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CLASSIFICATION OF POSITIVE SINGULAR SOLUTIONS TO A NONLINEAR
BIHARMONIC EQUATION WITH CRITICAL EXPONENT

RUPERT L. FRANK AND TOBIAS KÖNIG

For n ≥ 5, we consider positive solutions u of the biharmonic equation

12u = u(n+4)/(n−4) on Rn
\ {0},

with a nonremovable singularity at the origin. We show that |x |(n−4)/2u is a periodic function of ln |x | and
we classify all periodic functions obtained in this way. This result is relevant for the description of the asymp-
totic behavior of local solutions near singularities and for the Q-curvature problem in conformal geometry.

1. Introduction and main results

In this paper we are interested in positive solutions u of the equation

12u = u(n+4)/(n−4) in Rn
\ {0} (1)

for n ≥ 5. As we will explain later in more detail, this equation serves on one hand as a model problem
for higher-order equations with critical nonlinearity and on the other hand has a concrete meaning in the
Q-curvature problem in conformal geometry. It is well known that the absence of the maximum principle
for equations involving the bi-Laplacian poses great challenges both on a conceptual and on a technical
level. Nevertheless we succeed here in proving a classification result for positive solutions of (1) which is
completely analogous to its second-order counterpart.

We will work throughout with classical solutions of (1), that is, u ∈ C4(Rn
\ {0}). Because of the

regularity theory in [Uhlenbeck and Viaclovsky 2000] (which extends that in [Chang et al. 1999] to n ≥ 5)
this is not a restriction.

In the fundamental work [Lin 1998] it was shown that all solutions u with a removable singularity at
the origin (so that (1) holds in all of Rn) are given by

u(x)= cn

(
λ

1+ λ2|x − x0|2

)(n−4)/2

, cn =
(
(n− 4)(n− 2)n(n+ 2)

)(n−4)/8
, (2)

for some λ > 0 and x0 ∈ Rn. Solutions of the closely related equation 12u = |u|8/(n−4)u in Rn are, in
particular, given by optimizers of the Sobolev inequality∫

Rn
(1u)2 dx ≥ Sn

(∫
Rn
|u|2n/(n−4) dx

)(n−4)/n

.
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These optimizers were classified in [Lieb 1983] in an equivalent dual formulation and are again given
by constant multiples of the functions in (2). For a classification of positive solutions with removable
singularities of the four-dimensional analogue of (1) we refer to [Chang and Yang 1997; Lin 1998] and
for the higher-order case to [Wei and Xu 1999; Martinazzi 2009].

In this paper we will be concerned with solutions u of (1) with nonremovable singularities. It was also
shown by Lin [1998] that such solutions are necessarily radial. We pass to logarithmic coordinates (in
this context also known as Emden–Fowler coordinates) and write

u(x)= |x |−(n−4)/2v(ln |x |).

By a short computation we find that (1) for u is equivalent to the following ordinary differential equation
for v:

v(4)−
n(n− 4)+ 8

2
v′′+

n2(n− 4)2

16
v− |v|8/(n−4)v = 0 in R. (3)

Note that positive solutions u of (1) correspond to positive solutions v of (3) and so |v|8/(n−4)v =

v(n+4)/(n−4). For some of our results, however, we also need to consider not necessarily positive functions v,
and for such functions (3) is the relevant extension. We set

a0 =

(
n(n− 4)

4

)(n−4)/4

.

Our first main result classifies all positive periodic solutions of (3) and describes their shape.

Theorem 1. (i) Let v ∈ C4(R) be a solution of (3). Then infR |v| ≤ a0, with equality if and only if v is a
nonzero constant.

(ii) Let a ∈ (0, a0). Then there is a unique (up to translations) bounded solution v ∈ C4(R) of (3) with
minimal value a. This solution is periodic, has a unique local maximum and minimum per period
and is symmetric with respect to its local extrema.

To state our second main result, we denote by va the unique solution to (3) obtained from Theorem 1
by requiring that va(0)=minR va = a. Also, denote by La the minimal period of va . For the constant
solution va0 ≡ a0, we set La0 = 0.

The following theorem provides a classification of positive solutions u of (1) with nonremovable
singularities in terms of a two-parameter family.

Theorem 2. Let u ∈ C4(Rn
\ {0}) be a positive solution of (1) whose singularity at the origin is nonre-

movable. Then there are a ∈ (0, a0] and L ∈ [0, La] such that

u(x)= |x |−(n−4)/2va(log |x | + L),

where va is the solution of (3) introduced after Theorem 1. Moreover, ∂u/∂|x |< 0 for all x ∈ Rn
\ {0}.

This theorem answers an open question raised in [Guo et al. 2017a] and shows, in particular, that the
positivity of the scalar curvature in their conjecture is not necessary.
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It is easy to see that as a→ 0 one has La→∞ and va(t + La/2)→ cn(2 cosh t)−(n−4)/2. Undoing
the logarithmic change of variables we therefore recover the nonsingular solution (2) in the limit a→ 0.

We believe that Theorems 1 and 2 will have several applications. Firstly, they should be a key step
in describing the asymptotic behavior near the origin of positive solutions u of 12u = u(n+4)/(n−4) in a
punctured ball {0< |x |< ρ}. This would be the fourth-order analogue of a celebrated result of Caffarelli,
Gidas and Spruck [Caffarelli et al. 1989]; see also [Korevaar et al. 1999]. Secondly, we believe that our
theorems will prove useful in the construction of constant Q-curvature metrics with isolated singularities
in the spirit of the classical works [Schoen 1988; Mazzeo and Pacard 1999] for the scalar curvature; see
[Baraket and Rebhi 2002; Guo et al. 2017b] for results in this direction in the fourth-order case. For an
introduction to the Q-curvature problem see, for instance, [Hang and Yang 2016].

We end this introduction by comparing the statements and proofs of Theorems 1 and 2 with their
second-order counterpart, which concerns positive solutions u of

−1u = u(n+2)/(n−2) in Rn
\ {0} (4)

for n ≥ 3. A famous result of Caffarelli, Gidas and Spruck [Caffarelli et al. 1989] says that if this equation
is valid on all of Rn, then

u(x)= c′n

(
λ

1+ λ2|x − x0|2

)(n−2)/2

, c′n = (n(n− 2))(n−2)/4,

for some λ> 0 and x0 ∈Rn. Moreover, they show that if u is a positive solution of (4) with a nonremovable
singularity, then u is radial. Using this information, Schoen [1989] observed that all solutions can be
classified by standard phase-plane analysis. Indeed, setting

u(x)= |x |−(n−2)/2v(ln |x |)

one obtains

−v′′+
(n− 2)2

4
v− v(n+2)/(n−2)

= 0 in R

and the positive solutions of this equation are given by the constant ((n− 2)/2)(n−2)/2, by the homoclinic
solution c′n(2 cosh(t + T ))(n−2)/2 and by periodic solutions uniquely parametrized, up to translations, by
their minimal value in (0, ((n− 2)/2)(n−2)/2). Moreover, these periodic solutions have a unique local
maximum and minimum per period and are symmetric with respect to their local extrema.

Thus, our Theorems 1 and 2 provide exactly the same conclusions as in the second-order case. Their
proofs, however, are considerably more difficult, because the phase “plane” in the fourth-order case is
four-dimensional. Moreover, solutions to fourth-order equations show, in general, a much richer and
typically more erratic behavior than solutions to second-order equations; see, e.g., the introduction of the
textbook [Peletier and Troy 2001] for examples. To emphasize the structure of our equation we abbreviate

A =
n(n− 4)+ 8

2
, B =

n2(n− 4)2

16
, p =

n+ 4
n− 4

, (5)
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and
f (v)= |v|p−1v− Bv (6)

and rewrite (3) as
v(4)− Av′′− f (v)= 0 in R. (7)

Of fundamental importance for us is that the coefficients A and B in (3) satisfy the inequalities

A > 0 and 4B < A2. (8)

These inequalities guarantee that the characteristic equation ξ 4
−Aξ 2

+B=0 associated to the linearization
of (7) around the zero solution has four distinct, real solutions. The picture that has emerged from the
analysis of fourth-order equations is that under this structural assumption the solution set is better behaved
than that of general fourth-order equations and resembles in some sense the solution set of second-order
equations; see, e.g., [Peletier and Troy 2001; van den Berg 2000; Buffoni et al. 1996]. The reason is
that certain techniques are available which are reminiscent of the maximum principle. Technically, this
better, second-order-like behavior can be proved for bounded solutions of the equation and for such
solutions there are certain substitutes for two-dimensional phase-plane arguments (see, in particular,
Propositions 4 and 6). Parts of our analysis will rely on results of van den Berg [2000] for bounded
solutions, which in turn rely on results of Buffoni, Champneys and Toland [Buffoni et al. 1996]. Our
crucial new ingredient, however, which does not appear in these works, is that global solutions are
necessarily bounded (Lemma 11). We emphasize that boundedness is a nonlocal property and breaks the
local character of the ODE analysis.

Most of our results (except for the explicit expression of the homoclinic solution) hold, mutatis mutandis,
for any equation of the form (7) with f given by (6), where p > 1 is arbitrary and A and B are arbitrary
subject to (8).

2. Classification of global ODE solutions

In this section we will classify all solutions v of (7) which are defined on all of R. Positivity will not play
a role here.

We begin with some preliminary remarks, which we will use several times below. The function
v 7→ f (v) in (6) has exactly three zeros, namely, at 0 and at ±B1/(p−1)

= ±a0. These correspond to
exactly three constant solutions. Moreover, if v(t) is a solution to (7), then so are the functions

• v(−t) (because (7) contains only even-order derivatives),

• −v(t) (because f is odd) and

• v(t + T ) for any T ∈ R (because (7) is autonomous).

We now state the main result of this section.

Proposition 3. Let v ∈ C4(R) be a solution of (7). Then one of the following three alternatives holds:

(a) v ≡±B1/(p−1), or v ≡ 0.



CLASSIFICATION OF POSITIVE SINGULAR SOLUTIONS TO A NONLINEAR BIHARMONIC EQUATION 1105

(b) v(t)=±cn(2 cosh(t − T ))−(n−4)/2 for some T ∈ R with cn from (2).

(c) v is periodic, has a unique local maximum and minimum per period and is symmetric with respect to
its local extrema.

For the proof of this proposition we will need two results, taken from [van den Berg 2000], which
quantify the intuition that the set of bounded solutions to the fourth-order equation (7) behaves in some
respects similarly to the set of solutions of a second-order equation. As we pointed out in the introduction,
for this it is crucial that the relation 4B < A2 is satisfied. The first result is that every bounded entire
solution v is uniquely determined by only two (instead of four) initial values.

Proposition 4 [van den Berg 2000, Theorem 1]. Let v,w ∈ C4(R) be bounded solutions of (7) and
suppose that v(0)= w(0) and v′(0)= w′(0). Then v ≡ w.

Since this result is of crucial importance for us, we give a (slightly more direct) proof with our notation
in the Appendix. Proposition 4 has the following consequence.

Corollary 5. Let v ∈ C4(R) be a bounded solution of (7):

(i) Suppose that v′(t0)= 0 for some t0 ∈ R. Then v is symmetric with respect to t0; i.e., for all t ∈ R,
v(t0+ t)= v(t0− t).

(ii) Suppose that v(t0)= 0 for some t0 ∈ R. Then v is antisymmetric with respect to t0; i.e., for all t ∈ R,
v(t0− t)=−v(t0+ t).

Proof. (i) Since (7) is autonomous, we may assume t0 = 0. Moreover, if v is a solution, then so is
w(t) := v(−t). Thus v(0)= w(0) and, by assumption, v′(0)= w′(0)= 0. Proposition 4 gives v ≡ w.

(ii) Again, we may assume t0 = 0. Moreover, if v solves (7), then so does w(t) := −v(−t). Since
v(0)= w(0) and v′(0)= w′(0), we conclude by Proposition 4 that v ≡ w. �

In order to state the second result from [van den Berg 2000] that we need, we introduce

F(v)=
∫ v

0
f (s) ds =

|v|p+1

p+ 1
−

1
2 Bv2

as well as the following quantity, also referred to as the energy:

Ev(t)=−v′′′(t)v′(t)+ 1
2(v
′′(t))2+ 1

2 A(v′(t))2+ F(v(t)).

Using (7) one easily finds that for every solution v of (7)

d
dt

Ev(t)= 0;

that is, the energy is conserved. We emphasize that this conservation is a local property and valid on the
maximal interval of existence and does not require any a priori boundedness assumptions like Proposition 4
and the following Proposition 6 and Lemma 7.

The second result says that, as in the second-order case, the energy is a parameter which orders bounded
solutions in the (v, v′)-phase plane.
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Proposition 6 [van den Berg 2000, Theorem 2]. Let v,w ∈ C4(R) be bounded solutions of (7) with
v(0)= w(0) and either v′(0) > w′(0)≥ 0 or v′(0) < w′(0)≤ 0. Then Ev > Ew.

For the proof we refer to [van den Berg 2000]. The assumption there is satisfied since 4B < A2. (Note
that no a priori bound on the solutions is necessary for our f .)

Next, we state two lemmas concerning the asymptotic behavior of solutions at infinity.

Lemma 7 [van den Berg 2000, Lemma 4]. Let v ∈ C4(R) be a bounded solution of (7). If v is eventually
monotone for t→∞, then

lim
t→∞

v(t) ∈ {0,±B1/(p−1)
} and lim

t→∞
v(k)(t)= 0 for k = 1, 2, 3.

Similarly, if v is eventually monotone for t→−∞, then

lim
t→−∞

v(t) ∈ {0,±B1/(p−1)
} and lim

t→−∞
v(k)(t)= 0 for k = 1, 2, 3.

The following lemma from [Guo et al. 2017a] shows that (7) does not have a solution which tends to
either plus or minus infinity at infinity; that is, solutions that blow up do so in finite time.

Lemma 8 [Guo et al. 2017a, Lemma 2.1]. Let v ∈ C4(R) be a solution of (7). If a+ := limt→∞ v(t) ∈
R∪ {±∞} exists, then a+ ∈ R. Similarly, if a− := limt→−∞ v(t) ∈ R∪ {±∞} exists, then a− ∈ R.

This lemma is proved in [Guo et al. 2017a] for positive solutions. An inspection of the proof shows,
however, that this positivity is not needed.

We now use the above results to show uniqueness, up to translations, of the positive homoclinic solution.
A similar result for p = 2 appears in [Amick and Toland 1992] with a different proof.

Lemma 9. Let v,w ∈ C4(R) be positive solutions of (7) with lim|t |→∞ v(t) = lim|t |→∞w(t) = 0 and
v′(0)= w′(0)= 0. Then v ≡ w.

Proof. Let us first prove that 0 is the only zero of v′ and w′. Indeed, if v′ had another zero at, say, t0 > 0,
then by repeated application of Corollary 5 (note that by assumption, v is bounded) we deduce that v
must be periodic of period 2t0. In particular 0 < v(0) = v(2kt0) for all k ∈ N, which contradicts the
assumption that v(t)→ 0 as t→∞. The argument for w is analogous. Hence we must have

v′(t) < 0 and w′(t) < 0 for all t > 0. (9)

Next, by Lemma 7 and by energy conservation,

Ev = lim
t→∞

Ev(t)= F(0)= 0 and Ew = lim
t→∞

Ew(t)= F(0)= 0. (10)

If v(0)= w(0), we are done by Proposition 4.
To complete the proof, let us suppose for contradiction that v(0) > w(0). We claim that this implies

v > w everywhere. Indeed, otherwise there is t0 > 0 such that v > w on [0, t0) and v(t0)= w(t0). Then
by (9) we infer that v′(t0)≤w′(t0) < 0. If v′(t0)=w′(t0), then Proposition 4 implies v≡w, contradicting
v(0) > w(0). If v′(t0) < w′(t0) < 0, then Proposition 6 implies Ev > Ew, which contradicts (10). Hence
v > w everywhere.
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We can now derive the desired contradiction. For every R > 0, we have, using integration by parts and
the fact that v and w satisfy (7),

0=
∫ R

−R
w(v(4)− Av′′− f (v))

= b(R)+
∫ R

−R
v(w(4)− Aw′′− f (w))+

∫ R

−R
wv(w p−1

− v p−1)

= b(R)+
∫ R

−R
wv(w p−1

− v p−1).

Here, b(R) contains all the boundary terms coming from the integrations by parts. By Lemma 7 we have
b(R)→ 0 as R→∞. But since

∫ R
−Rwv(w

p−1
− v p−1) is a negative and strictly decreasing function

of R, we obtain a contradiction by choosing R large enough. �

For the concrete values of A, B and p in (5) one can compute the homoclinic solution explicitly. We
emphasize that this is the only place in the proof of Proposition 3 where the precise form of A, B and p
enters.

Corollary 10. Suppose that v is a positive solution of (3) with lim|t |→∞ v(t) = 0. Then there is T ∈ R

such that
v(t)= cn(2 cosh(t − T ))−(n−4)/2, t ∈ R,

with cn from (2).

Proof. A straightforward calculation shows that w(t) = cn(2 cosh(t))−(n−4)/2 solves (3). From the
assumptions on v it follows that v has a global maximum at some T ∈ R. Since v′(T )= 0, we can apply
Lemma 9 to deduce that v( · + T )= w. �

The following lemma is one of the key new results in this paper.

Lemma 11. Let v ∈ C4(R) be a solution of (7). Then v is bounded.

Proof. By replacing v(t) by v(−t), we only need to show that v is bounded on [0,∞). We consider the
set Z+ = {t ≥ 0 : v′(t)= 0}.

If Z+ is bounded (in particular, if it is empty), then v is monotone for large t and thus admits a limit a+
as t→∞. By Lemma 8, a+ is finite and therefore v is bounded on [0,∞).

We now assume that Z+ is unbounded. Since F(u)→∞ as |u| →∞, there is an R > |v(0)| such
that F(u) > Ev for all |u| ≥ R. We claim that |v| < R on [0,∞) which, in particular, implies that v is
bounded on [0,∞). Indeed, by contradiction assume that MR := {t ≥ 0 : |v(t)| ≥ R} is nonempty and
define t∗ := inf MR . Since |v(0)|< R, we must have t∗ > 0 and |v(t∗)| = R. Replacing v(t) by −v(t)
if necessary (which does not change the set Z+), we may assume that v(t∗)= R. Then also v′(t∗)≥ 0.
Since Z+ is unbounded, the set Z+ ∩ [t∗,∞) is nonempty and we can set T := inf(Z+ ∩ [t∗,∞)). Then
v′(T )= 0 and v′ ≥ 0 on [t∗, T ] by continuity of v′. Thus v(T )≥ v(t∗)= R, and we deduce that

Ev(T )= 1
2v
′′(T )2+ F(v(T ))≥ F(v(T )) > Ev,

a contradiction to energy conservation. �
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We are now ready to prove the main result of this section.

Proof of Proposition 3. Let v ∈ C4(R) be a solution to (7) and set

Z := {t ∈ R : v′(t)= 0}.

We distinguish several cases:
Suppose first that Z =∅, so v is strictly monotone. We will show that this case cannot occur. Up to

replacing v(t) by v(−t), we may assume that v is strictly increasing, and so both limits a±= limt→±∞ v(t)
exist in R∪ {±∞}. By Lemma 8 both limits are finite. By Lemma 7, we are reduced to studying three
cases, each of which will lead to a contradiction via an energy argument.

If a− = 0 and a+ = B1/(p−1), then using Lemma 7 we get limt→−∞ Ev(t) = F(0) = 0, while
limt→+∞ Ev(t)= F(B1/(p−1)) < 0, a contradiction to energy conservation. Analogously, a contradiction
is obtained if a− =−B1/(p−1) and a+ = 0.

It remains to consider the case a− =−B1/(p−1) and a+ = B1/(p−1). Then as above, by Lemma 7,

lim
|t |→∞

Ev(t)= F(B1/(p−1)) < 0. (11)

On the other hand, by [van den Berg 2000, Corollary 6], the inequality

Ev(t)≥ 1
2v
′′(t)2+ F(v(t)) (12)

holds for all t ∈ R. But now evaluating the energy at t0 such that v(t0) = 0 gives, together with (12),
that Ev(t0)≥ 1

2v
′′(t0)2+ F(0)≥ 0, in contradiction to (11) and energy conservation. Altogether, we have

shown that the case Z =∅ cannot occur.
If |Z | = 1, we may assume, up to a translation, that Z = {0}. Then v is strictly monotone on (−∞, 0)

and (0,∞), and so both limits a± = limt→±∞ v(t) exist in R ∪ {±∞}. By Lemma 8 these limits are
finite, so v is bounded and, by Corollary 5, even. Therefore a+ = a−. By Lemma 7, only three cases can
occur: a+ = a− = 0 or a+ = a− =±B1/(p−1). In the first case, monotonicity implies that either v > 0 or
v < 0, and we conclude that v(t)=±cn(2 cosh(t))−(n−4)/2 by Corollary 10.

As for the other cases, let us assume without loss of generality that a+ = a− = B1/(p−1) (otherwise
replace v by −v). We derive a contradiction as follows. Since v is strictly monotone on [0,∞),
v(0) 6= B1/(p−1), and from Ev(0) = 1

2v
′′(0)2+ F(v(0)) ≥ F(B1/(p−1)) we infer that v(0) = −B1/(p−1)

(since F attains its global minimal value only at ±B1/(p−1)). Hence v changes sign; i.e., there is t0 ∈ R

such that v(t0) = 0. By Corollary 5, v is antisymmetric with respect to t0. But this is a contradiction
to the fact that both a+ and a− are positive. Altogether we have thus shown that if |Z | = 1, then
v(t)=±cn(2 cosh(t))−(n−4)/2.

Finally, let us consider the case where |Z | ≥ 2. By continuity of v′, we see that unless v is constant (and
hence v≡±B1/(p−1) or v≡0), the closed set Z cannot be dense; i.e., there are real numbers c<d such that
v′(c)=v′(d)=0 and v′ 6=0 on (c, d). By Lemma 11, v is bounded and therefore we can use Corollary 5 as
in the first part of the proof of Lemma 9 to conclude that v must be periodic of period 2(d−c). Moreover,
since v is strictly monotone on (c, d), there is only one maximum and minimum per period interval, and
these are strict. The symmetry with respect to the extrema follows at once from Corollary 5. �
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We end this section with one more result that will be needed in the proof of Theorem 2.

Lemma 12. Let v ∈ C4(R) be a positive solution of (3). Then

v′ <

√
1
2 A−

√( 1
2 A
)2
− B v.

For our values of A and B we have√
1
2 A−

√( 1
2 A
)2
− B = 1

2(n− 4),

but the lemma is true for general A and B satisfying (8).

Proof. Because of (8) we can introduce the two positive numbers

λ= 1
2 A−

√( 1
2 A
)2
− B and µ= 1

2 A+
√( 1

2 A
)2
− B. (13)

Using λ+µ= A and λµ= B we can write (3) in terms of the auxiliary function

φ(t) := v′′(t)− λv(t)

as
φ′′−µφ = v p. (14)

According to Proposition 3, φ attains its maximum on R. Since v > 0, the maximum principle implies
that φ < 0.

The function w := v′/v satisfies

w′ =−w2
+ λ+

φ

v
. (15)

According to Proposition 3 there is a t0 ∈ R with v′(t0)= 0, and therefore also w(t0)= 0. We shall show
now that M := {t > t0 : w(t)≥

√
λ} is empty, which yields the claimed inequality.

Suppose by contradiction that M 6=∅ and let t1 := inf M . It is easy to see that t1 > t0. Then certainly
w′(t1)≥ 0. On the other hand, since w(t1)=

√
λ, (15) implies

w′(t1)=
φ(t1)
v(t1)

< 0,

where the inequality comes from φ < 0 and v > 0. This is a contradiction. �

3. Proofs of the main results

3.1. Proof of Theorem 1. We begin with the proof of part (i) of Theorem 1. Let v ∈C4(R) be a solution
of (7). By Proposition 3, the only case where

inf
R
|v| ≤ B1/(p−1) (16)

may fail to hold is when v is periodic. In this case, v possesses a local minimum at, say, t0 ∈ R. Note
that if v has a zero then (16) is automatically fulfilled, so we may assume that v has a fixed sign and,
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up to replacing v by −v, we may assume that v > 0. But by [Guo et al. 2017a, Lemma 2.6], either v is
constant (and hence v ≡ B1/(p−1)) or v(t0) < B1/(p−1), so that (16) holds with strict inequality.

We turn now to proving part (ii) of Theorem 1. We proceed via a shooting argument. The value
a ∈ (0, B1/(p−1)) will be considered to be fixed throughout the following argument.

For β ≥ 0, we denote by vβ the unique solution of (7) with the initial values

v(0)= a, v′(0)= 0, v′′(0)= β, v′′′(0)= 0, (17)

and by Tβ ∈ (0,∞] its maximal forward time of existence. Also, let b := −minv∈R+ f (v).
Suppose that β > b/A =: β0. Then we see from

v
(4)
β = Av′′β + f (vβ) (18)

and (17) that v(4)β > 0 initially. Thus, v′′β increases initially, and since the right-hand side of (18) is positive
initially, it is easy to see that it will stay positive on [0, Tβ). Thus, v(4)β > 0 on [0, Tβ), which implies that
vβ and its first three derivatives all keep increasing on [0, Tβ). Thus, if Tβ =∞, then vβ is unbounded.
On the other hand, if Tβ <∞, then vβ(t)→∞ as t→ Tβ (since f is locally Lipschitz). To summarize,
vβ increases monotonically on [0, Tβ) and diverges to +∞ as t→ Tβ for β ≥ β0.

So we can restrict our search to β ∈ [0, β0]. However, for all β ≤ β0, we have the uniform energy
bound

Evβ (0)=
1
2β

2
+ F(a)≤ 1

2β
2
0 + F(a).

Since F(v)→∞ as v→∞, there is an R > 0 such that F(v) > 1
2β

2
0 + F(a) for all v > R. This implies

that whenever β ≤ β0 and vβ(t0) > R, we must have v′β(t0) 6= 0, for otherwise

Evβ (t0)=
1
2v
′′

β(t0)
2
+ F(vβ(t0))≥ F(vβ(t0)) > 1

2β
2
0 + F(a),

which contradicts the upper bound on Evβ (0) and energy conservation. In particular, a vβ which enters the
interval (R,∞) cannot leave it again, and hence is certainly not the periodic solution we are looking for.

On the other hand, if β = 0, we see from (18) that v(4)0 (0)= f (a) < 0, and hence v0(t) and v′′0 (t) are
strictly decreasing on some small interval t ∈ (0, σ ). Since f (v) < 0 for v ∈ (0, a), we deduce from (18)
that v(k)0 (t), k = 1, 2, 3, stay strictly negative until v0(t) reaches a negative value. Hence, if β = 0, there
must be t0 such that v0(t0) < 0.

All of the previous considerations lead us to defining the shooting sets

S := {β ≥ 0 : vβ(t) < 0 for some t ∈ (0, Tβ)},

T := {β ≥ 0 : vβ(t) > R for some t ∈ (0, Tβ) and vβ > 0 on [0, t]}.

Clearly, S and T are open in [0,∞) because of the continuous dependence of the solution on the initial
conditions. Moreover, S and T are disjoint because, as we observed above, once a solution vβ enters
the interval (R,∞), it stays there. We also already argued above that 0 ∈ S and (β0,∞)⊂ T ; i.e., both
S 6=∅ and T 6=∅.

Since our shooting parameter interval [0,∞) is connected, we deduce that S ∪ T 6= [0,∞). Hence
there must be β∗ > 0 and a corresponding solution v∗ := vβ∗ such that 0≤ v∗ ≤ R. In particular, v∗ is
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bounded. This and the fact that f is locally Lipschitz imply that Tβ∗ =∞. By even reflection, we obtain
a solution defined on all of R, which we still refer to as v∗. Since β∗ > 0, we know v∗ has a strict local
minimum in 0. By the classification of solutions from Proposition 3, v∗ must be periodic. Moreover, it
has a unique local maximum and minimum per period and is symmetric with respect to its extrema.

The uniqueness of v∗ up to translations follows from Proposition 4. �

3.2. Proof of Theorem 2. By [Lin 1998, Theorem 4.2], the positivity of u and the nonremovability
of the singularity in 0 imply that u is radially symmetric. Since the function v defined by u(x) =
|x |−(n−4)/2v(ln |x |) satisfies (3), we are in a position to apply the classification result from Proposition 3
and we claim that v is either the constant B1/(p−1)

= a0 or periodic. Indeed, the only case that remains to
be excluded is that v(t)= cn(2 cosh(t− T ))−(n−4)/2. But in this case, it is clear that v(t)∼ cnet (n−4)/2 as
t→−∞ and hence the singularity of u would be removable, contradicting the assumptions. Thus, either
v is constant or periodic.

Let a := inf v. Then, by the first part of Theorem 1, a ∈ (0, a0], and a = a0 if and only if v ≡ a0.
Moreover, for a < a0 the function v is periodic with minimal value a. Therefore, by the second part of
Theorem 1, v(t)= va(t + L) for some L ∈ R.

Finally, a simple computation shows that the inequality ∂u/∂|x |< 0 is equivalent to v′ < 1
2(n− 4)v,

which follows from Lemma 12. �

Appendix: Proof of Proposition 4

In this appendix, we give the proof of Proposition 4, following and simplifying [van den Berg 2000].
Let v and w be bounded solutions of (7) which satisfy v(0)=w(0) and v′(0)=w′(0). We can assume

without loss that v′′(0) ≥ w′′(0) (otherwise exchange v and w). We may assume furthermore (up to
replacing v(t) and w(t) by v(−t) and w(−t)) that v′′′(0)≥ w′′′(0).

Suppose, by contradiction, that v 6≡ w. Then by uniqueness of ODE solutions, v(k)(0) 6= w(k)(0) for
k = 2 or k = 3. In both cases, we deduce from our hypotheses on the initial conditions that

v(t) > w(t) on (0, σ )

for some sufficiently small σ > 0.
With the positive numbers λ and µ from (13) we define the auxiliary functions

φ(t) := v′′(t)− λv(t) and ψ(t) := w′′(t)− λw(t).

Then by the hypotheses, we have

(φ−ψ)(0)≥ 0 and (φ−ψ)′(0)≥ 0. (19)

As in (14), equation (7) for v and w implies

(φ−ψ)′′(t)−µ(φ−ψ)(t)= |v(t)|p−1v(t)− |w(t)|p−1w(t) for all t ∈ R.
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Since v(t) > w(t) on (0, σ ) and since the function u 7→ |u|p−1u is strictly increasing on R, this implies

(φ−ψ)′′(t)−µ(φ−ψ)(t) > 0 for all t ∈ (0, σ ). (20)

The inequalities (19) and (20) and the fact that µ > 0 easily imply (φ −ψ)(t) ≥ 0 for t ∈ (0, σ ), or
equivalently,

(v−w)′′(t)≥ λ(v−w)(t) > 0 for all t ∈ (0, σ ). (21)

Since (v−w)′(0)≥0 by the hypotheses of the lemma and since λ>0, we see from (21) that (v−w)′(t)>0
for all t ∈ (0, σ ). Hence v−w is strictly increasing on (0, σ ) and since σ > 0 was arbitrary with the
property that v−w > 0 on (0, σ ), we infer that v−w remains strictly positive for all times.

Repeating the above arguments for the interval (0,∞) instead of (0, σ ), we see from (21) that (v−w)′

is positive and strictly increasing on (0,∞). This of course contradicts the boundedness of v−w. This
proves that in fact we must have v ≡ w, concluding the proof of Proposition 4.
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