fIktJk W k2Kg�
and i2I , we put

(2–9) L�;i D
(
z� �� L��1;i ; if i 62IP I
z� �� L��1;i ˝O.� SM�

1;�
/; if i2IP I

E� D z� �� E��1˝O. SM�
1;�
/:
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The section z� �� s��1;i induces a section

zs�;i 2 �
� SM�

1;.I;J /
IHom.L�;i ; z� �� E���1/

�
:

This section vanishes along SM�
1;�

, by the inductive assumption (I5) if i 62IP . Thus,
zs�;i induces a section

s�;i 2 �
� SM�

1;.I;J /
IHom.L�;i ;E��/

�
:

We have now described the inductive step of the procedure. It is immediate that the
requirements (I1)–(I3) and (I5) are satisfied, with ��1 replaced by � , are satisfied.
Corollary 2.4 and the assumption (I4) imply that the assumption (I4) with ��1

replaced by � is also satisfied.

We conclude the blowup construction after the �max step. Let

�M1;.I;J / D SM�max
1;.I;J /

I zED E�max I zLi DL�max;i ; zsi D s�max;i 8 i2I:

By (I5), with ��1 replaced by �max , and (2–6), the section zsi does not vanish. We
note that by (I1), the stratum

M1;.I;J / � SM1;.I;J /

consisting of the smooth curves is a Zariski open subset of SM�

1;.I;J /
for all � 2

f0gtA1.I;J /.

By the next lemma, different extensions of the partial order � to an order < on
A1.I;J / correspond to blowing up along disjoint subvarieties in different orders. Thus,
the end result of the above blowup construction is well-defined, ie independent of the
choice of the ordering < extending the partial ordering �.

Lemma 2.6 Suppose �; �02A1.I;J / are such that � 6��0 and �0 6�� . If �¤�0 , then
the spaces SMz�

1;�
and SMz�

1;�0 are disjoint for some z���; �0 .

Proof (1) Suppose

�D �IPtJP ; fIktJk W k2Kg� and �0 D �I 0PtJ 0P ; fI 0ktJ 0k W k2K0g�:
For each k2K and k 02K0 , let

�k D
�
.I�Ik/t.J�Jk/; fIktJkg

� 2A1.I;J /;

�0k0 D
�
.I�I 0k0/t.J�J 0k0/; fI 0k0tJ 0k0g

� 2A1.I;J /:
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By definition, SM0
1;�k

and SM0
1;�0

k0
are divisors in SM0

1;.I;J /
D SM1;ItJ ,

SM0
1;� D

\
k2K

SM0
1;�k

; and SM0
1;�0 D

\
k02K 0

SM0
1;�0

k0
:

Furthermore, if SM0
1;�k
\ SM0

1;�0
k0
¤∅, then either

IktJk � I 0k0tJ 0k0 ; IktJk � I 0k0tJ 0k0 ; or .IktJk/\ .I 0k0tJ 0k0/D∅:

(2) Suppose SM0
1;�
\ SM0

1;�0¤∅. By the above, there exist decompositions

K DKC tK0 t
G

l 02K 0C

Kl 0 and K0 DK0C tK00 t
G

l2KC
K0l

and a bijection 'W K0�!K0
0

such that

IktJk ¨ I 0l 0tJ 0l 0 8 k2Kl 0 ; l 02K0C; IltJl © I 0k0tJ 0k0 8 k 02K0l ; l2KC;
IktJk D I 0'.k/tJ 0'.k/ 8 k2K0:

We note that the subsets KC and K0C of K and K0 are nonempty. For example, if
KC were empty, then we would have �0�� , contrary to our assumptions. Let

z�D �zIPt zJP ; f zIkt zJk W k2K0tKCtK0Cg
� 2A1.I;J /

be given by

zIP t zJP D .IP\I 0P /t .JP\J 0P /; zIkt zJk D
(

IktJk ; if k2K0tKCI
I 0

k
tJ 0

k
; if k2K0C:

For example, if � corresponds to the second diagram on the right side of Figure 9 and �0
corresponds to either the first or the third diagram on the right side, then z� corresponds
to the diagram on the left side of Figure 9. By definition, z���; �0 . Furthermore,

SM0
1;�\ SM0

1;�0 � SM0
1;z�:

Thus, by Lemma 2.5, Corollary 2.4, and (2) of Lemma 2.3,

SMz�
1;�
\ SMz�

1;�0 � SMz�
1;.I;J /

is the closure of the empty set.
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2.4 A blowup of a moduli space of genus-zero curves

Suppose @ is a nonempty finite set and %D.Il ;Jl/l2@ is a tuple of finite sets such that
Il¤∅ and jIl jCjJl j�2 for all l2@. Let

SM0;% D
Y
l2@
SM0;f0gtIltJl

and F% D
M
l2@

��l L0 �! SM0;%;

where L0�! SM0;f0gtIltJl
is the universal tangent line bundle for the marked point 0

and
�l W SM0;% �! SM0;f0gtIltJl

is the projection map. In this subsection, we construct a blowup

�0;%W �M0;% �! PF%

of the projective bundle PF% over SM0;% . We also construct line bundles

zE; zL.l;i/ �! �M0;%; i2Il ; l2@;
and nowhere vanishing sections

zs.l;i/ 2 �
� �M0;%IHom. zL.l;i/; zE�/

�
; i2Il ; l2@:

In particular, all line bundles zL.l;i/ and zE� are explicitly isomorphic. They will be
denoted by L and called the universal tangent line bundle.

Similarly to the previous subsection, the smooth variety �M0;% is obtained by blowing up
the subvarieties SM0;� defined below and their proper transforms in an order consistent
with a natural partial ordering �. The line bundle zE is the sum of the tautological line
bundle


% �! PF%

and all exceptional divisors. For every l2@ and i2Il , zL.l;i/ is ��
l

Li minus some of
these divisors. The section zs.l;i/ is induced from the pairings si of Section 2.2.

With % as above and A0.Il ;Jl/ as in (2–5), let

(2–10)
A0.%/D

˚�@C; .�l/l2@
�W∅¤@C�@I�l2f.IltJl ;∅/gtA0.Il ;Jl/8 l2@I

�lD.IltJl ;∅/ 8 l2@�@CI
�@C; .�l/l2@

�¤�@; .IltJl ;∅/l2@
�	
:

We define a partial ordering on A0.%/ by setting

(2–11) �0��@0C; .�0l/l2@�� ���@C; .�l/l2@
�

if �0¤� , @0C�@C , and for every l2@ either �0
l
D�l , �0

l
��l , or �0

l
D.IltJl ;∅/. Let <

be an ordering on A0.%/ extending the partial ordering �. We denote the corresponding
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minimal and maximal elements of A0.%/ by �min and �max , respectively. If �2A0.%/,
we define

��1 2 f0gtA0.%/

as in (2–7).

If �2A0.%/ is as in (2–11), let

SM0;� D
Y
l2@
SM0;�l

; F� D
M

l2@C
��l L0

ˇ̌
SM0;�
� F%;

�M0
0;�DPF� � �M0

0;%�PF%:and

The spaces �M0
0;%

and �M0
0;�

can be represented by diagrams as in Figure 10.

C

C

C

@Df1; 2; 3g
jI1tJ1jD2

jI2tJ2jDjI3tJ3jD3

@C Df1; 2; 3g
�1 D.I1tJ1;;/
�2 D.I2tJ2;;/
�3 D.I3tJ3;;/

�

C

C

@Df1; 2; 3g
jI1tJ1jD2

jI2tJ2jDjI3tJ3jD3

@C Df2; 3g
�1 D.I1tJ1;;/
�2 ¤.I2tJ2;;/
�3 D.I3tJ3;;/

Figure 10: Typical elements of �M0
0;%

and �M0
0;�

The trees of circles attached to the vertical lines correspond to the tuples �l , with
conventions as in the first, symplectic-topology, diagram in Figure 8. For each such
tree, the marked point 0 is the point on the line. We indicate the elements of @C�@
with plus signs next to these points. Note that by (2–10), every dot on a vertical line for
which the corresponding tree of circles contains more than one circle must be labeled
with a plus sign. From Lemma 2.5, we immediately obtain the following lemma:

Lemma 2.7 Suppose @ is a nonempty finite set and %D.Il ;Jl/l2@ is a tuple of finite
sets such that Il¤∅ and jIl jCjJl j�2 for all l2@. If A0.%/ is as above, the collection
f �M0

0;�
g�2A0.%/ is properly intersecting.

We now describe the starting data for the sequential blowup construction of this
subsection. Let

E0D
% �! �M0
0;%DPF% and L0;.l;i/D��0;%��l Li �! �M0

0;% 8 i2Il ; l2@:

We take s0;.l;i/ 2 �
� �M0

0;%IHom.L0;.l;i/;E
�
0/
�

Geometry & Topology, Volume 12 (2008)



Desingularization of moduli space of genus-one stable maps 37

to be the section induced by � �
0;%
��

l
si , with si defined by (2–3). It follows immediately

from (2–4) that
s �1
0;.l;i/.0/D

X
��2B0.%Il;i/

�M0
0;�� ;

B0.%I l; i/D
n�@C; .�l 0/l 02@

�2A0.%/Wwhere

@CD@�flg and �l 0D.Il 0tJl 0 ;∅/ 8l 02@; or

@CD@; �l2B0.IltJl I i/; �l 0D.Il 0tJl 0 ;∅/ 8l 02@�flg
o
:

The rest of the construction proceeds as in Section 2.3. The analogue of (2–9) now is

L�;.l;i/ D
8<:z���L��1;.l;i/;

if l 62@C or
�l¤.IltJl ;∅/; i 62Il;P I

z���L��1;.l;i/˝O.� �M�
0;�
/; otherwiseI

(2–12)

E� D z��� E��1˝O. �M�
0;�
/:(2–13)

As before, we take �M0;% D �M�max
0;%
I zED E�max I

zL.l;i/ DL�max;.l;i/ and zs.l;i/ D s�max;.l;i/ 8 i2Il ; l2@:
The analogue of the inductive assumption (I5) insures that each section zs.l;i/ does not
vanish. The statement and the proof of Lemma 2.6 remain valid in the present setting,
with only minor changes. Thus, the end result of the above blowup construction is
again well-defined, ie independent of the choice of the ordering < extending the partial
ordering �.

3 A blowup of a moduli space of genus-zero maps

3.1 Blowups and immersions

In this section we construct blowups of certain moduli spaces of genus-zero maps; see
Sections 3.3 and 3.4. As outlined in Section 1.3, these blowups appear in Section 4.3
as the second factor in the domain of the immersions induced by the immersions �� of
Section 1.2.

As in Section 2, we begin by introducing convenient terminology and reviewing standard
facts from algebraic geometry. If SM is a variety, we denote its Zariski tangent space
and its tangent cone by T SM and T C SM, respectively. If X is a smooth variety (but not
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necessarily equidimensional), we recall that a morphism �X W X�!SM is an immersion
if the differential of �X ,

d �X W TX �! ��X T C SM;

is injective at every point of X . Let

Ims �X �
˚
p2 SMW j��1

X .p/j�2
	

and N�X � ��X T C SMı
Im d �X

be the singular locus of �X and the normal cone of �X in SM, respectively. We denote by

�?�X W ��X T C SM �!N�X
the projection map. If Z is a subvariety of SM, let

�Z W Z �! SM
the inclusion map.

Definition 3.1 Let SM be a variety.

(1) An immersion �X W X�!SM is properly self-intersecting if for all x1;x22X such
that �X .x1/D�X .x2/ and sufficiently small neighborhoods U1 of x1 and U2 of x2 in
X

T C�X .x1/

�
�X .U1/\�X .U2/

�D Im d �X jx1
\ Im d �X jx2

� T C�X .x1/
SM: 8

(2) If �X W X�!SM and �Y W Y �!SM are immersions such that �X is properly self-
intersecting, �X is properly self-intersecting relative to �Y if for all x1;x22X and
y2Y such that

�X .x1/D �X .x2/D �Y .y/
and for all sufficiently small neighborhoods U1 of x1 and U2 of x2 in X ,

�?�Y
ˇ̌
y

�
T C�Y .y/.�X .U1/\�X .U2//

�D �?�Y ˇ̌yIm d �X jx1
\�?�Y

ˇ̌
y

Im d �X jx2
�N�Y

ˇ̌
y
:

This definition generalizes Definition 2.1; see the paragraph following the latter for
some examples.

Definition 3.2 If SM is a variety, a collection f�%W X%�! SMg%2A of immersions is
properly self-intersecting if for all �1; �2; �32A the immersion ��1

t��2
is properly

self-intersecting relative to ��3
.

The next lemma follows from a local computation. (The local geometry of a proper
self-intersection is particularly simple.)

8We emphasize that intersections are taken to be set-theoretic intersections unless otherwise noted.
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Lemma 3.3 Suppose SM is a variety and Z is a smooth subvariety of SM.

(1) If �X W X�!SM is an immersion such that the immersion �Xt�Z W XtZ�!SM is
properly self-intersecting, then �X lifts to an immersion

PrZ �X W Bl��1
X
.Z/X �! BlZ SM s.t. Im PrZ �X D PrZ Im �X :

(2) If in addition �X is properly self-intersecting relative to �Z , then PrZ �X is properly
self-intersecting and

Ims PrZ �X D PrZ Ims �X :

(3) If in addition �Y W Y �!SM is an immersion such that �Xt �Y t�Z is properly self-
intersecting and �X is properly self-intersecting relative to �Y , then PrZ �X is properly
self-intersecting relative to PrZ �Y . Furthermore,˚

PrZ �X
	�1�PrZ Im �Y

�D Pr��1
X
.Z/�
�1
X .Im �Y /:

Remark Since we always require that the blowup locus be smooth, an implicit
conclusion of (1) of Lemma 3.3 is that ��1

X
.Z/ is a smooth subvariety of X ; this is

immediate from the local situation. Note that X itself is smooth, as it is the domain of
the immersion �X .

Corollary 3.4 Suppose SM is a variety and f�%W X%�! SMg%2A is a properly self-
intersecting collection of immersions. If % 2A is such that �% is an embedding,
then fPrIm �% �%0g%02A�f%g is a properly self-intersecting collection of immersions into
BlIm �% SM.

Like Lemma 3.3, the next lemma follows from a local computation, using the simple
geometry of a proper self-intersection.

Lemma 3.5 Suppose SM is a smooth variety, Z is a smooth subvariety of SM,
�X W X �! SM is an immersion such that the immersion �X t �Z is properly self-
intersecting. Let

��1
X .Z/D

G
%2A

Z%

be the decomposition of ��1
X
.Z/ into path components. If there exist a splitting

N�X D
M
i2I

Li �!X
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and a subset I% of I for each %2A such that

(3–1) �X j�Z%T Z
ı

T Z% D
M

i2I�I%

Li jZ% 8 %2A;

then NPrZ �X D
M
i2I

�
��Li ˝

O
i2I%

O.�E%/
�
;

where E% is the component of the exceptional divisor for the blowup � W Bl��1
X
.Z/X�!

X that projects onto Z% .

We note that by (1) of Definition 3.1, the homomorphism

�X j�Z%T Z
ı

T Z% �!N�X���X T SMı
Im d �X

induced by the inclusions is injective. Thus, we can identify �X j�Z%T Z
ı

T Z% with a
subbundle of N�X , as we have done in Lemma 3.5.

3.2 Moduli spaces of genus-zero maps

In this subsection, we describe natural subvarieties of the moduli space of genus-zero
maps and a natural bundle section over them. This bundle section induces other bundle
sections, introduced in the next two subsections, that are used in the blowup construction
of Section 4.3 to describe the structure of the proper transforms of SM0

1;k.P
n; d/; see

Section 1.3 for more details. Below we also state two well-known facts in the Gromov–
Witten theory, Lemmas 3.6 and 3.7, and a more recent result, Lemma 3.8.

If d2ZC and J is a finite set, let

A0.d;J /D
˚
.mIJP ;JB/Wm2ZC; m�d I JDJPtJB; mCjJP j�2

	I(3–2)

SM0;.0;J /.P
n; d/D SM0;f0gtJ .P

n; d/:

If �D.mIJP ;JB/ 2 A0.d;J /, let M0;� .P
n; d/ be the subset of SM0;f0gtJ .P

n; d/

consisting of the stable maps Œ†;u� such that

(i) the components of † are †iDP1 with i2fPgtŒm�;
(ii) uj†P

is constant and the marked points on †P are indexed by the set f0gtJP ;

(iii) for each i2Œm�, †i is attached to †P and uj†i
is not constant.

We denote by SM0;� .P
n; d/ the closure of M0;� .P

n; d/ in SM0;f0gtJ .P
n; d/.

Figure 11 illustrates this definition, from the points of view of symplectic topology
and of algebraic geometry. In the first diagram, each disk represents a sphere, and we
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shade the components on which the map u is nonconstant. In the second diagram, the
irreducible components of † are represented by lines, and the integer next to each
component shows the degree of u on that component. In both cases, we indicate the
marked points lying on the component †P only.

0
j1

j1

0

d1

d2

d3

mD3; JP Dfj1g
d1; d2; d3>0

d1Cd2Cd3 Dd

Figure 11: A typical element of SM0;� .P n; d/

We define a partial ordering on the set A0.d;J / by setting

(3–3) � 0�.m0IJ 0P ;J 0B/� ��.mIJP ;JB/ if � 0¤�; m0�m; J 0P�JP :

Similarly to Section 2.2, this condition means that the elements of M0;� 0.Pn; d/ can
be obtained from the elements of M0;� .P

n; d/ by moving more points onto the bubble
components or combining the bubble components; see Figure 12. As in the gD0 case
of Section 2.2, the bubble components are the components not containing the marked
point 0.

0

� j1

0 0

Figure 12: Examples of partial ordering (3–3)

Lemma 3.6 If �1; �22A0.d;J /, �1¤�2 �1 6��2 , and �2 6��1 , then

SM0;�1
.Pn; d/\ SM0;�2

.Pn; d/� SM0;z�.�1;�2/.P
n; d/;

z�.�1; �2/Dmax
˚
� 02A0.d;J /W � 0��1; �2

	
:where

If z�.�1; �2/ is not defined, SM0;�1
.Pn; d/ and SM0;�2

.Pn; d/ are disjoint.

For example, if �1 and �2 correspond to the two diagrams on the right side of Figure 12,
then z�.�1; �2/ corresponds to the diagram on the left side of Figure 12. Lemma 3.6
is immediate from the definition of the topology on SM0;f0gtJ .P

n; d/. It can also
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be easily deduced from [16, Subsection 3.2] by an argument similar to the proof of
Lemma 2.6.

If �D.mIJP ;JB/ is an element of A0.d;J /, let

SM� IB.Pn; d/�
Y

i2Œm�

G
di>0;Ji�JB

SM0;f0gtJi
.Pn; di/

�i W SM� IB.Pn; d/ �!
G

di>0;Ji�JB

SM0;f0gtJi
.Pn; di/; i2Œm�;and

be as in Section 1.2. Since each of the spaces SM0;f0gtJi
.Pn; di/ is smooth and each

of the evaluation maps

ev0W SM0;f0gtJi
.Pn; di/ �! Pn

is a submersion, the space SM� IB.Pn; d/ is smooth. We denote by

(3–4) �� W SM0;f0gtŒm�tJP
�SM� IB.Pn; d/ �! SM0;� .P

n; d/� SM0;f0gtJ .P
n; d/

the natural node-identifying map. It descends to an immersion

x�� W
� SM0;f0gtŒm�tJP

�SM� IB.Pn; d/
�ı

Sm �! SM0;f0gtJ .P
n; d/:

Let �P ; �BW SM0;f0gtŒm�tJP
�SM� IB.Pn; d/ �! SM0;f0gtŒm�tJP

; SM� IB.Pn; d/:

be the natural projection maps.

Lemma 3.7 If d 2 ZC and J is a finite set, the collections f��g�2A0.d;J / and
fx��g�2A0.d;J / of immersions are properly self-intersecting. If � 2A0.d;J / is as
in (3–3),

Imsx�� �
[
� 0��
SM0;� 0.P

n; d/ and N�� D
M
i2Œm�

��P Li˝��B��i L0:

If in addition � 02A0.d;J /, � 0�� , and � 0 is as in (3–3), then

��1
�

�SM0;� 0.P
n; d/

�D � [
�2A0.� I� 0/

SM0;�

�
� SM� IB.Pn; d/;

A0.� I � 0/D
˚
�D�IPtJ 0P ; fIktJk W k2Kg/2A0.Œm�;JP /W jKjCjIP jDm0

	
where
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and A0.Œm�;JP / and SM0;� are as in Section 2.2. Finally, if �2A0.� I � 0/ is as above,

��
ˇ̌�
SM0;��SM�IB.Pn;d/

T SM0;� 0.P
n; d/

.
T
� SM0;��SM� IB.Pn; d/

�
D

M
i2Œm��IP

��P Li˝��B��i L0:

The first claim in the second sentence and the claim of the third sentence in Lemma 3.7
follow immediately from the definition of the topology on SM0;f0gtJ .P

n; d/. The
remaining claims are also restatements of standard facts in GW-theory; they all follow
from the description of the tangent bundle of SM0;f0gtJ .P

n; d/ in [10, (27.6)].

We finish this subsection by describing a natural bundle section

D0 2 �
�SM0;f0gtJ .P

n; d/;Hom.L0I ev�0T Pn/
�

which plays a central role in the rest of the paper. An element Œb�2 SM0;f0gtJ .P
n; d/

consists of a prestable nodal curve † with marked points and a map uW †�!Pn . One
of the marked points is labeled by 0. We denote it by x0.b/. We define D0 by

D0

ˇ̌
b
D dujx0.b/W Tx0.b/† �! Tev0.b/P

n:

If U�!SM0;f0gtJ .P
n; d/ is the universal curve and evW U�!Pn is the natural evalua-

tion map, then D0jb is simply the restriction of devjx0.b/ to the vertical tangent bundle
of U. The bundle section D0 vanishes identically along the subvarieties SM0;� .P

n; d/

with �2A0.d;J /.

Lemma 3.8 If d2ZC and J is a finite set, the section D0 is transverse to the zero set
on the complement of the subvarieties SM0;� .P

n; d/ with �2A0.d;J /. Furthermore,
for every

��.mIJP ;JB/ 2A0.d;J /;

the differential of D0 ,

rD0W N�� �! ��� Hom.L0; ev�0T Pn/D ��P L�0˝��Bev�0T Pn;

in the normal direction to the immersion �� is given by

rD0

ˇ̌
��

P
Li˝��B��i L0

D ��P si˝��B��i D0 8 i2Œm�;
where si is the homomorphism defined in Section 2.2.

The first claim of the lemma is an immediate consequence of the fact that

H 1
�
†Iu�T Pn˝O.�2z/

�D f0g
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for every genus-zero stable map .†;u/ and a smooth point z2† such that the restriction
of u to the irreducible component of † containing z is not constant. The second
statement of the lemma follows from [21, Theorem 2.8].

3.3 Initial data

If @ and J are finite sets and d is positive integer, let

SM0;.@;J /.Pn; d/D
n
.bl/l2@ 2

Y
l2@
SM0;f0gtJl

.Pn; dl/W dl2ZC;
X
l2@

dlDd I
G
l2@

JlDJ I ev0.bl/Dev0.bl 0/ 8 l; l 02@
o
I

M0;.@;J /.Pn; d/D
n
.bl/l2@ 2

Y
l2@

M0;f0gtJl
.Pn; dl/W dl2ZC;

X
l2@

dlDd I
G
l2@

JlDJ I ev0.bl/Dev0.bl 0/ 8 l; l 02@
o
;

where M0;f0gtJl
.Pn; dl/ is the subset of SM0;f0gtJl

.Pn; dl/ consisting of stable maps
with smooth domains. For each l2@, let

�l W SM0;.@;J /.Pn; d/ �!
G

dl>0;Jl�J

SM0;f0gtJl
.Pn; dl/

be the projection map. We put

F.@;J / D
M
l2@

��l L0;

where L0�!SM0;f0gtJl
.Pn; dl/ is the universal tangent line bundle for the marked

point 0. In the next subsection, we construct a blowup

�0;.@;J /W �M0;.@;J /.Pn; d/ �! PF.@;J /
of the projective bundle PF.@;J / over SM0;.@;J /.Pn; d/ and a line bundle

zE �! �M0;.@;J /.Pn; d/:

We also describe a natural bundle section�D.@;J / 2 ���M0;.@;J /.Pn; d/I zE�˝��0;.@;J /��PF.@;J/ev�0T Pn
�
;

where �PF.@;J/ W PF.@;J / �! SM0;.@;J /.Pn; d/

is the bundle projection map. This section is transverse to the zero set.
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Similarly to Section 2.4, the smooth variety �M0;.@;J /.Pn; d/ is obtained by blowing
up the subvarieties �M0

0;%
.Pn; d/ defined below and their proper transforms in an order

consistent with a natural partial ordering �. The line bundle zE is the sum of the
tautological line bundle


.@;J / �! PF.@;J /
and all exceptional divisors. The section �D.@;J / is induced from the sections ��

l
D0 ,

with l2@, where D0 is as in Section 3.2.

If @, J , and d are as above, let

A0.@I d;J /D
n�
.�l/l2@;JB

�W .�l ;∅/2f.0;∅/gtA0.dl ;Jl;P /; .�l/l2@¤.0/l2@IX
l2@

dlDd; J D JB t
G
l2@

Jl;P

o
:

We define a partial ordering � on A0.@I d;J / by setting

(3–5) %0��.� 0l/l2@;J 0B�� %��.�l/l2@;JB/

if %0¤% and for every l2@ either � 0
l
D�l , .� 0

l
;∅/�.�l ;∅/, or � 0

l
D0. If %2A0.@I d;J /

is as in (3–5), we put

@P .%/D
˚
l2@W �l¤0

	
and @S .%/D

˚
l2@W �lD0

	
:

Here P and S stand for the subsets of principal and secondary elements of @, respec-
tively; see the next paragraph. Note that

%0 � % H) @P .%
0/� @P .%/; @P .%/¤∅ 8 %2A0.@I d;J /;

%D �.ml IJl;P /l2@P .%/; .0/l2@S .%/;JB

�
(3–6)

for some ml and Jl;P . Choose an ordering < on A0.@I d;J / extending the partial
ordering �. We denote the corresponding minimal and maximal element by %min

and %max , respectively. For every %2A0.@I d;J /, define

%�1 2 f0gtA0.@I d;J /
as in (2–7).

If %2A0.@I d;J / is as in (3–5), let

SM0;%.P
n; d/D

n
.bl/l2@ 2

Y
l2@
SM0;.�l ;Jl;B/.P

n; dl/W
X
l2@

dlDd I
G
l2@

Jl;BDJBI

ev0.bl1
/Dev0.bl2

/ 8 l1; l22@
o
:
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This is a subset of SM0;.@;J /.Pn; d/. With �DP;S , we define

F%I� D
M

l2@�.%/
��l L0

ˇ̌̌
SM0;%.Pn;d/

� F.@;J /
ˇ̌
SM0;%.Pn;d/

:

Let �M0
0;%.P

n; d/D PF%IP � �M0
0;.@;J /.P

n; d/�PF.@;J /:

From Lemma 3.6, we immediately obtain

Lemma 3.9 If %1; %22A0.@I d;J /, %1¤%2 %1 6�%2 , and %2 6�%1 , then

�M0
0;%1

.Pn; d/\ �M0
0;%2

.Pn; d/� �M0
0;z%.%1;%2/

.Pn; d/;

z%.%1; %2/Dmax
˚
%02A0.@I d;J /W %0�%1; %2

	
:where

If z%.%1; %2/ is not defined, �M0
0;%1

.Pn; d/ and �M0
0;%2

.Pn; d/ are disjoint.

With % as (3–6), let

%P D
�
Œml �;Jl;P

�
l2@P .%/

; @B.%/D@S .%/t
G

l2@P .%/

Œml �; JB.%/DJB; G%D
Y

l2@P .%/

Sml
:

With �M0
0;%P

as in Section 2.4, we denote by

�0;%W �M0
0;%P
� SM0;.@B.%/;JB.%//.P

n; d/ �! �M0
0;%.P

n; d/� �M0
0;.@;J /.P

n; d/

the natural node-identifying map induced by the immersions �.�l ;Jl;B/ in (3–4). It
descends to an immersion

x�0;%W
� �M0

0;%P
�SM0;.@B.%/;JB.%//.P

n; d/
�ı

G% �! �M0
0;.@;J /.P

n; d/:

Let
�P ; �BW �M0

0;%P
� SM0;.@B.%/;JB.%//.P

n; d/ �! �M0
0;%P

; SM0;.@B.%/;JB.%//.P
n; d/

be the projection maps.

For the rest of this section, as well as for Section 4, we take

SM0;.@;J / D SM0;.@;J /.Pn; d/; M0;.@;J / DM0;.@;J /.Pn; d/;�M0
0;.@;J / D �M0

0;.@;J /.P
n; d/; �M0

0;% D �M0
0;%.P

n; d/ 8 %2A0.@I d;J /;
for any pair .@;J / as above.
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Lemma 3.10 If @ and J are finite sets and d2ZC , the collections

f�0;%g%2A0.@Id;J / and fx�0;%g%2A0.@Id;J /
of immersions are properly self-intersecting. If

%���.m�l IJ�l;P /l2@P .%�/; .0/l2@S .%�/;J
�
B

� 2A0.@I d;J /;

Imsx�0;%� �
[
%0�%�

�M0
0;%0 ;then

N�0;%� D
M

l2@P .%�/

M
i2Œm�

l
�

��P L0;.l;i/˝��B��.l;i/L0 ˚ ��P E�0˝��B
M

l2@S .%�/
��l L0;

where E0 and L0;.l;i/ are as in Sections 2.4. If %; %�2A0.@I d;J /, % is as (3–6), and
%�%� , then

� �1
0;%�

��M0
0;%

�D � [
�2A0.%�I%/

�M0
0;�

�
� SM0;.@B.%�/;JB.%�//;

where A0.%
�I %/

D
n
�D�@P .%/;

�
I�l;PtJl;P ; fI�l;ktJ�l;k W k2K�l g

�
l2@P .%�/

�2A0.%
�
P /W

jK�l jCjI�l;P jDml 8 l2@P .%
�/
o

and A0.%
�
P
/ and �M0

0;�
are as in Section 2.4. Finally, if �2A0.%

�I %/ is as above,

�0;%�
ˇ̌��M0

0;�
�SM0;.@B.%

�/;JB.%
�//T
SM0;%

.
T
� �M0

0;��SM0;.@B.%�/;JB.%�//
�

D
M

l2@P .%�/�@P .%/

M
i2Œm�

l
�

��P L0;.l;i/˝��B��.l;i/L0

˚
M

l2@P .%/

M
i2Œm�

l
��I�

l;P

��P L0;.l;i/˝��B��.l;i/L0:

The normal bundle N�0;%� for the immersion �0;%� splits into horizontal and vertical
bundles:

N�0;%� DN?�0;%� ˚N>�0;%� :
It is immediate from the definitions that

N>�0;%� D ��0;%�
�

 �.@;J /˝F%IS

�D ��P E�0˝��B
M

l2@S .%�/
��l L0:
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The horizontal normal bundle N?�0;%� is the pullback of the normal bundle for the node
identifying immersion

SM0;%�
P
� SM0;.@B.%�/;JB.%�// �! SM0;%�.P

n; d/� SM0;.@;J /

induced by the immersions �.��
l
;J �

l;B
/ in (3–4) by the bundle projection map �PF%IP .

The normal bundle for this immersion is the sum of component-wise normal bundles
given by Lemma 3.7. The remaining claims of Lemma 3.10 follow easily from the
corresponding statements of Lemma 3.7 as well.

We note that for every %�2A0.@I d;J /,
A0.%

�
P /D

G
%�%�

A0.%
�I %/:

Furthermore, if %1; %22A0.@I d;J / are such that %1; %2�%� , then

��12A0.%
�I %1/; ��22A0.%

�I %2/; ��1���2 H) %1�%2:

Thus, we can choose an ordering < on A0.%
�
P
/ extending the partial ordering � of

Section 2.4 such that

%1<%2; ��12A0.%
�I %1/; ��22A0.%

�I %2/ H) ��1<��2 ;

whenever %1; %22A0.@I d;J / are such that %1; %2�%� . In the next subsection, we
will refer to the blowup construction of Section 2.4 corresponding to such an ordering.

Via the projection maps �l , the bundle sections D0 of Section 3.2 induce a linear
bundle map

D.@;J /W F.@;J / �! ev�0T Pn

over SM0;.@;J / . In turn, this homomorphism induces a bundle section

�D0 2 �
��M0

0;.@;J /IE�0˝��PF.@;J/ev�0T Pn
�
; where E0 D 
.@;J / �! �M0

0;.@;J /:

This section vanishes identically on the subvarieties �M0
0;%

of �M0
0;.@;J / with % 2

A�
0
.@I d;J /.

Lemma 3.11 The section �D0 is transverse to the zero set on the complement of the
subvarieties �M0

0;%� with %�2A0.@I d;J /. Furthermore, for every %�2A0.@I d;J / as
in Lemma 3.10, the differential of �D0 ,

r�D0W N�0;%� �! ��0;%�
�
E�0˝��PF.@;J/ev�0T Pn

�D ��P E�0˝��Bev�0T Pn;

Geometry & Topology, Volume 12 (2008)



Desingularization of moduli space of genus-one stable maps 49

in the normal direction to the immersion �0;%� is given by

r�D0

ˇ̌
��

P
L0;.l;i/˝��B��.l;i/L0

D ��P s0;.l;i/˝��B��.l;i/D0 8 i2Œm�l �; l2@P .%
�/;

r�D0

ˇ̌
N>�0;%�

D ��P id˝��BD.@B.%�/;JB.%�//;

where s0;.l;i/ is the homomorphism defined in Section 2.4.

This lemma follows immediately from Lemma 3.8.

3.4 Inductive construction

We are now ready to describe the inductive assumptions for our construction of the
blowup

�0;.@;J /W �M%max
0;.@;J /��M0;.@;J /.Pn; d/ �! �M0

0;.@;J /��M0
0;.@;J /.P

n; d/:

Suppose %2A0.@I d;J / and we have constructed

(I1) a blowup
�%�1W �M%�1

0;.@;J /�!�M0
0;.@;J /

such that �%�1 is an isomorphism outside of the preimage of the spaces �M0
0;%0

with %0�%�1;

(I2) a line bundle E%�1�!�M%�1

0;.@;J / ;

(I3) a section �D%�1 2 �
��M%�1

0;.@;J /IE�%�1
˝� �

%�1
��PF.@;J/ev�

0
T Pn

�
.

For each %�>%�1, let �M%�1
0;%� � �M%�1

0;%�.P
n; d/� �M%�1

0;.@;J /

be the proper transform of �M0
0;%� in �M%�1

0;.@;J / . We assume that

(I4) the section �D%�1 is transverse to the zero set on the complement of the subvari-
eties �M%�1

0;%� with %�>%�1 and vanishes identically along these subvarieties;

(I5) if %1; %22A0.@I d;J / are such that %1¤%2 , %1 6�%2 , %2 6�%1 , and %�1<%1; %2 ,
then

�M%�1
0;%1
\ �M%�1

0;%2

(
� �M%�1

0;z%.%1;%2/
; if z%.%1; %2/>%�1I

D∅; otherwise;

where z%.%1; %2/ is as in Lemma 3.10.
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We also assume that for all %�2A0.@I d;J / such that %�>%�1:

(I6) the domain of the G%� –invariant immersion �%�1;%� induced by �0;%� is

�M�%� .%�1/

0;%�
P

� SM0;.@B.%�/;JB.%�//;

�%�.%�1/D

8̂<̂
:

max
˚
�2A0.%

�I %0/ W
%0�%�1; %0�%�	; if 9%02A0.@I d;J /

s.t. %0�%�1; %0�%�I
0; otherwiseI

where

(I7) if %02A0.@I d;J / is such that %�1<%0�%� , then

� �1
%�1;%�

��M%�1
0;%0

�D � [
�2A0.%�I%0/

�M�%� .%�1/

0;�

�
� SM0;.@B.%�/;JB.%�//I

(I8) Imsx�%�1;%� �
S
%�1<%0�%� �M%�1

0;%0 , where

x�%�1;%� W
� �M�%� .%�1/

0;%�
P

�SM0;.@B.%�/;JB.%�//
�ı

G%� �! �M%�1

0;.@;J /;

is the immersion map induced by �%�1;%� .

Furthermore, we assume that

(I9) the collections of immersions

f�%�1;%�g%�2A0.@Id;J /;%�>%�1 and fx�%�1;%�g%�12A0.@Id;J /;%�>%�1

are properly self-intersecting.

Finally, for all %�2A0.@I d;J / such that %�>%�1:

(I10) ��
%�1;%�E%�1 D ��P E�%� .%�1/ , where

�P ; �BW �M�%� .%�1/

0;%�
P

� SM0;.@B.%�/;JB.%�// �! �M�%� .%�1/

0;%�
P

; SM0;.@B.%�/;JB.%�//

are the two projection maps;

(I11) if %� is as in Lemma 3.10, then the normal bundle for the immersion �%�1;%� is
given by

N�%�1;%� DN?�%�1;%�˚N>�%�1;%�

�
M

l2@P .%�/

M
i2Œm�

l
�

��P L�%� .%�1/;.l;i/˝��B��.l;i/L0

˚��P E��%� .%�1/˝��B
M

l2@S .%�/
��l L0;
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where L�%� .%�1/;.l;i/;E�%� .%�1/�! �M�%� .%�1/

0;%�
P

are the line bundles constructed
in Section 2.4;

(I12) the differential of �D%�1 ,

r�D%�1W N�%�1;%� �! ��%�1;%�
�
E�%�1˝� �%�1�

�
PF.@;J/ev�0T Pn

�
D ��P E��%� .%�1/˝��Bev�0T Pn;

in the normal direction to the immersion �%�1;%� is given by

r�D%�1

ˇ̌
��

P
L�%� .%�1/;.l;i/˝��B��.l;i/L0

D ��P s�%� .%�1/;.l;i/˝��B��.l;i/D0

for all i2Œm�
l
�; l2@P .%

�/ and

r�D%�1

ˇ̌
N>�%�1;%�

D ��P id˝��BD.@B.%�/;JB.%�//;

where s�%� .%�1/;.l;i/ is the homomorphism defined in Section 2.4.

By the inductive assumption (I4), the loci on which the sections �D% fail to be transverse
to the zero set shrink and eventually disappear. For each %, the behavior of �D% in
the directions normal to the “bad” locus is described by (I12). By the inductive
assumption (I5), if %1 and %2 are noncomparable elements of .A0.@I d;J /;�/,
the proper transforms of �M0

0;%1
and �M0

0;%2
become disjoint by the time either is

ready to be blown up for any ordering < extending the partial ordering �. Similarly
to Sections 2.3 and 2.4, (I5) will imply that the end result of the present blowup
construction is independent of the choice of an extension <. By (I6), our blowup
construction modifies each immersion �0;%� by changing the first factor of the domain
according to the blowup construction of Section 2.4, until a proper transform of the
image of �0;%� is to be blown up; see below. By (I8), by the time this happens the
immersion x�0;%� induced by �0;%� transforms into an embedding. Thus, all blowup loci
are smooth.

We note that all of the assumptions (I1)–(I12) are satisfied if %�1 is replaced by 0. In
particular, (I5) is a restatement of Lemma 3.9, while (I4) and (I12) are the two parts
of Lemma 3.11. The statements (I7)–(I11), with %�1 replaced by 0, are contained
in Lemma 3.10.

If %2A0.@I d;J / is as above, let

z�%W �M%

0;.@;J / �! �M%�1

0;.@;J /
be the blowup of �M%�1

0;.@;J / along �M%�1
0;%

, which is a smooth subvariety by the inductive
assumption (I8). We denote the exceptional divisor for this blowup by �M%

0;%
. If %�>%,
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let �M%
0;%���M%

0;.@;J / be the proper transform of �M%�1
0;%� . We put

(3–7) E% D z��%E%�1˝O
��M%

0;%

�
:

The section z��% �D%�1 vanishes identically along the divisor �M%
0;%

. Thus, it induces a
section �D% 2 ���M%

.@;J /IE�%˝��%��PF.@;J/ev�0T Pn
�
;

where �% D �%�1ı z�% .

The inductive assumptions (I1)–(I3), with %�1 replaced by %, are clearly satisfied,
while (I5), (I8), and (I9) follow from (2) of Lemma 3.3 and Corollary 3.4. On the
other hand, by (I6), the domain of the immersion �%�1;% is

�M�%.%�1/

0;%P
� SM0;.@B.%/;JB.%// D �M0;%P

� SM0;.@B.%/;JB.%//;

where �M0;%P
�! �M0

0;%P
is the blowup constructed in Section 2.4. By (I11), the

normal bundle for the immersion �%�1;% is given by

N�%�1;%
D

M
l2@P .%/

M
i2Œml �

��P L�%.%�1/;.l;i/˝��B��.l;i/L0˚��P E��%.%�1/˝��B
M

l2@S .%/

��l L0

D
M

l2@P .%/

M
i2Œml �

��P L˝��B��.l;i/L0 ˚ ��P L˝��B
M

l2@S .%/

��l L0

D ��P L˝��BF.@B.%/;JB.%//;

where L�! �M0;%P
is the universal tangent line bundle constructed in Section 2.4. We

also note that by (I10),

��%�1;%

�
E�%�1˝��PF.@;J/ev�0T Pn

�D ��P L˝��B��PF.@B.%/;JB.%//
ev�0T Pn:

By (I12), the differential of �D%�1 in the normal direction to the immersion �%�1;% is
given by

r�D%�1 D ��P id˝��BD.@B.%/;JB.%//:

Thus, if

�%;%W PN�%�1;%
� �M0;%P

� �M0
0;.@P .%/;JB.%//

�! �M%
0;%
� �M%

0;.@;J /
is the immersion induced by �%�1;% , then

��%;%�D%D��B�D0 2 �
� �M0;%P

��M0
0;.@P .%/;JB.%//

I � �%;%
�
E�%˝��%��PF.@;J/ev�0T Pn

��
D �� �M0;%P

��M0
0;.@B.%/;JB.%//

I
��B.
 �.@B.%/;JB.%//

˝��PF.@B.%/;JB.%//
ev�0T Pn/

�
:
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Lemmas 3.10 and 3.11 thus imply that the restriction of the section �D% to the exceptional
divisor �M%

0;%
is transverse to the zero set away from the subvarieties �M%

0;%� with %�>%.
Thus, by the inductive assumption (I4) as stated above, (I4) is satisfied with %�1

replaced by %.

We now verify that the remaining inductive assumptions are satisfied. If %<%� , but
% 6�%� ,

�%�.%/D �%�.%�1/ and SM%�1
0;%� \ SM%�1

0;%
D∅;

by definition and by (I5), respectively. It then follows that

�%;%� D �%�1;%� ; �M%
0;%�\�M%

0;%0 D �M%�1
0;%�\�M%�1

0;%0 8%0>%;
��%;%�E% D ��%�1;%�E%�1; N�%;%� DN�%�1;%� ; and r�D% Dr�D%�1:

Thus, the inductive assumptions (I6), (I7), and (I10)–(I12), as stated above, imply
the corresponding statements with %�1 replaced by %.

Suppose that %�%� . By (I6) and (1) of Lemma 3.3, the domain of the immersion �%;%�
induced by the immersion �%�1;%� is the blowup of

�M�%� .%�1/

0;%�
P

� SM0;.@B.%�/;JB.%�//

along the preimage of SM%�1
0;%

under �%�1;%� in

��%� .%�1/�idW �M�%� .%�1/

0;%�
P

�SM0;.@B.%�/;JB.%�// �! �M0
0;%�

P

�SM0;.@B.%�/;JB.%�//:

By (I7), this preimage is� [
�2A0.%�I%/

�M�%� .%�1/

0;�

�
� SM0;.@B.%�/;JB.%�//:

By the last paragraph of Section 2.4 and the second paragraph after Lemma 3.10,

�M�%� .%�1/

0;�1
\ �M�%� .%�1/

0;�2
D∅ 8 �1; �22A0.%

�I %/; �1¤�2:

Thus, by the construction of Section 2.4, the blowup of �M�%� .%�1/

0;%�
P

along

[
�2A0.%�I%/

�M�%� .%�1/

0;�
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is �M�%� .%/
0;%�

P

, as needed for the inductive statement (I6), with %�1 replaced by %. For
the same reasons, (I10), (2–13), and (3–7) imply that

��%;%�E% D ��%�1;%�E%�1˝ ��%;%�O
��M%

0;%

�
D ��P E�%� .%�1/˝

O
�2A0.%�I%/

��PO
� �M�

0;�

�D ��P E�%� .%/:

Thus, the inductive statement (I10), with %�1 replaced by %, is satisfied. The
assumption (I7) is checked similarly, using (3) of Lemma 3.3.

We next determine the normal bundle for the immersion �%;%� . By the construction
of Section 2.4, the restrictions of the line bundles L�%� .%�1/;.l;i/ and E�%� .%�1/ to
the complement of the exceptional divisors in �M�%� .%�1/

0;%�
P

are ��
�%� .%�1/

L0;.l;i/ and
��
�%� .%�1/

E0 . Thus, by the last statement of Lemma 3.10, (I11), and the inductive
assumptions (I1) above and in Section 2.4,

�%�1;%�
ˇ̌��M�%� .%�1/

0;�
�SM0;.@B.%

�/;JB.%
�//

T SM%�1
0;%

.
T
� �M�%� .%�1/

0;�
�SM0;.@B.%�/;JB.%�//

�
D

M
l2@P .%�/�@P .%/

M
i2Œm�

l
�

��P L�%� .%�1/;.l;i/˝��B��.l;i/L0

˚
M

l2@P .%/

M
i2Œm�

l
��I�

l;P

��P L�%� .%�1/;.l;i/˝��B��.l;i/L0

for all �2A0.%
�I %/ as in the statement of Lemma 3.10. Let

IP .�/D
˚
.l; i/W l2@P .%/; i2I�l;P

	
:

From Lemma 3.5, we then obtain

N�%;%�D
M

l2@P .%�/

M
i2Œm�

l
�

��
��P L�%� .%�1/;.l;i/˝��B��.l;i/L0

�˝��PO� � X
�2A0.%�I%/;.l;i/2IP .�/

�M�
0;�

��

˚ ��P E��%� .%�1/˝��B
M

l2@S .%�/
��l L0˝��PO

�
�
X

�2A0.%�I%/
�M�

0;�

��
D

M
l2@P .%�/

M
i2Œm�

l
�

�
��P L�%� .%/;.l;i/˝��B��.l;i/L0

�˚��P E��%� .%/˝�
�
B

M
l2@S .%�/

��l L0:

The last equality above follows from (2–12) by the same argument as in the previous
paragraph. We have thus verified that the inductive assumption (I11), with %�1

replaced by %, is satisfied. Finally, the inductive assumption (I12) and the continuity
of the two bundle sections involved in the identity in (I12), with %�1 replaced by %,
imply (I12) with %�1 replaced by %.
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We conclude this construction after the blowup at the %max step. Let�M0;.@;J /.Pn; d/D �M%max
0;.@;J /; zED E%max ;

�D.@;J / D �D%max :

By the inductive assumption (I4), applied with %�1 replaced by %max , the section�D.@;J / is transverse to the zero set. As in the previous two subsections, the final result
of this blowup construction is independent of the order < chosen to extend the partial
ordering � on A0.@I d;J /, as can be seen from (I5).

4 A blowup of a moduli space of genus-one maps

4.1 Idealized blowups and immersions

In this section we describe the main blowup construction of this paper. This is the
sequential idealized blowup construction for SM1;k.P

n; d/ with the initial data and
the inductive step specified in Sections 4.2 and 4.3, respectively. This construction is
outlined in Sections 1.2 and 1.3.

In contrast to the situations in Sections 2 and 3, the variety SM1;k.P
n; d/ is singular.

In order to describe the structure of SM1;k.P
n; d/, we introduce the notion of idealized

normal bundle for an immersion. Recall that the domain of an immersion is assumed
to be a smooth variety.

Definition 4.1 Suppose SM is a variety and �X W X �! SM is an immersion. An
idealized normal bundle for the immersion �X is a vector bundle N ide

�X
over X such

that N�X�N ide
�X

.

Remark An idealized normal bundle is of course not unique; an idealized normal
bundle plus any other vector bundle is still an idealized normal bundle. If the image
of �X is an irreducible component of SM, an idealized normal bundle of the smallest
possible rank still need not be unique; it can be twisted by any divisor in X disjoint
from the preimage under �X of the other components of SM. For each of the immersions
we encounter in the next subsection, there is a natural choice for N ide

�X
. These idealized

normal bundles also transform in a natural way under blowups and proper immersions,
as described in Lemma 4.3 below.

Suppose SM is a variety, Z is a smooth subvariety of SM, and N ide
�Z

is an idealized
normal bundle for the embedding �Z of Z into SM. Let

EZ�PN�Z � BlZ SM
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be the exceptional divisor for the blowup of SM along Z . We denote by Blide
Z
SM the

variety obtained by identifying BlZ SM with

E ide
Z � PN ide

�Z

along EZ . We will call
� ideW Blide

Z
SM �! SM

the idealized blowup of SM along Z and

E ide
Z � Blide

Z
SM

the idealized exceptional divisor for � ide . (Caution: the idealized exceptional divisor is
not necessarily a divisor!) More generally, we will call

� W �M �! SM
an idealized blowup of SM if � is a composition of idealized blowups along smooth
subvarieties. In practice, idealized blowup is simply a convenient term. In the inductive
assumption (I1) in Section 4.3 below, it can be replaced by morphism of varieties,
as the remaining inductive assumptions describe all the relevant properties of this
morphism. Let


Z �! E ide
Z

be the tautological line bundle. Note that the normal bundle of EZ�E ide
Z

in

PrZ
SMD BlZ SM

is 
Z jEZ
. This observation implies the first statement of Lemma 4.3 below.

Our strategy is as follows. We begin with a space with a properly self-intersecting
collection of immersions, each with an idealized normal bundle. These are the immer-
sions �� with � 2A1.d; k/ defined in Section 1.2; their images are the subvarieties
SM1;� .P

n; d/ of SM1;k.P
n; d/. The idealized normal bundle for the immersion �� is

the direct sum of the deformation spaces of the nodes between the contracted genus-one
curve and the noncontracted genus-zero curves that are identified by �� . At each stage,
one of our immersions is an embedding, and we blow it up, replacing it with its idealized
exceptional divisor. The exceptional divisor of the blowup of the main component
is the intersection of the new main component with the idealized exceptional divisor.
Then after each step, we have a new properly self-intersecting collection of immersions.
Moreover, there is a natural idealized normal bundle for each of the proper transforms
of the immersions we have “yet to blow up”.

We now say this more explicitly. Lemmas 4.2 and 4.3 below are direct extensions
of Corollary 3.4 and Lemma 3.5. The first lemma states that if we have a properly
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self-intersecting collection of immersions, one of which is an embedding, then upon
blowing up the embedding, we still have a properly self-intersecting collection of
immersions. It is immediate from the definition of “properly self-intersecting”, by
checking in local coordinates.

The second part of the second lemma follows from Lemma 3.5 with only one change.
Instead of writing

(4–1) N�X D
M
i2I

Li and NPrZ �X D
M
i2I

�
��Li ˝

O
i2I%

O.�E%/
�

as in the statement of Lemma 3.5, we are saying that if there is a natural inclusion
N�X�

L
i2I Li , then we get a natural inclusion

NPrZ �X �
M
i2I

�
��Li ˝

O
i2I%

O.�E%/
�
:

The vector bundles on the right sides of the two expressions in (4–1) are the original
idealized normal bundle and the new idealized normal bundle.

Lemma 4.2 Suppose SM is a variety, f�� W X��!SMg�2A is a properly self-intersect-
ing collection of immersions, and �2A is such that �� is an embedding. If N ide

��
is an

idealized normal bundle for �� , then˚
PrIm �� �� 0

	
� 02A�f�g[

˚
�E ide

Im��

	
is a properly self-intersecting collection of immersions into Blide

Im ��
SM.

Lemma 4.3 If SM is a variety, Z is a smooth subvariety of SM, and N ide
�Z

is an
idealized normal bundle for �Z , then

N ide
�Eide

Z

D 
Z

is an idealized normal bundle for the immersion �E ide
Z

. Suppose in addition that �X , A,
Z% , and E% are as in Lemma 3.5 and N ide

�X
is an idealized normal bundle for �X . If

there exist a splitting
N ide
�X
D
M
i2I

Li �!X

and a subset I% of I for each %2A such that (3–1) holds, then

N ide
PrZ �X

D
M
i2I

�
��Li ˝

O
i2I%

O.�E%/
�

is an idealized normal bundle for the immersion PrZ �X .
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Definition 4.4 Suppose SM is a variety, �X W X �! SM is an immersion, SM0 is a
subvariety in SM, and T C SM0�T SM is the tangent cone of SM0 in SM (T C SM0 not
necessarily reduced). The subvariety SM0 is proper relative to �X if

d �X T C ��1
X .SM0/D ��X T C SM0\ Im d �X � ��X T SM

and the map

(4–2) ��X T C SM0j��1
X
.SM0/

ı
Im d �X jT C ��1

X
.SM0/ �! ��X T SM=Im d �X �N ide

�X

induced by inclusions is injective, with its image being reduced.

The left-hand side of (4–2) denotes the family of cones over ��1
X
.SM0/ such that for

each x2��1
X
.SM0/

��X T C SM0j��1
X
.SM0/

ı
Im d �X jT C ��1

X
.SM0/

ˇ̌̌
x

is the quotient by the minimal vector subspace of Im d �X jxDd �X .TxX / containing
the cone Im d �X jTxC ��1

X
.SM0/ . If T C ��1

X
.SM0/ is a vector bundle, the two conditions

in Definition 4.4 are equivalent.

If SM0 is a subvariety of SM which is proper relative to an immersion �X W X�!SM,
we denote by

N�X jSM0 � ��X T SM=Im d �X �N ide
�X

the image of the homomorphism (4–2). We will call N�X jSM0 the normal cone of
�X j��1

X
.SM0/ in SM0 .

Lemma 4.5 Suppose SM is a variety, �X W X�!SM is an immersion with an idealized
normal bundle N ide

�X
, SM0 is a subvariety of SM which is proper relative to �X , and

Z � SZ���1
X .SM0/

is such that N�X jSM0 is the closure of N�X jSM0 jZ in N ide
�X

.

(1) If X is a smooth subvariety of SM, then PrX SM0 is proper relative to the immer-
sion �E ide

X
,

E ide
X \PrX SM0 � EX

is the closure of PN�X jSM0 jZ in E ide
X

, and

N�Eide
X
jPrX SM0 D 
X jE ide

X
\PrX SM0 :

(2) If Z is a smooth subvariety of SM disjoint from �X .Z/ and N ide
�Z

is an idealized
normal bundle for �Z , then PrZ

SM0 is a proper subvariety of the blowup Blide
Z
SM
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relative to the immersion PrZ �X and NPrZ �X jPrZ
SM0 is the closure of N�X jSM0 jZ in

N ide
PrZ �X

.

The first part of (1) essentially follows from the universal property of blowing up: if
SM is blown up along Z , then the proper transform of SM0 in SM (the scheme-theoretic
closure of SM0�Z in the blowup) is the blowup of SM0 along SM0\Z , and the normal
bundle to the exceptional divisor in BlSM0\Z

SM0 is the restriction of the normal bundle
of the exceptional divisor in BlZ SM. The statement (1) is the etale-local version of this.
Part (2) is clear by working in local coordinates.

4.2 Preliminaries

In this subsection, we state a number of known facts concerning the moduli space
SM1;k.P

n; d/ that insure that the inductive requirements of the next subsection are
satisfied at the initial stage of the inductive construction. Lemmas 4.6–4.9, with the
exception of one statement, are well-known in Gromov–Witten theory and are obtained
similarly to Lemmas 3.6 and 3.7. We show that the last statement of Lemma 4.7 is
simply a reinterpretation of a standard fact concerning moduli spaces of stable maps.

Let .A1.d; k/;�/ be the partially ordered set of triples described in Section 1.2. It
has a unique minimal element and a unique maximal element:

�min D .1I∅; Œk�/ and �max D .d I Œk�;∅/:
Let < be an order on A1.d; k/ extending the partial ordering �. For every �2A1.d; k/,
we define

��1 2 f0gtA1.d; k/

as in (2–7). For each element �D.mIJP ;JB/ of A1.d; k/, let

(4–3) SM0
1;��SM1;� .P

n; d/� SM0
1;k�SM1;k.P

n; d/

be the subvarieties defined in Section 1.2.

Warning Note that SM0
1;k denotes the entire moduli space SM1;k.P

n; d/ and not
the main component SM0

1;k.P
n; d/. Similarly to Sections 2 and 3, the superscript 0

indicates the 0–th stage in the blowup process.

Lemma 4.6 If �1D .m1IJ1IP ;J1IB/ and �2D .m2IJ2IP ;J2IB/ are elements of
A1.d; k/, �1¤�2 , �1 6��2 , and �2 6��1 , then

SM0
1;�1
\ SM0

1;�2
� SM0

1;z�.�1;�2/
;

z�.�1; �2/D
�
min.m1;m2/IJ1IP\J2IP ;J1IB[J2IB

�
:where
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With � as above, we define

IP .�/D @B.�/D Œm�; JP .�/D JP ; JB.�/D JB; G� D Sm:

As in Section 1.2, we denote by

�0;� W SM0
1;.IP .�/;JP .�//

� SM0;.@B.�/;JB.�// �! SM0
1;� � SM0

1;k ;

SM0;.@B.�/;JB.�// D SM0;.@B.�/;JB.�//.P
n; d/;where

the natural node-identifying map and by

x�0;� W
� SM0

1;.IP .�/;JP .�//
�SM0;.@B.�/;JB.�//

�ı
G� �! SM0

1;k

the induced immersion. Let

�P ; �BW SM0
1;.IP .�/;JP .�//

�SM0;.@B.�/;JB.�//�! SM0
1;.IP .�/;JP .�//

; SM0;.@P .�/;JB.�//

be the two projection maps.

Lemma 4.7 If d; n2ZC and k2xZC , f�0;�g�2A1.d;k/ and fx�0;�g�2A1.d;k/ are prop-
erly self-intersecting collections of immersions. If ��D.m�IJ�

P
;J�

B
/2A1.d; k/,

Imsx�0;�� �
[
� 0���

SM1;� 0 and N ide
�0;�� D

M
i2Œm��

��P Li˝��B��i L0

is an idealized normal bundle for �0;�� .

We deduce the last claim of this lemma from the deformation-obstruction exact se-
quence (24.2) in [10] as follows. Suppose

Œ†;u�D �0;��
�
Œ†P ��Œ†B;uB �

� 2 SM0
1;�� ;

Œ†B;uB �D
�
Œ†i ;ui �

�
i2Œm�� 2 SM0;.@B.��/;JB.��//:where

By [10, (24.2)], there exists a natural homomorphism

j†;uW T SM1;k.P
n; d/

ˇ̌
Œ†;u�
D Def.†;u/ �! Def.†/;

where Def.†;u/ and Def.†/ denote the deformations of the stable-map pair .†;u/
and the deformations of the curve † (with its marked points), respectively. As Œ†;u�
is considered as the image of Œ†P ��Œ†B;uB � under �0;�� , there are m� distinguished
nodes of †. These are the nodes of † that do not correspond to either the nodes of
†P or the nodes of any of the curves †i with i2Œm��; see Figure 13. Let

Def.†P ; †B/� Def.†/
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be the deformations of † that do not smooth out the distinguished nodes of †. Since
the smoothing of a given node of † is parametrized by the tensor product of the tangent
lines to the two branches of † at the node, we have an exact sequence

0 �! Def.†P ; †B/ �! Def.†/
j†�!N ide

�0;��
ˇ̌
Œ†;u�
�! 0:

We denote by

Def
�
†P ; .†B;uB/

�� T SM1;k.P
n; d/

ˇ̌
Œ†;u�
D Def.†;u/

the kernel of the map

j†ı j†;uW Def.†;u/ �!N ide
�0;��

ˇ̌
Œ†P ��Œ†B;uB �

:

The space Def
�
†P ; .†B;uB/

�
consists of deformations of .†;u/ that do not smooth

out the m� distinguished nodes of †. Thus,

Def
�
†P ; .†B;uB/

�� Def.†P /˚Def.†B;uB/

D T SM0
1;.IP .��/;JP .��//jŒ†P �˚T SM0;.@B.��/;JB.��//jŒ†B;uB �:

The isomorphism from the right-hand side to the left-hand side is given by d �0;�� .
Thus, the homomorphism j†ıj†;u induces an injection

N�0;�� jŒ†;u� � T C SM1;k.P
n; d/

ˇ̌
Œ†;u�

ı
Im d �0;�� �!N ide

�0;��
ˇ̌
Œ†P ��Œ†B;uB �

;

as needed.

1

2
3

1

2

3

� �0;��

distinguished
nodes

Figure 13: A point in the domain of �0;�� and its image in SM1;k.P
n; d/
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Lemma 4.8 If d , n, k , and �� are as in Lemma 4.7, �2A1.d; k/ is as above, and
���� , then

� �1
0;��

�SM0
1;�

�D � [
�2AP .��I�/

SM0
1;�

�
� SM0;.@B.��/;JB.��//;

AP .�
�I �/D

n
�D�IPtJP ; fIktJk W k2Kg�2A1

�
IP .�

�/;JP .�
�/
� Wwhere

jKjCjIP jDm
o

and A1.IP .�
�/;JP .�

�// and SM0
1;�
� SM1;� are as in Section 2.2. Furthermore, if

�2AP .�
�I �/ is as above,

�0;��
ˇ̌�
SM0

1;�
�SM0;.@B.�

�/;JB.�
�//T
SM0

1;�

.
T
� SM0

1;��SM0;.@B.��/;JB.��//
�

D
M

i2IP .��/�IP

��P Li˝��B��i L0:

Lemma 4.9 If d , n, k , � , and �� are as above, then

� �1
0;�

�SM0
1;��

�D SM0
1;.IP .�/;JP .�//

�
� [
%2AB.� I��/

SM0;%

�
;

AB.� I ��/D
˚
%D�.�l/l2@B.�/;JB

�2A0

�@B.�/I d;JB.�/
�W ˇ̌@B.%/

ˇ̌Dm�
	
;where

and A0.@B.�/I d;JB.�//, @B.%/, and SM0;%� SM0;%.P
n; d/ are as in Section 3.3.

Furthermore, if %2AB.� I ��/ is as above,

�0;�
ˇ̌�
SM0

1;.IP .�/;JP .�//
�SM0;%

T SM0
1;��

.
T
� SM0

1;.IP .�/;JP .�//
�SM0;%

�
D

M
i2@P .%/

��P Li˝��B��i L0;

where @P .%/�@B.�/ is as in Section 3.3.

We note that for every ��2A1.d; k/,

A1

�
IP .�

�/;JP .�
�/
�D G

����
AP .�

�I �/:

Furthermore, if �1; �22A1.d; k/ are such that �1; �2��� , then

�12AP .�
�I �1/; �22AP .�

�I �2/; �1��2 H) �1��2:
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Thus, we can choose an ordering < on A1.IP .�
�/;JP .�

�// extending the partial
ordering � of Section 2.3 such that

�1<�2; �12AP .�
�I �1/; �22AP .�

�I �2/ H) �1<�2;

whenever �1; �22A1.d; k/ are such that �1; �2��� . In the next subsection, we will
refer to the blowup construction of Section 2.3 corresponding to such an ordering.

Similarly, if � 02A1.d; k/,

A0

�@B.�
0/I d;JB.�

0/
�D G

� 0��
AB.�

0I �/:

Furthermore, if �1; �22A1.d; k/ are such that � 0��1; �2 , then

%12AB.�
0I �1/; %22AB.�

0I �2/; %1�%2 H) �1��2:

Thus, we can choose an ordering < on A0.@B.�
0/I d;JB.�

0// extending the partial
ordering � of Section 3.3 such that

�1<�2; %12AB.�
0I �1/; %22AB.�

0I �2/ H) %1<%2;

whenever �1; �22A1.d; k/ are such that � 0��1; �2 . In the next subsection, we will
refer to the blowup construction of Section 3.4 corresponding to such an ordering.

We denote by the main component SM0
1;k.P

n; d/ of the moduli space SM1;k.P
n; d/ by

SM0
1;.0/

. If �2A1.d; k/, we put

SZ0
� D � �1

0;�

�SM0
1;.0/

�� � �1
0;�

�SM0
1;.0/\ SM0

1;�

�I
Z0
� D � �1

0;�

�SM0
1;.0/\M1;�

�� SZ0
� ; where M1;� DM1;� .P

n; d/:

We denote by N SZ0
��N ide

�0;�
the normal cone N�0;� jSM0

1;.0/
for �0;� jSZ0

�
in SM0

1;.0/
. Its

structure is described in Lemma 4.10 below. Let

D0;� 2 �
� SM0

1;.IP .�/;JP .�//
�SM0;.@B.�/;JB.�//IHom.N ide

�0;�
; ��P E�0˝��Bev�0T Pn/

�
be the section defined by

D0;�

ˇ̌
��

P
Li˝��B��i L0

D ��P s0;i˝��B��i D0; 8 i2Œm�;
where s0;i and D0 are as in Sections 2.3 and 3.2, respectively.

Lemma 4.10 For all �2A1.d; k/, SM0
1;.0/

is a proper subvariety of SM0
1;k relative to

the immersions �0;� and x�0;� . Furthermore,

Z0
� D

˚
b2M1;IP .�/tJP .�/�M0;.@B.�/;JB.�// W kerD0;� jb¤f0g

	
N SZ0

�

ˇ̌
Z0
�
D kerD0;�

ˇ̌
Z0
�
:
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Finally, SZ0
� is the closure of Z0

� in SM0
1;.IP .�/;JP .�//

�SM0;.@B.�/;JB.�// and N SZ0
� is

the closure of N SZ0
�

ˇ̌
Z0
�

in N ide
�0;�

.

This lemma is a consequence of [24, Theorem 2.3] and related results. In particular, the
first claim in the second sentence of Lemma 4.10 is a special case of the first statement
of [24, Theorem 2.3]. The second claim is nearly a special case of the last statement
of [24, Theorem 2.3], but some additional comments are required. Theorem 2.3 in [24]
by itself is a purely topological statement, as it describes the topological structure
of a neighborhood of each stratum of �0;� .SZ0

� / in SM0
1;.0/

. On the other hand, by
[22, Subsection 4.1], N SZ0

�

ˇ̌
Z0
�

is contained in kerD0;� . The second claim in the
second sentence of Lemma 4.10 can then be obtained from a dimension count and a
comparison of the gluing construction used in the proof of [24, Theorem 2.3] with the
analysis of limiting behavior in [22, Subsection 4.1]. This comparison implies that the
gluing parameter in the analytic construction of [24] agrees to the first two orders in the
zero limit with the smoothing parameter in algebraic geometry. Thus, N SZ0

�

ˇ̌
Z0
�

must
be equal to kerD�;0 . These considerations also imply the first claim of Lemma 4.10.
Alternatively, suppose that d�n. If the moduli space SM0

1;�
is nonempty, then m�n

and thus for a Zariski open subset Z� I1 of Z0
�

1� dimN SZ0
�

ˇ̌
Z�I1 D 1D dim kerD0;�

ˇ̌
Z�I1

H) N SZ0
�

ˇ̌
Z�I1 D kerD0;�

ˇ̌
Z�I1 :

(4–4)

Since D0;� is transverse to the zero set over Z0
� , the second claim in the second

sentence of the lemma follows from (4–4), if d�n. The general case follows from the
observation that

SM1;� .P
n; d/D ˚Œ†;u�2 SM1;� .P

nCd ; d/W u.†/�Pn
	

and the d�n case.

The first claim in the last sentence of Lemma 4.10 can be obtained by combining
the first statement of [24, Theorem 2.3], the mD1 case of [21, Theorem 2.8], and
the Implicit Function Theorem. It also follows immediately from the last claim of
Lemma 4.10. The latter can be deduced from [24, Theorem 2.3] as follows. Suppose
first that m�n. In this case, [21, Theorem 2.8] implies that SZ0

� admits a stratification

SZ0
� D Z� I1 t

G
˛2A

Z� I˛
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such that Z� I1 is a Zariski open subset of SZ0
� ,

Z� I1 � Z0
� ; dim N SZ0

� jbD1 8 b2Z� I1;
max

˚
dim N SZ0

� jb W b2Z� I˛
	� codimSZ0

�
Z� I˛ 8˛2AI(4–5)

see the next paragraph. Let

�Z0
� D PN SZ0

� � PN ide
�0;�

ˇ̌
SZ0
�

be the exceptional divisor for the blowup of SM0
1;.0/

along SM0
1;�

. Since all irreducible
components of �Z0

� must be of the same dimension, �Z0
� must be the closure of �Z0

� jZ0
�

by (4–5). This closure property remains valid even if we do not assume that m�n for
the following reason. Let pt2PnCd be any point not contained in Pn . Let

� W PnCd �fptg �! P n

be the corresponding linear projection. It induces projection maps

'W ˚Œ†;u�2 SM0
1;k.P

nCd ; d/W pt 62u.†/
	 �! SM0

1;k.P
n; d/;

z'W ˚Œ†;uI v�2 �Z0
� .P

nCd ; d/W pt 62u.†/
	 �! �Z0

� .P
n; d/:

The latter map takes �Z0
� .P

nCd ; d/jZ0
� .PnCd ;d/ to �Z0

� .P
n; d/jZ0

� .Pn;d/ . Since the
closure of �Z0

� .P
nCd ; d/jZ0

� .PnCd ;d/

contains �Z0
� .P

n; d/, it follows that so does the closure of �Z0
� .P

n; d/jZ0
� .Pn;d/ . This

observation implies the last claim of Lemma 4.10.

We conclude this subsection by briefly describing the stratification mentioned above.
A stratum M�B

of SM0;.@B.�/;JB.�// corresponds to a tuple �B�.�BIl/l2@B.�/ of
dual graphs, all of which are trees. The vertices of �BIl correspond to the irreducible
components of the domain of the stable map bl in the definition of SM0;.@B.�/;JB.�// at
the beginning of Section 3.3. Each vertex v of �BIl is labeled by a nonnegative integer,
which specifies the degree of the stable map bl on the corresponding component †v .
There is an edge in �BIl between two vertices if and only if the two corresponding
components of the domain share a node. In addition, there are tails attached at some
vertices of �BIl , which are labeled by the indexing set for marked points of the map bl ,
ie Jl;P in the notation of Section 3.3. Let v�

l
be the vertex of �BIl to which the tail

corresponding to the marked point 0 is attached. If the degree of v�
l

is positive, let

�l.�B/� �l.�BIl/D fv�l g:
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Otherwise, denote by �l.�B/ the set of positive-degree vertices of �BIl that are not
separated from v�

l
by a positive-degree vertex. Suppose

b�.bl/l2@B.�/ 2M�B
� SM0;.@B.�/;JB.�//\

Y
l2@B.�/

M�BIl ; with blDŒ†l ;ul �

as in the paragraph preceding Lemma 3.8. If l2@B.�/ and vDv�
l

, let

ImDvjb D ImD0jbl
� Im dul jx0.bl / � Tev0.b/P

n:

If v is a vertex of �BIl different from v�
l

, we denote by ImDvjb the image of dful j†vg
at the node of †v corresponding to the edge of �BIl that leaves v on the unique path
from v on v�

l
in �BIl . Note that if v 2�l.�B/, the image of this node under ul

is ev0.b/. We set
�.�/D

G
l2@B.�/

�l.�B/:

With b as above, let

codimDjb D
ˇ̌
�.�B/

ˇ̌� dim Span
˚
ImDvjb W v2�l.�B/; l2@B.�/

	
:

For each pair ˛D.�B; �/, where �2ZC is such that

(4–6) max
�
1; j�.�B/j�n

�� �� j�.�B/j;

we put Z�BI˛ D
˚
b2M�B

W codimDjbD�
	
:

By the first statement of [24, Theorem 2.3],

SZ0
� D

G
˛

Z� I˛; where Z� I˛ D SM1;IP .�/tJP .�/�Z�BI˛:

The disjoint union is taken over all pairs ˛D.�; �/ as described above. From transver-
sality as in the first claim of Lemma 3.8, it is easy to see that

codimM�B
Z�BI˛ D

�
n� .j�.�B/j��/

�
�

� n� .j�.�B/j��/I
(4–7)

see the end of [25, Subsection 2.3], for example. The above inequality follows from
the first inequality in (4–6). By (4–7), if mDj@B.�/j�n,

codimSZ0
�
Z� I˛ D codimM�B

Z�BI˛C codimSM0;.@B.�/;JB.�//
M�B

� codim SM1;IP .�/tJP .�/
�SM0;.@B.�/;JB.�//

SZ0
�

� �n�j�.�B/jC�
�C �j�.�B/j�j@B.�/j

�� �n�j@B.�/jC1
�D ��1:
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On the other hand, by the last statement of [24, Theorem 2.3],

max
˚
dim N SZ0

� jb W b2Z� I˛
	D �:

We conclude that

max
˚
dim N SZ0

� jb W b2Z� I˛
	� codimSZ0

�
Z� I˛C 1:

The equality holds if and only if �D1 and �B is a tuple of one-vertex graphs, ie the
image of M1;IP .�/tJP .�/�M�B

under �0;� is contained in M1;� . This observation
concludes the proof of the stratification claim made in the previous paragraph.

4.3 Inductive construction

This subsection is the analogue of Section 3.4 in the present situation. Suppose �2
A1.d; k/ and we have constructed

(I1) an idealized blowup ���1W SM��1
1;k
�!SM0

1;k such that ���1 is an isomorphism
outside of the preimages of the subvarieties SM0

1;� 0 with � 0���1;

(I2) for each � 02f.0/gtA1.d; k/, a subvariety SM��1
1;� 0 of SM��1

1;k
such that

SM��1
1;k D SM��1

1;.0/[
[

� 02A1.d;k/

SM��1
1;� 0 ; ���1

�SM��1
1;� 0

�D SM0
1;� 0 8 � 02f.0/gtA1.d; k/;

and SM��1
1;�� is the proper transform of SM0

1;�� for ��D .0/ and for all �� 2
A1.d; k/ such that ��>��1.

We assume that

(I3) for all �1; �22A1.d; k/ such that �1¤�2 , �1 6� �2 , �2 6� �1 , and ��1<�1; �2 ,

SM��1
1;�1
\ SM��1

1;�2

(
� SM��1

1;z�.�1;�2/
; if z�.�1; �2/>��1I

D∅; otherwise;

where z�.�1; �2/ is as in Lemma 4.6.

We also assume that for every � 02A1.d; k/ such that � 0���1:

(I4) SM��1
1;� 0 is the image of a G� 0 –invariant immersion

���1;� 0 W �M1;.IP .� 0/;JP .� 0// � �M%�0 .��1/

0;.@B.� 0/;JB.� 0// �! SM
��1
1;k ;

%� 0.��1/D

8̂<̂
:max

˚
%2AB.�

0I ��/W � 0������1
	
;

if 9��2A1.d; k/

s.t. � 0������1I
0; otherwise;

where
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and �M%�0 .��1/

0;.@B.� 0/;JB.� 0//��M%�0 .��1/

0;.@B.� 0/;JB.� 0//.P
n; d/

is the blowup of �M0
0;.@B.� 0/;JB.� 0//.P

n; d/ constructed in Section 3.4;

(I5) if ��2A1.d; k/ is such that ��1<�� and � 0��� , then

��1
��1;� 0

�SM��1
1;��

�D �M1;.IP .� 0/;JP .� 0// �
� [
%2AB.� 0I��/

�M%�0 .��1/

0;%

�
;

where �M%�0 .��1/

0;%
� �M%�0 .��1/

0;%
.Pn; d/ is the subvariety of �M%�0 .��1/

0;.@B.� 0/;JB.� 0//
described in Section 3.4;

(I6) an idealized normal bundle for the immersion ���1;� 0 is given by

N ide
���1;�0 D ��P L˝��B� �%�0 .��1/
.@B.� 0/;JB.� 0//;

where �B; �P W �M1;.IP .� 0/;JP .� 0// � �M%�0 .��1/

0;.@B.� 0/;JB.� 0//

�! �M1;.IP .� 0/;JP .� 0//; �M%�0 .��1/

0;.@B.� 0/;JB.� 0//

are the two projection maps and L�! �M1;.IP .� 0/;JP .� 0// is the universal tangent
line bundle of Section 2.3;

(I7) SZ��1
� 0 �� �1

��1;� 0.
SM��1

1;.0/
/ is the closure of

Z��1
� 0 � �M1;.IP .� 0/;JP .� 0// �

��D�1
%�0 .��1/.0/�

[
%2AB.@B.�

0/Id;JB.�
0//

%�0 .��1/<%

�M%�0 .��1/

0;%

�

in �M1;.IP .� 0/;JP .� 0//��M%�0 .��1/

0;.@B.� 0/;JB.� 0// and

N SZ��1
� 0 �N���1;�0 jSM��1

1;.0/
DN ide

���1;�0
ˇ̌
SZ��1
�0

is the normal cone for ���1;� 0 j SM��1
1;.0/

in SM��1
1;k

;

(I8) the immersion map

x���1;� 0 W
� �M1;.IP .� 0/IJP .� 0//��M%�0 .��1/

0;.@B.� 0/;JB.� 0//
�ı

G� 0 �! SM��1
1;k

induced by ���1;� 0 is an embedding.

Furthermore, we assume that for every ��2A1.d; k/ such that ��>��1:
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(I9) the domain of the G�� –invariant immersion ���1;�� induced by �0;�� is

SM��� .��1/

1;.IP .��/;JP .��// � SM0;.@B.��/;JB.��//;

where ���.��1/D

8̂<̂
:

max
˚
�2AP .�

�I � 0/W
� 0���1; � 0���	; if 9� 02A1.d; k/

s.t. � 0���1; � 0���I
0; otherwise;

and SM��� .��1/

1;.IP .��/;JP .��// �! SM1;IP .��/tJP .��/ is the blowup constructed in
Section 2.3;

(I10) if � 02A1.d; k/ is such that ��1<� 0��� , then

� �1
��1;��

��M��1
1;� 0

�D � [
�2AP .��I� 0/

SM��� .��1/

1;�

�
� SM0;.@B.��/;JB.��//I

(I11) if �� is as in Lemma 4.7, an idealized normal bundle for the immersion ���1;��
is given by

N ide
���1;�� D

M
i2Œm��

��P L��� .��1/;i˝��B��i L0;

where �P ; �BW SM��� .��1/

1;.IP .��/;JP .��//�SM0;.@B.��/;JB.��//

�! SM��� .��1/

1;.IP .��/;JP .��//;
SM0;.@B.��/;JB.��//

are the two projection maps and L��� .��1/;i�! SM��� .��1/

1;.IP .��/;JP .��// is the line
bundle constructed in Section 2.3;

(I12) SZ��1
�� �� �1

��1;��.
SM��1

1;.0/
/ is the closure of

Z0
�� � SM��� .��1/

1;.IP .��/;JP .��//�SM0;.@B.��/;JB.��//

and the normal cone

N SZ��1
�� �N���1;�� jSM��1

1;.0/

for ���1;�� j SZ��1
�� is the closure of N SZ0

��
ˇ̌
Z0
��

in N ide
���1;�� ;

(I13) Imsx���1;�� �
S
��1<� 0��� �M��1

1;� 0 , where

x���1;�� W
� SM��� .��1/

1;.IP .��/;JP .��//�SM0;.@B.��/;JB.��//
�ı

G�� �! SM��1
1;k ;

is the immersion map induced by ���1;�� .
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Finally, we assume that

(I14) the collections f���1;� 0g� 02A1.d;k/ and fx���1;� 0g� 02A1.d;k/ of immersions are
properly self-intersecting;

(I15) for all � 02A1.d; k/, the subvariety SM��1
1;.0/

of SM��1
1;k

is proper relative to the
immersions ���1;� 0 and x���1;� 0 .

By the inductive assumption (I3), if �1 and �2 are noncomparable elements of
.A1.d; k/;�/, the proper transforms of SM0

1;�1
and SM0

1;�2
become disjoint by the time

either is ready to be blown up for any ordering < extending the partial ordering �.
Similarly to the three blowup constructions encountered previously, (I3) will imply
that the end result of the present blowup construction is independent of the choice of
an extension <. By (I9), our blowup construction modifies each immersion �0;��
by changing the first factor of the domain according to the blowup construction of
Section 2.3, until a proper transform of the image of �0;�� is to be blown up; see
below. By (I11) and (I13), in the process, the singular locus of �0;�� disappears
and the first component in every summand of N ide

�0;�� gets twisted to L. In particular,
all blowup loci are smooth. On the other hand, by the inductive assumptions (I7)
and (I8), for � 0���1 the intersection of the proper transform of SM0

1;.0/
with the

proper transform of the exceptional divisor SM� 0
1;� 0 is an embedding of a subvariety of

a smooth variety. The singular locus of this subvariety is annihilated by the time the
entire blowup construction is complete, according to the inductive assumptions (I7)
above and the inductive assumption (I4) in Section 3.4. These assumptions imply that
the proper transform of SM0

1;.0/
after the final blowup step is smooth.

We note that all of the assumptions (I1)–(I15) are satisfied if ��1 is replaced by 0.
In particular, (I3) is a restatement of Lemma 4.6, while (I10)–(I15) are contained in
Lemmas 4.7, 4.8, and 4.10.

If �2A1.d; k/ is as above, let

z�� W SM�
1;k �! SM��1

1;k

be the idealized blowup of SM��1
1;k

along SM��1
1;�

, which is a smooth subvariety by the
inductive assumption (I13). We denote the idealized exceptional divisor,

E ide
SM��1

1;�

D PN idex���1;�
;

by SM�
1;�

. For each � 02f.0/gt.A1.d; k/�f�g/, we denote by

SM�
1;� 0 � BlSM��1

1;�

SM��1
1;k � SM�

1;k
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the proper transform of SM��1
1;� 0 . Let ��D���1ız�� .

The inductive assumptions (I1) and (I2), with ��1 replaced by � , are clearly
satisfied, while (I3), (I8) for � 0¤� , and (I13)–(I15) follow from (2) of Lemma 3.3,
Corollary 3.4, and Lemma 4.5. On the other hand, by (I9), the domain of the immer-
sion ���1;� is

SM�� .��1/

1;.IP .�/;JP .�//
�SM0;.@B.�/;JB.�// D �M1;.IP .�/;JP .�//�SM0;.@B.�/;JB.�//:

By (I11), the chosen idealized normal bundle for the immersion ���1;� is given by

(4–8) N ide
���1;�

D
M
i2Œm�

��P L�� .��1/;i˝��B��i L0 D ��P L˝��BF.@B.�/;JB.�//:

Thus, the domain of the immersion ��;� induced by ���1;� is

PN ide
���1;�

D �M1;.IP .�/;JP .�// � �M0
0;.@B.�/;JB.�//

D �M1;.IP .�/;JP .�// � �M%� .�/

0;.@B.�/;JB.�//
:

By the first statement of Lemma 4.3, an idealized normal bundle for the embedding
��;� is the tautological line bundle over PN ide

���1;�
, ie

N ide
��;�
D ��P L˝��B
.@B.�/;JB.�// D ��P L˝��B��%� .�/
.@B.�/;JB.�//:

Thus, the inductive assumptions (I4) and (I6), with � 0D� and ��1 replaced by � ,
are satisfied. The same is the case with (I8), since the map x���1;� is an embedding
by (I13).

We also note that by the first statement of Lemma 4.9, the inductive assumptions (I1)
and (I2), and the last statement of Lemma 3.3,

� �1
��1;�

�SM��1
1;��

�D �M1;.IP .�/;JP .�// �
� [
%2AB.� I��/

SM0;%

�
for all ��2A1.d; k/ such that ���� . In addition, by the last statement of Lemma 4.9

���1;�

ˇ̌��M1;.IP .�/;JP .�//
�SM0;%

T SM��1
1;��

.
T
� �M1;.IP .�/;JP .�//�SM0;%

��N ide
���1;�

is a vector bundle for all %2AB.� I ��/ and

���1;�

ˇ̌�
M1;IP .�/tJP .�/

�M0;%
T SM��1

1;��
.

T
�M1;.IP .�/;JP .�//�M0;%

�
D

M
i2@P .%/

��P Li˝��B��i L0:
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Thus, by the first equality in (4–8),

���1;�

ˇ̌��M1;.IP .�/;JP .�//
�SM0;%

T SM��1
1;��

.
T
� �M1;.IP .�/;JP .�//�SM0;%

�
D ��P L˝

M
i2@P .%/

��B��i L0

D ��P L˝��BF%IP :

It follows that

� �1
�;�

�SM�
1;��

�D [
%2AB.� I��/

P
�
��P L˝��BF%IP

�ˇ̌ �M1;.IP .�/;JP .�//
�SM0;%

D �M1;.IP .�/;JP .�// �
� [
%2AB.� I��/

PF%IP
�

� �M1;.IP .�/;JP .�// �
� [
%2AB.� I��/

�M0
0;%

�
D �M1;.IP .�/;JP .�// �

� [
%2AB.� I��/

�M%� .�/
0;%

�
;

as needed for the inductive assumption (I5) with ��1 replaced by � and � 0D� .

Furthermore, by (I12), N SZ��1
� is the closure of

N SZ0
�

ˇ̌
Z0
�
� kerD0;�

ˇ̌
M1;IP .�/tJP .�/

�M0;.@B.�/;JB.�//

D ��P L˝��B kerD.@B.�/;JB.�//

ˇ̌
M0;.@B.�/;JB.�//

in ��
P

L˝��
B

F.@B.�/;JB.�// , where D.@B.�/;JB.�// is the bundle homomorphism de-
scribed in Section 3.3. Thus, by the first statement of Lemma 4.5,

SZ�� � � �1
�;� .
SM�

1;.0//

is the closure of

M1;.IP .�/;JP .�// �
˚
b2PF.@B.�/;JB.�//jM0;.@B.�/;JB.�//

W �D0bD0
	

in �M1;.IP .�/;JP .�//��M%� .�/

0;.@B.�/;JB.�//
. The inductive assumption (I7), with � 0D�

and ��1 replaced by � , now follows from the first statement of Lemma 3.11.

We next verify that the inductive assumptions (I4)–(I7) hold for � 0<� , with ��1

replaced by � . If � 0 6�� , then

%� 0.�/D %� 0.��1/ and SM��1
1;� 0 \ SM��1

1;� D∅;
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by definition and (I3), respectively. It then follows that

��;� 0 D ���1;� 0 ; N ide
��;�0 DN ide

���1;�0 ;

SM�
1;� 0 \ SM�

1;�� D SM��1
1;� 0 \ SM��1

1;�� 8 ��2f.0/gtA1.d; k/:

Thus, the inductive assumptions (I4)–(I7), as stated above, imply the corresponding
statements with ��1 replaced by � .

Suppose that � 0�� . By (I4) and (1) of Lemma 3.3, the domain of the immersion
��;� 0 induced by ���1;� 0 is the blowup of

�M1;.IP .� 0/;JP .� 0// � �M%�0 .��1/

0;.@B.� 0/;JB.� 0//

along the preimage of SM��1
1;�

under ���1;� 0 in

id��%�0 .��1/W �M1;.IP .� 0/;JP .� 0//��M%�0 .��1/

0;.@B.� 0/;JB.� 0//

�! �M1;.IP .� 0/;JP .� 0//��M0
0;.@B.� 0/;JB.� 0//:

By (I5), this preimage is

�M1;.IP .� 0/;JP .� 0// �
� [
%2AB.� 0I�/

�M%�0 .��1/

0;%

�
:

By the inductive assumption (I5) in Section 3.4 and the second paragraph after
Lemma 4.9,�M%�0 .��1/

0;%1
\ �M%�0 .��1/

0;%2
D∅ 8 %1; %22AB.�

0I �/; %1¤%2:

Thus, by the construction of Section 3.4, the blowup of �M%�0 .��1/

0;.@B.� 0/;JB.� 0// along[
%2AB.� 0I�/

�M%�0 .��1/

0;%

is �M%�0 .�/
0;.@B.� 0/;JB.� 0// , as needed for the inductive statement (I4), with ��1 replaced

by � . The inductive requirement (I5) is obtained by the same reasoning, using the
last statement of Lemma 3.3.

Since SM��1
1;�

is not contained in SM��1
1;� 0 , the bundle homomorphism

����1;� 0T SM��1
1;� �!N ide

���1;�0

must be surjective on every fiber over ��1
��1;� 0.

SM��1
1;�

/ by (I14). Thus, the inductive
assumption (I6), for � 0<� , continues to hold. Furthermore, by (I7) and the last
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statement of Lemma 3.3, SZ�� 0 is the closure of

�M1;.IP .� 0/;JP .� 0// �
��D �1

%�0 .��1/.0/�
[

%2AB.@B.�
0/Id;JB.�

0//
%�0 .��1/<%

�M%�0 .��1/

0;%

�

D �M1;.IP .� 0/;JP .� 0// �
��D �1

%�0 .��1/.0/�
[

%2AB.� 0I�/
�M%

0;%
�

[
%2AB.@B.�

0/Id;JB.�
0//

%�0 .�/<%

�M%�0 .�/
0;%

�

in �M1;.IP .� 0/;JP .� 0//��M%�0 .�/
0;.@B.� 0/;JB.� 0// . By the construction of Section 3.4,

�D%�0 .��1/

ˇ̌�M%�0 .�/
0;.@B.�

0/;JB.�
0//�

S
%2AB.�

0I�/ �M%

0;%

D �D%�0 .�/ˇ̌�M%�0 .�/
0;.@B.�

0/;JB.�
0//�

S
%2AB.�

0I�/ �M%

0;%

:

Since �D%�0 .�/ is transverse to the zero set outside of the subvarieties �M%�0 .�/
0;%

with
%>%� 0.�/ by the inductive requirement (I4) in Section 3.4, we conclude that the first
part of the inductive assumption (I7), with ��1 replaced by � , is satisfied. The second
part follows from the last statement of Lemma 4.5.

It remains to verify the inductive assumption (I9)–(I12), with ��1 replaced by � .
Suppose ��2A1.d; k/ is such that �<�� . If � 6��� , then

���.�/D ���.��1/ and SM��1
1;�� \ SM��1

1;� D∅;

by definition and (I3), respectively. It then follows that

��;�� D ���1;�� ; N ide
��;�� DN ide

���1;�� ;

SM�
1;�� \ SM�

1;� 0 D SM��1
1;�� \ SM��1

1;� 0 8� 02f.0/gtA1.d; k/:

Thus, the inductive assumptions (I9)–(I12), as stated above, imply the corresponding
statements with ��1 replaced by � .

Suppose that ���� . By (I9) and (1) of Lemma 3.3, the domain of the immersion
��;�� induced by ���1;�� is the blowup of

SM��� .��1/

1;.IP .��/;JP .��// � SM0;.@B.��/;JB.��//

along the preimage of SM��1
1;�

under ���1;�� in

���� .��1/�idW SM��� .��1/

1;.IP .��/;JP .��//�SM0;.@B.��/;JB.��//

�! SM1;IP .��/tJP .��/�SM0;.@B.��/;JB.��//:
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By (I10), this preimage is� [
�2AP .��I�/

SM��� .��1/

1;�

�
� SM0;.@B.��/;JB.��//:

By Lemma 2.6 and the paragraph after Lemma 4.9,

SM��� .��1/

1;�1
\ SM��� .��1/

1;�2
D∅ 8 �1; �22AP .�

�I �/; �1¤�2:

Thus, by the construction of Section 2.3, the blowup of SM��� .��1/

1;.IP .��/;JP .��// along[
�2AP .��I�/

SM��� .��1/

1;�

is SM��� .�/
1;.IP .��/;JP .��// , as needed for the inductive statement (I9), with ��1 replaced

by � . The inductive assumptions (I10) and (I11) are verified similarly, using the last
statement of Lemma 3.3 and Lemma 4.3. The argument for (I11) is nearly identical to
the verification of the inductive assumption (I11) in Section 3.4. Finally, the inductive
requirement (I12), with ��1 replaced by � , follows from the last statement of
Lemma 4.5, along with the assumptions (I1) and (I2).

We conclude this blowup construction after the �max step and put�M0
1;k.P

n; d/D SM�max
1;.0/

; z� D ��max

ˇ̌
SM�max

1;.0/

; and �Z� .Pn; d/D SZ�max
� :

The inductive assumptions (I1)–(I8) imply that

z� W �M0
1;k.P

n; d/ �! SM0
1;k.P

n; d/

is a desingularization as described in Section 1.2. By (I3), the final result of this
blowup construction is independent of the choice of full ordering < extending the
natural partial ordering � on A1.d; k/.

5 Proof of Theorem 1.2

5.1 Pushforwards of vector bundles

In this section we prove Theorem 1.2 by lifting the construction of Section 4 from
stable maps into Pn to stable maps into (the total space of) the line bundle L associated
to the locally free sheaf OPn.a/.

Let � W L�!Pn be the bundle projection map. We denote by SM1;k.L; d/ the moduli
space of degree–d stable maps from genus-one curves with k marked points into L.
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The projection map � induces a morphism,

pW SM1;k.L; d/ �! SM1;k.P
n; d/; Œ†;u� �! Œ†; � ıu�:

Since no fiber of L contains the image of a nonconstant holomorphic map, the ghost
components of .†; � ıu/ are precisely the same as the ghost components of .†;u/.
We note that

p�1.Œ†;u�/DH 0.†Iu�L/ıAut.†;u/:

In particular, p is a bundle of vector spaces, but of two possible ranks: da and daC1.
Let SL denote the sheaf of (holomorphic) sections of

pjSM0
1;k.P

n;d/W SM1;k.L; d/
ˇ̌
SM0

1;k.P
n;d/
�! SM0

1;k.P
n; d/:

Similarly, denote by zSL the sheaf of sections of

pW z��SM1;k.L; d/ �! �M0
1;k.P

n; d/;

where z� W �M0
1;k.P

n; d/�!SM0
1;k.P

n; d/ is the desingularization map of Theorem 1.1:

xM1;k.L; d/

xM1;k.Pn; d/

pp

z�� xM1;k.L; d/

zM0
1;k
.Pn; d/ z�

Q�

Lemma 5.1 With notation as in Theorem 1.2 and above,

(1) the sheaves SL and ��ev�OPn.a/ over SM0
1;k.P

n; d/ are isomorphic;

(2) the sheaves zSL and ��z��ev�OPn.a/ over �M0
1;k.P

n; d/ are isomorphic.

Let UL be the universal curve over SM1;k.L; d/jSM0
1;k.P

n;d/ , with structure map �L
and evaluation map evL . The projection map � induces a morphism zp on UL so that
the diagram

UL U
Qp

L
evL

Pn

ev
�

SM1;k.L; d/jSM0
1;k

.Pn;d/
SM0

1;k
.Pn; d/

p

�L �
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commutes. Suppose W �SM0
1;k.P

n; d/ is an open subset.

(i) An element

s 2 ˚��ev�OPn.a/
	
.W /�H 0

�
��1.W /I ev�L�

induces a morphism zsW ��1.W /�!L so that evD�ızs . In turn, zs induces morphisms
fs and zfs to SM1;k.L; d/jSM0

1;k.P
n;d/ and UL ,

��1.W / UL
Qfs

W SM1;k.L; d/jSM0
1;k

.Pn;d/

fs

� �L

LevL

so that zsDevLı zfs . Then

ev ı zp ı zfs D � ı evLı zfs D � ızs D evW ��1.W /�! Pn H) p ıfs D idW ;

since � ı zp ı zfs D p ıfsı� . Thus, fs2SL.W /. It is immediate that the map˚
��ev�OPn.a/

	
.W / �! SL.W /; s �! fs;

induces a sheaf homomorphism.

(ii) Conversely, let � 2SL.W /, ie � W W �! SM1;k.L; d/ is a morphism such that
p ı � D idW . Since ULDp�U,

��1.W /� UjW D ��UL:
Thus, � lifts to a morphism

z� W ��1.W /D ��UL �! UL:

Let g�DevLı z� . Then

� ıg� D � ı evLı z� D ev ı zp ı z� D ev;

ie g�2H 0.��1.W /I ev�L/. It is immediate that the map

SL.W / �! ˚
��ev�OPn.a/

	
.W /; � �! g� ;

induces a sheaf homomorphism. Furthermore,

gfs
D s 8 s 2 ˚��ev�OPn.a/

	
.W / and fg� D � 8 � 2 SL.W /:
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These observations imply the first statement of Lemma 5.1. The second claim is proved
similarly.

Let SM0
1;k.L; d/� SM1;k.L; d/

be the closure of the locus of maps from smooth domains. We show in Section 5.4 that
the proper transform �M0

1;k.L; d/ of SM0
1;k.L; d/ in

z��SM1;k.L; d/ �! �M0
1;k.P

n; d/

is smooth. Similarly to the case of �M0
1;k.P

n; d/, the main stratum of �M0
1;k.L; d/,

Meff
1;k.L; d/� SM1;k.L; d/

ˇ̌
Meff

1;k.P
n;d/
D �M0

1;k.L; d/�
[

�2A1.d;k/

p�1
�
Im ��max;�

�
;

is smooth. On the other hand, by the inductive assumption (I1) and the last paragraph
of Section 5.4, for each �2A1.d; k/

�M0
1;k.L; d/\p�1

�
Im ��max;�

�
is the image of a smooth variety under the bundle homomorphism xj�max;� lifting the
embedding x��max;� of Section 4.3. Thus,

�M0
1;k.L; d/\p�1

�
Im ��max;�

�
is a smooth subvariety of �M0

1;k.L; d/. As its normal cone in �M0
1;k.L; d/ is a line

bundle by the inductive assumption (I1) of Section 5.4 for every � 2A1.d; k/, we
conclude that the entire space �M0

1;k.L; d/ is smooth. Furthermore, the fibers of

zpW �M0
1;k.L; d/ �! �M0

1;k.P
n; d/

are vector spaces of the same rank and �M0
1;k.L; d/ contains �M0

1;k.P
n; d/ as the zero

section. Thus, zp is a vector bundle.

Lemma 5.1 and the previous paragraph imply (1) of Theorem 1.2. The second claim of
this theorem is obtained in the last paragraph of Section 5.4. Finally, (3) of Theorem 1.2
follows from (4) of Theorem 1.1 and the following lemma.
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Lemma 5.2 Suppose z� W �M�! SM is a morphism between varieties, U�! SM is a
flat family of curves, L�!U is a line bundle, and � W zU�! �M and �L�!�U are the
pullbacks of U and L via z� :

U

L

SM

��

�UD z��U

�LD z��L

�M z�

z�

If the morphism z� is surjective and its fibers are compact and connected, then

z�����LD ��L:
Since L is locally trivial, Lemma 5.2 follows from

z��O�U DOU:

In turn, this identity follows from the fact that every holomorphic function on a compact
connected variety is constant. Thus, if �W�U is any open subset and zf is a holomorphic
function on z��1. �W /��U, then zf is constant on the fibers of z� , ie zf Dz��f for some
holomorphic function f on �W .

5.2 Construction of bundle homomorphism

In this subsection we describe the surjective bundle homomorphism that appears
in the second statement of Theorem 1.2; see Proposition 5.5. The construction of
this homomorphism is similar to the construction of the homomorphism �D.@;J / in
Sections 3.3 and 3.4.

Let L�!Pn be a line bundle as in Section 1.2. If J is a finite set, let

V0 D SM0;f0gtJ .L; d/ �! SM0;f0gtJ .P
n; d/

be the corresponding cone. In particular, if Œ†;u�2 SM0;f0gtJ .P
n; d/, then

V0

ˇ̌
Œ†;u�
DH 0.†Iu�L/ıAut.†;u/:

In this, genus-zero, case, this is a vector bundle of the expected rank. Let

ruW �.†Iu�L/ �! �.†IT �†˝u�L/
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be the pullback of the standard Hermitian connection in L by u. We define

D0 2 �
�SM0;f0gtJ .P

n; d/IHom.L0˝V0; ev�0L/
�

D ��SM0;f0gtJ .P
n; d/IHom.L0;Hom.V0; ev�0L//

�
D ��SM0;f0gtJ .P

n; d/IHom.V0;Hom.L0; ev�0L//
�

D0� Dru�jx0.†;u/ 8 �2H 0.†Iu�L/;by

where x0.†;u/2† is the marked point labeled by 0 as before. We note that D0

vanishes identically on the subvarieties SM0;� .P
n; d/ with � 2A0.d;J / defined in

Section 3.2.

If @ and J are finite sets, let

p.@;J /W V.@;J / �! SM0;.@;J /.Pn; d/

be the vector bundle induced by L, where SM0;.@;J /.Pn; d/ is as in Section 3.3. It is
immediate that

V.@;J / D
˚
.�i/i2@2

M
i2@

��i V0 W ev0.�i/Dev0.�i0/ 8 i; i 02@	D SM0;.@;J /.L; d/:

Note that for every �D.mIJP ;JB/2A0.d;J /,

���V0D��BV.Œm�;JB/ �! SM0;f0gtŒm�tJB
�SM0;.Œm�;J /.P

n; d/;

where �� is as in Section 3.2.

Lemma 5.3 If d2ZC , J , L, and V0 are as above, the bundle homomorphism

D0 2 �
�SM0;f0gtJ .P

n; d/IHom.V0;L
�
0˝ev�0L/

�
is surjective on the complement of the subvarieties SM0;� .P

n; d/ with �2A0.d;J /.
Furthermore, for every

��.mIJP ;JB/ 2A0.d;J /;

the differential of D0 ,

rD0W N�� �! ��� Hom.V0;L
�
0˝ev�0L/D ��P L�0˝��BHom.V.Œm�;JB/; ev�0L/;

in the normal direction to the immersion �� is given by

rD0

ˇ̌
��

P
Li˝��B��i L0

D ��P si˝��B��i D0 8 i 2 Œm�;
where si is the homomorphism defined in Section 2.2.
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Lemma 5.3 can viewed as the analogue of Lemma 3.8 for vector bundle sections. The
first claim of Lemma 5.3 is an immediate consequence of the fact that

H 1
�
†Iu�L˝O.�2z/

�D f0g
for every genus-zero stable map .†;u/ and a smooth point z2† such that the restriction
of u to the irreducible component of † containing z is not constant. The second
statement follows from [25, Lemma 4.2].

With notation as in Section 3.3, let

D.@;J / 2 �
�SM0;.@;J /.Pn; d/IHom.V.@;J /;Hom.F.@;J /; ev�0L//

�
D ��SM0;.@;J /.Pn; d/IHom.F.@;J /;Hom.V.@;J /; ev�0L//

�
D ��SM0;.@;J /.Pn; d/IHom.F.@;J /˝V.@;J /; ev�0L/

�
be the homomorphism defined by

D.@;J /
ˇ̌
��

i
L0˝��j V0

D
(
��i D0; if jDi I
0; otherwiseI 8 i; j 2@:

It induces a section�D0 2�
��M0

0;.@;J /.P
n; d/IHom.
.@;J /; ��PF.@;J/Hom.V.@;J /; ev�0L//

�
D ���M0

0;.@;J /.P
n; d/IHom.��PF.@;J/V.@;J /;E�0˝��F.@;J/ev�0L/

�
:

This section vanishes identically on the subvarieties �M0
0;%
.Pn; d/ of �M0

0;.@;J /.P
n; d/

with %2A0.@I d;J /, defined in Section 3.3.

Lemma 5.4 The bundle homomorphism�D0 2 �
��M0

0;.@;J /.P
n; d/IHom.��PF.@;J/V.@;J /;E�0˝��F.@;J/ev�0L/

�
is surjective on the complement of the subvarieties �M0

0;%�.P
n; d/ with %�2A0.@I d;J /.

Furthermore, for every %�2A0.@I d;J / as in Lemma 3.10, the differential of �D0 ,

r�D0W N�0;%� �!��0;%�Hom
�
��PF.@;J/V.@;J /;E�0˝��F.@;J/ev�0L

�
D ��P E�0˝��BHom.V.@B.%�/;JB.%�//; ev�0L/;

in the normal direction to the immersion �0;%� is given by

r�D0

ˇ̌
��

P
L0;.l;i/˝��B��.l;i/L0

D ��P s0;.l;i/˝��B��.l;i/D0 8 i2Œm�l �; l2@P .%
�/;

r�D0

ˇ̌
N>�0;%�

D ��P id˝��BD.@B.%�/;JB.%�//;
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where s0;.l;i/ is the homomorphism defined in Section 2.4.

This lemma follows immediately from Lemma 5.3.

Proposition 5.5 With notation as above, there exists a surjective bundle homomor-
phism

�D.@;J / 2 �
��M0;.@;J /.Pn; d/I

Hom.��0;.@;J /�
�
PF.@;J/V.@;J /;�E�˝��0;.@;J /��PF.@;J/ev�0L/

�
such that �D.@;J /

ˇ̌
PF 0

.@;J/
D �D0

ˇ̌
PF 0

.@;J/
;

where PF0
.@;J / D PF.@;J /

�
[

%2A0.@Id;J /
�M0

0;%.P
n; d/� �M0

0;.@;J /.P
n; d/; �M0;.@;J /.Pn; d/:

In fact, in the notation of Section 3.4, for every %2f0gtA0.@I d;J / there exists a
bundle homomorphism�D% 2 �

��M%

0;.@;J /IHom.��%��PF.@;J/V.@;J /;E�%˝��%��PF.@;J/ev�0L/
�

such that

(i) the restrictions of �D% and �D0 to PF0
.@;J / agree;

(ii) �D% is surjective outside of the subvarieties �M%
0;%� with %�>%;

(iii) �D% vanishes identically on the subvarieties �M%
0;%� with %�>%;

(iv) for each %�>%, the differential of �D% in the normal direction to the immer-
sion �%;%� is given as in the statement of Lemma 5.4, but with s0;.l;i/ replaced
by s�%� .%/;.l;i/ .

Similarly to the construction of the bundle sections �D% in Section 3.4, we construct
the bundle homomorphisms �D% inductively starting with �D0 and twisting by the
exceptional divisor at each step. The inductive assumptions (i)–(iv) are analogous to
(I3), (I4), and (I12) in Section 3.4 and are verified similarly. Of course, we take�D.@;J / D �D%max :
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5.3 Structure of the cone Vd
1;k

In this subsection we describe the structure of the cone

p0W SM1;k.L; d/ �! SM1;k.P
n; d/;

restating the primary structural result of [25].

For each element �D.mIJP ;JB/ of A1.d; k/, let

V0
1;��SM1;� .L; d/D p�1

0

�SM0
1;�

�� V0
1;k�SM1;k.L; d/;

with SM0
1;�

as in Equation (4–3). The subvarieties SM1;� .L; d/ of SM1;k.L; d/ can
also be defined analogously to the subvarieties SM1;� .P

n; d/ of SM1;k.P
n; d/; see the

beginning of Section 1.2. Similarly to Section 4.2, let

j0;� W SM0
1;.IP .�/;JP .�//

�V.@B.�/;JB.�// �! V0
1;� � V0

1;k

be the natural node-identifying immersion so that the diagram

SM0

1;.IP .�/;JP .�// � V.@B.�/;JB.�//
V0

1;�
� V0

1;k

SM0
1;.IP .�/;JP .�//

� SM0;.@B.�/;JB.�//
SM0

1;�
� SM0

1;k

j0;�

�0;�

id p0;� p0

commutes.

Lemma 5.6 If d; n2ZC and k2xZC , the collection fj0;�g�2A1.d;k/ of immersions
is properly self-intersecting. For every �2A1.d; k/,

N ide
j0;�
D ˚id�p0;�

	�N ide
�0;�

is an idealized normal bundle for j0;� .

The differential dp0 of p0 induces a surjective linear map

Im dj0;� �! Im d �0;� :

Since the fibers of p0 are vector spaces, it follows that dp0 induces an injection

j �0;�T CV0
1;k

ı
Im dj0;� �! ��0;�T C SM0

1;k

ı
Im d �0;� :

Thus, Lemma 5.6 follows from Lemma 4.7.
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We denote by V0
1;.0/

the main component SM0
1;k.L; d/ of the moduli space SM1;k.L; d/.

If �2A1.d; k/, we put

W0
� D j �1

0;�

�V0
1;.0/

�� j �1
0;�

�V0
1;.0/\V0

1;�

�
:

Note that
˚
id�p0;�

	�W0
�

�D xZ0
� � ��1

0;�

�SM0
1;.0/

�
:

Let NW0
��N ide

j0;�
be the normal cone Nj0;� jV0

1;.0/
for j0;� jW0

�
in V0

1;.0/
. Its structure

is described in Lemma 5.7 below. Let D0;� be the section of the bundle

Hom.��BV.@B.�/;JB.�//;Hom.N ide
�0;�
; ��P E�0˝��Bev�0L//

D Hom.N ide
�0;�
; ��P E�0˝��BHom.V.@B.�/;JB.�//; ev�0L//

over SM0
1;.IP .�/;JP .�//

�SM0;.@B.�/;JB.�// defined by

D0;�

ˇ̌
��

P
Li˝��B��i L0

D ��P si˝��B��i D0; 8 i2Œm�;
where si and D0 are as in Sections 2.2 and 5.2, respectively. If �2��

B
V.@B.�/;JB.�// ,

we will view D0;�� as a homomorphism

D0;��W N ide
j0;�

ˇ̌
�
DN ide

�0;�

ˇ̌
fid�p0;� g.�/ �! ��P E�0˝��Bev�0L

ˇ̌
fid�p0;� g.�/:

Lemma 5.7 For all �2A1.d; k/, V0
1;.0/

is a proper subvariety of V0
1;k

relative to the
immersion j0;� . The homomorphism

NW0
� �! fid�p0;�g�N xZ0

�

induced by dp0 is injective. Furthermore,

W0
�

ˇ̌
Z0
�
D ˚�2��BV.@B.�/;JB.�//jZ0

�
W ker fD0;��g

ˇ̌
N xZ0

� jfid�p0;� g.�/
¤f0g	;

NW0
�

ˇ̌
�
D ker

˚
D0;��

	ˇ̌
N xZ0

� jfid�p0;� g.�/
�N ide

j0;�
8 �2W0

�

ˇ̌
Z0
�
:

Finally, W0
� is the closure of W0

� jZ0
�

in

SM0
1;.IP .�/;JP .�//

�V.@B.�/;JB.�//

and NW0
� is the closure of NW0

�

ˇ̌
W0
� jZ0

�

in N ide
j0;�

.

Since the fibers of p0 are vector spaces, the first two sentences of this lemma follow from
Lemma 4.10. The middle claim of Lemma 5.7 is a restatement of [25, Lemma 3.4]. The
remaining claims of the lemma follow from [25, Lemma 3.4] by dimension counting,
similarly to the argument following Lemma 4.10.
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Remark It may appear that the statement of Lemma 5.7 depends on the choice of a
hermitian connection (or metric) in the line bundle L�!Pn . As explained in detail in
[25, Subsection 3.3], the dependence is only on the holomorphic structure of L, as the
case should be.

5.4 Desingularization construction

In this subsection we lift the inductive blowup construction of Section 4.3 to the cone

p0W V0
1;k �! SM0

1;k :

For each �2A1.d; k/, let V�
1;k
����V0

1;k
be the pullback of V0

1;k
to SM�

1;k
:

V�
1;k

���
�V0

1;k
V0

1;k

SM�
1;k

SM0
1;k

��

��

p� p0

For each � 02A1.d; k/, let

V�1;� 0 D V�1;k
ˇ̌
SM�

1;�0
D ��1

�

�V0
1;k

ˇ̌
SM0

1;�0
�
:

The bundle homomorphisms j0;� 0 lift to bundle homomorphisms onto V�
1;� 0 covering

the immersion ��;� 0 of Section 4.3:

�M1;.IP .� 0/;JP .� 0// � ��
%�0 .�/

��
PF.@;J/

V.@B.� 0/;JB.� 0// V�
1;� 0 � V�

1;k

�M1;.IP .� 0/;JP .� 0// � �M%�0 .�/

0;.@B.� 0/;JB.� 0//
SM�

1;� 0 � SM�
1;k

j�;� 0

��;� 0
id p�;� 0 p�

� 0 �� W

SM��0 .�/

1;.IP .� 0/;JP .� 0// � V.@B.� 0/;JB.� 0// V�
1;� 0 � V�

1;k

SM��0 .�/

1;.IP .� 0/;JP .� 0// � SM0;.@B.� 0/;JB.� 0// SM�
1;� 0 � SM�

1;k

j�;� 0

��;� 0
id p�;� 0 p�

� 0>� W

The collection f��;� 0g� 02A1.d;k/ of immersions is properly self-intersecting by the
inductive assumption (I14) of Section 4.3. Thus, by the same argument as in the
paragraph following Lemma 5.6, so is the collection fj�;� 0g� 02A1.d;k/ . Furthermore,

(5–1) N ide
j�;�0 D

˚
id�p�;� 0

	�N ide
��;�0
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is an idealized normal bundle for j�;� 0 . These two observations also follow from
Lemma 5.6 by induction using Lemmas 4.2 and 4.3.

Lemma 5.8 If �2A1.d; k/, V��1
1;�

is a smooth subvariety of V��1
1;k

and

p� W V�1;k �! SM�
1;k

is the idealized blowup of V��1
1;k

along V��1
1;�

.

Recall from Section 4.3 that the immersion

x���1;� W
� �M1;.IP .�/;JP .�//�SM0;.@B.�/;JB.�//

�ı
G� �! SM��1

1;� � SM��1
1;k

induced by ���1;� is an embedding and

z�� W SM�
1;k �! SM��1

1;k

is the idealized blowup along SM��1
1;�

. Thus, the immersion

xj��1;� W
� �M1;.IP .�/;JP .�//�V.@B.�/;JB.�//

�ı
G� �! V��1

1;� � V��1
1;k

induced by j��1;� is also an embedding and V��1
1;�

is a smooth subvariety of V��1
1;k

.

Let z�� W V �! V��1
1;k

be the idealized blowup along V��1
1;k

. Since

N ide
j��1;�

D ˚id�p��1;�

	�N ide
���1;�

and the linear map

j ���1;�T CV��1
1;k

ı
Im dj��1;� �! ����1;�T C SM��1

1;k

ı
Im d ���1;�

induced by dp��1 is injective, p��1 lifts to a map p over the blowdown maps z�� :

V V��1
1;k

SM�
1;k

SM��1
1;k

Q��

Q��

p p��1

Then p and the top arrow z�� factor through a morphism f to z���V��1
1;k

:
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V

p

z��f

z��
�V��1

1;k
V��1

1;k

SM�
1;k

SM��1
1;k

z��

z��

p� p��1

We show in the next paragraph that f is an isomorphism. Since z���V��1
1;k
DV�

1;k
, this

implies the second statement of Lemma 5.8.

By construction, the maps

z�� W SM�
1;k �! SM��1

1;k and z�� W V �! V��1
1;k

are isomorphisms on the complements of the idealized exceptional divisors

SM�
1;� � E ide

SM��1
1;�

� SM�
1;k and V�1;� � E ide

V��1
1;�

� V :

Thus, f W V�!z���V1;k is an isomorphism over the complement of SM�
1;�

in SM�
1;k

. In
particular, f is linear on all fibers of p . Furthermore,

z���V��1
1;k

ˇ̌
SM�

1;�

D ˚.`; v/2PN ide
SM��1

1;�

�V��1
1;k W z�� .`/Dp��1.v/

	
:

On the other hand, since
N ide
V��1

1;�

D p���1N ide
SM��1

1;�

by (5–1), we have

V�1;� D p���1PN ide
SM��1

1;�

D ˚.v; `/2V��1
1;k �PN ide

SM��1
1;�

W p��1.v/Dz�� .`/
	
:

Thus, the restriction of f to V�
1;�

must interchange v and `, ie it is a vector bundle
isomorphism over SM�

1;k
. Finally, SM��1

1;�
is a smooth subvariety of V��1

1;k
and

T
�SM��1

1;k \V��1
1;�

�D T SM��1
1;� D T C SM��1

1;k \T V��1
1;� � T CV��1

1;k :

Thus, similarly to (1) of Lemma 3.3, the proper transform of SM��1
1;k

in V is the blowup
of SM��1

1;k
along

SM��1
1;k \V��1

1;� D SM��1
1;� ;

ie V contains SM�
1;k

as the zero section. The map f must be the identity on SM�
1;k

.
Since f is a linear isomorphism on all fibers of p by the above, it then follows that f
is an isomorphism everywhere.
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Remark If V��1
1;k

is a vector bundle over SM��1
1;k

, the second statement of Lemma 5.8
applies to standard blowups of SM��1

1;k
and V��1

1;k
as well. However, the second statement

does not generally apply to standard blowups in the setting of Lemma 5.8, as the
analogue of the morphism f may not be surjective.

By the inductive assumption (I1) of Section 4.3, the projection map �� is an isomor-
phism outside of the subvarieties V�

1;� 0 with � 0�� . We denote by

V�1;.0/ � V�1;k
the proper transform of V0

1;.0/
. For each � 02A1.d; k/, let

W�
� 0 D j�1

�;� 0
�V�1;.0/�D j�1

�;� 0
�V�1;.0/\V�1;� 0�:

By the inductive assumption (I15) of Section 4.3, SM�
1;.0/

is a proper subvariety of
SM�

1;k
with respect to the immersion ��;� 0 . Thus, by the same argument as in the

paragraph following Lemma 5.7, the subvariety V�
1;.0/

of V�
1;k

is proper with respect
to the immersion j�;� 0 . Furthermore, if

NW�
� 0 �NWj�;�0 jV�1;.0/ �N ide

j�0;�

denotes the normal cone for j� 0;� jW�
�0 in V�

1;.0/
, then the homomorphism

NW�
� 0 �! fid�p�;� 0g�N xZ�� 0

induced by dp� is injective. These two observations also follow from Lemma 5.7 by
induction using Lemma 4.5.

If � 02A1.d; k/, let

�Z0
� 0IB D �D�1

0 .0/\PF.IP .� 0/;JP .� 0//
ˇ̌
M0;.@B.�/;JB.�//

:

By the inductive assumptions (I7) in Section 4.3 and (I4) in Section 3.4,

SZ�� 0 � ��1
�;� 0

�SM�
1;.0/

�
is the closure of �M1;.IP .� 0/;JP .� 0//��Z0

� 0IB in

�M1;.IP .� 0/;JP .� 0// � �M%�0 .�/
0;.@B.� 0/;JB.� 0//

for all �2A1.k; d/ such that � 0�� .

Suppose �2f0g[A1.d; k/ and � 02A1.d; k/. We claim that

Geometry & Topology, Volume 12 (2008)



Desingularization of moduli space of genus-one stable maps 89

(I1) if � 0�� , then W�
� 0 is the closure of

�M1;.IP .� 0/;JP .� 0//� ker�D0j�Z0
�0IB

� �M1;.IP .� 0/;JP .� 0// ���PF.@;J/V.@B.� 0/;JB.� 0//;�M1;.IP .� 0/;JP .� 0// ���%�0 .�/�
�
PF.@;J/V.@B.� 0/;JB.� 0//

in �M1;.IP .� 0/;JP .� 0// ���%�0 .�/�
�
PF.@;J/V.@B.� 0/;JB.� 0// and

NW�
� 0 DN ide

j�;�0
ˇ̌
W�
�0
I

(I2) if � 0>� , then W�
� 0 and NW�

� 0 are the closures of

W0
� 0 jZ0

�0
� SM0

1;.IP .� 0/;JP .� 0//�V.@B.� 0/;JB.� 0//; SM��0 .�/
1;.IP .� 0/;JP .� 0//�V.@B.� 0/;JB.� 0//

NW0
� 0
ˇ̌
W0
�0 jZ0

�0
�N ide

j0;�0 jW0
�0 jZ0

�0
�N ide

j0;�0 ;N
ide

j�;�0and

in SM��0 .�/
1;.IP .� 0/;JP .� 0//�V.@B.� 0/;JB.� 0// and in N ide

j�;�0 , respectively.

If � D 0, the assumption (I1) is trivially satisfied, while (I2) constitutes part of
Lemma 5.7. Suppose � 2A1.d; k/ and the two assumptions hold with � replaced
by ��1. By Lemma 5.8, V�

1;k
is the idealized blowup of V��1

1;k
along V��1

1;�
. Thus,

by the last statement of Lemma 4.5 both of the inductive assumptions continue to hold
for � 0¤� .

On the other hand, let

Z� IB D
˚
b2M0;.@B.�/;JB.�// W kerD.@B.�/;JB.�//¤0

	
;

W0
� IB D

˚
�2V.@B.�/;JB.�//jZ�IB W

ker fD.@B.�/;JB.�//�g
ˇ̌
kerD.@B.�/;JB.�//

jp��1;� .�/
¤f0g	;

NW0
� IB D

˚
.�; �/W �2W0

� IB; �2kerfD0;��g
ˇ̌
kerD.@B.�/;JB.�//

jp��1;� .�/

	
� p ���1;�F.@B.�/;JB.�//:

By the inductive assumption (I12) in Section 4.3,

SZ��1
� \ � �M1;.IP .�/;JP .�//�M0;.@B.�/;JB.�//

�D �M1;.IP .�/;JP .�//�Z� IB;
N xZ0

� j �M1;.IP .�/;JP .�//
�Z�IB D ��P L˝��B kerD.@B.�/;JB.�//:
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By the inductive assumption (I2) above, Lemma 5.7, and the inductive assump-
tion (I11) in Section 4.3, W��1

� and NW��1
� are the closures of

W0
�

ˇ̌
Z0
�
D ˚�2��BV.@B.�/;JB.�//jZ0

�
W ker fD0;��g

ˇ̌
N xZ0

� jfid�p0;� g.�/
¤f0g	

NW0
�

ˇ̌
W0
� jZ0

�

D ˚.�; �/W �2W0
�

ˇ̌
Z0
�
; �2kerfD0;��g

ˇ̌
N xZ0

� jfid�p0;� g.�/
	

and

�N ide
j0;�

;N ide
j��1;�

in �M1;.IP .�/;JP .�//�V.@B.�/;JB.�// and in

N ide
j��1;�

D ��P L˝��Bp���1;�F.@B.�/;JB.�//:

As before,

�P ; �BW �M1;.IP .�/;JP .�//�V.@B.�/;JB.�// �! �M1;.IP .�/;JP .�//;V.@B.�/;JB.�//

are the projections onto the principle and bubble components. The bundle homomor-
phisms si and zsi of Section 2.3 agree on

M1;.IP .�/;JP .�// � SM1;.IP .�/;JP .�//;
�M1;.IP .�/;JP .�//:

The homomorphism zsi is an isomorphism from zLi to zE� over �M1;.IP .�/;JP .�// , and
both line bundles are isomorphic to L. It follows that W��1

� and NW��1
� are the

closures of �M1;.IP .�/;JP .�// �W0
� IB and ��P L˝��BNW0

� IB

in �M1;.IP .�/;JP .�//�V.@B.�/;JB.�// and in

N ide
j��1;�

D ��P L˝��Bp ���1;�F.@B.�/;JB.�//:

Thus, by the first statement of Lemma 4.5,

W�
� � j �1

�;�

�V�1;.0/�
is the closure of

P
�
��P L˝��BNW0

� IB
�D �M1;.IP .�/;JP .�// �PNW0

� IB
D �M1;.IP .�/;JP .�// � ker�D0j�Z0

�IB

� PN ide
j��1;�

D �M1;.IP .�/;JP .�//���PF.@;J/V.@B.�/;JB.�//;

ie the first part of the inductive assumption (I1) for � 0D� is satisfied. Furthermore,
by the second part of (1) of Lemma 4.5,

NW�
� D 
V��1

1;�

ˇ̌
W�
�
D ˚id�p�;�

	�

SM��1

1;�

ˇ̌
W�
�
D ˚id�p�;�

	�N ide
��;�

ˇ̌
W�
�
DN ide

j�;�

ˇ̌
W�
�
:
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We have thus verified the second part of the inductive assumption (I1) for � 0D� .

Since the immersions x��;� 0 with � 0�� are embeddings by the inductive assumption (I8)
in Section 4.3, so are the immersions

xj�;� 0 W
� �M1;.IP .� 0/;JP .� 0//���%�0 .�/�

�
PF.@;J/V.@B.� 0/;JB.� 0//

�ı
G� 0 �! V�1;� 0 � V�1;k

induced by j�;� 0 . In particular, all of the morphisms

xj�max;� 0 W
� �M1;.IP .� 0/;JP .� 0//���0;.@B.� 0/;JB.� 0//�

�
PF.@;J/V.@B.� 0/;JB.� 0//

�ı
G� 0

�! V�max
1;� 0 � V�max

1;k
D z��SM1;k.L; d/

are embeddings. On the other hand, by the inductive assumption (I1),

�W� 0 �W�max
� 0 � j �1

�max;� 0
��M0

1;k.L; d/
�� j �1

�max;� 0
�V�max

1;.0/

�
is the closure of

�M1;.IP .� 0/;JP .� 0// � ker�D0j�Z0
�0IB

� �M1;.IP .� 0/;JP .� 0//���0;.@B.� 0/;JB.� 0//�
�
PF.@;J/V.@B.� 0/;JB.� 0//:

By Proposition 5.5 and the inductive assumption (I8) in Section 4.3, this closure is

�M1;.IP .� 0/;JP .� 0// � ker�D.IP .� 0/;JP .� 0//j�Z�0IB ;�Z� 0IB D �D�1
.IP .� 0/;JP .� 0//.0/:where

Since the bundle section �D.IP .� 0/;JP .� 0// is transverse to the zero set, �Z� 0IB is a smooth
subvariety of �M0;.IP .� 0/;JP .� 0//.P

n; d/ and

�W� 0 �! �M1;.IP .� 0/;JP .� 0// � �Z� 0IB
is a smooth vector bundle by Proposition 5.5. We conclude that

�M0
1;k.L; d/\V�max

1;� 0

is a smooth subvariety of �M0
1;k.L; d/ for all � 02A1;k.k; d/. Its normal cone is a line

bundle by the inductive assumption (I1).
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Appendix A Most frequently used symbols and notation

d degree of stable maps to Pn

k number of marked points for genus-one stable maps
n dimension of projective space, Pn

C;Q the sets of rational numbers, of complex numbers
Z;ZC; xZC the sets of all, positive, nonnegative integers
Œk� f1; : : : ; kg


% , 
.N ;J / tautological line bundles on PF% , PF.@;J /
si pairing of Li with E on SM1;I and with L0 on SM0;0tI ; p 30
s�;i pairing of L�;i with E� on SM�

1;.I;J /
, �2A1.I;J /; p 33

zsi nondegenerate pairing of zLi with �E on �M1;.I;J / ; p 33
s�;.l;i/ pairing of L�;.l;i/ with E� on �M�

0;%
, �2A0.%/; Section 2.4

zs.l;i/ nondegenerate pairing of zL.l;i/ with �E on �M0;% ; p 37

Ag.I/, Ag.I;J / collections of subvarieties of SMg;I , of SMg;ItJ ; p 28, p 31
A0.%/ collection of subvarieties of PF% , %D.Il ;Jl/l2@ ; p 35
Ag.d; k/ collection of subvarieties of SMg;k.P

n; d/; p 6, p 40
A0.@I d;J / collection of subvarieties of PF.@;J / ; p 45
D0 , D0 “derivatives” of maps at the 0–th marked point; p 43, p 80
D.@;J / , D.@;J / “sums” of various D0 , D0 ; p 48, p 81�D% , �D% induced derivatives over �M%

.@;J / ; p 52, p 82
E Hodge line bundle of holomorphic differentials on SM1;J

E� , �E line bundles on SM�

1;.I;J /
, �M1;.I;J / , �2A1.I;J /, or �M�

0;%
,�M0;% , �2A1.%/, or �M�

0;.@;J / , �M0;.@;J /.Pn; d/, �2A1.@I d;J /,
obtained from E, or 
% , or 
.@;J / ; p 32, p 37, p 52

F% , F.@;J / vector bundles over SM0;% , SM0;.@;J /.Pn; d/; p 35, p 44
F%IP , F%IS subbundles of F.@;J / , %2A0.@I d;J /; p 46
G� symmetry group of the immersions �� , ���;� ; p 10
Ims� singular locus of immersion �; p 38
Lj universal tangent line bundle for j –th marked point over SMg;J

or SMg;J .P
n; d/, j 2J

L�;i , zLi line bundles on SM�

1;.I;J /
, �M1;.I;J / , �2A1..I;J /; p 32

L�;.l;i/ , zL.l;i/ line bundles on �M�
0;%

, �M0;% , �2A0.%/; p 37
L universal tangent line bundle on �M1;.I;J / , �M0;% ; p 31, p 35
L the line bundle associated to the sheaf OPn.a/, a>0
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SMg;J Deligne–Mumford moduli space of stable genus–g curves with
marked points indexed by the set J

SMg;� smooth subvariety of SMg;J , �2Ag.J /; p 28
SM�

1;�
, SM�

1;�� exceptional divisor in SM�

1;.I;J /
, proper transform of SM1;�� ,

�; ��2A1.I;J /, ��>� ; p 32
SM�

1;.I;J /
, �M1;.I;J / �–stage and final blowups of SM1;ItJ , �2A1.I;J /; Section 2.3

SM� IP , �M� IP the “curve component” of SM1;� .P
n; d/ and its (final) blowup,

�2A1.d; k/; p 9
SM0;% moduli space of tuples of genus-zero curves; p 35�M0

0;�
, �M�

0;�
smooth subvariety of PF% , exceptional divisor in �M�

0;%
,

�2A0.%/; p 36�M�
0;%

, �M0;% �–stage and final blowups of PF% , �2A0.%/; Section 2.4

SMg;J .P
n; d/ moduli space of genus–g degree–d stable maps to Pn with

marked points indexed by the set J
SMg;� .Pn; d/ subvariety in SM1;k.P

n; d/ or SM0;J .P
n; d/ with �2A1.d; k/ or

�2A0.d;J /; p 6, p 40
SM� IB.Pn; d/ the “map part” of SMg;� .Pn; d/; p 9, p 42
SM0;.@;J /.Pn; d/ moduli space of @–tuples of stable maps; p 44�M0

0;%� , �M%
0;%� subvariety in PF.@;J / , its proper transform in �M%

.@;J / , %
�>%,

%; %�2A0.@I d;J /; p 46, p 49�M%

0;.@;J / %–stage blowup of PF.@;J / , %2A0.@IJ; d/; p 49�M�
1;k

� –stage idealized blowup of SM1;k.P
n; d/, �2f0g tA1.d; k/;

p 59, p 67
SM0

1;k.P
n; d/ main component of SM1;k.P

n; d/; p 2�M0
1;k.P

n; d/ desingularization of SM0
1;k.P

n; d/; p 7

N� normal cone for immersion �; p 38
N ide
� idealized normal bundle for immersion �; Definition 4.1
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