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A dual version of the ribbon graph decomposition
of moduli space

KEVIN COSTELLO

This note gives a construction of a dual version of the ribbon graph decomposition of
the moduli spaces of Riemann surfaces.

32G15

1 Introduction

The ribbon graph decomposition of moduli space is a non-compact orbi-cell complex
homeomorphic to Mg;n�Rn

>0
. This was introduced by Harer–Mumford–Thurston [4]

and Penner [9], and used to great effect by Kontsevich [5; 6] in his proof of the Witten
conjecture and his construction of classes in moduli spaces associated to A1 algebras.

In this note, I discuss a dual version of the ribbon graph decomposition of the moduli
spaces of Riemann surfaces with boundary and marked points, which I introduced
in the unpublished preprint [1], and used in [2] to construct open-closed topological
conformal field theories. This dual version of the ribbon graph decomposition is a
compact orbi-cell complex with a natural weak homotopy equivalence to the moduli
space. In the case when all of the marked points are on the boundary of the surface,
the combinatorics of the cell complex is captured by ribbon graphs, as usual. In the
general case, we find a variant of the ribbon graph complex.

The idea of the construction is as follows. We use certain partial compactifications
SNg;h;r;s of the moduli spaces Ng;h;r;s of Riemann surfaces of genus g with h > 0

boundary components, r boundary marked points, and s internal marked points. The
partial compactifications we use are closely related to the Deligne–Mumford spaces;
we allow Riemann surfaces with a certain kind of singularity, namely nodes on the
boundary. The moduli space SNg;h;r;s is an orbifold with corners. The boundary is
the locus of singular surfaces. Therefore the inclusion Ng;h;r;s ,! SNg;h;r;s is a weak
homotopy equivalence of orbispaces. Inside SNg;h;r;s is a natural orbi-cell complex
Dg;h;r;s , which is the locus where all the irreducible components of the surface are discs
(with at most one internal marked point). We show that the map Dg;h;r;s ,! SNg;h;r;s

is a weak homotopy equivalence. This shows that Dg;h;r;s ' Ng;h;r;s , giving the
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desired cellular model for Ng;h;r;s . When sD 0, the combinatorics of the cell complex
Dg;h;r;0 is governed by standard ribbon graphs. When s > 0, we find a variant type of
ribbon graph, which has two types of vertex.

In the standard approach, the non-compact orbi-cell decomposition of moduli space
gives a chain model for the Borel–Moore homology, or equivalently the cohomology,
of moduli space. The chains are given by ribbon graphs, and the differential is given
by summing over ways of contracting an edge, to amalgamate two distinct vertices.
The approach used here gives a compact orbi-cell complex, which gives a chain model
for homology of moduli space. In the case when s D 0, this is precisely the dual of the
standard ribbon graph complex. That is, the chains are given by ribbon graphs, and
the differential is given by summing over ways of splitting a vertex into two. When
s > 0, the complex Dg;h;r;s is dual to a generalised ribbon graph complex considered
by Penner, the complex of “quasi-filling arc families in a partially decorated bordered
surface”.

The main disadvantage of the approach described here, compared to the more traditional
approach, is that we do not find a cell complex homeomorphic to moduli space, but
instead a space homotopy equivalent.

On the other hand, one advantage of this approach is that the cell complex we find is
manifestly compatible with the gluing maps between the moduli spaces we use. We
use “open-string” type gluing; instead of gluing boundary components of surfaces, we
glue together marked points on the boundary. This allows us to give [1; 2] a generators-
and-relations description (up to homotopy) for the moduli spaces, considered as a
PROP.

The ribbon graph cell complex Dg;h;r;s , together with the map (in the homotopy
category) Dg;h;r;s ! Ng;h;r;s , arises immediately from the geometry of the moduli
spaces SNg;h;r;s . The only part of the construction that requires any work is showing
that the inclusion Dg;h;r;s ,! SNg;h;r;s is a weak homotopy equivalence. However, the
basic idea of the proof is very simple. The key point is to construct a deformation
retraction of SNg;h;0;s onto its boundary. This is achieved by using the exponential map
(for the hyperbolic metric) to flow the boundary of a surface in Ng;h;0;s inwards until
it is singular, which results in a surface in @SNg;h;0;s . From considering the fibration
SNg;h;r;s!

SNg;h;0;s given by forgetting the boundary marked points and stabilising, we
deduce that the inclusion @SNg;h;r;s ,! SNg;h;r;s is also a weak equivalence. An inductive
argument, using the fact that the boundary @SNg;h;r;s of SNg;h;r;s is a union of products
of similar moduli spaces, allows us to show that the inclusion Dg;h;r;s ,! @SNg;h;r;s is
a weak equivalence, from which the main result follows.

Geometry & Topology, Volume 11 (2007)



A dual version of the ribbon graph decomposition of moduli space 1639

1.1 Acknowledgements

I’d like to thank Mohammed Abouzaid and the referee for their comments.

2 Moduli of Riemann surfaces with boundary

2.1 Riemann surfaces with nodal boundary

A connected Riemann surface of genus g with h> 0 boundary components has the
following equivalent descriptions.

(1) A compact connected ringed space †, isomorphic as a topological space to
a genus g surface with h boundary components, and locally isomorphic to
fz 2 C j Im z � 0g, with its sheaf of holomorphic functions.

(2) A smooth, proper, connected, complex algebraic curve C of genus 2g� 1C h,
with a real structure, such that C nC.R/ has precisely two components, and
C.R/ consists of h disjoint circles; together with a choice of a component of
C nC.R/.

(3) Suppose 2g�2Ch> 0. Then, a Riemann surface with boundary is equivalently
a 2–dimensional connected compact oriented C1 manifold † with boundary,
of genus g with h boundary components, together with a metric of constant
curvature �1 such that the boundary is geodesic.

(2) and (3) can be shown to be equivalent (when 2g�2Ch>0) as follows. Given †, C

is obtained by gluing † and S† along their boundary. The real structure on C is arises
from the anti-holomorphic involution which is the identity on @† and interchanges †
and S†. We denote by C.R/ the set of fixed points of the anti-holomorphic involution.

Conversely, given C , † is the closure of the chosen component of C nC.R/ in C .
The hyperbolic metric on † is the restriction of the unique complete hyperbolic metric
on C compatible with the complex structure.

I will also need Riemann surfaces with nodes on the boundary. A connected Riemann
surface with nodal boundary has the following equivalent descriptions.

(1) A compact connected ringed space †, locally isomorphic to the ringed space

f.z; w/ 2 C�C j zw D 0; Im z � 0; Imw � 0g

with its sheaf of germs of holomorphic functions. This sheaf is defined to be the
inverse image of the sheaf of germs of holomorphic functions on C�C.
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(2) A proper connected complex algebraic curve C , with at most nodal singularities,
and a real structure. The real structure on each connected component C0 of the
normalization zC of C must be of the form .2/ above; we also require a choice
of component of C0 nC0.R/. All the nodes of C are required to be real, that is
in C.R/.
We will let †� C be the closure of the chosen components of C nC.R/.

(3) A compact possibly disconnected Riemann surface with boundary z†, together
with an unordered finite collection of disjoint points in @z†, arranged into un-
ordered pairs. † is the space obtained from z† by identifying each pair of points
on @z†.

As before, to go from the first description to the second, form the double of the surface
†, which is an algebraic curve with a real structure.

Near a node, † looks like

†rust�pwqv†

The number of boundary components of † can be defined as follows. @† will be
a union of circles, glued together at points as above. Define a smoothing of @†, by
replacing each node as above by

†

The number of boundary components of † is defined to be the number of connected
components of this smoothing.

† has genus g if it has h boundary components and the genus of the nodal algebraic
curve C D†[@†S† is 2g� 1C h.

We are also interested in surfaces † with marked points. These can be of two types: on
the boundary of †, or else in the interior †n@†. These marked points must be distinct
from the nodes and each other. When † has marked points, the double C of † is an
algebraic curve with marked points, distinct from the nodes. C has a real structure,
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and some of the marked points are in C.R/, and some are in C nC.R/. We say that
† is stable if the double C is, that is if C has only finitely many automorphisms.

Let us suppose that † is smooth, has non-empty boundary, and has .r; s/ boundary
and internal marked points. Then † is unstable if and only if it is a disc and rC2s � 2

or it is an annulus and r D s D 0. More generally, let † be a singular surface. Let z†
be its normalisation, which is obtained by pulling apart all the nodes of †. Each node
of † gives two extra boundary marked points on z†. Then † is unstable if and only if
one of the connected components of z† is.

2.2 Moduli spaces of surfaces with boundary

For integers g; r; s � 0; h > 0, let SNg;h;r;s be the moduli space of stable Riemann
surfaces † of genus g with boundary, possibly with nodes on the boundary, with h

boundary components, with r marked points on the boundary @†, and s marked points
in the interior † n @†. All of the marked points are required to be distinct from the
nodes and each other.

This moduli space is non-empty except for the cases when gD 0, hD 1 and rC2s< 3,
or g D 0, hD 2 and r D s D 0.

Let Ng;h;r;s �
SNg;h;r;s be the locus of non-singular Riemann surfaces (with boundary).

The moduli spaces SNg;h;r;s are open subsets of those constructed by Liu in [7]. Note
that in Liu’s work, Riemann surfaces are allowed to have nodes in the interior as well
as on the boundary, whereas the surfaces we use are not allowed to have nodes in
the interior. Also Liu allows the length of boundary components to shrink to zero,
turning boundary components into punctures. For us, boundary components always
have positive length. Similar moduli spaces were also considered by Fukaya et al [3].
The simplest way to construct these moduli spaces is to realise that they are very closely
related to the real points of the Deligne–Mumford moduli spaces SM2g�1Ch;rC2s .

Lemma 2.1 SNg;h;r;s is an orbifold with corners of dimension 6g� 6C 3hC r C 2s .
The interior of SNg;h;r;s is Ng;h;r;s .

Recall that an orbifold with corners is, by definition, an orbi-space locally modelled on
Rk
�0

. The reason we get corners is that there is only one way to smooth any node. If
our surface has k nodes then it is in a point in the moduli space locally modelled on
the origin in Rk

�0
.

Let Dg;h;r;s �
SNg;h;r;s be the locus consisting of those surfaces whose irreducible

components are all discs with at most one interior marked point. By “irreducible
component” I mean connected component of the normalisation of the surface.
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Figure 1: A point in D0;2;4;2 given by three discs glued together at the three nodes.

The main result of this note is the following Theorem.

Theorem 2.2 The inclusion Dg;h;r;s ,! SNg;h;r;s is a weak homotopy equivalence of
orbispaces.

The notion of weak homotopy equivalence between orbispaces is briefly discussed in
the appendix. The proof of this theorem will be given in the next section.

Proposition 2.3 Stratify the space Dg;h;r;s by saying †;†0 are in the same stratum
if there exists a homeomorphism †!†0 preserving the marked points and orientation
(but not necessarily respecting the holomorphic structure).

Then this stratification is a decomposition of the compact orbi-space Dg;h;r;s into
orbi-cells. When r > 0, Dg;h;r;s is an ordinary space instead of an orbi-space, and the
stratification gives a cell decomposition in the usual sense.

We will show this by labelling the possible topological types of surface in Dg;h;r;s by
a kind of ribbon graph.

Let �g;h;r;s denote the set of isomorphism classes of connected graphs 
 , with the
following extra data and conditions.

(1) 
 has r ordered external edges (or tails).

(2) For each vertex v 2 V .
 /, the set of germs of edges at v is cyclically ordered.

(3) The set of vertices V .
 / is split into V0.
 /q V1.
 /, and there is given an
isomorphism V1.
 /Š f1; : : : ; sg.

(4) All vertices in V0.
 / are at least trivalent, and all vertices in V1.
 / are at least
one valent.
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(5) The Euler characteristic of 
 is 2� 2g� h.

(6) As 
 is a ribbon graph, we can as usual talk about boundary components of 
 .
There are h unordered boundary components.

Let † 2 Dg;h;r;s . Associate to † a graph 
 .†/ 2 �g;h;r;s . There is one vertex of

 .†/ for each irreducible component of †, an edge for each node, and an external
edge for each marked point on @†. As the irreducible components of † are all discs,
the set of nodes and marked points on the boundary of each irreducible component has
a natural cyclic ordering, coming from the orientation on the boundary of a disc. Thus
the graph associated to † has the structure of a ribbon graph. There are s ordered
internal marked points on †, with at most one on a given irreducible component. A
vertex of 
 .†/ is in V0.
 .†// if it doesn’t contain an internal marked point, and it
is in V1.
 .†// if it does. The isomorphism V1.
 .†// Š f1; : : : ; sg is given by the
ordering of the internal marked points of †.

Lemma 2.4 For any graph 
 2 �g;h;r;s , the space of † 2Dg;h;r;s with 
 .†/D 
 is
an orbi-cell.

Proof Let 
 2 �g;h;r;s , and let v 2 V .
 /. Let E.v/ be the set of germs of edges at
v . To give a surface † 2Dg;h;r;s with 
 .†/D 
 amounts to giving, for each vertex
v 2 V .
 /, a disc D with distinct points on @D labelled by E.v/, in a way compatible
with the cyclic order on E.v/; and in addition, if v 2 V1.
 /, a point in the interior
of D . If we change this data by an automorphism of 
 , then we get an isomorphic
surface.

For v 2 V .
 /, let zX .v/ be the set of injective maps f W E.v/! S1 , such that the
cyclic order induced on the image of f by the orientation of S1 coincides with the
given cyclic order on E.v/.

If v 2 V0.
 / let X.v/ D zX .v/=PSL2.R/, where PSL2.R/ acts on S1 by Möbius
transformations. If v 2 V1.
 / let X.v/D zX .v/=S1 . Note that the spaces X.v/ are
cells.

Then the orbi-space of surfaces † 2Dg;h;r;s with 
 .†/D 
 can be identified with
the orbicell 0@ Y

v2V .
 /

X.v/

1A =Aut.
 /

where Aut.
 / is the group of automorphisms of 
 preserving all the labellings.

Geometry & Topology, Volume 11 (2007)



1644 Kevin Costello

This completes the proof of Proposition 2.3, except for the clause about the case when
r > 0. This follows from Lemma 3.9 below, which shows that when r > 0 surfaces in
SNg;h;r;s have no non-trivial automorphisms.

One can use this orbi-cell complex to give a chain model for the rational homology
of the moduli spaces SNg;h;r;s 'Ng;h;r;s . A basis for the chain complex is given by
ribbon graphs 
 in �g;h;r;s together with an orientation on the corresponding orbi-cell.
An orientation can be given by choosing an ordering of the set of vertices of 
 , and at
each vertex an ordering of the set of germs of edges. It is not difficult to calculate how
changing this ordering changes the orientation. The boundary in this chain complex is
given by summing over all ways of splitting a vertex in V0 into two vertices in V0 , and
splitting a vertex in V1 into a vertex in V1 and a vertex in V0 . In the case s D 0, this
recovers the usual ribbon graph model for homology of moduli spaces. When s > 0,
this chain complex is combinatorially distinct.

When r > 0, as Dg;h;r;s is in this case an ordinary cell complex and not an orbi-cell
complex, we find a complex computing the integral homology of moduli space.

Instead of working with an explicit chain complex, I prefer to think of this result as
giving (in the case sD0) a generators-and-relations description for the PROP controlling
open topological conformal field theory, see [1; 2]. When s > 0 the algebraic statement
corresponding to this cell decomposition is a generators-and-relations description for a
certain natural module over this PROP.

3 Proof of main theorem

The key point is Proposition 3.3, which shows that the orbi-space SNg;h;0;s deformation
retracts onto its boundary @SNg;h;0;s , except for the cases when .g; h/ D .0; 1/ and
s 2 f0; 1g.

The first step in the proof is the following lemma.

Lemma 3.1 There is a map SNg;h;rC1;s!
SNg;h;r;s , which forgets the last point and

stabilises. This is a locally trivial fibration in the orbispace sense.

Proof Recall that there is a map

SMg;nC1!
SMg;n

2g� 2C n> 0, given by forgetting the .nC 1/th marked point, and contracting any
resulting unstable components. This morphism can be identified with the universal
curve on the stack SMg;n .
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There is an induced map
� W SNg;h;rC1;s!

SNg;h;r;s

for .g; h; r; s/ stable, that is 4g�4C2hCrC2s > 0. This map removes the .rC1/th
marked point on the surface. If this leaves the surface with a disc with two special
points, where a special point is a marked point or a node, then we contract that disc.

We need to show that this is a topologically locally trivial map, in the orbifold sense.
Let † 2 SNg;h;r;s , and let us pick one of the boundary components of †, which we
denote by @0†. (Recall the definition of boundary components of a singular surface).
Let us consider adding on a marked point to @0†, near a node n of @0†. Let U � @0†

be a neighbourhood of a node. Let V � SN r; h; r C 1; s be the space of those surfaces
†0 where the extra marked point on †0 occurs in the neighbourhood U of the node
n. Then, I claim the map V ! U is a homeomorphism. It is clear we can add on a
unique marked point p to a smooth point of U . If p approaches the node, then we
bubble off a disc, which is inserted into @0† at this node. This disc has two nodes
and one marked point, p . There is one way to glue on such a disc, so we can instead
think of adding on a marked point at the node. We get the same configuration if p

approaches from the other side. Therefore the space V of possible ways of adding on
a marked point is homeomorphic to U .

The same behaviour occurs if we looked at a smooth region of a boundary component.
This makes it clear that the map is a locally trivial fibration.

Lemma 3.2 If the map @SNg;h;r;s ,! SNg;h;r;s is a weak homotopy equivalence, then
so is the map @SNg;h;rC1;s ,! SNg;h;rC1;s .

Proof Consider the following fibre square.

@SNg;h;rC1;s

��

// SNg;h;rC1;s

��
@SNg;h;r;s

// SNg;h;r;s

The vertical arrows are the maps which forget the last marked point. As the vertical
arrows are locally trivial fibrations, and in particular the fibres are all the same, the
result follows.

The key step in the proof is the following proposition.

Proposition 3.3 For all .g; h/ with 2g� 2C hC s > 0, the inclusion

@SNg;h;0;s ,! SNg;h;0;s
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Figure 2: By moving the boundaries of the surface inwards, we find a singular surface.

is a homotopy equivalence of orbi-spaces.

Proof Let † 2Ng;h;0;s . Note that † is a smooth surface. Let p1; : : : ;ps 2†nf@†g

be the marked points, and let

†0 D† n fp1; : : : ;psg:

Then †0 has a unique hyperbolic metric, compatible with the conformal structure, such
that the boundary is geodesic and such that the double of †0 is geodesically complete.
To construct this metric, one uses the double C0 of †0 , defined by

C0 D†0q@†0
S†0:

This double C0 has a unique complete hyperbolic metric, and the anti-holomorphic
involution on C0 is an isometry. It follows that the fixed points of the involution are
geodesic, so that the restriction of this metric to †0 has geodesic boundary.

Let V be the unit inward pointing normal vector field on @†D@†0 . Using the geodesic
flow on †0 , we can flow @† inwards, as in Figure 2. That is, for each s 2 R�0 in
some neighbourhood of 0, we have an exponential map

expsW @†!†0

by flowing the boundary in for a time s along the geodesic flow. As the double C0 of
†0 is complete, this exists for all time as a map to C0 .

Definition 3.4 Let T .†/ 2 R>0 be the smallest number such that the subset

expT .†/.@†/�†0

is singular.
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Lemma 3.5 The only singularities of expT .†/.@†/ are nodes. In other words, for
each x 2†0 , exp�1

T .†/
.x/ consists of at most two points in @†.

Proof

Suppose this is not the case. Let y1;y2;y3 2 @† be three distinct points such that
the points expT .†/.yi/ 2†0 coincide. Let x D expT .†/.yi/. Let Ui � @† be small
neighbourhoods of yi in @†. Note that the derivative of expT .†/W @†! † never
vanishes. We can assume that the Ui are such that expT .†/W Ui!† is injective.

Consider the three unparameterised C1 paths 
i D expT .†/.Ui/�†. These intersect
only at x . Suppose 
1; 
2 intersect transversely at x . Then, for some � sufficiently
small, expT .†/��.U1/ and expT .†/��.U2/ also intersect transversely, which contra-
dicts the fact that T .†/ is the smallest time at which expT .†/.@†/ has a singularity.

Therefore, the tangent vectors to all the paths 
1; 
2; 
3 at x all lie on the same line.
This implies that their normal vectors do also. These normal vectors are non-zero;
at least two of them coincide up to rescaling by a positive real number. Suppose

1; 
2 have this property. The geodesic exps.yi/ for 0 � s � T .†/ is normal to 
i .
Since exps.y1/ and exps.y2/ point in the same direction at x , and both are unit speed
geodesics, it follows that they coincide. Thus, y1 D y2 , which is a contradiction.

Lemma 3.6

(1) T .†/ is half the length of the shortest smooth geodesic arc in †0 which meets
the boundary at both ends at right angles.

(2) T .†/ is one quarter of the length of the shortest smooth closed geodesic in the
double C0 of †0 whose free homotopy class is non-trivial and invariant under
the anti-holomorphic involution of C0 .

Proof For part (1), at the first time there is a singularity, there are two points y1;y2 2

@.†0/ such that expT .†/.y1/D expT .�/.y2/. Let us call this point x . The proof of the
previous lemma implies that the two tangent vectors expT .†/��.y1/ and expT .†/��.y2/

at x are opposite. This implies that the path

exps.y1/ if s � T .†/

exp2T .†/�s.y2/ if s � T .†/

is a smooth geodesic arc of length 2T .†/. Thus, if � is the shortest such geodesic arc,
2T .†/ � l.�/. Conversely, if y1;y2 are the end points of � , then expl.�/=2.y1/ D

expl.�/=2.y2/ so that 2l.�/D 2T .†/.
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To prove part (2), note that if 
 is such a geodesic on C0 , then 
 D x
 , as there is
a unique smooth closed geodesic in each free homotopy class. This implies that 

meets @†0 precisely twice, and each time at right angles, so that 
 is the double of a
geodesic arc in †0 which meets the boundary at right angles.

For each 0� t � T .†/, define a surface

†.t/
def
D † n[s<t exps.@†/:

For 0� t <T .†/, †.t/ is in Ng;h;0 . The surface †.T .†// is in @SNg;h;0 . To see this,
observe that the previous lemma implies †.T .†// has only nodal singularities. Also
there are no unstable components, simply because there are no hyperbolic polygons
with � 2 sides.

Now define a map of orbispaces

ˆW Ng;h;0 � Œ0; 1�! SNg;h;0

ˆ.†; t/D†.tT .†//:

Lemma 3.7 ˆ extends continuously to a map SNg;h;0 � Œ0; 1�! SNg;h;0 , by defining
ˆ.†; t/D† for † 2 @SNg;h;0 .

Proof We have to show that the extension of ˆ so defined is continuous. Let †i 2

Ng;h;0 for i 2 Z>0 be a sequence of surfaces converging to † 2 @SNg;h;I , and let
ti 2 Œ0; 1� be any sequence. We need to show that

limi!1ˆ.†i ; ti/D†:

I claim that T .†i/! 0 as i !1. For simplicity, we will prove this in the case
when the limiting surface † has only a single node. Let Ci 2Mg;n be the double
of †i n marked points. Then, for i � 0, Ci has a unique shortest closed geodesic
in the homotopy class corresponding to the node in the limiting surface C 2 SMg;n .
Lemma 3.6 says that T .†i/ is one quarter of the length of this geodesic in Ci , and it
is a standard fact that the length of this geodesic converges to zero.

Now, since T .†i/! 0, it follows that for any sequence ti 2 Œ0; 1� the sequence

ˆ.†i ; ti/D†i.tiT .†i//

has the same limit as †i . That is, ˆ.†i ; ti/ is obtained from †i by moving the
boundary inwards by tiT .†i/, and this tends to zero. Therefore limˆ.†i ; ti/D†.
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This completes the proof of Proposition 3.3. As ˆ gives a deformation retraction of
the orbispace SNg;h;0;s onto its boundary @SNg;h;0;s .

We are nearly finished with the proof of Theorem 2.2.

Lemma 3.8 For all g � 0; h� 1; r � 0; s � 0, with

.g; h; r; s/¤ .0; 1; r; 0/

.g; h; r; s/¤ .0; 1; r; 1/

.g; h; r; s/¤ .0; 2; 0; 0/

the inclusion
@SNg;h;r ,! SNg;h;r

is a weak homotopy equivalence.

Proof This follows from Proposition 3.3 and Lemma 3.2, except for the case when
.g; h; r; s/ D .0; 2; 1; 0/. In this case, it is easy to see that SN0;2;1;0 D R�0 , so
@SN0;2;1;0 ,! SN0;2;1;0 is obviously a homotopy equivalence.

Lemma 3.9 Let †2 SNg;h;r;s , where r � 1. Then † has no non-trivial automorphisms
fixing each of the marked points.

Proof First suppose † is smooth. Put the hyperbolic metric on †0D†nfp1; : : : ;psg.
Any automorphism of † preserving the marked points induces an isometry of †0 , fixing
all the marked points on @†. Since the automorphism must act as the identity on the
tangent space to each marked point on @†, it must be the identity on a neighbourhood
of each marked point. Since the automorphism is analytic, it must be the identity
everywhere.

Now suppose † is singular. Let p 2 @† be a marked point. Let � be an automorphism
of †. Then � is the identity on the irreducible component containing p . Suppose n is
a node which joins this component of † to some other component. Then �.n/D n,
which implies that � is the identity on the other component at this node. Repeating
this argument we see � is the identity everywhere.

Finally, we can finish the proof of the theorem.

Lemma 3.10 The inclusion Dg;h;r;s ,! SNg;h;r;s is a weak homotopy equivalence of
orbispaces.
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Proof By induction, suppose we have proved the result for all moduli spaces of lower
dimension.

For k � 1, let @k
SNg;h;r;s be the space of surfaces † 2 @SNg;h;r;s , equipped with a map

from the set f1; 2; : : : kg to the set of nodes on †. Lemma 3.9 implies that @k
SNg;h;r;s

is an ordinary topological space, and not just an orbi-space. The spaces @k
SNg;h;r;s are

the k � 1 simplices of a simplicial space. The face maps are the maps which forget
a node. This simplicial space is the one obtained by iterated fibre products of the
map @1

SNg;h;r;s! @SNg;h;r;s . Therefore the topological realisation
ˇ̌
@� SNg;h;r;s

ˇ̌
of this

simplicial space is weakly equivalent to @SNg;h;r;s .

Similarly, let @kDg;h;r;s be the space of surfaces in Dg;h;r;s with a map from the set
f1; 2; : : : kg to the set of nodes on the surface. The spaces @kDg;h;r;s form a simplicial
space, and

ˇ̌
@�Dg;h;r;s

ˇ̌
is weakly equivalent to Dg;h;r;s .

There is a map of simplicial spaces @�Dg;h;r;s! @� SNg;h;r;s . By induction, we know
the maps @kDg;h;r;s! @k

SNg;h;r;s are weak equivalences. It follows that the associated
map

ˇ̌
@�Dg;h;r;s

ˇ̌
!
ˇ̌
@� SNg;h;r;s

ˇ̌
on the realisations of our simplicial spaces is a weak

equivalence.

The diagram ˇ̌
@�Dg;h;r;s

ˇ̌
//

��

ˇ̌
@� SNg;h;r;s

ˇ̌
��

Dg;h;r;s
// @SNg;h;r;s

commutes, and the vertical arrows and top horizontal arrows are weak equivalences. It
follows that the map Dg;h;r;s! @SNg;h;r;s is a weak equivalence, which implies that
Dg;h;r;s!

SNg;h;r;s is a weak equivalence.

Appendix A Orbispaces

We recall briefly some definitions from the theory of topological stacks. See Noohi
[8] for details. We use the word orbispace to refer to a weak topological Deligne–
Mumford stack in the sense of [8]. An orbispace is a category fibred in groupoids
over the category Top of compactly generated Hausdorff topological spaces, satisfying
a descent (or sheaf) condition, and a representability condition. The Grothendieck
topology on the category Top is that where the covering maps are the usual open
coverings. The representability condition is that there exists a surjective map from an
ordinary space which is a local homeomorphism.
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Let X be an orbispace, and let U !X be a surjective local homeomorphism from a
space U . We can form a simplicial space by taking iterated fibre products of U over
X . The n simplices are .U=X /nC1 , the face maps are projections and the degeneracy
maps are diagonals. Denote by N4.U=X / this simplicial space, and by N.U=X /

its geometric realisation. The weak homotopy type of N.U=X / is called the weak
homotopy type of X . This is independent of the choice of U .

Suppose f W Y ! X is a representable map of orbispaces. This means that all of
the fibres are ordinary spaces. Pick a surjective local homeomorphism U ! X as
above. Then the map Y �X U ! Y has the same property; in particular Y �X U

is an ordinary space. There is a map N.Y �X U=Y /!N.U=X /. If this is a weak
homotopy equivalence then we say that the map f W Y ! X is a weak homotopy
equivalence. This definition can be extended to non-representable maps by refining the
cover Y �X U ! Y .

To see that this is the correct notion of weak homotopy type of an orbispace, observe
that if G is a discrete group, acting on a space X , and we form the orbispace quotient
X=G , then the map X !X=G is a local homeomorphism, and N.X=.X=G// is one
of the standard models for the homotopy quotient of X by G .

References
[1] K Costello, The A1 operad and the moduli space of curves (2004) arXiv:

math.AG/0402015

[2] K Costello, Topological conformal field theories and Calabi–Yau categories, Advances
in Mathematics 210(1) (2007) arXiv:math.QA/0412149

[3] F Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian intersection Floer theory : anomaly
and obstruction (2000)

[4] J L Harer, The virtual cohomological dimension of the mapping class group of an
orientable surface, Invent. Math. 84 (1986) 157–176 MR830043

[5] M Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy
function, Comm. Math. Phys. 147 (1992) 1–23 MR1171758

[6] M Kontsevich, Feynman diagrams and low-dimensional topology, from: “First Euro-
pean Congress of Mathematics, Vol. II (Paris, 1992)”, Progr. Math. 120, Birkhäuser,
Basel (1994) 97–121 MR1341841

[7] C C M Liu, Moduli of J–holomorphic curves with Lagrangian boundary conditions
and open Gromov–Witten invariants for an S1 –equivariant pair (2202) arXiv:
math.SG/0210257

[8] B Noohi, Foundations of topological stacks I (2005) arXiv:math.AG/0503247

Geometry & Topology, Volume 11 (2007)

http://arxiv.org/abs/math.AG/0402015
http://arxiv.org/abs/math.AG/0402015
http://arxiv.org/abs/math.QA/0412149
http://dx.doi.org/10.1007/BF01388737
http://dx.doi.org/10.1007/BF01388737
http://www.ams.org/mathscinet-getitem?mr=830043
http://projecteuclid.org/getRecord?id=euclid.cmp/1104250524
http://projecteuclid.org/getRecord?id=euclid.cmp/1104250524
http://www.ams.org/mathscinet-getitem?mr=1171758
http://www.ams.org/mathscinet-getitem?mr=1341841
http://arxiv.org/abs/math.SG/0210257
http://arxiv.org/abs/math.SG/0210257
http://arxiv.org/abs/math.AG/0503247


1652 Kevin Costello

[9] R C Penner, The decorated Teichmüller space of punctured surfaces, Comm. Math.
Phys. 113 (1987) 299–339 MR919235

Department of Mathematics, Northwestern University,
033 Sheridan Road, Evanston IL 60208-2730, USA

costello@math.northwestern.edu

Proposed: Ralph Cohen Received: 8 June 2006
Seconded: Shigeyuki Morita, Jim Bryan Revised: 15 July 2007

Geometry & Topology, Volume 11 (2007)

http://projecteuclid.org/getRecord?id=euclid.cmp/1104160216
http://www.ams.org/mathscinet-getitem?mr=919235
mailto:costello@math.northwestern.edu

	1. Introduction
	1.1. Acknowledgements

	2. Moduli of Riemann surfaces with boundary
	2.1. Riemann surfaces with nodal boundary
	2.2. Moduli spaces of surfaces with boundary

	3. Proof of main theorem
	Appendix A. Orbispaces
	References

