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SCALE-INVARIANT FOURIER RESTRICTION TO A HYPERBOLIC SURFACE

BETSY STOVALL

This result sharpens the bilinear-to-linear deduction of Lee and Vargas for extension estimates on the
hyperbolic paraboloid in R3 to the sharp line, leading to the first scale-invariant restriction estimates,
beyond the Stein–Tomas range, for a hypersurface on which the principal curvatures have different signs.

1. Introduction

We consider the Fourier restriction/extension problem for the hyperbolic paraboloid

S WD f.�; �/ 2 R1C2 W � D �1�2g:

We denote by E the extension operator,

Ef .t; x/ WD
Z

R2
ei.t;x/.�1�2;�/f .�/ d�: (1-1)

For consistency of exponents, we will consider the problem of establishing Lr!L2s extension estimates
for E , and we are primarily interested in the case when r D s0.

Lee [2006] and Vargas [2005] independently established an essentially optimal L2-based bilinear
adjoint restriction estimate for S. This result states that if f and g are supported in 1� 1 axis-parallel
rectangles that are separated from one another by a distance 1 in the horizontal direction and 1 in the
vertical direction, then

kEf Egks . kf k2 kgk2; s > 5
3
: (1-2)

This two-parameter separation of the tiles is both necessary and troublesome. On the one hand, necessity
can be seen by considering the case when each of f˙ is supported on a 1

2
-neighborhood of .˙1; 0/. On

the other hand, the separation leads to difficulty in deducing linear restriction estimates from the bilinear
ones. Indeed, the natural analogue of the Whitney decomposition approach of [Tao, Vargas, and Vega
1998] produces a sum in two scales, length and width, rather than a single distance scale, leading to a
loss of the scaling line in the distinct approaches of [Lee 2006] and [Vargas 2005].

The purpose of this note is to overcome this obstacle and recover the sharp line.

Theorem 1.1. With E as in (1-1), assume that the estimate

kEf Egks . kf kr kgkr (1-3)
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holds for some 3
2
<s <2 and r

2
<s <r 0, whenever f and g are supported on 1�1, axis-parallel rectangles

that are separated from one another by a distance 1 in both the horizontal and vertical directions. Then E
is of restricted strong type .s0; 2s/, and consequently of strong type .Qs0; 2Qs/ for all Qs > s.

To put the hypothesis on s in context, we recall that for s � 3
2

, linear extension estimates are known to
be impossible; that for s > 3

2
, 2s > s0; and that for s � 2, linear extension estimates are already known,

[Tomas 1975].
As is well known, a (local, linear) Lr0 ! L2s0 extension estimate for some r0 > s00 allows us, by

interpolation with the L2-based bilinear extension estimate (1-2), to establish the Lr -based bilinear
extension estimate (1-3) for some s > s0 and r

2
< s < r 0. Replacing s0 with s is a loss (whose magnitude

depends on the distance from .r�10 ; s�10 / to the scaling line), but r < s0 is a gain in the sense that the
corresponding linear extension estimate E W Lr ! L2s is false.

Lee [2006] and Vargas [2005] independently used the bilinear extension estimate (1-2) to prove that

kEf k2s . kf kLr (1-4)

for all s > 5
3

, r > s0, and f supported in the unit ball. Cho and Lee [2017] used the polynomial partitioning
argument from [Guth 2016] to prove (1-4) for f supported in the unit ball and 2s D r > 3:25; this was
subsequently improved by Kim [2017] to the range 2s > 3:25 and r > s0. Using these results and the
discussion in the preceding paragraph, Theorem 1.1 immediately yields the following slight improvement
on Kim’s result.

Corollary 1.2. For 2s > 3:25, the extension operator E is bounded from Ls
0

to L2s.

To the author’s knowledge, this is the first scalable restriction estimate for a negatively curved hyper-
surface, beyond the Stein–Tomas range (s D 2).

Terminology. A constant will be said to be admissible if it depends only on s; r . The inequality A. B
means that A� CB for some implicit, admissible constant C, and implicit constants will be allowed to
change from line to line. A dyadic interval is an interval of the form Œm2�n; .mC1/2�n� for somem; n2Z,
and In denotes the set of all dyadic intervals of length 2�n. A tile is a product of two dyadic intervals,
and DJ;K denotes the set of all 2�J � 2�K tiles. We denote by �1; �2 the projections �j W R2 ! R,
�j .x/D xj . We use H1 for the one-dimensional Hausdorff measure. Finally, we use log to denote the
base-2 logarithm.

Outline of proof. To prove our restricted strong-type estimate, it suffices to bound the extension of a
characteristic function. Our starting point is the bilinear-to-linear deduction of [Vargas 2005], which shows
that, under the hypotheses of Theorem 1.1, the extension of the characteristic function of a set � with
roughly constant (vertical) fiber length obeys the scalable restriction estimate kE��k2s . j�j

1
s0 . In [Vargas

2005], off-scaling estimates are obtained by subdividing a set � in the unit cube into subsets having
constant fiber length. Off-scaling contributions from those subsets with very short fibers are small (because
the sets themselves are small), and adding these amounts to summing a convergent geometric series.
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We wish to remain on the sharp line, so we must be more careful. Our first step, taken in Section 2, is
to understand when Vargas’s constant fiber length estimate can be improved. To this end, we prove a
dichotomy result: If � has constant fiber length, then either � is highly structured (more precisely, � is
nearly a tile), or we have a better bound on the extension of ��. Roughly speaking, this reduces matters
to controlling the extension of a union of tiles �k each having height 2�k, which is the task of Section 3.
We can estimate

kE�S �kk2s .
�X

kE��kk
2s
2s

� 1
2s

C off-diagonal terms;

where the off-diagonal terms involve products E��kE��k0 , with jk� k0j large. Boundedness of the main
term follows from Vargas’s estimate and convexity (2s > s0). It remains to bound the off-diagonal terms,
for which it suffices to prove a bilinear estimate with decay:

kE��kE��k0ks . 2
�c0jk�k

0jmaxfj�kj; j�k0 jg
1
s0 ;

and we prove this by combining the bilinear extension estimate for separated tiles with a further decom-
position.

Of course, we have lied. In Section 2, our dichotomy is not that a constant fiber length set � is either
a tile or has zero extension, and so we still have remainder terms that must be summed. To address
this, we argue more quantitatively than has been suggested above: Any constant fiber length set can be
approximated by a union of tiles, where the number of tiles and tightness of the approximation depends
on the sharpness of our estimate kE��k2s . j�j

1
s0 ; then we must bound extensions of sets

S
k

S
�2Tk � ,

where Tk � Dj.k/;k may be large (but fortunately, not too large).

2. An inverse problem related to Vargas’s linear estimate

To prove Theorem 1.1, it suffices to prove that kE��k2s . j�j
1
s0 for all measurable sets �. By scaling, it

suffices to consider � contained in the unit cube Œ�1; 1�2. Vargas [2005] proved the following.

Theorem 2.1 [Vargas 2005]. For each K � 0, let

�.K/ WD f� 2� WH1.��11 .�1/\�/� 2
�K
g: (2-1)

Then under the hypotheses of Theorem 1.1, for any measurable set �0 ��.K/,

kE��0k2s . j�.K/j
1
s0 : (2-2)

This version differs slightly from the one stated in [Vargas 2005], but it follows from the same proof. In
proving the next proposition, we will review Vargas’s argument, so the reader may verify the above-stated
version below.

Our first step is to solve an inverse problem: Characterize those sets�D�.K/ for which the inequality
in (2-2) can be reversed.

Proposition 2.2. Assume that the hypotheses of Theorem 1.1 hold. Let � � Œ�1; 1�2 be a measurable
set, and assume that � D �.K/ for some integer K � 0. Choose a nonnegative integer J such that
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j�1.�/j � 2
�J, and let ". 1 denote the smallest dyadic number such that

kE��0k2s � "j�j
1
s0

for every measurable �0 ��. Then �D
S
0<ı�"�ı , with the union taken over dyadic ı. For each ı,

�ı �
S
�2Tı� , where Tı � DJ;K has cardinality at most O.ı�C /, with C an admissible constant. For

each subset �0 ��ı , kE��0k2s . ıj�j
1
s0 .

Proof of Proposition 2.2. It suffices to produce a union that contains almost every point of �, as a set of
measure zero makes no contribution to the extension. Our decomposition will be done in three stages.
Our first decomposition will be of � into sets �1�, with �1.�1�/ nearly an interval, I 2 IJ . Our second
decomposition will be of �1� into sets �2�;�, � � �, each of which is nearly a product of I with a set
of measure 2�K. Our third decomposition will be of �2�;� into sets �3

�;�;ı
, ı � �, each of which is

nearly a product of I with an interval in IK . The product of two dyadic intervals is a tile, so we take
�ı WD

S
��ı

S
����

3
�;�;ı

; the .log ı�1/2 factor that arises from taking this union is harmless.
Let S WD �1.�/. We know that jS j � 2�J and that S � Œ�1; 1�. Let �1 2 S, and for each 0 < � < ",

let I�.�1/ be the maximal dyadic interval I 3 �1 satisfying jI \S j � �C jI j, if such an interval exists.
We record that jI�.�1/j � ��C 2�J, and if �1 is a Lebesgue point of S, then jI�.�1/j> 0. Let

T� WD f�1 2 S W jI�.�1/j � �
C 2�J g;

and let S" WD T", S� WD T� nT2� for dyadic 0 < � < ". Then a.e. (indeed, every Lebesgue) point of S is
contained in a unique S�. We set �1� WD�\�

�1
1 .S�/.

Lemma 2.3. For each 0 < � � ", S� is contained in a union of O.��3C / dyadic intervals I 2 IJ , and
for each � < " and each subset �0 ��1�,

kE��0k2s . �2j�j
1
s0 : (2-3)

Proof of Lemma 2.3. By construction, S� is covered by dyadic intervals I of length jI j � �C jS j, in which
S has density jI \S j � �C jI j. The density of each such interval in S is jI \S j � �2C jS j, and so the
collection of maximal (hence pairwise disjoint) dyadic intervals with these properties has cardinality
at most ��2C. Moreover, from the density estimate, we see that jI j � ��C 2�J, so these intervals are
covered by a total of ��3C intervals in IJ .

To establish (2-3), we will optimize Vargas’s proof of Theorem 2.1. Performing a Whitney decomposi-
tion in each variable �1; �2 separately and applying the almost orthogonality lemma from [Tao, Vargas,
and Vega 1998] (for which it is important that s � 2),

kE��0k22s .
X
k;j

� X
��� 02Dj;k

kE��0\�E��0\� 0kss

�1
s

;

where we say that � � � 0 if � and � 0 are 2�j separated in the horizontal direction and 2�k separated in
the vertical direction.
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By rescaling our hypothesis, (1-3), for f; g supported on tiles in Dj;k that are separated by a distance 2�k

in the vertical direction and 2�j in the horizontal direction,

kEf Egks . 2.jCk/.
2
s
C 2
r
�2/
kf krkgkr : (2-4)

Thus

kE��0k22s .
X
k;j

2.jCk/.
2
s
C 2
r
�2/

� X
�2Dj;k

j�0\ � j
2s
r

�1
s

.
X
k;j

2.jCk/.
2
s
C 2
r
�2/ max

�2Dj;k
j�0\ � j

2
r
� 1
s j�0j

1
s : (2-5)

Our hypotheses on r; s imply that all exponents in the above sum are positive. To bound this double sum,
Vargas used the inequality

j�0\ � j.minf2�j; 2�J gminf2�k; 2�Kg: (2-6)

The definition of �1� will allow us to improve on this bound.
For Ij 2Ij , we trivially have jIj\S�j�minfjIj j; jS�jg�minf2�j; 2�J g, but when jj�J j< C

4
log ��1,

we can do rather better. Suppose that jj �J j � C
4

log ��1. Since

jIj j D 2
�j
� �

C
4 2�J � .2�/C 2�J

(provided � is sufficiently small), Ij \S� ¤∅ implies that Ij \S� 6� T2�, whence

jIj \S�j � jIj \S j � .2�/
C
jIj j D .2�/

C 2�j . �
3C
4 minf2�j; 2�J g;

where for the last inequality, we used 2�j � ��
C
4 2�J.

Inserting this gain and j�0\.Ij �Ik/j � jS�\Ij jminf2�k; 2�Kg into (2-5), and summing the resulting
geometric series gives

kE��0k2s . �C
0

2�.JCK/.1�
3
2s
/
j�0j

1
2s . �C

0

j�j
1
s0

for C 0 > 0 some admissible constant dictated by C; r; s; we can reverse engineer C so that C 0 D 2. �

We now turn to our second decomposition. Although �1.�1�/ may be (roughly) thought of as a union
of a small number of intervals, an individual horizontal slice ��12 .�2/\�

1
� might be much smaller. Our

next step is to decompose into sets where the size of a nonempty slice is roughly comparable to the size
of the projection of the whole. (Sets with this property are nearly products.)

Fix 0 < �� ". For dyadic 0 < � � �, we define

V� D f�2 2 �2.�
1
�/ WH

1.��12 .�2/\�
1
�/� �

C 2�J g;

and set U� WD V�, U� WD V� nV2� for � < �. We define �2�;� WD �
�1
2 .U�/\�

1
�.

Lemma 2.4. For each 0 < � < �� ", and each subset �0 ��2�;�, we have kE��0k2s . �2j�j
1
s0 .
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Proof of Lemma 2.4. Let � 2 Dj;k and �0 ��2�;�. Then � \�0 has vertical and horizontal fiber lengths
at most Z

��\�0.�1; �2/ d�2 .minf2�K; 2�kg;
Z
��\�0.�1; �2/ d�1 .minf�C 2�J; 2�j g;

respectively, and projections of size at most

j�1.� \�
0/j.minf2�J; 2�j g; j�2.� \�0/j. 2�k :

By Fubini, we can bound j� \�0j by the measure of the projection times the maximum fiber length, so

j� \�0j.minf2�.JCK/; 2�.jCK/; 2�.jCk/; �C 2�.JCk/g: (2-7)

To utilize (2-7), we let C 0 D C
2

and subdivide Z2 DR1[R2[R3[R4, where

R1 WDf.j; k/ W J �C
0 log ��1 � j; K � kg[ f.j; k/ W J � j; K �C 0 log ��1 � kg;

R2 WDf.j; k/ W j � J CC
0 log ��1; K � kg[ f.j; k/ W j � J; K �C 0 log ��1 � kg;

R3 WDf.j; k/ W j � J CC
0 log ��1; k �Kg[ f.j; k/ W j � J; k �KCC 0 log ��1g;

R4 WDf.j; k/ W J CC
0 log ��1 � j; kCC 0 log ��1 �Kg:

Now we insert (2-7) into (2-5) to obtain

kE��0k22s .
X
R1

2.jCk/.
2
s
C 2
r
�2/2�

2.JCK/
r C

X
R2

2�j.2�
3
s
/2k.

2
s
C 2
r
�2/2�

J
s 2�

2K
r

C

X
R3

2�.jCk/.2�
3
s
/2�

JCK
s C �C.

2
r
� 1
s
/
X
R4

2�k.2�
3
s
/2j.

2
s
C 2
r
�2/2�

2J
r 2�

K
s :

As 2
s
C
2
r
� 2 and 2� 3

s
are both positive, it is a simple matter to sum each of these terms, obtaining

kE��0k22s . .�
. 2
s
C 2
r
�2/C 0

C �.2�
3
s
/C 0
C �C.

2
r
� 1
s
/�C 0.2� 3

s
/�C 0. 2

s
C 2
r
�2//2�

2.JCK/

s0 :

Since 2
r
�
1
s
> 0 and j�j�2�.JCK/, we obtain the bound claimed in the lemma by choosingC sufficiently

large. �

Now we turn to our third decomposition. A single�2�;� is “nearly” a product, but �2.�2�;�/might be far
from an interval. However, we may simply perform the first decomposition, with the roles of the coordinate
indices reversed. Indeed, our sets satisfy analogous hypotheses to those in Lemma 2.3 (i.e., the hypotheses
of Proposition 2.2 with the indices reversed) when � < �, because jH1.��12 .�2/\�

2
�;�/j � �

C 2�J for
all �2 2 �2.�2�;�/; when �D �, we may abuse notation slightly by decomposing �2�;� into log ��1 sets
�2�;� with the same property.

We complete the proof of Proposition 2.2 by taking unions as described at the outset. The factors of �2

and �2 in Lemmas 2.3 and 2.4 (and the factor of ı2 in the analogue for �3
�;�;ı

) mean that the resulting
factor of .log ı�1/2 is indeed harmless. �
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3. Extensions of characteristic functions of near tiles

We recall the definition (2-1) of �.K/. For each K, we define J.K/ to be an integer such that j�.K/j �
2�J.K/�K. Let K."/ denote the collection of all K 2 Z�0 for which " is the smallest dyadic number such
that kE��0k2s � "j�.K/j

1
s0 holds for all �0 ��.K/. Then Proposition 2.2 gives us a decomposition

�.K/D
S
0<ı�"�ı.K/, where for each ı, we have �ı.K/�

S
�2Tı.K/� for some Tı.K/� DJ.K/;K

of cardinality #Tı.K/. ı�C.

Lemma 3.1. For 0 < ı � ", under the hypotheses of Theorem 1.1,



 X
K2K."/

E��ı.K/





2s
2s

. .log ı�1/4s
X

K2K."/

kE��ı.K/k
2s
2sC ıj�j

2s
s0 :

Proof of Lemma 3.1. To prove the lemma, it suffices to prove



X
K2K

E��ı.K/





2s
2s

.
X
K2K

kE��ı.K/k
2s
2sC ı

2
j�j

2s
s0 ;

with K � K."/ chosen so that K and J.K/ are both A log ı�1-separated, with A a sufficiently large
admissible constant. (A will be much larger than the constant C in Proposition 2.2.) Since s < 2, the
triangle inequality gives



X

K2K

E��ı.K/





2s
2s

D

Z ˇ̌̌̌ X
K2K4

4Y
iD1

E��ı.Ki /

ˇ̌̌̌ s
2

.
X
K2K





E��ı.K/



2s
2s

C

X0




 4Y
iD1

E��ı.Ki /





 s2
s
2

;

where
P0 indicates a sum taken on quadruples K D .K1; K2; K3; K4/ 2 K4, with at least two entries

distinct. The following lemma will be useful in controlling this sum.

Lemma 3.2. If K;K 0 2 K, and J WD J.K/, J 0 WD J.K 0/, then

kE��ı.K/E��ı.K0/ks . 2
�c0jK�K

0jmaxfj�.K/j; j�.K 0/jg
2
s0 (3-1)

for some admissible constant c0 > 0.

Proof of Lemma 3.2. Inequality (3-1) is an immediate consequence of Cauchy–Schwarz and (2-2)
whenever

j�.K/j
1
s0 j�.K 0/j

1
s0 . 2�

jK�K0j

s0 maxfj�.K/j; j�.K 0/jg
2
s0 :

This inequality holds whenever KDK 0, J DJ 0, J <J 0 and K <K 0, or J >J 0 and K >K 0.
By symmetry, this leaves us to prove (3-1) when K < K 0 and J > J 0. By Proposition 2.2 and the

separation condition on K, it suffices to prove that

kE��\�ı.K/E�� 0\�ı.K0/ks . ı
�C 2�c0jK�K

0j
j�.K/j

1
s0 j�.K 0/j

1
s0 (3-2)

for tiles � 2 Tı.K/, � 0 2 Tı.K 0/.



1222 BETSY STOVALL

Note that our conditions on J, J 0, K, K 0 mean that � is taller than � 0, and � 0 is wider than � . By
translating, we may assume that the y-axis forms the center line of � and that the x-axis forms the center
line of � 0. Now our tiles are contained in Œ�2; 2�2, and we decompose:

� D

K0[
kD0

�k; � 0 D

J[
jD0

� 0j ;

where

�k D

�
� \f� W j�2j � 2

�kg; k < K 0;

� \f� W j�2j. 2�K
0

g; k DK 0
and � 0j D

�
� 0\f� W j�1j � 2

�j g; j < J;

� 0\f� W j�1j. 2�J g; j D J:

By the (2-parameter) Littlewood–Paley square function estimate (the two-parameter version can be proved
using Khintchine’s inequality), the fact that s < 2, and the triangle inequality,

kE��\�ı.K/E�� 0\�ı.K0/k
s
s .

Z � K0X
kD0

JX
jD1

jE��k\�.K/E�� 0j\�.K0/j
2

�s
2

.
K0X
kD0

JX
jD0

kE��k\�.K/E�� 0j\�.K0/k
s
s: (3-3)

We begin with the sum over those terms with k DK 0. By Cauchy–Schwarz and (2-2),

JX
jD0

kE��K0\�.K/E�� 0j\�.K0/k
s
s .

JX
jD0

kE��K0\�.K/k
s
2s kE�� 0j\�.K0/k

s
2s .

JX
jD0

j�K0 j
s
s0 j� 0j j

s
s0 :

Because of the way the � 0j were defined, we have at most two nonempty � 0j with j � J 0. This, combined
with the bound j� 0j j �minf2�.j�J

0/; 1gj� 0j gives
P
j j�
0
j j

s
s0 . j� 0j

s
s0 (despite the fact that s < s0). Since

j�K0 j � 2
�.K0�K/j� j, j� j � j�.K/j, and j� 0j � j�.K 0/j,

JX
jD0

kE��K0\�.K/E�� 0j\�.K0/k
s
s . 2

�.K0�K/ s
s0 j�.K/j

s
s0 j�.K 0/j

s
s0 :

In the case j D J, a similar argument implies that

K0X
kD0

kE��k\�.K/E�� 0J\�.K0/k
s
s . 2

�.J�J 0/ s
s0 j�.K/j

s
s0 j�.K 0/j

s
s0 � 2�.K

0�K/ s
s0 j�.K/j

2s
s0 :

In the cases k < K 0 and j < J, we have a gain, due to our bilinear extension estimate. If k < K 0 and
j < J, then �k is a (subset of four) tile(s) in DJ;maxfk;Kg, �j is a (subset of four) tile(s) in Dmaxfj;J 0g;K0 ,
and these tiles are separated by a distance 2�k in the vertical direction 2�j in the horizontal direction.
These tiles are thus contained in separated tiles in Dj;k , so by (2-4),

kE��k\�.K/E�� 0j\�.K0/ks . 2
.jCk/. 2

s
C 2
r
�2/
j�k \�.K/j

1
r j� 0j \�.K

0/j
1
r :
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From our observation above that we have at most two values of j (resp. k) in our sum with j � J 0 (resp.
k �K), our assumption that r < s0 gives

JX
jD0

K0X
kD0

2.jCk/.2C
2s
r
�2s/
j�k \�.K/j

s
r j� 0j \�.K

0/j
s
r

�

JX
jD0

K0X
kD0

2.jCk/.2C
2s
r
�2s/
j�kj

s
r j� 0j j

s
r

. 2.J
0CK/.2C 2s

r
�2s/
j� j

s
r j� 0j

s
r � ı�C 2.J

0CK/.2C 2s
r
�2s/
j�.K/j

s
r j�.K 0/j

s
r

. ı�C 2.J�J
0CK0�K/.1C s

r
�s/
j�.K/j

s
s0 j�.K 0/j

s
s0 ;

which, by (3-3) and 1
s
C
1
r
� 1 > 0, is stronger than (3-2). �

We return to the proof of Lemma 3.1.
Let K1; K2; K3; K4 2 K, not all equal. Rearranging indices if needed, we may assume that N1 WD

K1CJ.K1/ is minimal among all Ni WDKiCJ.Ki / and that jK1�K4j � 1
2
jKi �Kj j for all i; j . Thus

j�.K1/j is maximal. By Hölder’s inequality and Lemma 3.2,



 4Y
iD1

E��ı.Ki /






s
2

. 2�c0jK1�K4jj�.K1/j
4
s0 :

Therefore

X0




 4Y
iD1

E��ı.Ki /





 s2
s
2

.
X
K12K

X
K1¤K42K

jK4�K1j
2 2�c0jK4�K1jj�.K1/j

2s
s0 :

Because 2s > s0 and K is A log ı�1-separated for some very large A, this error term is bounded by
ıC j�j

2s
s0 . �

Proof of Theorem 1.1. We decompose � by fiber length as in (2-1), � D
S
�.K/, then decompose

the fiber lengths according to the exactness of Vargas’s estimate as at the beginning of Section 3,
Z�0 D

S
0�".1K."/, and finally apply the decomposition in Proposition 2.2, �.K/D

S
0<ı�"�ı.K/.

By the triangle inequality,

kE��k2s �
X
0<".1

X
0<ı�"





 X
K2K."/

E��ı.K/






2s

:

Thus by Lemma 3.1 and Proposition 2.2,

kE��k2s .
X
0<".1

X
0<ı�"

�
.log ı�1/4s

X
K2K."/

kE��ı.K/k
2s
2sC ıj�j

2s
s0

� 1
2s

.
� X
0<".1

X
0<ı�"

.log ı�1/2
� X
K2K."/

ı2sj�.K/j
2s
s0

� 1
2s
�
Cj�j

1
s0 :
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Since 2s > s0 and the �.K/ are disjoint, we may use the triangle inequality for `
2s
s0 to sum the volumes

of the �.K/ in the preceding, and, finally, we sum a geometric series to obtain

kE��k2s .
X
0<".1

X
0<ı�"

.log ı�1/2ıj�j
1
s0 . j�j

1
s0 : �
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