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ON THE MAXIMAL RANK PROBLEM FOR
THE COMPLEX HOMOGENEOUS MONGE–AMPÈRE EQUATION

JULIUS ROSS AND DAVID WITT NYSTRÖM

We give examples of regular boundary data for the Dirichlet problem for the complex homogeneous
Monge–Ampère equation over the unit disc, whose solution is completely degenerate on a nonempty open
set and thus fails to have maximal rank.

1. Introduction

Let (X, ω) be a compact Kähler manifold of dimension n and B be a Riemann surface with boundary ∂B.
Suppose (φτ )τ∈∂B is a smooth family of Kähler potentials on X ; so each φτ is a smooth function on X ,
varying smoothly in τ , that satisfies

ω+ ddcφτ > 0.

Then let 8 be the solution to the Dirichlet problem for the complex homogeneous Monge–Ampère
equation (HMAE) with this boundary data, so 8 is a function on X × B that satisfies

8( · , τ )= φτ ( · ) for τ ∈ ∂B,

π∗Xω+ ddc8≥ 0,

(π∗Xω+ ddc8)n+1
= 0,

(1)

where πX : X × B→ X is the projection. From standard pluripotential theory we know there exists a
unique weak solution 8 to this equation. The maximal rank problem in this setting asks whether the
current

π∗Xω+ ddc8

has maximal rank in the fibre directions, that is, whether the current ω+ ddc8( · , τ ) on X is strictly
positive for each τ ∈ B. Said another way, this asks if the rank of π∗Xω+ ddc8 is precisely n at every
point in X × B, which is the maximum possible since (π∗Xω+ ddc8)n+1

= 0. Similarly one has the
constant-rank problem in which one asks if the rank of π∗Xω+ ddc8 is the same at every point. The
purpose of this note is to answer this question negatively, giving an explicit example in which the rank
fails to be maximal.
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Theorem 1.1. Let B = D ⊂ C be the closed unit disc and (X, ω) = (P1, ωFS), where ωFS denotes the
Fubini–Study form. Then there exists a smooth family of Kähler potentials (φτ )τ∈∂D on P1 such that the
solution 8 to the HMAE (1) is completely degenerate on some nonempty open subset S ⊂ P1

×D, i.e.,

π∗
P1ωFS+ ddc8|S = 0.

A more precise version of this statement is provided in Theorem 2.1. The motivation and ideas build on
previous work of the authors [Ross and Witt Nyström 2015a; 2015b; 2015c] in which we understand the
solution to the HMAE of a certain kind through a free boundary problem in the plane called the Hele-Shaw
flow. But rather than expecting the reader to be an expert in this topic we have chosen to give a direct
proof, which can be found in Section 2, that is both self-contained and rather simple. Then in Section 3
we explain the motivation behind our construction, as well as give a second (but essentially equivalent)
proof that relies on more machinery. We then end with some questions and possible extensions.

Of course in the above theorem, π∗
P1ωFS+ ddc8 is not identically zero, and so does not have constant

rank. In fact we can say more, and it is possible to arrange so that there is a nonempty open set in P1
×D

on which π∗
P1ωFS+ddc8 is regular (i.e., smooth and of maximal rank). It is worth commenting from the

outset that we do not expect the solution we have here to be everywhere smooth, but it should be possible
to describe precisely where it is regular and where it is degenerate. All of this will be discussed in more
detail in Section 3.

1A. Comparison with other work. It is known that convex solutions to elliptic partial differential equa-
tions have a constant-rank property. Early works of this include [Caffarelli and Friedman 1985; Singer,
Wong, Yau, and Yau 1985]. These have since been built upon by many others, and it is now known that
the constant-rank property holds for a wide class of elliptic equations; see, for instance, [Korevaar and
Lewis 1987; Bian and Guan 2009; 2010; Caffarelli, Guan and Ma 2007; Székelyhidi and Weinkove 2016].
In this paper we are interested in the complex degenerate situation, about which much less has been
written. The most famous result along these lines, and in the positive direction, is that of Lempert [1981]
who proved that on a convex domain in Cn the solution to the complex HMAE with prescribed singularity
at an interior point (the pluricomplex Green function) is smooth and of maximal rank. The maximal rank
problem for other partial differential equations in the complex case has also been taken up by Guan, Li
and Zhang [2009] and by Li [2009].

The closest previous work to that of this paper is probably that of Guan and Phong [2012], who studied
the problem of finding uniform lower bounds for the eigenvalues of the solution to the (nondegenerate)
Monge–Ampère equation in the limit as the equation becomes degenerate. Moreover, they asked whether
solutions to the complex HMAE have maximal rank [Guan and Phong 2012, discussion after Theorem 4].
The idea of maximal rank for the complex HMAE also appears in the ideas of Chen and Tian [2008]
through the concept of an almost-regular solution to the HMAE, which fails to have maximal rank only
on a set which is small in a precise sense. The kinds of envelopes that we use in our proof also can be
defined more generally, and even in higher dimensions, which is the topic of previous work of the authors
[Ross and Witt Nyström 2017b], in which we prove a constant-rank theorem, Theorem 6.2 of that paper,
that we call “optimal regularity”.
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Questions concerning the regularity of the solution to the Dirichlet problem for the kind of complex
HMAE we consider here go back at least as far as [Semmes 1992; Donaldson 2002], and this HMAE has
been the focus of much interest due to it being the geodesic equation in the space of Kähler metrics. By
[Chen 2000] with complements by Błocki [2012] we know such a solution always has bounded Laplacian
(so in particular is C1,α for any α < 1). In fact in our case, since we are working on P1, the results of
[Błocki 2012] imply that 8 is C1,1. (We observe that we do not actually need to know this regularity for
the direct proof of our main theorem). Donaldson [2002] gives examples of boundary data for which the
solution is not regular, but the nature of the irregularity there is left unknown (for instance Donaldson’s
example may have maximal rank but fail to be everywhere smooth).

2. Main theorem

2A. Notation. We let Dr be the open disc of radius r in the complex plane about the origin, D = D1

and D× =D \ {0}. Throughout we consider the standard cover of P1 by two charts equal to the complex
plane with coordinates z and w = 1/z. We shall denote these two charts by Cz and Cw respectively. We
use the convention dc

=
1

2π (∂̄ − ∂) so ddc log |z|2 = δ0, and normalise the Fubini–Study form ωFS so∫
P1 ωFS = 1. Thus ωFS = ddc log(1+ |z|2) locally on Cz .

2B. Statement of the main theorem. The following is a precise version of our main theorem. By an arc
in C we mean the image γ of a smooth map [0, 1]→C that does not intersect itself. From now on B =D

is the closed unit disc and (X, ω)= (P1, ωFS).

Theorem 2.1. Suppose that φ ∈ C∞(P1) satisfies:

(1) ωFS+ ddcφ > 0.

(2) On Cw ⊂ P1 it holds that
φ(w)≥− ln(1+ |w|2)

with equality precisely on an arc in Cw.

Then setting
φτ (z) := φ(τ z) for τ ∈ ∂D,

the solution 8 to the HMAE (1) does not have maximal rank. In fact there is a nonempty open subset
S ⊂ P1

×D such that
π∗

P1ωFS+ ddc8|S = 0.

2C. Envelopes. For the proof we need some background concerning envelopes of subharmonic functions.
Fix a potential φ ∈ C∞(P1) so ωFS+ ddcφ > 0. For a topological space X let

USC(X)= {ψ : X→ R∪ {−∞} such that ψ is upper semicontinuous}.

Definition 2.2. For t ∈ (0, 1] set

ψt := sup{ψ ∈ USC(P1) : ψ ≤ φ and ωFS+ ddcψ ≥ 0 and νz=0(ψ)≥ t}.
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Here νz=0 denotes the Lelong number at the point z = 0, so νz=0(ψ)≥ t means ψ(z)≤ t ln |z|2+O(1)
near z = 0. As the upper-semicontinuous regularisation of ψt is itself a candidate for the envelope
defining ψt , we see that ψt is itself upper-semicontinuous.

Definition 2.3. For t ∈ (0, 1] set

�t :=�t(φ) := {z ∈ P1
: ψt(z) < φ(z)}. (2)

Clearly if t ≤ t ′ then ψt ′ ≤ ψt and so �t ⊂�t ′ . Now, unless one assumes some additional symmetry
of φ, it is generally quite hard to describe the sets �t . However, as the next lemma shows, it is possible,
under a suitable hypothesis, to describe the largest one �1 by looking at the level set on which φ takes its
minimum value.

Lemma 2.4. Let φ ∈ C∞(P1) be such that ωFS + ddcφ > 0 and φ(w) ≥ − ln(1+ |w|2) on Cw with
equality precisely on some nonempty subset γ ⊂ Cw containing w = 0. Then

ψ1(z)= ln
(
|z|2

1+ |z|2

)
and

�1(φ)= P1
\ γ.

Proof. Observe first that the only upper-semicontinuous ψ : P1
→ R∪ {−∞} with ωFS+ ddcψ ≥ 0 and

νz=0(ψ)≥ 1 is, up to an additive constant, equal to

ζ(z) := ln
(
|z|2

1+ |z|2

)
on Cz.

To see this observe first that we certainly cannot have νz=0(ψ)>1 since we have normalised so
∫

P1 ωFS=1.
Thus we may assume νz=0ψ = 1. Then observe that ζ is ωFS-harmonic on Cz \{0}, and that the difference
ψ− ζ is bounded near 0. Thus ψ− ζ extends to a bounded subharmonic function on all of Cz , and hence
is constant by the Liouville property. Thus the envelope ψ1 from Definition 2.2 must be

ψ1 = ζ +C,

where C is the largest constant one can choose so that ψ1 ≤ φ. Now on Cw we have

ψ1(w)=− ln(1+ |w|2)+C

and so as γ is nontrivial our hypothesis forces C = 0. Thus

�1 = {− ln(1+ |w|2) < φ(w)} = P1
\ γ. �

2D. Weak solutions to the HMAE. We now discuss the weak solution to two versions of the Dirichlet
problem for the complex HMAE, first over the disc and second over the punctured disc; this follows the
discussion in [Ross and Witt Nyström 2015b]. Again we let φ ∈ C∞(P1) be such that ωFS+ ddcφ > 0.
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Definition 2.5. Let

8 := sup
{
ψ ∈ USC(P1

×D) : π∗
P1ωFS+ ddcψ ≥ 0 and ψ(z, τ )≤ φ(τ z) for (z, τ ) ∈ P1

× ∂D
}
.

and

8̃ := sup
{
ψ ∈ USC(P1

×D) : π∗
P1ωFS+ ddcψ ≥ 0
and ψ(z, τ )≤ φ(z) for (z, τ ) ∈ P1

× ∂D and ν(z=0,τ=0)(ψ)≥ 1
}
. (3)

The function8 is the weak solution to the complex HMAE with boundary data φ(τ z) for τ ∈ ∂D, that is,
the solution to (1). Similarly 8̃ is the weak solution to the Dirichlet problem with boundary data φ(z), but
with the additional requirement of having a prescribed singularity at the point p := (0, 0)⊂Cz×D⊂P1

×D.
That is, 8̃ is upper-semicontinuous, π∗

P1ωFS+ ddc8̃≥ 0 and (π∗
P1ωFS+ ddc8̃)2 = 0 away from p and

8̃(z, τ )= φ(z) for τ ∈ ∂D. Moreover it is not hard to show that 8̃ is locally bounded away from p and
νp8̃= 1. These two quantities carry the same information, as given by:

Proposition 2.6. We have that

8(z, τ )+ ln |τ |2+ ln(1+ |z|2)= 8̃(τ z, τ )+ ln(1+ |τ z|2) for (z, τ ) ∈ P1
×D×.

Proof. It is easily seen from the definition that8(z, τ )+ ln |τ |2+ ln(1+|z|2)− ln(1+|τ z|2) is a candidate
for the envelope defining 8̃(τ z, τ ), giving one inequality and the other inequality is proved similarly. �

2E. Proof of Theorem 2.1. Without loss of generality we assume the arc γ goes through the point w= 0.
By Lemma 2.4

ψ1(z)= ln
(
|z|2

1+ |z|2

)
and

�1 = P1
\ γ.

Looking at the other coordinate patch Cz , we have that γ is a curve passing through infinity, and so Cz \γ

is an open, simply connected proper subset of Cz . Hence by the Riemann mapping theorem there is a
biholomorphism

f : D→ Cz \ γ with f (0)= 0.

For τ ∈ D× set
Aτ := f (D|τ |)⊂ Cz ⊂ P1.

Clearly each Aτ is a proper subset of Cz containing the origin, whose complement has nonempty interior.

Proposition 2.7. We have

8̃(z, τ )= ψ1(z) for all τ ∈ D× and z ∈ P1
\ Aτ .

Proof. By abuse of notation we write ψ1 also for the pullback of ψ1 to P1
×D. Then

8̃(z, τ )≥ ψ1(z) for (z, τ ) ∈ P1
×D (4)

since ψ1 is a candidate for the envelope (3) defining 8̃.
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We next claim that

8̃( f (τ ), τ )= ψ1( f (τ )) for all τ ∈ D. (5)

To see this, observe that τ 7→ 8̃( f (τ ), τ ) is f ∗ωFS-subharmonic and has Lelong number 1 at τ = 0.
On the other hand ψ1( f (τ )) is f ∗ωFS-harmonic except at τ = 0 where it has Lelong number 1. But
8̃( f (τ ), τ ) tends to ψ1( f (τ )) as |τ | tends to 1, and hence from the maximum principle along with (4),
we get (5).

Now fix some τ ∈ D× and set

φτ (z) := 8̃(z, τ ).

Then the above says that φτ = ψ1 on ∂Aτ . On the other hand by (4) we have φτ ≥ ψ1 everywhere.
Moreover φτ is ωFS-subharmonic on Ac

τ , whereas ψ1 is bounded and ωFS-harmonic on Ac
τ . Thus by the

maximum principle we deduce φτ = ψ1 on Ac
τ as required. �

Proof of Theorem 2.1. Set

S := {(z, τ ) ∈ P1
×D× : τ z ∈ (Ac

τ )
◦
},

which is nonempty and open in P1
×D×. Then by Proposition 2.6 and then Proposition 2.7 if (z, τ ) ∈ S

we have

8(z, τ )= 8̃(τ z, τ )+ ln
(

1+ |τ z|2

|τ |2(1+ |z|2)

)
= ψ1(τ z)+ ln

(
1+ |τ z|2

|τ |2(1+ |z|2)

)
.

Thus on S we have

πP1ωFS+ ddc8= πP1ωFS+ ddcψ1(τ z)= 0

as ψ1 is ωFS-harmonic away from z = 0. �

2F. A specific example. We now construct a specific potential φ that satisfies the hypotheses of Theorem 2.1.
Fix γ to be the interval [−1, 1] ⊂ R⊂ Cw. Our goal is to find a φ ∈ C∞(P1) such that ωFS+ ddcφ > 0
and φ ≥− ln(1+ |w|2) with equality precisely on γ .

To do so, let α : R→ R be a nonnegative smooth nondecreasing convex function with α(t) = 0 for
t ≤ 1 and α(t) > 0 for t > 1. Let

u(w) := α(|w|2)+ Im(w)2.

Thus u is a smooth strictly subharmonic function on Cw that vanishes precisely on γ . Then εu−ln(1+|w|2)
for some small constant ε > 0 is essentially the function that we want; we simply need to adjust it to have
the correct behaviour far away from γ .

To do so we shall use a regularised version of the maximum function, which can be explicitly
given as follows: Let | · |reg be a smooth convex function on R so that |t |reg = |t | for |t | ≥ 1. Set
maxreg(a, b) := 1

2(|a− b|reg+ a+ b) and for δ > 0 put

max
δ
(a, b) := δmax

reg
(δ−1a, δ−1b). (6)
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Then maxδ( · , · ) is smooth, and satisfies

max
δ
(a, b)=

{
a if a > b+ δ,
b if b > a+ δ.

Returning to the construction of φ, fix a sufficiently large constant C and a sufficiently small positive
constant ε so that

εu ≥ ln(1+ |w|2)−C + 1 on D2,

εu ≤ ln(1+ |w|2)−C − 1 on D4 \D3.

Then for 0< δ� 1 set
v :=max

δ
(εu, ln(1+ |w|2)−C).

So v is smooth, nonnegative, strictly subharmonic, equal to ln(1+ |w|2)−C on D4 \D3 and vanishes
precisely on γ . We then put

φ := v− ln(1+ |w|2)

and extend φ to take the constant value C in Cw \D4. So φ extends to a smooth function over P1 with
the desired properties.

3. Discussion

3A. Context. Fix a φ ∈ C∞(P1) such that ωFS+ddcφ > 0. Then associated to φ we have two construc-
tions:

(1) The solution 8̃ to the complex HMAE on P1
×D with boundary data given by φτ = φ for all τ ∈ ∂D

and the requirement of having Lelong number 1 at the point (z, τ )= (0, 0) ∈ Cz ×D⊂ P1
×D.

(2) The envelopes ψt for t ∈ (0, 1] and the associated sets �t(φ)= {ψt < φ}.

In previous work we showed that these sets of data are intimately connected. First, 8̃ and ψt are Legendre
dual to each other [Ross and Witt Nyström 2015b, Theorem 2.7] in that

ψt(z)= inf
|τ |>0
{8̃(z, τ )− (1− t) ln |τ |2} (7)

and
8̃(z, τ )= sup

t
{ψt(z)+ (1− t) ln |τ |2}. (8)

Second, the collection of sets �t(φ) that are biholomorphic to a disc describes the harmonic discs of 8̃.
That is, if t is such that�t(φ) is a proper simply connected subset of Cz and f :D→�t is a Riemann map
with f (0)= 0 then the restriction of 8̃ to the graph {( f (τ ), τ ) ∈ P1

×D} is ωFS-harmonic. Furthermore
it is shown in [Ross and Witt Nyström 2015b, Theorem 3.1] these are (essentially) the only harmonic
discs that occur.

We can say more. For τ ∈ D× set
φτ (z) := 8̃(z, τ ).
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If 8̃ is regular then each φτ will be a smooth Kähler potential, but in general this will not be the case.
Nevertheless, by [Błocki 2012] we know φτ is C1,1 and since π∗

P1ωFS+ddc8̃≥ 0, we know ωFS+ddcφτ

is semipositive. We can then define the associated sets �t(φτ ) in exactly the same way as before.

Proposition 3.1. Suppose t is such that�t(φ)⊂Cz is proper and simply connected and let ft :D→�t(φ)

be a Riemann map with f (0)= 0. Then for each τ ∈ D× we have

ft(D|τ |)=�t(φτ ).

We shall give a proof of this fact below, but assuming it for now we can give an alternative proof that,
under the hypotheses of Theorem 2.1, for each τ ∈ D× the current ωFS+ ddc8̃( · , τ ) is degenerate on
some nonempty open subset of P1. First Lemma 2.4 gives

�1(φ)= P1
\ γ,

which is a simply connected proper subset of Cz . We then take our Riemann map f : D→�1(φ) and
consider the image

Aτ := f (D|τ |)=�1(φτ ) for τ ∈ D×.

As observed before, Aτ is a proper subset of Cz whose complement has nonempty interior.
On the other hand, it is a general fact that for each t the set �t(φτ ) has measure t with respect to

the current ωFS+ ddcφτ . (If φτ is smooth and ωFS+ ddcφτ is strictly positive, this is a standard piece
of potential theory and is discussed in [Ross and Witt Nyström 2015b, Proposition 1.1]; when φτ is
merely C2 and t < 1 then this is proved in [Ross and Witt Nyström 2017a, Theorem 1.2] and the case
t = 1 follows from this by continuity as �1(φτ )=

⋃
t<1�t(φτ ); finally when φτ is merely C1,1 this is

given in [Berman and Demailly 2012, Remark 1.19, Corollary 2.5].)
Therefore ∫

Aτ
(ωFS+ ddcφτ )=

∫
�1(φτ )

(ωFS+ ddcφτ )= 1.

But our normalisation is that
∫

P1(ωFS+ ddcφτ )=
∫

P1 ωFS = 1 as well, and so the current ωFS+ ddcφτ

gives zero measure to the complement of Aτ , which is precisely what we were aiming to prove.

Proof of Proposition 3.1. Fix σ ∈ D× and set r := |σ |. Our aim is to show

ft(Dr )=�t(φσ ).

Consider the S1-action on P1
×D given by eiθ

· (z, τ )= (z, eiθτ), and observe that the boundary data
used to define 8̃ from (3) is S1-invariant, which implies 8̃ is S1-invariant as well. Thus we may as well
assume that σ is real, so φσ = φr .

For a function F on P1
× D and D ⊂ D we write F |D for the restriction of F to P1

× D. Then
8̃|Dr

is the solution to the Dirichlet problem for the HMAE with boundary data (φτ )τ∈∂Dr = φr and the
requirement that 8̃|Dr

has Lelong number 1 at the point (0, 0) ∈ Cz ×Dr ⊂ P1
×Dr .

Letting s := − ln |τ |2, consider the function on P1
×D× given by

H(z, τ ) := ∂

∂s
8̃(z, e−s/2)
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(when |τ | = 1 and thus s = 0, we take the right derivative). As 8̃ is C1,1 on P1
×D×, the function H is

well-defined and Lipschitz. Clearly this is compatible with restriction; i.e.,

H |D×r (z, τ )=
∂

∂s
8̃|Dr

(z, e−s/2).

Now, as discussed above, and proved in [Ross and Witt Nyström 2015b, Theorem 3.1], the graph
{( f (τ ), τ ) : τ ∈ D} of f is a harmonic disc for 8̃. What is also proved is that H takes the constant
value t − 1 along this disc so

H( f (τ ), τ )= t − 1 for τ ∈ D×.

Now H is also S1-invariant and so this in particular implies

H( f (reiθ ), r)= H( f (reiθ ), reiθ )= t − 1 for all θ ∈ [0, 2π ].

In other words, the function H( · , r) takes the value t − 1 on the boundary of f (Dr ). On the other hand,
we prove in [Ross and Witt Nyström 2015b, Proposition 2.9] that the function H( · , r) describes the
set �t(φr ), in that

H(z, r)+ 1= sup{s : z /∈�s(φr )}

(we remark that the proof of that proposition does not require any regularity or strict positivity assumptions
on the potential φσ ). Thus �t(φr ) is the interior component of the curve θ 7→ f (reiθ ) (that is, the
component containing z = 0), which gives �t(φr )= f (Dr ) as desired. �

3B. Extensions and questions. Under the hypotheses of Theorem 2.1 we have shown that the current
ωFS+ ddc8( · , τ ) fails to be strictly positive on any interior fibre (that is, for any τ with 0< |τ |< 1).
Furthermore we have no reason to expect our solution to be smooth everywhere. Thus the following two
questions are natural:

Question 3.2. Does there exist a smooth family of potentials (φτ )τ∈∂B for which the solution to the
complex HMAE (1) is everywhere smooth but not of maximal rank?

Question 3.3. Does there exist a smooth family of potentials (φτ )τ∈∂B for which the solution to the
complex HMAE (1) such that ω+ ddc8( · , τ ) is a Kähler form for some τ with 0< |τ |< 1 but not for
others.

We are not currently able to answer these questions. However, we believe that the degenerate solutions
we describe in this paper are actually regular in the interior of the complement of the degenerate set S
(that is, they are smooth there and of maximal rank). In fact from our previous work in [Ross and Witt
Nyström 2015b] we can understand the set on which our solution is regular in terms of the collection of
sets �t(φ) that are simply connected. Now, our specific potential φ (Section 2F) was constructed to have
curvature equal to ωFS far away from the arc γ = [−1, 1] ⊂Cw ⊂P1, from which one can see that �t(φ)

is a disc for sufficiently small t . This gives an open set of P1
×D for which the solution 8 is regular.

Furthermore, by construction, �1(φ) is simply connected. We think it likely that �t(φ) is actually simply
connected for all t , which would give rather precise information about the set on which our solution is
regular, but it does not seem easy to prove that this is the case.



502 JULIUS ROSS AND DAVID WITT NYSTRÖM

We furthermore believe that the fibrewise Laplacian of such a solution is uniformly bounded from
below on the complement of S, and so has a discontinuity on the boundary ∂S where it jumps to zero. A
somewhat bold conjecture would be that any solution to the HMAE is regular away from the set where it
fails to have maximal rank, and is smooth away from the boundary of this set.
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