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We present a new version of the method of local corrections (MLC) of Mc-
Corquodale, Colella, Balls, and Baden (2007), a multilevel, low-communication,
noniterative domain decomposition algorithm for the numerical solution of the
free space Poisson’s equation in three dimensions on locally structured grids. In
this method, the field is computed as a linear superposition of local fields induced
by charges on rectangular patches of size O(1) mesh points, with the global
coupling represented by a coarse-grid solution using a right-hand side computed
from the local solutions. In the present method, the local convolutions are further
decomposed into a short-range contribution computed by convolution with the
discrete Green’s function for a Q-th-order accurate finite difference approxima-
tion to the Laplacian with the full right-hand side on the patch, combined with a
longer-range component that is the field induced by the terms up to order P−1 of
the Legendre expansion of the charge over the patch. This leads to a method with a
solution error that has an asymptotic bound of O(h P)+O(hQ)+O(εh2)+O(ε),
where h is the mesh spacing and ε is the max norm of the charge times a rapidly
decaying function of the radius of the support of the local solutions scaled by h.
The bound O(ε) is essentially the error of the global potential computed on the
coarsest grid in the hierarchy. Thus, we have eliminated the low-order accuracy
of the original method (which corresponds to P = 1 in the present method) for
smooth solutions, while keeping the computational cost per patch nearly the same
as that of the original method. Specifically, in addition to the local solves of
the original method we only have to compute and communicate the expansion
coefficients of local expansions (that is, for instance, 20 scalars per patch for
P = 4). Several numerical examples are presented to illustrate the new method
and demonstrate its convergence properties.
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1. Introduction

We are interested in solving Poisson’s equation with infinite domain boundary
conditions in three dimensions, that is

1φ ≡
∂2φ

∂x2 +
∂2φ

∂y2 +
∂2φ

∂z2 = f in R3,

φ(x)=−
1

4π‖x‖

∫
R3

f ( y) d y+ o
(

1
‖x‖

)
, ‖x‖→∞,

(1)

where f is a function with bounded support and by ‖ · ‖ we denote the Euclidean
norm. It is well known that problem (1) has a solution if f is Hölder continuous and
has compact support � [12]. Furthermore, the solution of (1) is unique by means of
a maximum principle argument for harmonic functions and is given as a convolution
of the data with the three-dimensional infinite domain Green’s function [10]

φ(x)=
∫
�

G(x− y) f ( y) d y ≡ (G ∗ f )(x), G(z)=−
1

4π‖z‖
. (2)

In addition, if �⊂ B(x0, R), where B(x0, R) is the closed ball of radius R centered
at point x0, then φ is harmonic in R3

\ B(x0, R) and hence real analytic. By
differentiating (2), we find that the derivatives of the potential are rapidly decaying
functions of the form

(∇ pφ)(x)= O
((

1
‖x− x0‖

)‖ p‖1+1

R3
‖ f ‖∞

)
. (3)

This suggests a domain decomposition strategy, in which the contribution to the
fields on each local domain is computed independently and the nonlocal coupling
is computed using a reduced number of computational degrees of freedom. This
approach has been exploited for particle methods with the right-hand side in (1) given
by f (x)=

∑
i qiδ(x− xi ). For instance, we mention the Barnes–Hut algorithm [6],

the fast multipole method (FMM) [13; 7; 14], and the method of local corrections
(MLC) [3; 1; 2]. The aforementioned particle algorithms have been modified to
handle gridded data. In [20] the approximate solution of the Poisson problem is
given as a discrete convolution of the discrete Green’s function with the charge [15]
and is computed efficiently by combining the fast Fourier transform (FFT) with
interpolation of the kernel. This strategy is substantially accelerated within an FMM
setting but has not been extended to support multiresolution calculations. A very
attractive kernel-independent method is discussed in [27], for the case of a smooth
charge distribution that is represented on a uniform mesh. The kernel is truncated on
a sphere that encloses the charge so that its Fourier transform is C∞. This allows for
a fast and accurate computation of the potential via the trapezoid rule and the FFT
transform; however, the method is not readily applicable to adaptive mesh refinement
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(AMR) hierarchies. The first kernel-independent, adaptive volume-FMM method
has been presented in [19]. The integral in (2) is computed directly with numerical
quadrature, and local charges are approximated with polynomials. The analogs of
the multipole and local expansions in the original FMM method are convolutions
with equivalent source densities defined on auxiliary surfaces that encompass octree
boxes. The method can handle nonuniform sources, and a Chebyshev grid may be
required to achieve high-order accuracy. A highly optimized parallel implementation
is discussed in [21; 22]. For a comprehensive review that includes benchmark studies
of the FFT, FMM, and multigrid methods, we refer to [11]. The MLC method
[25] relies upon a localization approach that takes advantage of the rapid decay in
truncation error of compact finite difference Laplace operators. Further, it is more
compatible with traditional AMR. As such, it can be coupled with numerical schemes
that require solving Poisson’s equation on nested locally refined grids, for instance
adaptive projection methods for computational fluid dynamics. It should also be
noted that MLC exhibits a good balance between computation and communication,
which is essential for simulations on the emerging exascale platforms.

The present work is based on the extension of the method of local corrections
to structured grid data described in [5; 4; 25]. In this approach, the support of the
right-hand side is discretized with a rectangular grid, which is decomposed into
a set of cubic patches. For two levels the method proceeds in three steps: (i) a
loop over the fine disjoint patches and the computation of local potentials induced
by the charge restricted to those patches on sufficiently large extensions of their
support (downward pass), (ii) a global coarse-grid Poisson solve with a right-hand
side computed by applying the coarse-grid Laplacian to the local potentials of
step (i), and (iii) a correction of the local solutions computed in step (i) on the
boundaries of the fine disjoint patches based on interpolating the global coarse
solution from which the contributions from the local solutions have been subtracted
(upward pass). These boundary conditions are propagated into the interior of the
patches by performing Dirichlet solves on each patch. This can be generalized by
replacing the global coarse solution in (ii) by a recursive call to MLC, or by replacing
uniform grids at each level covering the entire domain by nested block-structured
locally refined grids. The local volume potentials are computed using a high-order
finite difference approximation to the Laplacian, combined with an extension to
three dimensions of the James–Lackner algorithm [17; 18] for representing infinite
domain boundary conditions. Furthermore, in order to make the nested refinement
version of this algorithm practical, we require that R = O(H)= O(h), where R is
the radius (in max norm) of local patches, H the coarse mesh spacing, and h the
fine-mesh spacing (i.e., a fixed number of points per patch and a fixed refinement
ratio). In [25], the local field calculation in (i) was split into two contributions: one
that represented the field induced by the complete charge distribution on a patch,
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and a second corresponding to the monopole component of the charge. By using
such a splitting, it is possible to obtain a convergent method by using a relatively
large region for computing the monopole component only while keeping the overall
computation and communications cost low. However, the convergence properties
of the resulting method were erratic, and exhibited a large O(h) solution error for
smooth charge distributions that were well resolved on the fine grid.

The starting point for the present work is a new error analysis for the MLC
algorithm that suggests a number of generalizations of the method that have better
and more predictable convergence properties. For example, we replace the separate
treatment of the monopole component of the charge on each patch by a similar treat-
ment of a truncated expansion in Legendre polynomials of the charge distribution on
each patch. Our error analysis predicts an O(h P)+O(hQ)+O(εh2)+O(ε) solution
error, where P − 1 is the maximum degree of the polynomials in the Legendre
expansions, and Q is the order of accuracy of the finite difference discretization
used to compute the local potentials. This is consistent with the earlier results in [25]
corresponding to P = 1. The O(ε) term is a localization error, proportional to the
max norm of the charge divided by a localization distance (measured in units of the
number of coarse grid points across the patch) raised to the order of accuracy of the
discretized Laplacian on harmonic functions. We also change the detailed approach
to computing the local potentials, replacing the James–Lackner representation of
the infinite domain boundary conditions in the calculation of the local potentials
in step (i) with local discrete convolutions computed using FFTs via a variation
on Hockney’s domain-doubling method [16]. This leads to a conceptually simpler
algorithm, and provides a compact numerical kernel on which to focus the effort of
optimization.

In this paper, we focus on the design of the algorithm, including an error analysis
of the method and calculations that demonstrate the error properties derived from
that analysis. In a second paper [24], we will present performance and parallel
scaling results on high-performance computing (HPC) platforms.

2. Mehrstellen discretization and finite difference localization

Notation. We denote by Dh, �h, . . . ⊂ Z3 grids with grid spacing h of discrete
points in physical space: {gh : g ∈ Dh

}. Arrays of values defined over such sets
will approximate functions on subsets of R3; i.e., if ψ = ψ(x) is a function on
D ⊂ R3, then ψh

[g] ≈ ψ(gh). We denote operators on arrays over grids of mesh
spacing h by Lh,1h, . . . ; Lh(φh) : Dh

→ R. Such operators are also defined on
functions of x ∈ R3, and on arrays defined on finer grids φh′ , h = Nh′, N ∈N+, by
sampling: Lh(φ) ≡ Lh(Sh(φ)), Sh(φ)[g] ≡ φ(gh), and Lh(φh′) ≡ Lh(Sh(φh′)),
Sh(φh′)[g] ≡ φh′

[N g].
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For a rectangle D = [l, u], defined by its lower-left and upper-right corners
l, u ∈ Z3, we define two operators: a grid extension operator

G(D, r)= [l − (r, r, r), u+ (r, r, r)], r ∈ Z,

and a grid coarsening operator

C(D)=
[⌊

l
Nref

⌋
,

⌈
u

Nref

⌉]
.

Throughout this paper, we will use Nref = 4 for the refinement ratio between
consecutive levels.

We begin our discussion presenting the finite difference discretizations of (1)
that we will be using throughout this work and some of their properties that pertain
to the method of local corrections. Specifically, we are employing Mehrstellen
discretizations [8] (also referred to as compact finite difference discretizations) of
the three-dimensional Laplace operator

(1hφh)g =
∑

s∈[−s,s]3

asφ
h
g+s, as ∈ R. (4)

If φh is defined on Dh , then 1hφh is defined on Dh,s
≡ G(Dh,−s). The associated

truncation error τ h
≡ (1h

−1)(φ) = −1h(φh
− φ) for the Mehrstellen discrete

Laplace operator is of the form

τ h(φ)= C2h21(1φ)+

q/2−1∑
q ′=2

h2q ′L2q ′(1φ)+ hq Lq+2(φ)+ O(hq+2), (5)

where q is even and L2q ′ and Lq+2 are constant-coefficient differential operators
that are homogeneous, i.e., for which all terms are derivatives of orders 2q ′ and q+2,
respectively. For the two operators we will consider here, C2 =

1
12 . In general, the

truncation error is O(h2). However, if φ is harmonic in a neighborhood of x,

τ h(φ)(x)=1h(φ)(x)= hq Lq+2(φ)(x)+ O(hq+2). (6)

In our numerical test cases we make use of the 19-point (Lh
19) and 27-point (Lh

27)
Mehrstellen stencils [26] that are described in Appendix A, for which q = 4 and
q = 6, respectively. In general, it is possible to define operators for which s=bq/4c
for any even q , using higher-order Taylor expansions and repeated applications of
the identity

∂2rφ

∂x2r
d
=
∂2r−2

∂x2r−2
d

(1φ)−
∑
d ′ 6=d

∂2r

x2r−2
d ′ x2

d

(φ).
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Since we are primarily concerned with solving the free-space problem, the corre-
sponding discrete problem can be expressed formally as a discrete convolution

(Gh
∗ f h)= (1h)−1( f h), (Gh

∗ f h)[g] ≡
∑
g′∈Z3

h3Gh
[g− g′] f [g′]h, (7)

where the discrete Green’s function Gh
[g] = h−1Gh=1

[g] satisfies

(1h=1Gh=1)[g] =
{

1 if g = 0,
0 otherwise

(8)

and

Gh=1
[g] =

1
4π‖g‖

+ o
(

1
‖g‖

)
, ‖g‖→∞.

We use these conditions to construct approximations to Gh numerically; see
Appendix A. For any n, we have∑

g∈D

h3
|Gh
[g]| ≤ C, C = C(nh), D ⊆ [−n, . . . , n]3,

from which it follows that convolution with Gh is max norm stable on bounded
domains, i.e.,

‖Gh
∗ f h
‖∞ ≤ C ′‖ f h

‖∞,

C ′ independent of f , h , supp( f h)⊆

[
−

⌊
A
h

⌋
, . . . ,

⌈
A
h

⌉]3

, (9)

for any fixed A > 0.
The form of the truncation error (5) allows us to compute q-th-order accurate

solutions to (1) by modifying the right-hand side, i.e.,

1h(φ)= f̃ h
+ O(hq), (10)

f̃ h
= f h

+

(
C2h2(1( f ))h +

q/2−1∑
q ′=2

h2q ′L2q ′( f )h
)
, (11)

and replacing the differential operators on the right-hand side with finite difference
approximations. If only a fourth-order accurate solution is required, it suffices to
use the first term, leading to a correction of a particularly simple form:

φ = Gh
∗ f h
+C2h2 f h

+ O(h4). (12)

In particular, the solution error εh
= Gh

∗ f h
−φ = O(h4) away from the support

of f without any modification of f h .
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Figure 1. Scatter plots of log10(|(1
h=1Sh=1(G))[g]|) versus log10(‖g‖∞), g ∈ Z3, at

points away from the singularity of G for the Lh
19 and Lh

27 discrete Laplacians. The slopes
of the lines depicted are −7 and −9 for the Lh

19 and Lh
27, respectively.

Suppose that supp( f ) ⊂ Pc, where Pc = c+ [−R, R]3 is a cube of radius R
centered at point c, and that the differential operator Lq is a linear combination of
derivatives of order q . By differentiating (2), we have

[(Lq G) ∗ f ](x)= O
((

1
R

)q−2 1

‖x/R− c/R‖q+1
∞

)
‖ f ‖∞. (13)

In particular, away from the support of f , (5) becomes

τ h( f )=1h(G ∗ f )(x)= O
((

h
R

)q 1

‖x/R− c/R‖q+3
∞

)
‖ f ‖∞. (14)

It is precisely this rapid decay of the truncation error, a consequence of the fact that
the local potentials are harmonic away from the supports of the associated charges,
that allows us to use a coarse mesh for the global coupling computation. In Figure 1,
scatter plots of the truncation error for the case of a point charge located at the
origin using the 19-point and 27-point Laplacians are depicted. The rapid decay of
the truncation error in the far field and the faster decay with increasing q are evident.
Using this localization property of the Mehrstellen operators, we can reduce the
cost of computing the potential (2) induced by a localized charged distribution to
the cost of computing the potential near the support of the charge, using the finite
difference localization approach originally introduced in [23]. We assume that the
support of f is contained in cube D of radius R centered at c. First, let φ = G ∗ f
be the exact solution restricted on the extended cube Dβ of radius βR, β > 1. Then
we compute φH

= G H
∗ F H on �H . The coarse right-hand side is defined by

F H
=

{
1H (φ) on DH,s

β = G(C(Dh
β),−s),

0 on �H
\ DH,s

β .
(15)
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Using (14), we have

1H (φH
−G∗ f )=


0 on DH,s

β ,

O((H/R)q(1/(k+β)q+3)‖ f ‖∞)
on {g : ((k+β)+ 1)R ≥ ‖gH‖1 ≥ (k+β)R},

(16)

where g ∈ Z3, k ∈N. One can decompose the annular region {g : ((k+β)+1)R ≥
‖gH‖1 ≥ (k + β)R} into O((k + β)2) rectangles, each of which has radius ≤ R,
leading to an analogous decomposition of the right-hand side of (16) into a sum
of terms, each of which is supported on one such rectangle. Applying convolution
with G H to both sides of (16) represented in terms of such sums leads to a solution
error given by

φH
−G ∗ f =

∞∑
k=0

O
((

H
R

)q 1

(k+β)q+3 ‖ f ‖∞

)

= O
((

H
R

)q 1
βq ‖ f ‖∞

)
. (17)

Thus, the accuracy of the potential away from the support of the charge can be
improved by decreasing the ratio H/R or, for fixed values of that ratio, by adjusting
β or q. In any case, the error is only weakly dependent on f . In this context, we
will refer to β as a localization radius. In addition, (17) is truly independent of
whether the right-hand side is modified using the Mehrstellen correction (11). The
MLC algorithm combines finite difference localization with domain decomposition
into a collection of rectangular patches of size R to obtain a low-communication
method for computing volume potentials. This is done in a way that generalizes
to nested refinement on an arbitrary number of levels, with the domain at each
level decomposed into patches having a fixed number of mesh points, independent
of the level of refinement. This implies that H/R remains constant, which leads
to (17) being an O(1) error relative to the mesh spacing. Ultimately, that error is
controlled by increasing β, combined with choosing a discretization with a larger q .
However, the cost of computing the local convolution G ∗ f on DH,s

β scales like β3.
To reduce that cost, we introduce a second localization radius α, α < β. On DH,s

α ,
we use the full convolution to compute F H . In the remaining annular region, we
use a reduced representation based on the field induced by the first few moments of
the Legendre expansion of f , which is much less expensive to compute.

3. Method of local corrections: semidiscrete case

To clarify ideas, we discuss in this section a theoretical proxy for the fully discrete
algorithm. We construct a function φMLC

:�→R that approximates the potential φ
by a linear superposition of local potentials, combined with data interpolated from



COMPUTATION OF VOLUME POTENTIALS ON STRUCTURED GRIDS 9

βR

G ∗P( f i)

αR

R

�R, i, β

�R, i

�R, i, α G ∗ f i

Figure 2. Regions associated with subdomain �R,i . The potential in �R,i,α (white
region) is given by G ∗ f i . In the ring �R,i,β \�R,i,α (shaded region) we use the field
induced by a truncated Legendre expansion on �R,i of the local charge f i to represent

the potential.

a discrete global solution. The computational domain is a cube � that contains the
support of f and is decomposed into a finite union of disjoint cubic subdomains of
equal volume that are translations of [−R, R]3, R > 0:

supp( f )⊂�=
⋃

i

�R,i , �R,i = ci
+ [−R, R]3,

i ∈ Z3, ci
= (2i + (1, 1, 1))R. (18)

Then f =
∑

i f i where f i
= f χ i , where χ i is the characteristic function of �R,i .

As a consequence, the global potential may be written as

φ(x)= (G ∗ f )(x)=
∑

i

(G ∗ f i )(x). (19)

In other words, it is the linear superposition of the potentials induced by the local
charges f i which can be computed independently in parallel. The MLC algorithm
replaces each of the summands in (19) with a solution truncated to zero outside of a
localization radius βR, with the contribution to the solution outside the localization
radius represented by interpolation from a single coarse-grid solution φH obtained
by summing contributions of the form (15) over all the patches. At each point in
space, the coarse-grid values used to interpolate the global contribution are corrected
by subtracting off the contributions of the patches within the localization radius.
Finally, to reduce the cost of computing the localized potentials, while keeping β
large enough to make the O(1) contribution to the error coming from localization
be acceptably small, we introduce an inner radius α < β (see Figure 2). Within
that inner radius, we compute the full convolution G ∗ f i ; in the annular region
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�R,i,β \�R,i,α, the local solution is approximated by G ∗P( f i ), where P( f i ) is
the orthogonal projection onto the Legendre polynomials on �R,i of some degree
P − 1:

P( f i )=
∑

p∈N3:‖ p‖1<P

〈Q p, f i
〉Q p,

Q p(x)= R−3/2
3∏

d=1

Q pd

(
xd − ci

d

R

)
, x ∈�R,i , q ∈ N3,

(20)

where 〈 · , · 〉 is the inner product on �R,i , and Q p
: [−1, 1] → R is the classical

Legendre polynomial of degree p.

3.1. The semidiscrete MLC algorithm. The semidiscrete MLC algorithm consists
of three steps.

Step 1 (local convolutions). We perform local convolutions in regions around each
subdomain �R,i that are used to compute local charges at points on the grid:

F i,H
[g] =


1H (G ∗ f i )[g] if g ∈�H

R,i,α,

1H (G ∗P( f i ))[g] if g ∈�H
R,i,β \�

H
R,i,α,

0 otherwise.

Step 2 (global coarse solve). The global charge at coarse mesh points is constructed
by assembling local contributions

F H
[g] =

∑
i

F i,H
[g],

and we obtain a global approximation φH of the potential, represented on the coarse
mesh, by computing the discrete convolution over �H :

φH
= G H

∗ F H . (21)

Step 3 (local interactions/local corrections). In the final step, we represent the
solution on the boundary of each �R,i as the sum of local convolutions induced by
charges on nearby patches and values interpolated from the grid calculation, from
which the local convolution values have been subtracted:

φB,i (x)= φloc,x(x)+IH (φH
−φloc,x)(x). (22)

Here IH (ψH )(x) is an interpolation operator that takes as input values of ψH
:

N(x) → R, where N(x) ⊂ {gH : g ∈ Z3
}, and returns a qI -th-order accurate

polynomial interpolant. In all of the algorithms described here, x and all of the
points in N(x) are coplanar, so the interpolant is particularly easy to construct.
Furthermore, φloc,x(x) is the sum of all local convolutions the support of whose
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charges is sufficiently close to x so that they contributed to the right-hand side for
the grid solution near that point:

φloc,x(x′)=
∑

i :x∈�R,i,α

(G ∗ f i )(x′)+
∑

i :x∈�R,i,β\�R,i,α

(G ∗P( f i ))(x′). (23)

Equation (22) can be interpreted as the decomposition of the potential at a point x,
into the sum of local contributions to the potential given by φloc,x and corrections
to include the global coupling by interpolating a corrected form of the coarse-
mesh global solution φH . Specifically, the correction term in (22) is computed by
evaluating φloc,x at the points of the interpolation stencil N(x), subtracting these
values from φH , and interpolating the result to x. The MLC solution φMLC is
specified in terms of solutions to Dirichlet problems on each �R,i :

1φMLC
= f i in �R,i , φMLC

= φB,i on ∂�R,i . (24)

3.2. Error analysis. The error of the local corrections step for x∈∂�R,i is given by

(φB,i
−φ)(x)= φloc,x(x)−φ(x)−IH (φloc,x

−φ)(x)+IH (φH
−φ)(x)

= εH
I (φ

loc,x
−φ)(x)+IH (φH

−φ)(x) (25)

where εH
I (ψ)(x) is the error in applying the interpolation operator IH to a smooth

function ψ evaluated on the grid and evaluating it at x. There are two sources of
error for the semidiscrete algorithm: one from the calculation of φH in (21), and the
other due to interpolation at the local corrections step (22). To estimate the former,
i.e., the second term of (25), it suffices to bound the coarse mesh error φH

−φ. To
do so, we estimate the truncation error of the coarse solve (21) at points g:

τ H
C =1

H (φH
−φ)[g]

=−1H
( ∑

i :gH /∈�R,i,β

G∗ f i
)
[g]−1H

( ∑
i :gH∈�R,i,β\�R,i,α

G∗((I−P)( f i ))

)
[g]. (26)

To bound the first term of (26), we use (14) to find that

1H
( ∑

i :gH /∈�R,i,β

G ∗ f i
)
[g]

= O
((

H
R

)q ∞∑
k=0

∑
i :gH∈�R,i,β+k+1\�R,i,β+k

1
(β + k)q+3 ‖ f i

‖∞

)

= O
((

H
R

)q 1
βq ‖ f ‖∞

)
. (27)
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The second term of (26) is bounded in a similar fashion:

1H
( ∑

i :gH∈�R,i,β\�R,i,α

G∗((I−P)( f i ))

)
[g] = O

((
H
R

)q 1
αq max

i
‖(I−P)( f i )‖∞

)

= O
((

H
R

)q 1
αq H P

)
, (28)

where we have used
‖(I−P)( f i )‖∞ = O(R P), (29)

which follows directly from Taylor’s theorem for f i and the fact that π = P(π) for
polynomials π of degree less than P . As a result, the estimate

1H (φH
−φ)= O

((
H
R

)q 1
αq H P

)
+ O

((
H
R

)q 1
βq ‖ f ‖∞

)
(30)

for the coarse mesh error holds uniformly on coarse mesh points. Since convolution
with G H and the interpolation operator IH are max norm bounded, εH

C ≡ φ
H
−φ

is also bounded by an expression of the form of the right-hand side of (30).
To bound the first term in (25), it follows from the fact that the interpolation

method is qI -th-order accurate that

εH
I (φ

loc,x
−φ)(x)= HqI LqI

I (φ
loc,x
−φ)(ξ)

=−HqI

( ∑
i :x∈�R,i,β\�R,i,α

((LqI
I G)∗(I−P)( f i ))(ξ)+

∑
i :x /∈�R,i,β

((LqI
I G)∗ f i )(ξ)

)
(31)

where ξ is in an O(H) neighborhood of N(x) and LqI
I is a linear differential operator

with terms that are derivatives of order qI . Using (13), a similar argument to that
given in the proof of (30) leads to

εH
I = H P+2O

((
H
R

)qI−2 1
αqI−2

)
+ H 2O

((
H
R

)qI−2 1
βqI−2 ‖ f ‖∞

)
so that (25) is estimated as

εSD
≡ φB,i

−φ = H P+2O
((

H
R

)qI−2 1
αqI−2

)
+ H 2O

((
H
R

)qI−2 1
βqI−2 ‖ f ‖∞

)
+ O

((
H
R

)q 1
αq H P

)
+ O

((
H
R

)q
‖ f ‖∞
βq

)
. (32)

4. Method of local corrections: fully discrete case

In this section, we describe the two-level algorithm as it is actually implemented.
�h is a fine-grid discretization of a bounded domain �, the latter containing
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the support of f . �h is assumed to be a finite union of rectangles of the form
�h

R,i = n i+[0, n]3, R = nh/2. We also define discrete forms of �h
R,i,α and �h

R,i,β :
�h

R,i,α = G(�h
R,i , d(α− 1)n/2e) and �h

R,i,β = G(�h
R,i , d(β − 1)n/2e). The coarse

grid �H is assumed to cover all of the fine patch data required for the algorithm
described below: G(C(�h

R,i,β), b)⊂�H where b is the radius of the stencil for the
interpolation function IH . We also define a discretized form of the characteristic
function of a rectangular patch D ⊂ Z3:

χD(x)=



1
8 if g is a corner of D,
1
4 if g lies on an edge of D,
1
2 if g lies on a face of D,
1 if g lies in the interior of D,
0 elsewhere.

In the fully discrete algorithm, we replace the local convolutions with local discrete
convolutions, e.g., G ∗ f i

→Gh
∗ f i,h and f i,h

= χ�h
R,i

f , and we take H = Nrefh.

4.1. The fully discrete two-level algorithm.

Step 1 (local convolutions). For each �h
R,i , we compute the potential induced by

f i,h
= χ�h

R,i
f h :

φ i,h
= Gh

∗ f i,h on G(�h
R,i,α, Nrefb). (33)

The Legendre expansion coefficients of f i,h required to compute P( f i ) are com-
puted with composite numerical integration. We employ Boole’s rule if f is given
only at points of �h or Gauss integration if f is specified analytically. For each
�h

R,i we also compute the associated local charges

F i,H
[g] =


1Hφh

i [g], g ∈ C(�h
R,i,α),

1H (Gh
∗Ph( f i,h))[g], g ∈ C(�h

R,i,β) \C(�h
R,i,α),

0, g /∈ C(�h
R,i,β).

(34)

The values of 1H (Gh
∗ Q p) can be computed once and stored, reducing the calcu-

lation of 1H (Gh
∗Ph( f i,h)) to computing linear combinations of the appropriate

subset of those precomputed values.

Step 2 (global coarse solve). φH
= G H

∗ F H on �H , F H
=

∑
i

F i,H .

Step 3 (local interactions/local corrections). We define the local potentials at fine
boundary points g ∈ ∂�h

R,i as combinations of short-range and intermediate-range
components

φloc,g
[g′
] =

∑
i ′:g∈�h

R,i ′,α

φ i ′,h
[g′
] +

∑
i ′:g∈�h

R,i ′,β\�
h
R,i ′,α

(Gh
∗Ph( f i ′,h))[g′

], (35)
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and we correct them by adding the far field effects as in (22):

φB,i,h
[g] = φloc,g

[g] +IH (φH
− (φloc,g))(gh), g ∈ ∂�h

i . (36)

The interpolation operator on coplanar points IH that we are employing is the same
as in [25]. Using these boundary conditions, we solve the following local Dirichlet
problems on �h

i patches:

1hφ̃MLC,i,h
= f i,h on �h

R,i \ ∂�
h
R,i ,

φ̃MLC,i,h
= φB,i,h on ∂�h

R,i .
(37)

Finally, the fourth-order Mehrstellen correction (12) is applied to obtain the values
of φMLC,h

φMLC,h
[g] = φ̃MLC,i,h

[g] +C2h2 f h
[g], g ∈�h

R,i . (38)

If we want to go to higher than fourth-order accuracy in h, the algorithm is more
complicated — the Mehrstellen correction must be applied earlier in the process.
We will not discuss the details in this paper.

4.2. Error analysis. We proceed in this section with estimating the error for the
fully discrete MLC algorithm. We want to get some idea of the impact of replacing
the analytic continuous convolutions by the discretized convolutions. To do this, we
use a modified equation approach, in which we assume that we can approximate the
solution error by the action of the operator on the truncation error. In the present
setting, this amounts to making the substitution

Gh
∗ψh
→ G ∗ (ψ + δτ h(ψ))−C2h2ψ, (39)

δτ h(ψ)=1(Gh
∗ψh)−ψ +C2h21ψ = O(h4). (40)

As in the semidiscrete case, we want to estimate the error in the boundary conditions

φB,i,h
[g] − φ̃(gh)= φloc,g

[g] − φ̃(gh)+IH (φH
−φloc,g)(gh)

= IH (φH
− φ̃)(gh) (41)

+φloc,g
[g]−φ̃(gh)−IH (φloc,g

−φ̃)(gh), g ∈�h
R,i , (42)

where

φ̃ ≡ φ+C2h2 f.
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An estimate of the contribution from (41) is obtained by bounding 1H (φH
− φ̃),

since IH and convolution with G H are both stable in max norm. We have, by (39),

1H (φH
− φ̃)[g] = −

∑
i ′:g /∈�H

R,i ′,β

1H (G ∗ f i ′)[g]

−

∑
i ′:g∈�H

R,i ′,β\�
H
R,i ′,α

1H (G ∗ (I−P)( f i ′))[g] −
∑

i ′:g /∈�H
R,i ′,β

1H (G ∗ (δτ h( f i ′,h)))[g]

−

∑
i ′:g∈�H

R,i ′,β\�
H
R,i ′,α

1H (G ∗ δτ h((I−P)( f i ′)))[g]

−

∑
i ′:g∈�H

R,i ′,β\�
H
R,i ′,α

1H (Gh
∗ ((P( f i ′))h − (Ph( f i ′,h))))[g] + O(h4). (43)

The first two terms are identical to the ones that appear in the semidiscrete case,
while (39) and the estimate ‖(P−Ph)( f i ′)‖∞ = O(h6) (which holds since our
quadrature rules for computing the Legendre coefficients are at least sixth-order
accurate) guarantee that the remaining terms are O(h4) or smaller. Using similar
arguments to those in (43), we have

φloc,g
− φ̃ =−

∑
i ′:g /∈�h

R,i ′,β

G ∗ f i ′
−

∑
i ′:g∈�h

R,i ′,β\�
h
R,i ′,α

G ∗ ((I−P)( f i ′))+ O(h4),

and therefore, following (31), we have

εH
I (φ

loc,g
− φ̃)(gh)

= H P+2O
((

H
R

)qI−2 1
αqI−2

)
+ H 2O

((
H
R

)qI−2 1
βqI−2 ‖ f ‖∞

)
+ O(h4),

Thus, we have

φB,i,h
[g] − φ̃(gh)= εSD

+ O(h4).

The stability of the discretized boundary value problem implies ‖φMLC,h
−φ‖∞ =

O(‖φB,h
−φ‖∞)+ O(h4), so we finally have the estimate

φMLC,h
−φ = O(h4)+ εSD

= O(h4)+ H P+2O
((

H
R

)qI−2 1
αqI−2

)
+ H 2O

((
H
R

)qI−2
‖ f ‖∞
βqI−2

)
+ O

((
H
R

)q 1
αq H P

)
+ O

((
H
R

)q
‖ f ‖∞
βq

)
. (44)
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at all fine grid points. This error can be written in the form

φMLC,h
= φ+ O(h4)+ O(h P)+ O

(
h2
‖ f ‖∞

1
βqI−2

)
+ O

(
‖ f ‖∞

1
βq

)
. (45)

Thus, MLC differs from classical finite difference methods in that there is a con-
tribution to the error that does not vanish as h→ 0, i.e., the right-most summand
in (44). We refer to this contribution to the error as the barrier error. Note that,
if we take qI = q + 2, we obtain the form of the error given in the Introduction.
We have specialized this algorithm to the case of fourth-order accuracy, primarily
because it allows us the simplification of applying the Mehrstellen correction (38)
at the end of the calculation. However, this analysis suggests that, even with this
simplification, there might be an advantage to using discretizations of the Laplacian
with larger q, i.e., ones that are higher-order accurate when applied to harmonic
functions, since the barrier error is proportional to β−q . We observe this to be the
case in the results in Section 7.

5. Multilevel method of local corrections

Following [25], we generalize the method in Section 4 to the case of an arbitrary
number of levels l = 0, . . . , lmax, where lmax is the finest level on which the solution
is sought. We denote the discrete Laplacian with mesh size hl by 1hl , with hl =

Nrefhl+1. At each level we discretize the solution on a collection of node-centered
cubic patches �Rl ,i , Rl = Nref Rl+1, and the corresponding discretized grids �hl

Rl ,i ;
the combined level-l grid is given by �l,hl ≡

⋃
i �

hl
Rl ,i . We also define, for each i ,

localization regions�Rl ,i,α and�Rl ,i,β , and their discretizations�hl
Rl ,i,α and�hl

Rl ,i,β ,
1< α < β. At level 0 there is only one patch �0,h0 at which the coarse solve of the
method is performed, just as in the two-level algorithm. We also impose a proper
nesting condition: for l = 1, . . . , lmax,

G(C(�hl
Rl ,i,β), b)⊂�l−1,hl−1 . (46)

The multilevel MLC comprises the following steps.

Step 1 (downward pass: initial local convolutions). Local convolutions are com-
puted at levels l = lmax, . . . , 1:

φ i,hl = Ghl ∗ f̃ i,hl on G(�hl
Rl ,i,α, Nrefb), (47)
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where the local right-hand sides are defined as

f̃ i,hl =

∑
i ′
1hl (φ i ′,hl+1)|

C(�
hl+1
Rl+1,i ′,α

)

+

∑
i ′
1hl (Ghl+1 ∗P( f i ′,hl+1))|

C(�
hl+1
Rl+1,i ′,β

\�
hl+1
Rl+1,i ′,α

)
+ χ̃

�
hl
Rl ,i

f hl ,

χ̃
�

hl
Rl ,i
[g] = χ

�
hl
Rl ,i
[g] −

∑
i ′=Nref i+s
0≤sd≤Nref

χ
�

hl+1
Rl+1,i ′
[Nref g].

Step 2 (global coarse solve). φh0 = Gh0 ∗ f̃ h0 on �0,h0 .

Step 3 (upward pass: local interactions/local corrections for 1, . . . , lmax). Start-
ing from level 1, the following local Dirichlet problems are solved at levels
l = 1, . . . , lmax:

1hl φ̃MLC,i,hl = f̃ i,hl on �hl
Rl ,i \ ∂�

hl
Rl ,i ,

φ̃MLC,i,hl = φB,i,hl on ∂�hl
Rl ,i ,

φ̃MLC,l
= φ̃MLC,i,hl on �hl

Rl ,i .

(48)

The Dirichlet boundary conditions are given by

φB,i,hl [g] = φloc,l,g
[g] +Ihl−1(φ̃MLC,l−1

−φloc,l,g)(ghl). (49)

Here the local potentials φloc,g,l are given by

φloc,l,g
[g′] =

∑
i ′:g∈�hl

Rl ,i ′,α

φ i ′,hl [g′] +
∑

i ′:g∈�hl
Rl ,i ′,β

\�
hl
Rl ,i ′,α

(Ghl ∗P( f i ′))[g′]. (50)

Finally, the Mehrstellen correction at all levels is applied as

φMLC,l
[g] = φ̃MLC,l

[g] +C2h2
l f i,hl [g], g ∈�l,hl (51)

We do not have a complete error analysis for the above algorithm corresponding
to that given in the two-level case. However, we can look at error analysis of the
two-level algorithm, and determine the change in the error introduced there by
replacing the coarse-grid convolution with G H with an MLC calculation. We denote

• GMLC,S(r) the two-level semidiscrete method of local corrections approxima-
tion to G ∗ r , with patch radius S,

• N S
1 (r)(x)≡

∑
i :x /∈�S,i,β

hq Lq+2(G ∗ r i )(x),

• N S
2 (r)(x)≡

∑
i :x∈�S,i,β\�S,i,α

hq Lq+2(G ∗ ((I−P)r i ))(x), and

• N S(r)= N S
1 (r)+ N S

2 (r).



18 CHRIS KAVOUKLIS AND PHILLIP COLELLA

By (25) and (26), G H
∗ (N R( f ))H

= (G ∗ f )H
− φH is the only quantity in the

error in which convolution with G H appears. Given that, it is straightforward to
assess the impact of replacing the convolution with G H in this expression with
applying the MLC algorithm for a patch size Nref R. To estimate this effect, we
use a modified equation approach, in which the difference is approximated by
G ∗ (N R( f ))−GMLC,Nref R(N R( f )). Applying the error estimate (26), we obtain

G ∗ (N R( f ))−GMLC,Nref R(N R( f ))= N Nref R(N R( f ))

= N Nref R
1 (N R

1 ( f ))+ N Nref R
1 (N R

2 ( f ))+ N Nref R
2 (N R

1 ( f ))+ N Nref R
2 (N R

2 ( f )).

For this substitution to have an appropriately small impact, it is sufficient for the
error to be comparable to or less than the error in the two-level algorithm. The
sum of the first three terms meet this criterion — the sum of the first two terms is
bounded by the max norm of the two-level error multiplied by O(β−q), and the
third term is bounded by O(α−q) times the max norm of the barrier error of the
two-level algorithm. The final term, however, is problematic. In particular, the
impact on the error of multiple applications of I−P at increasing mesh spacings is
far from clear. We will see evidence of this in the numerical results in Section 7.2,
and will suggest a remedy that allows the error to be controlled.

6. Computational issues

The analysis and demonstration of the performance of this algorithm will be the
subject of a separate paper [24], so we will just make a few high-level observa-
tions to justify the pursuit of this line of research. The largest contribution to the
floating point operation count in this method comes from the initial local discrete
convolutions (33). To compute these convolutions, we use a generalization of
Hockney’s domain-doubling algorithm [16], which we describe in Appendix B.
The floating point work per unknown for this step is O(α3 log(n)), α > 1, where
n3 is the number of points per patch. The next-largest computation is that of the
final Dirichlet solutions (37), performed using sine transforms, which is O(log(n))
per unknown. The floating point work associated with computing the Legendre
expansions is small, with the convolutions of Legendre polynomials with the discrete
Green’s functions precomputed and stored. The memory overhead for storing these
quantities scales like O(β3n3). However, there is one copy of these per processor,
shared across multiple patches/cores. Furthermore, they are only stored either on a
sampled grid coarsened by Nref, or on planar subsets corresponding to boundaries
of patches, which reduces the memory overhead further.

The parallel implementation of this algorithm is via domain decomposition,
with patches distributed to processors. For the choices of α and β used in the
results described below, this corresponds to a floating point operation count about
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three times that of a corresponding multigrid algorithm for comparable accuracy.
Roughly speaking, the communications cost, in terms of number of messages and
overall volume of data moved, corresponds to that of a single multigrid V-cycle,
plus the negligible costs of communicating a small number of Legendre expansion
coefficients (20 per patch for the case P = 4). This is to be compared to the 8
multigrid V-cycles required to obtain a comparable level of accuracy. Current
trends in the design of HPC processors based on low-power processor technologies
indicate a rapid growth in the number of cores capable of performing floating
point operations on a processor, while the communications bandwidth between
processors, or between the processor and main memory, is growing much more
slowly. In addition, most of the floating point work is performed using FFTs on
small patches on a single node, for which there are multiple opportunities for
performance optimization. Thus, the present algorithm is well positioned to take
advantage of these trends.

7. Numerical test cases

We present in this section several examples that demonstrate the convergence
properties of the MLC method described above. In all cases, we use as a measure
of the solution error the max norm error of the potential, divided by max norm of
the potential

‖φMLC,h
−φ‖∞

‖φ‖∞
. (52)

For all cases, we set n = 32, so that H/R = 1
4 . We refer to the special case β = α

(i.e., if the long-range potentials induced by the truncated Legendre expansions of
local charges are ignored) as the MLC-0 method and to the general case α < β as
the MLC method. It is not difficult to see that for MLC-0, the estimate (44) reduces
to

φMLC,h
−φ = O(h4)+ O

(
h2
(

H
R

)qI−2
‖ f ‖∞
βqI−2

)
+ O

((
H
R

)q
‖ f ‖∞
βq

)
. (53)

Increasing β to reduce the barrier error in (53) substantially increases the per patch
computational cost of the discrete convolution in the downward pass of the method.
This is, in fact, the reason we replaced the local long-range potential values with
the convolutions of the local Legendre expansions in Section 3.1.

7.1. A smooth charge distribution. The first test case we are considering involves
computing the potential induced by a smooth charge. The computational domain is
the unit cube �= [0, 1]3. The charge density is given by

f (x)=
{
(r − r2)4, r < 1,
0, r ≥ 1,

r =
1
Ro
‖x− xo‖,
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N β = 1.5 β = 3.0 β = 6.0

256 1.43756× 10−5 6.07186× 10−7 5.80288× 10−8

512 1.29572× 10−5 4.32691× 10−7 2.67372× 10−8

1024 1.27114× 10−5 4.01180× 10−7 2.44521× 10−8

Table 1. 2-level MLC-0: scaled fine-mesh maximum errors (52) using the Lh
19 Mehrstellen Laplacian.

N MLC-0 (β = 1.5) P = 1 P = 4

256 1.43756× 10−5 4.35976× 10−6 1.63706× 10−6

512 1.29572× 10−5 1.43414× 10−6 4.58615× 10−7

1024 1.27114× 10−5 5.77475× 10−7 3.65246× 10−7

Table 2. 2-level MLC: scaled fine-mesh maximum errors (52) using Lh
19. For sufficiently

small h and P = 4, nearly the same errors as the second column of Table 1 are obtained.

N MLC-0 (β = 1.5) P = 1 P = 4 P = 5

256 1.43756× 10−5 4.05752× 10−6 1.45072× 10−6 1.68422× 10−6

512 1.29572× 10−5 1.12630× 10−6 1.04191× 10−7 4.49529× 10−8

1024 1.27114× 10−5 2.37651× 10−7 2.55964× 10−8 2.44951× 10−8

Table 3. 2-level MLC: scaled fine-mesh maximum errors (52) using Lh
19. Here α = 1.5

and β = 6. For sufficiently small h and high values of P , nearly the same errors as the
third column of Table 1 are obtained.

and the support of the charge is a sphere of radius Ro =
1
4 , centered at the point

xo = (
1
2 ,

1
2 ,

1
2). The exact solution for this problem is given by

φ(x)= R2
o

{ 1
42r6
−

1
14r7
+

1
12r8
−

2
45r9
+

1
110r10

−
1

1260 , r < 1,
−1/(2310r), r ≥ 1,

and reduces to a pure monopole field for r ≥ 1.

7.1.1. Two-level results. In Table 1 we present the fine-mesh errors for the MLC-0
algorithm with two levels for mesh sizes h= 1

256 ,
1

512 ,
1

1024 using the Lh
19 Mehrstellen

Laplacian (q = 4). We set b = 2→ qI = 6 so that dependence of the interpolation
error as a function of α and β matches that of the other error terms. For this problem,
the errors in all three cases are so small that they are the barrier errors; each time
we double β, the error goes down by roughly a factor of 16, as predicted by (53).
In Tables 2 and 3 we present fine-mesh errors for the MLC algorithm, with α = 1.5,
for β = 3 and β = 6, respectively, when refining both h and P . As h→ 0, the error
in this case approaches a barrier error for both the P = 1 and P = 4 cases at a rate
of O(h2)–O(h4), and those barrier errors correspond to the errors for the MLC-0
calculations with same corresponding values of β. For comparison, we also include
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N β = 2.0 β = 3.25

256 1.25208× 10−7 4.11121× 10−8

512 1.14831× 10−7 4.92150× 10−9

1024 1.01073× 10−7 3.11897× 10−9

Table 4. 2-level MLC-0: scaled fine-mesh maximum error (52) using the Lh
27 Mehrstellen

Laplacian. Compare with the second and third columns of Table 1.

N P = 1 P = 4

256 1.45293× 10−6 1.40270× 10−6

512 5.20885× 10−7 1.89409× 10−7

1024 1.77613× 10−7 1.02341× 10−7

Table 5. 2-level MLC: scaled fine-mesh maximum errors (52) using Lh
27. Here α = 1.5

and β = 2. The h → 0 errors are the same as the barrier errors in the first column of

Table 4.

N P = 1 P = 4 P = 5

256 1.40367× 10−6 1.47261× 10−6 1.63939× 10−6

512 4.32214× 10−7 8.68274× 10−8 5.91126× 10−8

1024 9.11841× 10−8 1.18905× 10−8 1.17441× 10−8

Table 6. 2-level MLC: scaled fine-mesh maximum errors (52) using Lh
27. Here α = 1.5

and β = 3.25. The barrier errors are comparable with those using Lh
19 with β = 6 (Table 3).

the values of the error for the MLC-0 calculations with comparable computational
costs, i.e., for β = 1.5. It is clear that for the negligible cost of adding the Legendre
expansion, we obtain a decrease in the error by 1–3 orders of magnitude.

Next, we present the errors obtained by performing similar runs using the Lh
27

Mehrstellen Laplacian, for which q = 6. We set b= 3→ qI = 8 so that dependence
of the interpolation error as a function of α and β matches that of the other error
terms. In this case, the barrier error is O(β−6); hence, we expect that smaller values
of the β correction radius are required to obtain errors similar to those obtained
with the Lh

19 difference operator. Since 34
≈ 26 and 64

≈ 3.256, we set β = 2, 3.25.
First, in order to estimate the barrier values, we present the fine-mesh errors for
the MLC-0 method in Table 4 with β = 2, 3.25 using the Lh

27 operator. With those
values of β, we expect errors comparable to or smaller than those of the MLC-0
method with β = 3, 6 using the Lh

19 operator. This is the case, as is evident from
a comparison with the error values of Table 1. Furthermore, the barrier error as a
function of β decreases by more than the factor of 18.4= (3.25/2)6 predicted by
the analysis.
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N P = 1 P = 4 P = 6 P = 9

256 1.91470× 10−7 1.96490× 10−7 6.39837× 10−8 4.90745× 10−8

512 5.42412× 10−8 9.16574× 10−9 5.99534× 10−9 6.02843× 10−9

1024 1.40428× 10−8 2.79547× 10−9

Table 7. 2-level MLC: scaled fine-mesh maximum errors (52) using Lh
27. Here α = 1.75

and β = 3.25. Compare with the second column of Table 4. A high polynomial degree is
required to attain it for h = 1

256 .

N β = 2.0 β = 3.25

512 1.30594× 10−7 4.86092× 10−9

1024 1.90632× 10−7 3.92874× 10−9

Table 8. 3-level MLC-0: scaled fine-mesh maximum errors (52) using the Lh
27 Mehrstellen

Laplacian. Compare with Table 4, which contains the two-level results.

In Tables 5 and 6, we present the errors for the MLC algorithm, for the cases
β = 2, 3.25; α = 1.5 for both cases. The β = 2 calculations reach the same barrier
errors as h decreases. That is not the case for the β = 3.25 results in Table 4, but
that is not surprising — the reduction of the barrier error by nearly an order of
magnitude provides more headroom for h-convergence. However, we see that in
Table 7 a slight increase of the inner correction radius to α = 1.75 allows us to
reach the barrier error more rapidly. This is consistent with the error analysis, in
that increasing α reduces the coefficient in front of the O(h P) error from truncating
the Legendre expansion, from which we infer that the error from that source, rather
than the error from the inner local convolution, is the dominant h-dependent error
for this smooth example.

7.1.2. Three-level results. We next present similar results using the multilevel
MLC algorithm of Section 5 with three levels. Since we have demonstrated a clear
advantage to using the 27-point stencil, in the remaining studies we will restrict our
attention to that operator. In Table 8 we show the barrier fine-mesh errors obtained
using the MLC-0 method for β = 2, 3.25. The errors for β = 3.25 are more than
18.4 times smaller than the errors for β = 2 and are nearly the same as the two-level
method errors (Table 4). As predicted by the error analysis in Section 5, the error
of MLC-0 is insensitive to the number of levels.

In Table 9 the errors obtained with the three-level MLC method are shown
using α = 1.75 and β = 3.25. Unlike the two-level results, the P = 4 errors are
significantly poorer than the MLC-0 errors. For example, we recover the barrier
errors only for N = 4096, as opposed to the N = 512 results for MLC-0. We can
improve matters somewhat by increasing P , but even for this very smooth problem,
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N level P = 1 P = 4 P = 6 P = 8

512 l = 0 1.4509× 10−7 1.1379× 10−7 5.8886× 10−8 4.2602× 10−8

l = 1 4.9396× 10−7 1.0594× 10−6 1.0990× 10−6 3.0059× 10−7

l = 2 5.2600× 10−7 1.0782× 10−6 1.1101× 10−6 1.4926× 10−7

1024 l = 0 1.1143× 10−7 1.9032× 10−8 9.5197× 10−9 4.1018× 10−9

l = 1 2.2539× 10−7 1.6461× 10−7 9.9491× 10−8 2.3381× 10−8

l = 2 2.3665× 10−7 1.6596× 10−7 9.9989× 10−8 2.3381× 10−8

2048 l = 0 3.8485× 10−8 5.7487× 10−9 5.0311× 10−9

l = 1 5.9923× 10−8 1.0143× 10−8 5.9864× 10−9

l = 2 6.1989× 10−8 1.0276× 10−8 6.0168× 10−9

4096 l = 0 1.3028× 10−8 5.1364× 10−9

l = 1 1.6487× 10−8 5.2147× 10−9

l = 2 1.6861× 10−8 5.2621× 10−9

Table 9. 3-level MLC: scaled maximum errors (52) at all levels using Lh
27. Here α = 1.75

and β = 3.25. Compare with the second column of Table 8.

we do not get close to the barrier errors until N = 2048. This is consistent with the
analysis in Section 5, and indicates that using higher values of P does not solve the
problem. We will propose a different solution in Section 7.2.

7.2. An oscillatory charge test case. We further consider a case of three oscillatory
charges that has been previously studied in [25]. The computational domain is again
the unit cube �= [0, 1]3. Here we define a local charge density, whose support is
a sphere of radius Ro centered at point xo, by

fxo(x)=
{
(1/R3

o)(r − r2)2 sin2((γ /2)r), r < 1,
0, r ≥ 1,

r =
1
Ro
‖x− xo‖, γ = 4µπ, µ= 7. (54)

The exact solution associated with this charge density is given by

φxo(x)=
1
Ro



−
1

120 −
6
γ 4 , r = 0,
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+
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+
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)
sin(γ r), r < 1,(

−
1

210 −
12
γ 4 +

360
γ 6

) 1
r , r ≥ 1,

and is a pure monopole for r ≥ 1. For our test case we consider three charges of the
form (54), of radius Ro=

5
100 , centered at points c1= (

3
16 ,

7
16 ,

13
16), c2= (

7
16 ,

13
16 ,

3
16),

and c3 = (
13
16 ,

3
16 ,

7
16). The total charge and total potential are given via linear
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N level error

2048 l = 0 9.59918× 10−7

l = 1 1.00600× 10−6

l = 2 1.04402× 10−6

4096 l = 0 5.82005× 10−8

l = 1 6.47409× 10−8

l = 2 6.71067× 10−8

8192 l = 0 8.42867× 10−9

l = 1 8.42867× 10−9

l = 2 8.44657× 10−9

Table 10. 3-level MLC-0: scaled maximum errors (52) using the Lh
27 Mehrstellen Lapla-

cian with β = 3.25.

N level error

2048 l = 0 1.03645× 10−7

l = 1 9.59723× 10−7

l = 2 1.00621× 10−6

l = 3 1.04423× 10−6

4096 l = 0 2.93837× 10−8

l = 1 5.84863× 10−8

l = 2 6.50247× 10−8

l = 3 6.73912× 10−8

8192 l = 0 7.84890× 10−9

l = 1 8.78853× 10−9

l = 2 8.78853× 10−9

l = 3 8.79911× 10−9

Table 11. 4-level MLC-0: scaled maximum errors (52) using Lh
27 with β = 3.25.

superposition by
f (x)= fc1(x)+ fc2(x)+ fc3(x),

φ(x)= φc1(x)+φc2(x)+φc3(x).

We first present the results using three levels (Table 10) and four levels (Table 11)
using MLC-0. The primary features of the convergence properties of the solution
are that the errors are nearly uniform as a function of level, and are the same in
both the three- and four-level cases. There is some indication of slowing down
of the convergence rate on the finest two levels, but the convergence is still faster
than O(h2).
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N level P = 1 P = 4

2048 l = 0 1.09448× 10−7 1.07739× 10−7

l = 1 9.60320× 10−7 9.57456× 10−7

l = 2 1.00544× 10−6 1.00767× 10−6

l = 3 1.04414× 10−6 1.04686× 10−6

4096 l = 0 3.58565× 10−8 3.03039× 10−8

l = 1 5.81436× 10−8 7.22707× 10−8

l = 2 6.55356× 10−8 6.44269× 10−8

l = 3 6.74960× 10−8 6.95632× 10−8

8192 l = 0 2.88555× 10−8 1.92320× 10−8

l = 1 1.61302× 10−7 7.46182× 10−8

l = 2 1.63846× 10−7 7.61412× 10−8

l = 3 1.64401× 10−7 7.61592× 10−8

Table 12. 4-level MLC: scaled maximum errors (52) using Lh
27. Here α = 2.25 and β = 3.25.
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Figure 3. Log-log plot of greatest max norm error at all levels against mesh size using
the Lh

27 Mehrstellen Laplacian. Here fourth-order Legendre polynomials are employed at
level 3. For levels 1 and 2, α = β = 3.25, and α = 2.25 at level 3.

In the MLC convergence results in Table 12, we see substantial deviations from
the MLC-0 convergence results. The error shows no consistent behavior as a function
of resolution, and in fact is worse at the finest resolution (N = 8192) in Table 12
than it is at the N = 4096 resolution in Table 11. We see no analogous problems in
the MLC-0 calculations. Examining the error analysis in Section 5, we identified the
terms in a three-level calculation that might lead to problems. Even in the smooth
example above, it is clear that the increasing P does not have sufficient impact to
solve this problem. A different approach, suggested by the form of the error, is to
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N level αl P = 1 P = 4

1024 l = 0 6.75815× 10−8 6.75467× 10−8

l = 1 3.25 9.06867× 10−6 9.07109× 10−6

l = 2 3.25 1.68260× 10−5 1.68313× 10−5

l = 3 2.25 1.76069× 10−5 1.76196× 10−5

2048 l = 0 1.03740× 10−7 1.03725× 10−7

l = 1 3.25 9.59547× 10−7 9.59794× 10−7

l = 2 3.25 1.00638× 10−6 1.00564× 10−6

l = 3 2.25 1.04443× 10−6 1.04435× 10−6

4096 l = 0 2.96831× 10−8 2.95118× 10−8

l = 1 3.25 5.81150× 10−8 5.83051× 10−8

l = 2 3.25 6.45808× 10−8 6.48388× 10−8

l = 3 2.25 6.86291× 10−8 7.02081× 10−8

8192 l = 0 7.52964× 10−9 7.73906× 10−9

l = 1 3.25 8.60687× 10−9 8.68798× 10−9

l = 2 3.25 8.72734× 10−9 8.68798× 10−9

l = 3 2.25 8.64239× 10−9 8.68813× 10−9

16384 l = 0 5.94183× 10−9 5.97157× 10−9

l = 1 3.25 6.16822× 10−9 6.20416× 10−9

l = 2 3.25 6.20010× 10−9 6.24059× 10−9

l = 3 2.25 6.21301× 10−9 6.24325× 10−9

Table 13. 4-level MLC: scaled maximum errors (52) using Lh
27 with higher values of α at

intermediate levels. Here β = 3.25 and α = β at levels 1 and 2 and α = 2.25 at level 3.
Compare with Table 11.

reduce the difference β −α at coarser levels. In fact, there is likely a mechanism
for defining a systematic strategy for doing this, since (I−P) f i is easily computed.
We defer that to later work. For the moment, we demonstrate this by setting α = β
at coarser levels, holding β fixed (Table 12). We see that we can recover exactly the
errors in the MLC-0 calculation and moreover there is no appreciable difference in
error by increasing P . In addition, the cost of increasing α at coarser levels has a
small impact on the overall cost of a multiresolution calculation, since these are
applied to calculations at the coarser resolutions, which remain a small fraction of
the overall cost of the method, even with the increased values of α. In Figure 3 we
present the error behavior for the case of Table 13 with P = 4. For N = 1024–4096
the error is fourth-order accurate as is expected from the error estimate (45) where
term O(h4) dominates at coarser mesh resolutions. For N ≥ 8192 the error reaches
a plateau imposed by the barrier error term O(‖ f ‖∞/βq). This can be reduced
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further by employing higher-order Mehrstellen discretizations of the Laplacian or
larger values of parameter β.

8. Conclusions

We have presented a domain decomposition method for the numerical solution of
Poisson’s equation with infinite domain boundary conditions in three dimensions
on a nested hierarchy of structured grids. The method is an extension of Anderson’s
method of local corrections for particles [3] to gridded data and generalizes the
scheme of McCorquodale et al. [25]. In the present method, local potentials are
computed as volume potentials of local charges up to an inner localization radius,
combined with volume potentials induced by order-(P − 1) truncated Legendre
expansions of the local charges up to an outer localization radius. The remaining
global coupling is represented using a coarse-grid version of the same representation.
This generalizes the method in [25], which corresponds to the P = 1 special case in
the current method. Also, in [25] the local potentials were computed by means of
the James–Lackner representation [17; 18] of infinite domain boundary conditions.
In the present work, this is replaced by a representation using discrete convolution
operators, which can be computed efficiently using FFTs via Hockney’s algorithm.
This approach eliminates the complicated quadratures that are necessary for the
extension of the James–Lackner algorithm to three dimensions, while the FFT-
based approach leads to compact compute kernels that can be highly optimized.
The resulting algorithm is well suited for high performance on HPC computing
platforms made up of multicore processors; in [24], we will present a systematic
study of the performance and scaling of the algorithm on such systems.

In this paper, we have focused primarily on the analytical foundations of the
MLC method and have provided a detailed error analysis. The errors are of the
form O(h P)+ O(h4)+ O(h2β−q)+ O(β−q), where h is the mesh spacing, β
is the nondimensionalized outer localization radius which is independent of h,
and q is the order of accuracy of the Mehrstellen operator on harmonic functions.
Numerical experiments indicate that the observed convergence behavior of the
method is consistent with the analysis. For computationally practical values of the
localization radius, and using the 27-point Mehrstellen operator (for which q = 6),
the barrier error corresponds to relative solution error norms of 10−8–10−9. While
the β−q term looks like an O(1) error relative to the mesh spacing h, it is better to
think of it as a separate discretization parameter that governs the accuracy of the
representation of the nonlocal coupling. Doubling β decreases the error by a factor
of 2−q , analogous to the impact of halving h.

For the two-level algorithm, the results indicate that, for a given choice of the
Mehrstellen operator, the two localization radii, and P = 4, the method converges at
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a rate in the range O(h4)–O(h2), until the error reaches the barrier, i.e., consistent
with the error analysis. We have also defined and implemented the extension to
more than two levels, following the approach in [25]. A preliminary analysis of
that algorithm indicates the need to control errors at coarser levels coming from
the field induced between the inner and outer localization radii by the truncation
of the Legendre expansion. The analysis suggests that these might be controlled
by increasing the inner localization radius α at coarser levels. The numerical
examples indicate that the problem is real, and that the proposed solution represents
a viable approach. More generally, an important question that needs to be addressed
is turning the error analysis in this work into practical strategies for choosing
discretization parameters. For example, what are the tradeoffs between decreasing
β −α and decreasing h in order to improve the accuracy of a calculation, versus
the cost of doing each? We will address these issues in [24].

There are various possible ways to extend the present work. Perhaps most
straightforward are extensions to finite volume discretizations and the implemen-
tation of other boundary conditions on rectangular domains (including periodic
boundary conditions) using a method-of-images approach. Another possibility
would be to apply even higher-order Mehrstellen discretizations of the Laplacian to
see whether it results in smaller values of the barrier errors than those reported in
this work. As was seen in Section 7, the Lh

27 (q = 6) Mehrstellen Laplacian leads
to comparable barrier errors to those obtained using the Lh

19 (q = 4) stencil, but
using smaller localization radii, in a manner consistent with the O(β−q) scaling of
that error. It is possible to derive Mehrstellen stencils for which q = 10, with the
stencil contained in a 5× 5× 5 block around the evaluation point. This leads to
only a modest increase in the computational cost and complexity: for example, the
per patch computational cost of the most computationally intensive component of
the algorithm — the local discrete convolutions — does not depend on the size of
the stencil. Finally, it would be interesting to investigate extensions of this method
to other elliptic problems in mathematical physics employing different Green’s
functions and high-order discretizations of the associated differential operators. The
error analysis of the method as extended to other kernels should be essentially the
same as what is discussed in the present study. Moreover, Hockney’s algorithm
is kernel-independent and can be readily applied with minor modifications. More
generally, the present work uses some detailed analytic tools for understanding the
discrete potential theory on locally structured grids associated with the combination
of finite difference localization in [23] and the local interactions/local corrections
construction underlying [3]. It would be interesting to go back to the original MLC
method for particles and to other particle-grid methods, such as particle-in-cell and
immersed boundary methods, and apply these tools to better understand the error
properties of these methods.
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Appendix A: Lh
19 and Lh

27 Mehrstellen discretizations of the Laplacian

The stencil coefficients for the Lh
19 and Lh

27 Mehrstellen Laplacians are a j =

(1/h2)b| j |, where | j | is the number of nonzero components of j and bk are defined
as

b0 =−4, b1 =
1
3 , b2 =

1
6 , b3 = 0 (19-point stencil),

b0 =−
64
15 , b1 =

7
15 , b2 =

1
10 , b3 =

1
30 (27-point stencil).

The corresponding expressions for the truncation errors τ h
19 and τ h

27 for Lh
19

and Lh
27, are given by

τ h
19(φ)=

h2

12
(1(1φ))+ h4L(6)(φ)+ O(h6)

and

τ h
27(φ)=

h2

12
(1(1φ))+

h4

360

((
12
+ 2

(
∂4

∂x2∂y2 +
∂4

∂y2∂z2 +
∂4

∂z2∂x2

))
(1φ)

)
+ h6L(8)(φ)+ O(h8)

where L(q) are homogeneous constant-coefficient q-th-order differential operators.
We need to compute an approximation to the discrete Green’s function (8) for the

19-point and 27-point operators, restricted to a domain of the form D = [−n, n]3.
We do this by solving the following inhomogeneous Dirichlet problem on a larger
domain Dζ = [−ζn, ζn]3:

(Lh=1Gh=1)[g] = δ0[g] for g ∈ G(Dζ ,−1),

Gh=1
[g] = G(g) for g ∈ Dζ −G(Dζ ,−1),

where G=G(x) is the Green’s function (2) and Lh is either the 19-point or 27-point
operator. Then our approximation to Gh=1 on D is the solution computed on Dζ ,
restricted to D. To compute this solution, we put the inhomogeneous boundary con-
dition into residual-correction form and solve the resulting homogeneous Dirichlet
problem using the discrete sine transform. The error estimate (12) applied here
implies that the error in replacing the correct discrete boundary conditions with
those of the exact Green’s function scales like O((ζn)−4) in max norm. In the
calculations presented here, we computed Gh=1 using n ≥ 128 and ζ = 2, leading
to at least 10 digits of accuracy for Gh=1.

Appendix B: Hockney’s method for fast evaluation of discrete convolutions

Hockney [16, pp. 180–181] (see also [9]) observed that discrete convolutions with
one of the functions having support on a bounded domain in ZD, and evaluated on
a bounded domain, can be computed exactly in terms of discrete Fourier transforms.
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For completeness, we describe that method. We show this first for the case D = 1,
and state the general result for any number of dimensions. Given 9, f : Z→ R,
supp( f )⊆ [0, b], we want to compute

(9 ∗ f )[i] = ( f ∗9)[i] =
∑
j∈Z

f [i − j]9[ j], i ∈ [0, n]. (55)

First, we observe that the infinite sum can be replaced by a finite sum.∑
j∈Z

f [i − j]9[ j] =
n∑

j=−b′
f [i − j]9[ j], i ∈ [0, n], (56)

for any b′≥ b. Second, we observe that 9 and f can be replaced in (56) by periodic
extensions of those functions restricted to the interval [−b′, n]:

n∑
j=−b′

f [i − j]9[ j] =
n∑

j=−b′
f̃ [i − j]9̃[ j], i ∈ [0, n],

f̃ [l], 9̃[l] ≡ f [lmod], 9[lmod], lmod =mod(l + b′, (n+ b′+ 1))− b′. (57)

Finally, we express the periodic convolution in (57) in terms of discrete Fourier
transforms:

n∑
j=−b′

f̃ [i − j]9̃[ j] = F−1(F(9̃) ·F( f̃ ))[i], (58)

where F and F−1 are the discrete complex Fourier transform and its inverse on the
interval [−b′, n] ⊂ Z.

This generalizes to rectangular domains in any number of dimensions. For
example, for cubic domains, given 9, f : ZD

→ RD, supp( f )⊆ [0, b]D,∑
j∈ZD

9[i − j ] f [ j ] = F−1(F(9̃) ·F( f̃ ))[i], i ∈ [0, n]D, (59)

f̃ [l], 9̃[l] ≡ f [lmod], 9[lmod], (60)

(lmod)d =mod((l)d + b′, (n+ b′+ 1))− b′, d = 0, . . . D− 1, (61)

where b′ ≥ b and F and F−1 are the complex discrete Fourier transform and its
inverse on the cube [−b′, n]D⊂ZD. In practice, this is efficient for a broad range of
(b, n) since we can choose b′ so that the radices of the FFTs are highly composite,
with the size of the problem changing by only a small amount. In the case where
b = n, the length of the domain doubles in each direction; hence, this is often
referred to as Hockney’s domain-doubling algorithm. However, in the present
application, we want to use the more general case, since the size of the support of
the localized charge distributions and the size of the grid on which the local fields
are defined differ by a significant amount.
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