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We prove the existence of m-fold rotating patches for the Euler equations in the disc, for the simply
connected and doubly connected cases. Compared to the planar case, the rigid boundary introduces rich
dynamics for the lowest symmetries m = 1 and m = 2. We also discuss some numerical experiments
highlighting the interaction between the boundary of the patch and the rigid one.
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1. Introduction

In this paper, we shall discuss some aspects of the vortex motion for the Euler system in the unit disc D

of the Euclidean space R2. That system is described by the equations
∂tv+ v · ∇v+∇ p = 0, (t, x) ∈ R+×D,

div v = 0,
v · ν = 0 on ∂D,

v|t=0 = v0.

(1)
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Here, v = (v1, v2) is the velocity field, and the pressure p is a scalar potential that can be related to the
velocity using the incompressibility condition. The boundary equation means that there is no matter flow
through the rigid boundary ∂D= T; the vector ν is the outer unitary vector orthogonal to the boundary.
The main feature of two-dimensional flows is that they can be illustrated through their vorticity structure;
this can be identified with the scalar function ω = ∂1v2 − ∂2v1, and its evolution is governed by the
nonlinear transport equation

∂tω+ v · ∇ω = 0. (2)

To recover the velocity from the vorticity, we use the stream function 9, which is defined as the unique
solution of the Dirichlet problem on the unit disc:{

19 = ω,

ψ |∂D = 0.
Therefore, the velocity is given by

v =∇⊥9, ∇⊥ = (−∂2, ∂1).

By using the Green function of the unit disc, we get the expression

9(z)=
1

4π

∫
D

log
∣∣∣∣ z− ξ

1− zξ

∣∣∣∣2ω(ξ) d A(ξ), (3)

with d A being the planar Lebesgue measure. In what follows, we shall identify the Euclidean and the
complex planes, so the velocity field is identified with the complex function

v(z)= v1(x1, x2)+ iv2(x1, x2), z = x1+ i x2.

Therefore, we get the compact formula

v(t, z)= 2i∂z9(t, z)

=
i

2π

∫
D

|ξ |2− 1
(z− ξ)(ξ z− 1)

ω(t, ξ) d A(ξ)

=
i

2π

∫
D

ω(t, ξ)

z− ξ
d A(ξ)+

i
2π

∫
D

ξ

1− ξ z
ω(t, ξ) d A(ξ). (4)

We recognize in the first part of the last formula the structure of the Biot–Savart law in the plane R2,
which is given by

v(t, z)=
i

2π

∫
C

ω(t, ξ)

z− ξ
d A(ξ), z ∈ C. (5)

The second term of (4) is absent in the planar case. It describes the contribution of the rigid boundary T,
and our main task is to investigate the boundary effects on the dynamics of special long-lived vortex
structures. Before going further into details, we recall first that, from the equivalent formulation (2)–(4)
of the Euler system (1), Yudovich [1963] was able to construct a unique global solution in the weak sense,
provided that the initial vorticity ω0 is compactly supported and bounded. This result is very important
because it allows one to deal rigorously with vortex patches, which are vortices uniformly distributed in a
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bounded region D, i.e., ω0 = χD. These structures are preserved by the evolution, and at each time t ,
the vorticity is given by χDt , with Dt = ψ(t, D) being the image of D by the flow. As we shall see later
in (16), the contour dynamics equation of the boundary ∂Dt is described by the following nonlinear
integral equation. Let γt : T→ ∂Dt be the Lagrangian parametrization of the boundary; then

∂tγt =−
1

2π

∫
∂Dt

log|γt − ξ | dξ +
1

4π

∫
∂Dt

|ξ |2

1− γtξ
dξ.

We point out that, when the initial boundary is smooth enough, roughly speaking more regular than C1,
then the regularity is propagated for long times without any loss. This was first achieved by Chemin
[1998] in the plane and extended in bounded domains by Depauw [1999]. Note also that we can find in
[Bertozzi and Constantin 1993] another proof of Chemin’s result. It appears that the boundary dynamics
of the patch is very complicate to tackle and, to our knowledge, the only known explicit example is
the stationary one given by a small disc centered at the origin. Even though explicit solutions form a
poor class, one can try to find implicit patches with prescribed dynamics, such as rotating patches, also
known as V -states. These patches are subject to perpetual rotation around some fixed point that we can
assume to be the origin and with uniform angular velocity �; this means that Dt = ei t�D. We shall see
in Section 2.3 that the V -states equation, when D is symmetric with respect to the real axis, is given by

Re
{(

2�z+
∫

\

0

z− ξ
z− ξ

dξ −
∫

\

0

|ξ |2

1− zξ
dξ
)

z′
}
= 0, z ∈ 0 , ∂D, (6)

with z′ being a tangent vector to the boundary ∂D0 at the point z; note that we have used the notation∫

\

0
≡ (1/2iπ)

∫
0

. In the flat case, the boundary equation (6) becomes

Re
{(

2�z+
∫

\

0

z− ξ
z− ξ

dξ
)

z′
}
= 0, z ∈ 0. (7)

Note that circular patches are stationary solutions for (7); however, elliptical vortex patches perform a
steady rotation about their centers without changing shape. This latter fact was discovered by Kirchhoff
[1876], who proved that, when D is an ellipse centered at zero, Dt = ei t�D, where the angular velocity �
is determined by the semiaxes a and b through the formula �= ab/(a+ b)2. These ellipses are often
referred to in the literature as the Kirchhoff elliptic vortices; see for instance [Majda and Bertozzi 2002,
p. 304] or [Lamb 1945, p. 232].

One century later, several examples of rotating patches were obtained by Deem and Zabusky [1978],
using contour dynamics simulations. Burbea [1982] gave an analytical proof and showed the existence
of V -states with m-fold symmetry for each integer m ≥ 2. In this countable family, the case m = 2
corresponds to the Kirchhoff elliptic vortices. Burbea’s approach consists of using complex analysis tools,
combined with bifurcation theory. It should be noted that, from this standpoint, the rotating patches are
arranged in a collection of countable curves bifurcating from Rankine vortices (trivial disc solution) at
the discrete angular velocities set {(m − 1)/2m : m ≥ 2}. The numerical analysis of limiting V -states
which are the ends of each branch is done in [Overman 1986; Wu et al. 1984] and reveals interesting
behavior: the boundary develops corners at right angles. Recently, the C∞ regularity and the convexity
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of the patches near the trivial solutions have been investigated in [Hmidi et al. 2013]. More recently, this
result has been improved by Castro, Córdoba and Gómez-Serrano [Castro et al. 2016b], who showed the
analyticity of the V -states close to the disc. We point out that similar research has been carried out in
the past few years for more singular nonlinear transport equations arising in geophysical flows, such as
the surface quasigeostrophic equations or the quasigeostrophic shallow-water equations; see for instance
[Castro et al. 2016a; 2016b; Hassainia and Hmidi 2015; Płotka and Dritschel 2012]. It should be noted
that the angular velocities of the bifurcating V -states for (7) are contained in the interval ]0, 1

2 [. However,
it is not clear whether we can find a V -state when � does not lie in this range. Fraenkel [2000] proved,
always in the simply connected case, that the solutions associated with �= 0 are trivial and reduced to
Rankine patches. This was established by using the moving plane method, which seems to be flexible
and has been recently adapted in [Hmidi 2015] to �< 0 but with a convexity restriction. The case �= 1

2
was also solved in that paper, using the maximum principle for harmonic functions.

Another related subject is to see whether a second bifurcation occurs at the branches discovered by
Deem and Zabusky. This has been explored for the branch of the ellipses corresponding to m = 2. Kamm
[1987] gave numerical evidence of the existence of some branches bifurcating from the ellipses; see also
[Saffman 1992]. In [Luzzatto-Fegiz and Williamson 2010], one can find more details about the diagram
for the first bifurcations and some illustrations of the limiting V -states. The proof of the existence and
analyticity of the boundary has been recently investigated in [Castro et al. 2016b; Hmidi and Mateu 2016].
Another interesting topic which has been studied since the pioneering work of Love [1893] is the linear
and nonlinear stability of the m-folds. For the ellipses, we mention [Guo et al. 2004; Tang 1987], and
for the general case of the m-fold symmetric V -states, we refer to [Burbea and Landau 1982; Wan 1986].
For further numerical discussions, see also [Cerretelli and Williamson 2003; Dritschel 1986; Mitchell
and Rossi 2008]. Recently [Hmidi et al. 2015; de la Hoz et al. 2016b] have shown a special interest in
the study of doubly connected V -states which are bounded patches and delimited by two disjoint Jordan
curves. For example, an annulus is doubly connected, and by rotation invariance, it is a stationary V -state.
No other explicit doubly connected V -state is known in the literature. In [Hmidi et al. 2015], a full
characterization of the V -states (with nonzero magnitude in the interior domain) with at least one elliptical
interface has been achieved, complementing the results of Polvani and Flierl [1986]. As a byproduct, it
is shown that the domain between two ellipses is a V -state only if it is an annulus. The proof of existence
of nonradial doubly connected V -states has been achieved very recently in [de la Hoz et al. 2016b] by
using bifurcation theory. More precisely, we get the following result. Let 0< b < 1 and m ≥ 3, such that

1+ bm
−

1− b2

2
m < 0.

Then there exist two curves of m-fold symmetric doubly connected V -states bifurcating from the annulus
{z ∈ C : b < |z|< 1} at each of the angular velocities

�±m =
1− b2

4
±

1
2m

√(
m(1− b2)

2
− 1

)2

−b2m . (8)

The main goal of the current paper is to explore the existence of rotating patches (6) for Euler equations
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posed on the unit disc D. We shall focus on the simply connected and doubly connected cases and study
the influence of the rigid boundary on these structures. Before stating our main results, we define the
set Db = {z ∈ C : |z|< b}. Our first result dealing with the simply connected V -states is:

Theorem 1. Let b ∈ ]0, 1[ and m be a positive integer. Then there exists a family of m-fold symmetric
V -states (Vm)m≥1 for (6) bifurcating from the trivial solution ω0 = χDb at the angular velocity

�m ,
m− 1+ b2m

2m
.

The proof of this theorem is done in the spirit of [Burbea 1980; de la Hoz et al. 2016b], using the
conformal mapping parametrization φ : T→ ∂D of the V -states, combined with bifurcation theory. As
we shall see later in (17), the function φ satisfies the following nonlinear equation, for all w ∈ T:

Im
{[

2�φ(w)+
∫

\

T

φ(w)−φ(τ)

φ(w)−φ(τ)
φ′(τ ) dτ −

∫
\

T

|φ(τ)|2φ′(τ )

1−φ(w)φ(τ)
dτ
]
wφ′(w)

}
= 0.

Denote by F(�, φ) the term in the left-hand side of the preceding equality. Then the linearized operator
around the trivial solution φ = b Id can be explicitly computed and is given by the following Fourier
multiplier: for h(w)=

∑
n∈N anw

n ,

∂φF(�, b Id)h(w)= b
∑
n≥1

n
(

n− 1+ b2n

n
− 2�

)
an−1en, en =

1
2i
(wn
−wn).

Therefore, the nonlinear eigenvalues leading to nontrivial kernels of dimension 1 are explicitly described
by the quantity �m appearing in Theorem 1. Later on, we check that all the assumptions of the Crandall–
Rabinowitz theorem stated in Section 2.2 are satisfied, and our result follows easily. In Section 5.1,
we implement some numerical experiments concerning the limiting V -states. We observe two regimes
depending on the size of b: b small and b close to 1. In the first case, as expected, corners do appear as in
the planar case. However, for b close to 1, the effect of the rigid boundary is not negligible. We observe
that the limiting V -states are tangentially touching the unit circle; see Figure 5. Some remarks are in order.

Remark 2. For the Euler equations in the plane, there are no curves of 1-fold V -states close to Rankine
vortices. However, we deduce from our main theorem that this mode appears for spherical bounded
domains. Its existence is the result of the interaction between the patch and the rigid boundary T. Moreover,
according to the numerical experiments, these V -states are not necessarily centered at the origin, and this
fact is completely new. For the symmetry m ≥ 2, all the discovered V -states are necessarily centered at
zero because they have at least two axes of symmetry passing through zero.

Remark 3. By a scaling argument, when the domain of the fluid is the ball B(0, R), with R > 1, then
from the preceding theorem, the bifurcation from the unit disc occurs at the angular velocities

�m,R ,
m− 1+ R−2m

2m
.

Therefore, we obtain Burbea’s result [1980] by letting R tend to +∞.
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Remark 4. From the numerical experiments done in [de la Hoz et al. 2016b], we note that, in the plane,
the bifurcation is pitchfork and occurs to the left of �m . Furthermore, the branches of bifurcation are
“monotonic” with respect to the angular velocity. In particular, this means that, for each value of �, we
have at most only one V -state with that angular velocity. This behavior is no longer true in the disc as
will be discussed later in the numerical experiments; see Figure 3.

Remark 5. Due to the boundary effects, the ellipses are no longer solutions for the rotating patch
equation (6). Whether explicit solutions can be found for this model is an interesting problem. However,
we believe that the conformal mapping of any nontrivial V -state has a necessary infinite expansion. Note
that Burbea [1982] proved that, in the planar case when the conformal mapping associated to the V -state
has a finite expansion, it is necessarily an ellipse. His approach is based on Faber polynomials, and this
could give insight to solving the same problem in the disc.

The second part of this paper deals with the existence of doubly connected V -states for the system (1),
governed by (6). Note that the annular patches centered at zero, which are given by

Ab1,b2 = {z ∈ C : b1 < |z|< b2}, b1 < b2 < 1,

are indeed stationary solutions. Our main task is to study the bifurcation of the V -states from these trivial
solutions in the spirit of the recent works [de la Hoz et al. 2016a; 2016b]. We shall first start by studying
the existence with the symmetry m ≥ 2, followed by the special case m = 1.

Theorem 6. Let 0< b2 < b1 < 1, and set b , b2/b1. Let m ≥ 2, such that

m >
2+ 2bm

− (bm
1 + bm

2 )
2

1− b2 .

Then there exist two curves of m-fold symmetric doubly connected V -states bifurcating from the annulus
Ab1,b2 at the angular velocities

�±m =
1− b2

4
+

b2m
1 − b2m

2

4m
±

1
2

√
1m,

with

1m =

(
1− b2

2
−

2− b2m
1 − b2m

2

2m

)2

− b2m
(

1− b2m
1

m

)2

.

Before outlining the ideas of the proof, a few remarks are necessary.

Remark 7. As was discussed in Remark 3, one can use a scaling argument and obtain the result previously
established in [de la Hoz et al. 2016b] for the planar case. Indeed, when the domain of the fluid is the
ball B(0, R), with R > 1, then the bifurcation from the annulus Ab,1 amounts to making the changes
b1 = 1/R and b2 = b/R in Theorem 6. Thus, by letting R tend to infinity, we get exactly the nonlinear
eigenvalues of the Euler equations in the plane (8).

Remark 8. Unlike in the plane, where the frequency m is assumed to be larger than 3, we can reach
m = 2 in the case of the disc. This can be checked for b2 small with respect to b1. This illustrates once
again the interaction between the rigid boundary and the V -states.
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Now we shall sketch the proof of Theorem 6, which follows along the lines of [de la Hoz et al.
2016b] and stems from bifurcation theory. The first step is to write down the analytical equations of
the boundaries of the V -states. This can be done for example through the conformal parametrization of
the domains D1 and D2, which are close to the discs b1D and b2D, respectively. Set φ j :D

c
→ Dc

j , the
conformal mappings which have the expansions,

for all |w| ≥ 1, φ1(w)= b1w+
∑
n∈N

a1,n

wn , φ2(w)= b2w+
∑
n∈N

a2,n

wn .

In addition, we assume that the Fourier coefficients are real, which means that we are looking only for
V -states that are symmetric with respect to the real axis. As we shall see later in Section 4.1, the conformal
mappings are subject to two coupled nonlinear equations defined as follows: for j ∈ {1, 2} and w ∈ T,

F j (λ, φ1, φ2)(w), Im
{(
(1− λ)φ j (w)+ I (φ j (w))− J (φ j (w))

)
wφ′j (w)

}
= 0,

with

I (z)=
∫

\

T

z−φ1(ξ)

z−φ1(ξ)
φ′1(ξ) dξ −

∫
\

T

z−φ2(ξ)

z−φ2(ξ)
φ′2(ξ) dξ,

J (z)=
∫

\

T

|φ1(ξ)|
2

1− zφ1(ξ)
φ′1(ξ) dξ −

∫
\

T

|φ2(ξ)|
2

1− zφ2(ξ)
φ′2(ξ) dξ,

λ, 1− 2�.

In order to apply bifurcation theory, we should understand the structure of the linearized operator around
the trivial solution (φ1, φ2)= (b1 Id, b2 Id) corresponding to the annulus with radii b1 and b2 and identify
the range of � where this operator has a one-dimensional kernel. The computations of the linear operator
DF(�, b1 Id, b2 Id) with F = (F1, F2) in terms of the Fourier coefficients are fairly lengthy, and we find
that it acts as a Fourier multiplier matrix. More precisely, for

h1(w)=
∑
n≥1

a1,n

wn , h2(w)=
∑
n≥1

a2,n

wn ,

we obtain the formula

DF(λ, b1 Id, b2 Id)(h1, h2)=
∑
n≥1

Mn(λ)

(
a1,n−1

a2,n−1

)
en, en(w),

1
2i
(wn
−wn),

where the matrix Mn is given by

Mn(λ)=

(
b1[nλ− 1+ b2n

1 − n(b2/b1)
2
] b2[(b2/b1)

n
− (b1b2)

n
]

−b1[(b2/b1)
n
− (b1b2)

n
] b2[nλ− n+ 1− b2n

2 ]

)
.

Therefore, the values of � associated with nontrivial kernels are the solutions of a second-degree
polynomial in λ,

Pn(λ), det Mn(λ)= 0. (9)

The polynomial Pn has real roots when the discriminant1n(α, b) introduced in Theorem 6 is positive. The
calculation of the dimension of the kernel is significantly more complicated than the cases considered before
in [Burbea 1980; de la Hoz et al. 2016b]. The matter reduces to counting, for a given λ, the discrete set

{n ≥ 2 : Pn(λ)= 0}.
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Note that, in [Burbea 1980; de la Hoz et al. 2016b], this set has only one element, and therefore, the
kernel is one-dimensional. This follows from the monotonicity of the roots of Pn with respect to n. In
the current situation, we get similar results but with a more refined analysis.

Now we shall move on to the existence of 1-fold symmetries, which are completely absent in the plane.
The study in the general case is slightly subtler, and we have only carried out partial results, so some
other cases are left open and deserve to be explored. Before stating our main result, we need to do some
preparation. As we shall see in Section 4.4.3, the equation P1(λ)= 0 admits exactly two solutions

λ−1 = (b2/b1)
2 or λ+1 = 1+ b2

2− b2
1.

Similarly to the planar case [de la Hoz et al. 2016b], there is no hope of bifurcating from the first
eigenvalue λ−1 because the range of the linearized operator around the trivial solution has an infinite
codimension, and thus, the Crandall–Rabinowitz theorem stated in Section 2.2 is useless. However, for
the second eigenvalue λ+1 , the range is at most of codimension 2, and in order to bifurcate, we should
avoid a special set of b1 and b2 that we shall describe now. Fix b1 in ]0, 1[, and set

Eb1 , {b2 ∈ ]0, b1[ : there exists n ≥ 2 such that Pn(1+ b2
2− b2

1)= 0},

where Pn is defined in (9). As we shall see in Proposition 20, this set is countable and composed of a
strictly increasing sequence (xm)m≥1 converging to b1. Now we state our result.

Theorem 9. Given b1 ∈ ]0, 1[, then for any b2 /∈ Eb1 , there exists a curve of nontrivial 1-fold doubly
connected V -states bifurcating from the annulus Ab1,b2 at the angular velocity

�1 =
b2

1− b2
2

2
.

The proof is done in the spirit of Theorem 6. When b2 /∈ Eb1 , then all the conditions of the Crandall–
Rabinowitz theorem are satisfied. However, when b2 ∈ Eb1 , then the range of the linearized operator has
codimension 2. Whether the bifurcation occurs in this special case is an interesting problem which is left
open here.

Notation. We need to collect some useful notation that will be frequently used along this paper. We shall
use the symbol , to define an object. The unit disc is denoted by D and its boundary, the unit circle,
by T. For a given continuous complex function f : T→ C, we set∫

\

T

f (τ ) dτ ,
1

2iπ

∫
T

f (τ ) dτ,

where dτ stands for complex integration.
Let X and Y be two normed spaces. We denote by L(X, Y ) the space of all continuous linear maps

T : X→ Y endowed with its usual strong topology. We denote by Ker T and R(T ) the null space and the
range of T , respectively. Finally, if F is a subspace of Y , then Y/F denotes the quotient space.
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2. Preliminaries and background

In this introductory section, we shall collect some basic facts on Hölder spaces and bifurcation theory
and shall recall how to use conformal mappings to obtain the equations of V -states.

2.1. Function spaces. In this paper as well as in the preceding ones [Hmidi et al. 2013; de la Hoz et al.
2016b], we find it more convenient to think of a 2π-periodic function g : R→ C as a function of the
complex variable w = eiθ . To be more precise, let f : T→ R2 be a smooth function; then it can be
assimilated to a 2π -periodic function g : R→ R2 via the relation

f (w)= g(η), w = eiη.

By Fourier expansion, there exist complex numbers (cn)n∈Z such that

f (w)=
∑
n∈Z

cnw
n,

and the differentiation with respect to w is understood in the complex sense. Now we shall introduce
Hölder spaces on the unit circle T.

Definition. Let 0< γ < 1. We denote by Cγ (T) the space of continuous functions f such that

‖ f ‖Cγ (T) , ‖ f ‖L∞(T)+ sup
τ 6=w∈T

| f (τ )− f (w)|
|τ −w|γ

<∞.

For any nonnegative integer n, the space Cn+γ (T) stands for the set of functions f of class Cn whose
n-th order derivatives are Hölder continuous with exponent γ . It is equipped with the usual norm

‖ f ‖Cn+γ (T) ,
n∑

k=0

∥∥∥∥dk f
dkw

∥∥∥∥
L∞(T)

+

∥∥∥∥dn f
dnw

∥∥∥∥
Cγ (T)

.

Recall that the Lipschitz seminorm is defined by

‖ f ‖Lip(T) = sup
τ 6=w∈T

| f (τ )− f (w)|
|τ −w|

.

Now we list some classical properties that will be useful later.

(i) For n ∈ N and γ ∈ ]0, 1[, the space Cn+γ (T) is an algebra.

(ii) For K ∈ L1(T) and f ∈ Cn+γ (T), we have the convolution inequality

‖K ? f ‖Cn+γ (T) ≤ ‖K‖L1(T)‖ f ‖Cn+γ (T).

2.2. Elements of bifurcation theory. We shall now recall an important theorem of bifurcation theory
which plays a central role in the proofs of our main results. This theorem was established by Crandall and
Rabinowitz [1971]. Consider a continuous function F :R×X→Y with X and Y being two Banach spaces.
Assume that F(λ, 0)= 0 for any λ belonging to nontrivial interval I . The Crandall–Rabinowitz theorem
gives sufficient conditions for the existence of branches of nontrivial solutions to the equation F(λ, x)= 0
bifurcating at some point (λ0, 0). For more general results, we refer the reader to [Kielhöfer 2012].
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Theorem 10. Let X and Y be two Banach spaces and V a neighborhood of 0 in X, and let F :R×V→Y .
Set L0 , ∂x F(0, 0); then the following properties are satisfied.

(i) F(λ, 0)= 0 for any λ ∈ R.

(ii) The partial derivatives Fλ, Fx and Fλx exist and are continuous.

(iii) The spaces N (L0) and Y/R(L0) are one-dimensional.

(iv) The transversality assumption ∂λ∂x F(0, 0)x0 /∈ R(L0) holds, where

N (L0)= span{x0}.

If Z is any complement of N (L0) in X, then there is a neighborhood U of (0, 0) in R× X, an interval
]−a, a[ and continuous functions ϕ : ]−a, a[→R and ψ : ]−a, a[→ Z such that ϕ(0)= 0, ψ(0)= 0 and

F−1(0)∩U = {(ϕ(ξ), ξ x0+ ξψ(ξ)) : |ξ |< a} ∪ {(λ, 0) : (λ, 0) ∈U }.

Before proceeding further with the consideration of the V -states, we shall recall the Riemann mapping
theorem, a central result in complex analysis. To restate this result, we need to recall the definition of
simply connected domains. Let Ĉ, C∪ {∞} denote the Riemann sphere. We say that a domain �⊂ Ĉ

is simply connected if the set Ĉ \� is connected. Let D denote the unit open disc and � ⊂ C be a
simply connected bounded domain. Then according to the Riemann mapping theorem, there is a unique
biholomorphic map 8 : C \D→ C \� taking the form

8(z)= az+
∑
n∈N

an

zn , a > 0.

In this theorem, the regularity of the boundary has no effect on the existence of the conformal mapping,
but it plays a role in determining the boundary behavior of the conformal mapping. See for instance
[Pommerenke 1992; Warschawski 1935]. Here, we shall recall the following result.

Kellogg and Warschawski’s theorem ([Warschawski 1935] or [Pommerenke 1992, Theorem 3.6]). If
the conformal map 8 : C \D→ C \� has a continuous extension to C \D which is of class Cn+β , with
n ∈ N and 0< β < 1, then the boundary 8(T) is of class Cn+β .

2.3. Boundary equations. Our next task is to write down the equations of V -states using the conformal
parametrization. First recall that the vorticity ω = ∂1v2− ∂2v1 satisfies the transport equation

∂tω+ v · ∇ω = 0

and the associated velocity is related to the vorticity through the stream function 9 as

v = 2i∂z9,

with

9(z)=
1

4π

∫
D

log
∣∣∣∣ z− ξ

1− zξ

∣∣∣∣2ω(ξ) d A(ξ).
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When the vorticity is a patch of the form ω = χD with D a bounded domain strictly contained in D, then

9(z)=
1

4π

∫
D

log
∣∣∣∣ z− ξ

1− zξ

∣∣∣∣2 d A(ξ).

For a complex function ϕ : C→ C of class C1 in the Euclidean variables (as a function of R2), we define

∂zϕ =
1
2

(
∂ϕ

∂x
− i

∂ϕ

∂y

)
, ∂zϕ =

1
2

(
∂ϕ

∂x
+ i

∂ϕ

∂y

)
.

As we have seen in the introduction, a rotating patch or V -state is a special solution of the vorticity
equation (2) with initial data ω0 = χD and such that

ω(t)= χDt , Dt = ei t�D.

In this definition and for simplicity, we have only considered patches rotating around zero. According to
[Burbea 1980; Hmidi et al. 2013; de la Hoz et al. 2016b], the boundary equation of the rotating patches is

Re{(�z− 2∂z9)z′} = 0, z ∈ 0 , ∂D, (10)

where z′ denotes a tangent vector to the boundary at the point z. We point out that the existence of a
rigid boundary does not alter this equation which in fact was established in the planar case. The purpose
now is to transform (10) into an equation involving only the boundary ∂D of the V -state. To do so, we
need to write ∂z9 as an integral on the boundary ∂D based on the use of the Cauchy–Pompeiu formula.
Consider a finitely connected domain D bounded by finitely many smooth Jordan curves, and let 0 be
the boundary ∂D endowed with the positive orientation; then

for all z ∈ C,

∫

\

0

ϕ(z)−ϕ(ξ)
z− ξ

dξ =−
1
π

∫
D
∂ξϕ(ξ)

d A(ξ)
z− ξ

. (11)

Differentiating (3) with respect to the variable z yields

∂z9(z)=
1

4π

∫
D

ξ

1− zξ
d A(ξ)+

1
4π

∫
D

1
z− ξ

d A(ξ). (12)

Applying the Cauchy–Pompeiu formula with ϕ(z)= z, we find

1
π

∫
D

1
z− ξ

d A(ξ)=−
∫

\

0

z− ξ
z− ξ

dξ for all z ∈ D.

Using the change of variable ξ → ξ which keeps the Lebesgue measure invariant,

1
π

∫
D

ξ

1− zξ
d A(ξ)=

1
π z

∫
D̃

ξ

1/z− ξ
d A(ξ)

with D̃ being the image of D by complex conjugation. A second application of the Cauchy–Pompeiu
formula, using that 1/z /∈ D for z ∈ D, yields

1
π z

∫
D̃

ξ

1/z− ξ
d A(ξ)=

∫

\

0̃

|ξ |2

1− zξ
dξ for all z ∈ D, 0̃ = ∂ D̃.
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Using once again the change of variable ξ → ξ which reverses the orientation,∫

\

0̃

|ξ |2

1− zξ
dξ =−

∫

\

0

|ξ |2

1− zξ
dξ for all z ∈ D.

Therefore, we obtain

4∂z9(z)=−
∫

\

0

|ξ |2

1− zξ
dξ −

∫

\

0

z− ξ
z− ξ

dξ. (13)

Inserting the last identity in (10), we get an equation involving only the boundary

Re
{(

2�z+
∫

\

0

z− ξ
z− ξ

dξ +
∫

\

0

|ξ |2

1− zξ
dξ
)

z′
}
= 0 for all z ∈ 0.

It is more convenient in the formulas to replace the angular velocity � in the preceding equation by the
parameter λ= 1− 2�, leading to the V -states equation

Re
{(
(1− λ)z+

∫

\

0

z− ξ
z− ξ

dξ +
∫

\

0

|ξ |2

1− zξ
dξ
)

z′
}
= 0 for all z ∈ 0. (14)

It is worth pointing out that (14) characterizes V -states among domains with C1 boundary, regardless of
the number of boundary components. If the domain is simply connected, then there is only one boundary
component and so only one equation. However, if the domain is doubly connected, then (14) gives
rise to two coupled equations, one for each boundary component. We note that all the V -states that we
shall consider admit at least one axis of symmetry passing through zero and without loss of generality
it can be supposed to be the real axis. This implies that the boundary ∂D is invariant by the reflection
symmetry ξ→ ξ . Therefore, using this change of variables, which reverses orientation, in the last integral
term of the equation (14), we obtain

Re
{(
(1− λ)z+

∫

\

0

z− ξ
z− ξ

dξ −
∫

\

0

|ξ |2

1− zξ
dξ
)

z′
}
= 0 for all z ∈ 0. (15)

To end this section, we mention that in the general framework the dynamics of any vortex patch can be
described by its Lagrangian parametrization γt : T→ ∂Dt , 0t as

∂tγt = v(t, γt).

Since 9 is a real-valued function,
∂z9 = ∂z9,

which implies according to (13)

v(t, z)= 2i∂z9(t, z)

=−
1

4π

∫
0t

log|z− ξ |2 dξ +
1

4π

∫
0t

|ξ |2

1− zξ
dξ.

Consequently, we find that the Lagrangian parametrization satisfies the nonlinear ODE

∂tγt =−
1

4π

∫
0t

log|γt − ξ |
2 dξ +

1
4π

∫
0t

|ξ |2

1− γ tξ
dξ. (16)
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The ultimate goal of this section is to relate the V -states described above to stationary solutions for Euler
equations when the rigid boundary rotates at some specific angular velocity. To do so, suppose that the
disc D rotates with a constant angular velocity �; then the equations (1) written in the frame of the
rotating disc take the form

∂t u+ u · ∇u−�y⊥ · ∇u+�u⊥+∇q = 0

with

y = e−i t�x, v(t, x)= e−i t�u(t, y), q(t, y)= p(t, x).

For more details about the derivation of this equation, we refer the reader for instance to [Farwig and
Hishida 2011]. Here the variable in the rotating frame is denoted by y. Applying the curl operator to the
equation of u, we find that the vorticity of u, which still denoted by ω, is governed by the transport equation

∂tω+ (u−�y⊥) · ∇ω = 0.

Consequently, any stationary solution in the patch form is actually a V -state rotating with the angular
velocity �. Relating this observation to Theorems 1 and 6, we deduce that rotating the disc at some
suitable angular velocities creates stationary patches with m-fold symmetry.

3. Simply connected V -states

In this section, we shall gather all the pieces needed for the proof of Theorem 1. The strategy is analogous
to [Burbea 1980; Hmidi et al. 2013; de la Hoz et al. 2016b]. It consists of first writing down the V -states
equation through the conformal parametrization and second applying the Crandall–Rabinowitz theorem.
As can be noted from Theorem 1, the result is local meaning that we are looking for V -states which are
smooth and cause a small perturbation of the Rankine patch χDb with Db = bD. We also assume that the
patch is symmetric with respect to the real axis, and this fact has been crucial in deriving (15). Note that
as D b D the exterior conformal mapping φ : Dc

→ Dc has the expansion

φ(w)= bw+
∑
n≥0

bn

wn , bn ∈ R,

and satisfies 0< b < 1. This latter fact follows from the Schwarz lemma. Indeed, let

ψ(z),
1

φ(1/z)
;

then ψ :D→ D̂ is conformal, with D̂ the image of D by the map z 7→ 1/z. Clearly D⊂ D̂, and therefore,
the restriction ψ−1

: D→ D is well defined and holomorphic and satisfies ψ(0)= 0. From the Schwarz
lemma, we deduce that |(ψ−1)′(0)|< 1; otherwise D will coincide with D. It suffices now to use that
(ψ−1)′(0)= b.

Now we shall transform (15) into an equation on the unit circle T. For this purpose, we make the
change of variables z = φ(w) and ξ = φ(τ). Note that for w ∈ T a tangent vector at the point z = φ(w)
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is given by
z′ = iwφ′(w)

and thus (15) becomes

Im
{[
(1− λ)φ(w)+

∫
\

T

φ(w)−φ(τ)

φ(w)−φ(τ)
φ′(τ ) dτ −

∫

\

T

|φ(τ)|2φ′(τ )

1−φ(w)φ(τ)
dτ
]
wφ′(w)

}
= 0. (17)

Set φ , b Id+ f ; then the foregoing functional can be split into three parts

F1( f )(w), Im{φ(w)wφ′(w)},

F2( f )(w), Im
{ ∫

\

T

φ(w)−φ(τ)

φ(w)−φ(τ)
φ′(τ ) dτ wφ′(w)

}
,

F3( f )(w), Im
{ ∫

\

T

|φ(τ)|2φ′(τ )

1−φ(w)φ(τ)
dτ wφ′(w)

}
, (18)

and consequently, (17) becomes

F(λ, f )= 0, F(λ, f ), (1− λ)F1( f )+ F2( f )− F3( f ). (19)

Observe that we can decompose F into two parts F(λ, f ) = G(λ, f )− F3( f ) where G(λ, f ) is the
functional appearing in the flat space R2 and the new term F3 describes the interaction between the patch
and the rigid boundary T. Now it is easy from the complex formulation to check that the disc Db is a
rotating patch for any � ∈ R. Indeed, as the disc is a trivial solution for the full space R2, G(λ, 0)= 0.
Moreover,

F3(0)(w), Im
{

b4w

∫

\

T

dτ
1− b2wτ

}
= 0

because the integrand is analytic in the open disc (1/b2)D and therefore we apply residue theorem.

3.1. Regularity of the functional F. This section is devoted to the study of the regularity assumptions
stated in the Crandall–Rabinowitz theorem for the functional F introduced in (19). The application of
this theorem at this stage of the presentation requires one to fix the function spaces X and Y . We should
look for Banach spaces X and Y of Hölder type in the spirit of [Hmidi et al. 2013; de la Hoz et al. 2016b],
and they are given by

X =
{

f ∈ C1+α(T) : f (w)=
∑
n≥0

anw
n, an ∈ R, w ∈ T

}
,

Y =
{

g ∈ Cα(T) : g(w)=
∑
n≥1

bnen, bn ∈ R, w ∈ T

}
, en ,

1
2i
(wn
−wn),

with α ∈ ]0, 1[. For r ∈ ]0, 1[, we denote by Br the open ball of X with center 0 and radius r

Br = { f ∈ X : ‖ f ‖C1+α ≤ r}.

It is straightforward to see that for any f ∈ Br the function w 7→ φ(w)= bw+ f (w) is conformal on
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C \D provided that r < b. Moreover, according to the Kellogg–Warshawski result [Warschawski 1935],
the boundary of φ(C \D) is a Jordan curve of class C1+α. We propose to prove the following result
concerning the regularity of F .

Proposition 11. Let b ∈ ]0, 1[ and 0< r <min(b, 1− b); then the following hold true:

(i) F : R× Br → Y is C1 (it is in fact C∞).

(ii) The partial derivative ∂λ∂ f F : R× Br → L(X, Y ) exists and is continuous (it is in fact C∞).

Proof. (i) We shall only sketch the proof because most of the details are done in [Hmidi et al. 2013; de la
Hoz et al. 2016b]. First recall from (19) the decomposition

F(λ, f )= (1− λ)F1( f )+ F2( f )− F3( f ).

The part (1− λ)F1( f )+ F2( f ) coincides with the nonlinear functional appearing in the plane, and its
regularity was studied in [Hmidi et al. 2013; de la Hoz et al. 2016b]. Therefore, it remains to check the
regularity assumptions for the term F3 given in (18). Since Cα(T) is an algebra, it suffices to prove that
the mapping F4 : φ ∈ b Id+Br → Cα defined by

F4(φ(w))=

∫

\

T

|φ(τ)|2φ′(τ )

1−φ(w)φ(τ)
dτ (20)

is C1 and admits real Fourier coefficients. Observe that this functional is well defined and is given by the
series expansion

F4(φ(w))=
∑
n∈N

φn(w)

∫

\

T

φn(τ )|φ(τ)|2φ′(τ ) dτ.

This sum is defined pointwisely because ‖φ‖L∞ ≤ b+ r < 1. This series converges absolutely in Cα(T).
To get this, we use the law product which can be proved by induction

‖φn
‖Cα ≤ n‖φ‖n−1

L∞ ‖φ‖Cα ,

and therefore, we obtain

‖F4(φ)‖Cα ≤

∑
n∈N

n‖φ‖n−1
L∞ ‖φ‖Cα

∣∣∣∣ ∫ \

T

φn(τ )|φ(τ)|2φ′(τ ) dτ
∣∣∣∣

≤ ‖φ′‖L∞‖φ‖Cα

∑
n∈N

n‖φ‖2n+1
L∞

≤ ‖φ′‖L∞‖φ‖Cα

∑
n∈N

n(b+ r)2n+1 <∞.

From the completeness of Cα(T), we obtain that F4(φ) belongs to this space. Again from the series
expansion, we can check that φ 7→ F4(φ) is not only C1 but also C∞. To end the proof, we need to check
that all the Fourier coefficients of F4(φ) are real, and this fact is equivalent to showing that

F4(φ(w))= F4(φ(w)) for all w ∈ T.
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As φ(w)= φ(w) and φ′(w)= φ′(w), we may write successively

F4(φ(w))=−

∫

\

T

|φ(τ)|2φ′(τ )

1−φ(w)φ(τ)
dτ

=

∫

\

T

|φ(τ)|2φ′(τ )

1−φ(w)φ(τ)
dτ

where in the last equality we have used the change of variable τ 7→ τ .

(ii) Following the arguments developed in [Hmidi et al. 2013; de la Hoz et al. 2016b], we get what is
expected formally, that is

∂λ∂ f F(λ, f )h =−∂ f F1( f )

= Im{φ(w)wh′(w)+ h(w)wφ′(w)},

from which we deduce that ∂λ∂ f F(λ, f ) ∈ L(X, Y ) and the mapping f 7→ ∂λ∂ f F(λ, f ) is in fact C∞,
which is clearly better than the statement of the proposition. �

3.2. Spectral study. This part is crucial for implementing the Crandall–Rabinowitz theorem. We shall in
particular compute the linearized operator ∂ f F(λ, 0) around the trivial solution and look for the values
of λ associated with the nontrivial kernel. For these values of λ, we shall see that the linearized operator
has a one-dimensional kernel and is in fact of Fredholm type with zero index. Before giving the main
result of this subsection, we recall the notation en = (w

n
−wn)/2i .

Proposition 12. Let h ∈ X take the form h(w)=
∑

n≥0 an/w
n . Then the following hold true:

(i) The structure of ∂ f F(λ, 0) is given by

∂ f F(λ, 0)h(w)= b
∑
n≥1

n
(
λ−

1− b2n

n

)
an−1en.

(ii) The kernel of ∂ f F(λ, 0) is nontrivial if and only if there exists m ∈ N? such that

λ= λm ,
1− b2m

m
, m ∈ N?,

and in this case, the kernel is one-dimensional and generated by vm(w)= w
m−1.

(iii) The range of ∂ f F(λm, 0) is of codimension 1.

(iv) The transversality condition holds: for m ∈ N?,

∂λ∂ f F(λm, 0)vm /∈ R∂ f F(λm, 0).
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Proof. (i) The computations of the terms ∂ f Fi (λ, 0)h were almost done in [de la Hoz et al. 2016b], and
we shall only give some details. By straightforward computations, we obtain

∂ f F1(0, 0)h(w)= Im{bh(w)w+ bh′(w)}

= b Im
{∑

n≥0

anw
n+1
−

∑
n≥1

nanw
n+1
}

=−
b
2i

∑
n≥0

(n+ 1)an(w
n+1
−wn+1)

=−b
∑
n≥0

(n+ 1)anen+1. (21)

Concerning ∂ f F2(0, 0), one may write

∂ f F2(0, 0)h(w)= Im
{

bw
∫

\

T

h(τ )− h(w)
τ −w

dτ + b
∫

\

T

h(τ )− h(w)
τ −w

τ dτ − b
∫

\

T

h′(τ )τ dτ − bh′(w)
}
.

Therefore, using the residue theorem at infinity,

∂ f F2(0, 0)h(w)= Im
{

bw
∫

\

T

h(τ )− h(w)
τ −w

dτ − bh′(w)
}

=− Im{bh′(w)},

where we have used in the last line the fact∫

\

T

h(τ )− h(w)
τ −w

dτ =
∑
n∈N

an

∫

\

T

wn
− τ n

τ −w
dτ

= 0.

Consequently, we obtain

∂ f F2(0, 0)h(w)= b
∑
n≥1

nanen+1. (22)

As for the third term ∂ f F3(0, 0)h, we get by plain computation

∂ f F3(0, 0)h(w)= Im
{

b3w

∫

\

T

dτ
1− b2wτ

h′(w)+ b3w

∫

\

T

h′(τ ) dτ
1− b2wτ

+ 2b3w

∫

\

T

Re{h(τ )τ }
1− b2wτ

dτ + b5w

∫

\

T

wh(τ )+ τh(w)
(1− b2wτ)2

dτ
}

, Im{I1(w)+ I2(w)+ I3(w)+ I4(w)}. (23)

By once again invoking the residue theorem,

I1(w)= 0. (24)
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To compute the second term I2(w), we use the Taylor series of 1/(1− ζ ), leading to

I2(w)= b3w

∫

\

T

h′(τ ) dτ
1− b2wτ

=

∑
n≥0

b2n+3wn+1
∫

\

T

τ nh′(τ ) dτ.

From the Fourier expansions of h, we infer that∫
\

T

τ nh′(τ ) dτ =−nan,

which implies that

I2(w)=−
∑
n≥1

nanb2n+3wn+1. (25)

In regard to the third term I3(w), it may be written in the form

I3(w)= b3w

∫

\

T

τh(τ )
1− b2wτ

dτ + b3w

∫
\

T

τh(τ )
1− b2wτ

dτ.

The first integral term is zero due to the fact that the integrand is analytic in the open unit disc and
continuous up to the boundary. Therefore, we get similarly to I2(w)

I3(w)= b3w

∫

\

T

τh(τ )
1− b2wτ

dτ

=

∑
n≥0

b2n+3wn+1
∫

\

T

τ n−1h(τ ) dτ.

Note that ∫

\

T

τ n−1h(τ ) dτ = an,

which implies in turn that

I3(w)=
∑
n≥0

anb2n+3wn+1. (26)

Now we come back to the last term I4(w), and one may write using again the residue theorem

I4(w)= b5w2
∫

\

T

h(τ ) dτ
(1− b2wτ)2

+ b5wh(w)
∫

\

T

τ dτ
(1− b2wτ)2

= b5w2
∫

\

T

h(τ ) dτ
(1− b2wτ)2

+ 0.

Using the Taylor expansion
1

(1− ζ )2
=

∑
n≥1

nζ n−1, |ζ |< 1, (27)
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we deduce that
I4(w)=

∑
n≥1

nb2n+3wn+1
∫

\

T

τ n−1h(τ ) dτ

=

∑
n≥1

nanb2n+3wn+1. (28)

Inserting the identities (24), (25), (26) and (28) into (23), we find

∂ f F3(0, 0)h(w)= Im
{∑

n≥0

anb2n+3wn+1
}

=−

∑
n≥0

anb2n+3en+1. (29)

Hence, by plugging (21), (22) and (29) into (19), we obtain

∂ f F(λ, 0)h(w)= b
∑
n≥0

(n+ 1)
(
λ−

1− b2n+2

n+ 1

)
anen+1

= b
∑
n≥1

n
(
λ−

1− b2n

n

)
an−1en. (30)

This finishes the proof of the first part (i).

(ii) From (30), we immediately deduce that the kernel of ∂ f F(λ, 0) is nontrivial if and only if there exists
m ≥ 1 such that

λ= λm ,
1− b2m

m
.

We shall prove that the sequence n 7→ λn is strictly decreasing, from which we conclude immediately
that the kernel is one-dimensional. Assume that for two integers n > m ≥ 1 one has

1− b2m

m
=

1− b2n

n
.

This implies that
1− b2n

1− b2m =
n
m
.

Set α = n/m and x = b2m ; then the preceding equality becomes

f (x),
1− xα

1− x
= α.

If we prove that this equation has no solution x ∈ ]0, 1[ for any α > 1, then the result follows without
difficulty. To do so, we get after differentiating f

f ′(x)=
(α− 1)xα −αxα−1

+ 1
(1− x)2

,
g(x)

(1− x)2
.

Now we note that
g′(x)= α(α− 1)xα−2(x − 1) < 0.
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As g(1)= 0, then we deduce

g(x) > 0 for all x ∈ ]0, 1[.

Thus, f is strictly increasing. Furthermore,

lim
x→1

f (x)= α.

This implies that,

for all x ∈ ]0, 1[, f (x) < α.

Therefore, we get the strict monotonicity of the “eigenvalues”, and consequently, the kernel of ∂ f F(λm, 0)
is a one-dimensional vector space generated by the function vm(w)= w

m−1.

(iii) We shall prove that the range of ∂ f F(λm, 0) is described by

R∂ f F(λm, 0)=
{

g ∈ Y : g(w)=
∑
n≥1
n 6=m

bnen

}
, Z.

Combining Propositions 11 and 12(i), we conclude that the range is contained in the right space. So what
is left is to prove the converse. Let g ∈ Z; we will solve in X the equation

∂ f F(λm, 0)h = g, h =
∑
n≥0

anw
n.

By virtue of (30), this equation is equivalent to

an−1 =
bn

bn(λm − λn)
, n ≥ 1, n 6= m.

Thus, the problem reduces to showing that

h : w 7→
∑
n≥1
n 6=m

bn

bn(λm − λn)
wn−1

∈ C1+α(T).

Observe that

inf
n 6=m
|λn − λm |, c0 > 0,

and thus, we deduce by Cauchy–Schwarz

‖h‖L∞ ≤
1
b

∑
n≥1
n 6=m

|bn|

n|λm − λn|

≤
1

c0b

∑
n≥1
n 6=m

|bn|

n

. ‖g‖L2 . ‖g‖Cα .
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To finish the proof, we shall check that h′ ∈ Cα(T) or equivalently (wh)′ ∈ Cα(T). It is obvious that

(wh(w))′ =−
∑
n≥1
n 6=m

bn

b(λm − λn)
wn+1

=−
1

bλm

∑
n≥1
n 6=m

bnw
n+1
+

1
bλm

∑
n≥1
n 6=m

λn

λn − λm
bnw

n+1.

We shall write the preceding expression with the Szegő projection

5 :
∑
n∈Z

anw
n
7→

∑
n∈−N

anw
n, (wh(w))′ =−

w

2ibλm
5g(w)+

w

2ibλm
(K ?5g)(w),

with

K (w),
∑
n≥1
n 6=m

λn

λn − λm
wn.

Notice that
λn

|λn − λm |
≤ c−1

0
1
n
,

and therefore, K ∈ L2(T) which implies in particular that K ∈ L1(T). Now to complete the proof
of (wh)′ ∈ Cα(T), it suffices to use the continuity of the Szegő projection on Cα(T) combined with
L1 ?Cα(T)⊂ Cα(T).

(iv) To check the transversality assumption, we differentiate (30) with respect to λ:

∂λ∂ f F(λm, 0)h = b
∑
n≥1

nan−1en.

Therefore,

∂λ∂ f F(λm, 0)vm = bmem /∈ R(∂ f F(λm, 0)).

This completes the proof of the proposition. �

3.3. Proof of Theorem 1. According to Propositions 14 and 11, all the assumptions of the Crandall–
Rabinowitz theorem are satisfied, and therefore, we conclude for each m ≥ 1 the existence of only one
nontrivial curve bifurcating from the trivial one at the angular velocity

�m =
1− λm

2
=

m− 1+ b2m

2m
.

To complete the proof, it remains to check the m-fold symmetry of the V -states. This can be done by
including the required symmetry in the function spaces. More precisely, instead of dealing with X and Y ,
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we should work with the spaces

Xm =

{
f ∈ C1+α(T) : f (w)=

∞∑
n=1

anw
nm−1, an ∈ R

}
,

Ym =

{
g ∈ Cα(T) : g(w)=

∑
n≥1

bnenm, bn ∈ R

}
, en =

1
2i
(wn
−wn).

The conformal mapping describing the V -state takes the form

φ(w)= bw+
∞∑

n=1

anw
nm−1,

and the m-fold symmetry of the V -state means that

φ(e2iπ/mw)= e2iπ/mφ(w) for all w ∈ T.

The ball Br is changed to Bm
r = { f ∈ Xm : ‖ f ‖C1+α < r}. Then Proposition 11 holds true according to

this adaptation, and the only point that one must check is the stability of the spaces; that is, for f ∈ Bm
r ,

we have F(λ, f ) ∈ Ym . This result was checked in [de la Hoz et al. 2016b] for the terms F1 and F2, and
it remains to check that F3( f ) belongs to Ym . Recall that

F3( f (w))= Im{F4(φ(w))wφ
′(w)}, φ(w)= bw+ f (w),

where F4 is defined in (20). By change of variables and using the symmetry of φ,

F4(φ(ei2π/mw)
)
=

∫

\

T

|φ(ξ)|2φ′(ξ)

1−φ(ei2π/mw)φ(ξ)
dξ

= e−i2π/m
∫

\

T

|φ(e−i2π/mζ )|2φ′(e−i2π/mζ )

1−φ(ei2π/mw)φ(e−i2π/mζ )
dζ

= e−i2π/m
∫

\

T

|φ(τ)|2φ′(τ )

1−φ(w)φ(τ)
dτ

= e−i2π/m F4(φ(w)).

Consequently, we obtain
F3( f (ei2π/mw))= F3( f (w)),

and this shows the stability result.

4. Doubly connected V -states

In this section, we shall establish all the ingredients required for the proofs of Theorems 6 and 9, and this
will be carried out in several steps. First we shall write the equations governing the doubly connected
V -states which are described by two coupled nonlinear equations. Second we briefly discuss the regularity
of the functionals and compute the linearized operator around the trivial solution. The delicate part to
which we will pay careful attention is the computation of the kernel dimension. This will be implemented
through the study of the monotonicity of the nonlinear eigenvalues. As we shall see, the fact that we have
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multiple parameters introduces many more complications to this study compared to the result of [de la
Hoz et al. 2016b]. Finally, we shall prove Theorem 6 in Section 4.5.2.

4.1. Boundary equations. Let D be a doubly connected domain of the form D = D1 \D2 with D2 ⊂ D1

two simply connected domains. Denote by 0 j the boundary of the domain D j . In this case, the V -states
equation (15) reduces to two coupled equations, one for each boundary component 0 j . More precisely,

Re{((1− λ)z+ I (z)− J (z))z′} = 0 for all z ∈ 01 ∪02, (31)

with

I (z)=
∫

\

01

z− ξ
z− ξ

dξ −
∫

\

02

z− ξ
z− ξ

dξ,

J (z)=
∫

\

01

|ξ |2

1− zξ
dξ −

∫
\

02

|ξ |2

1− zξ
dξ.

As for the simply connected case, we prefer using the conformal parametrization of the boundaries. Let
φ j : D

c
→ Dc

j satisfy

φ j (w)= b jw+
∑
n≥0

a j,n

wn

with 0 < b j < 1, j = 1, 2 and b2 < b1. We assume moreover that all the Fourier coefficients are real
because we shall look for V -states which are symmetric with respect to the real axis. Then by change of
variables, we obtain

I (z)=
∫

\

T

z−φ1(ξ)

z−φ1(ξ)
φ′1(ξ) dξ −

∫

\

T

z−φ2(ξ)

z−φ2(ξ)
φ′2(ξ) dξ,

J (z)=
∫

\

T

|φ1(ξ)|
2

1− zφ1(ξ)
φ′1(ξ) dξ −

∫

\

T

|φ2(ξ)|
2

1− zφ2(ξ)
φ′2(ξ) dξ.

Setting φ j = b j Id+ f j , (31) becomes,

for all w ∈ T, G j (λ, f1, f2)(w)= 0, j = 1, 2,

where

G j (λ, f1, f2)(w), Im
{(
(1− λ)φ j (w)+ I (φ j (w))− J (φ j (w))

)
wφ′j (w)

}
.

Note that one can easily check that

G(λ, 0, 0)= 0 for all λ ∈ R.

This is consistent with the fact that the annulus is a stationary solution and therefore rotates with any
angular velocity since the shape is rotational invariant.
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4.2. Regularity of the functional G. In this short subsection, we shall quickly state the regularity result
of the functional G , (G1,G2) needed in the Crandall–Rabinowitz theorem. Following the simply
connected case, the spaces X and Y involved in the bifurcation will be chosen in a similar way: set

X =
{

f ∈ (C1+α(T))2 : f (w)=
∑
n≥0

Anw
n, An ∈ R2, w ∈ T

}
,

Y =
{

g ∈ (Cα(T))2 : g(w)=
∑
n≥1

Bnen, Bn ∈ R2, w ∈ T

}
, en ,

1
2i
(wn
−wn),

with α ∈ ]0, 1[. For r ∈ (0, 1), we denote by Br the open ball of X with center 0 and radius r ,

Br = { f ∈ X : ‖ f ‖C1+α ≤ r}.

Similarly to Proposition 11, one can establish the regularity assumptions needed for the Crandall–
Rabinowitz theorem. Compared to the simply connected case, the only terms that one should care about
are those describing the interaction between the boundaries of the patches which are supposed to be
disjoint. Therefore, the involved kernels are sufficiently smooth and actually do not cause significant
difficulties in their treatment. For this reason, we prefer skip the details and restrict ourselves to the
following statement.

Proposition 13. Let b ∈ ]0, 1[ and 0< r <min(b, 1− b); then the following hold true:

(i) G : R× Br → Y is C1 (it is in fact C∞).

(ii) The partial derivative ∂λ∂ f G : R× Br → L(X, Y ) exists and is continuous (it is in fact C∞).

4.3. Structure of the linearized operator. In this subsection, we shall compute the linearized operator
∂ f G(λ, 0) around the annulus Ab1,b2 of radii b1 and b2. The study of the eigenvalues is postponed to the
next subsections. From the regularity assumptions of G, we assert that the Fréchet derivative and Gâteaux
derivatives coincide and

DG(λ, 0, 0)(h1, h2)=
d
dt

G(λ, th1, th2)|t=0.

Note that DG(λ, 0, 0) is nothing but the partial derivative ∂ f G(λ, 0, 0). Our main result reads as follows.

Proposition 14. Let h = (h1, h2) ∈ X take the form h j (w)=
∑

n≥0 a j,n/w
n . Then

DG(λ, 0, 0)(h1, h2)=
∑
n≥1

Mn(λ)

(
a1,n−1

a2,n−1

)
en,

where the matrix Mn is given by

Mn(λ)=

(
b1[nλ− 1+ b2n

1 − n(b2/b1)
2
] b2[(b2/b1)

n
− (b1b2)

n
]

−b1[(b2/b1)
n
− (b1b2)

n
] b2[nλ− n+ 1− b2n

2 ]

)
and en(w)=

1
2i
(wn
−wn).

Proof. Since G = (G1,G2), for a given couple of functions (h1, h2) ∈ X ,

DG(λ, 0, 0)(h1, h2)=

(
∂ f1 G1(λ, 0, 0)h1+ ∂ f2 G1(λ, 0, 0)h2

∂ f1 G2(λ, 0, 0)h1+ ∂ f2 G2(λ, 0, 0)h2

)
.
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We shall split G j into three terms

G j (λ, f1, f2)= G1
j (λ, f j )+G2

j ( f1, f2)+G3
j ( f1, f2),

where

G1
j (λ, f j )(w), Im

{[
(1− λ)φ j (w)+ (−1) j+1

∫

\

T

φ j (w)−φ j (τ )

φ j (w)−φ j (τ )
φ′j (τ ) dτ

+ (−1) j
∫

\

T

|φ j (τ )|
2φ′j (τ )

1−φ j (w)φ j (τ )
dτ
]
wφ′j (w)

}
,

G2
j ( f1, f2), (−1) j Im

{ ∫
\

T

φ j (w)−φi (τ )

φ j (w)−φi (τ )
φ′i (τ ) dτ wφ′j (w)

}
, i 6= j,

G3
j ( f1, f2), (−1) j+1 Im

{ ∫

\

T

|φi (τ )|
2φ′i (τ )

1−φ j (w)φi (τ )
dτ wφ′j (w)

}
, i 6= j,

with φ j = b j Id+ f j , j = 1, 2.

• Computation of ∂ f j G
1
j (λ, 0, 0)h j . First observe that

G1
1(λ, f1)(w)= Im

{[
(1− λ)φ1(w)+

∫

\

T

φ1(w)−φ1(τ )

φ1(w)−φ1(τ )
φ′1(τ ) dτ −

∫
\

T

|φ1(τ )|
2φ′1(τ )

1−φ1(w)φ1(τ )
dτ
]
wφ′1(w)

}
.

This functional is exactly the defining function in the simply connected case, and thus, using merely (30),

∂ f1 G1
1(λ, 0)h1 = b1

∑
n≥0

(λ(n+ 1)− 1+ b2n+2
1 )a1,nen+1. (32)

In regard to G1
2(λ, f2), we get from the definition

G1
2(λ, f2)(w)= Im

{[
(1− λ)φ2(w)−

∫

\

T

φ2(w)−φ2(τ )

φ2(w)−φ2(τ )
φ′2(τ ) dτ +

∫

\

T

|φ2(τ )|
2φ′2(τ )

1−φ2(w)φ2(τ )
dτ
]
wφ′2(w)

}
.

It is easy to check the algebraic relation G1
2(λ, f2)=−G1

1(2− λ, f2), and thus, by applying (32),

∂ f2 G1
2(λ, 0)h2 = b2

∑
n≥0

(λ(n+ 1)− 2n− 1− b2n+2
2 )a2,nen+1. (33)

• Computation of ∂ f j G
2
j (λ, 0, 0)h j . This quantity is given by

∂ f j G
2
j (0, 0)h j = (−1) j d

dt
Im
{

biw

∫

\

T

b jw− biτ + th j (w)

b jw− biτ + th j (w)
dτ (b j + th′j (w))

}∣∣∣∣
t=0
.

Straightforward computations yield

∂ f j G
2
j (0, 0)h j = (−1) j bi Im

{
h′j (w)w

∫

\

T

b jw− biτ

b jw− biτ
dτ + b jwh j (w)

∫

\

T

dτ
b jw− biτ

− b jwh j (w)

∫

\

T

b jw− biτ

(b jw− biτ)2
dτ
}
.
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According to the residue theorem,∫
T

dτ
b1w− b2τ

= 0,
∫

T

dτ
(b1w− b2τ)2

= 0 for all w ∈ T,

and therefore,

∂ f1 G2
1(0, 0)h1(w)=−b2

2 Im
{
−

∫

\

T

wh′1(w)
b1w− b2τ

dτ
τ
+ b1

∫

\

T

wh1(w)

(b1w− b2τ)2

dτ
τ

}
=−b2

2 Im
{
−

1
b1

h′1(w)+
1
b1
wh1(w)

}
=−

b2
2

b1

∑
n≥0

(n+ 1)a1,nen+1. (34)

Now using the vanishing integrals∫
T

τ dτ
b2w− b1τ

= 0,
∫

T

τ dτ
(b2w− b1τ)2

= 0,
∫

T

dτ
(b2w− b1τ)2

= 0,

we may obtain

∂ f2 G2
2(0, 0)h2(w)= b1 Im

{
b2h′2(w)

∫

\

T

dτ
b2w− b1τ

+ b2wh2(w)

∫
\

T

dτ
b2w− b1τ

}
= b1 Im

{
−

b2

b1
h′2(w)−

b2

b1
wh2(w)

}
= b2

∑
n≥0

(n+ 1)a2,nen+1. (35)

• Computation of ∂ fi G
2
j (λ, 0, 0)hi , i 6= j . By straightforward computations, we obtain

∂ fi G
2
j (0, 0)hi (w)= (−1) j b j Im

{
w

∫

\

T

(b jw− biτ)

b jw− biτ
h′i (τ )dτ − biw

∫

\

T

hi (τ )

b jw− biτ
dτ

+ biw

∫

\

T

(b jw− biτ)hi (τ ) dτ
(b jw− biτ)2

}
. (36)

As hi is holomorphic inside the open unit disc, by the residue theorem, we deduce that∫

\

T

hi (τ )

b1w− b2τ
dτ = 0, w ∈ T.

It follows that

∂ f2 G2
1(0, 0)h2(w)=−b1 Im

{
b1

∫

\

T

h′2(τ )
b1w− b2τ

dτ − b2w

∫

\

T

τh′2(τ )
b1w− b2τ

dτ

+ b1b2

∫

\

T

h2(τ ) dτ
(b1w− b2τ)2

− b2
2w

∫

\

T

τh2(τ ) dτ
(b1w− b2τ)2

}
,−b1 Im{J1+ J2+ J3+ J4}. (37)
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To compute the first term J1(w), we write after using the series expansion of 1/(1− (b2/b1)wτ)

J1 = w

∫

\

T

h′2(τ )
1− (b2/b1)wτ

dτ

=

∑
n≥0

(
b2

b1

)n

wn+1
∫

\

T

τ nh′2(τ ) dτ.

Note that ∫
\

T

τ nh′2(τ ) dτ =−na2,n,

which us enables to get

J1 =−
∑
n≥1

na2,n

(
b2

b1

)n

wn+1. (38)

As for the term J2(w), we write in a similar way

J2 =−
b2

b1

∫

\

T

τh′2(τ )
1− (b2/b1)wτ

dτ

=−

∑
n≥0

(
b2

b1

)n+1

wn
∫

\

T

τ n−1h′2(τ ) dτ.

Since
∫

\

T
τ−kh′2(τ ) dτ = 0 for k ∈ {0, 1}, the preceding sum starts at n = 2 and by shifting the summation

index

J2 =−
∑
n≥1

(
b2

b1

)n+2

wn+1
∫

\

T

τ nh′2(τ ) dτ

=

∑
n≥1

na2,n

(
b2

b1

)n+2

wn+1. (39)

Concerning the third term J3, we write by virtue of (27)

J3 =
b2

b1
w2
∫

\

T

h2(τ )

(1− (b2/b1)wτ)2
dτ

=

∑
n≥1

n
(

b2

b1

)n

wn+1
∫

\

T

τ n−1h2(τ ) dτ.

Therefore, we find

J3 =
∑
n≥1

na2,n

(
b2

b1

)n

wn+1. (40)
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Similarly, we get

J4 =−

(
b2

b1

)2

w

∫

\

T

τh2(τ )

(1− (b2/b1)wτ)2
dτ

=−

∑
n≥1

n
(

b2

b1

)n+1

wn
∫

T

τ n−2h2(τ ) dτ

=−

∑
n≥0

(n+ 1)a2,n

(
b2

b1

)n+2

wn+1. (41)

Inserting the identities (38), (39), (40) and (41) into (37), we find

∂ f2 G2
1(0, 0)h2(w)= b1 Im

{∑
n≥0

a2,n

(
b2

b1

)n+2

wn+1
}

= b1
∑
n≥0

a2,n

(
b2

b1

)n+2

en+1(w). (42)

Next, we shall move to the computation of ∂ f1 G2
2(0, 0)h1. In view of (36),

∂ f1 G2
2(0, 0)h1(w)= b2 Im

{
w

∫

\

T

(b2w− b1τ)

b2w− b1τ
h′1(τ ) dτ − b1w

∫
\

T

h1(τ )

b2w− b1τ
dτ

+ b1w

∫
\

T

(b2w− b1τ)h1(τ ) dτ
(b2w− b1τ)2

}
.

The residue theorem at infinity enables us to get rid of the first and third integrals in the right-hand side,
and thus,

∂ f1 G2
2(0, 0)h1(w)=−b1b2 Im

{
w

∫

\

T

h1(τ )

b2w− b1τ
dτ
}
.

A second application of the residue theorem in the disc yields

∂ f1 G2
2(0, 0)h1(w)= b2 Im

{
wh1

(
b2w

b1

)}
=−b2

∑
n≥0

a1,n

(
b2

b1

)n

en+1(w). (43)

• Computation of ∂ fi G
3
j (λ, 0, 0)hi . The diagonal terms i = j can be easily computed:

∂ fi G
3
i (0, 0)h j (w)= (−1)i+1b3

i Im
{
w

∫

\

T

h′i (w) dτ

1− b2
i wτ
+whi (w)

∫

\

T

τ dτ
(1− b2

i wτ)
2

}
= 0. (44)
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Let us now calculate ∂ fi G
3
j (λ, 0, 0)hi for i 6= j . One can check with difficulty that

∂ fi G
3
j (0, 0)hi (w)= (−1) j+1b j b2

i Im
{
w

∫

\

T

h′i (τ )
1− bi b jwτ

dτ + 2w
∫

\

T

Re{τhi (τ )}

1− bi b jwτ
dτ

+ bi b jw
2
∫

\

T

hi (τ ) dτ
(1− bi b jwτ)2

}
.

Invoking once again the residue theorem, we find

∂ fi G
3
j (0, 0)hi (w)= (−1) j+1b j b2

i Im
{
−

∑
n≥0

nai,n(b j bi )
nwn+1

+

∑
n≥0

ai,n(b j bi )
nwn+1

+

∑
n≥0

nai,n(b j bi )
nwn+1

}
= (−1) j bi

∑
n≥0

ai,n(b j bi )
n+1en+1. (45)

The details are left to the reader because most of them were done previously. Now putting together the
identities (32), (34) and (44),

∂ f1 G1(λ, 0, 0)h1 =
∑
n≥0

b1

[
(n+ 1)λ− 1+ b2n+2

1 − (n+ 1)
(

b2

b1

)2]
a1,nen+1. (46)

From (33), (35) and (44), one obtains

∂ f2 G2(λ, 0, 0)h2 =
∑
n≥0

b2((n+ 1)λ− n− b2n+2
2 )a2,nen+1. (47)

On the other hand, we observe that for i 6= j

∂ fi G
1
j (λ, 0)hi (w)= 0. (48)

Gathering the identities (48), (42) and (45) yields

∂ f2 G1(λ, 0, 0)h2 =
∑
n≥0

b2

[(
b2

b1

)n+1

− (b1b2)
n+1
]

a2,nen+1.

Furthermore, combining (48), (43) and (45), we can assert that

∂ f1 G2(λ, 0, 0)h1 =
∑
n≥0

b1

[
(b1b2)

n+1
−

(
b2

b1

)n+1]
a1,nen+1.

Consequently, we get in view of the last two expressions combined with (47) and (48)

DG(λ, 0, 0)(h1, h2)=
∑
n≥0

Mn+1

(
a1,n

a2,n

)
en+1, (49)

where the matrix Mn is given for each n ≥ 1 by

Mn ,

(
b1[nλ− 1+ b2n

1 − n(b2/b1)
2
] b2[(b2/b1)

n
− (b1b2)

n
]

−b1[(b2/b1)
n
− (b1b2)

n
] b2[nλ− n+ 1− b2n

2 ]

)
. (50)

This completes the proof of Proposition 14. �
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4.4. Eigenvalues study. The current subsection will be devoted to the study of the structure of the
nonlinear eigenvalues which are the values λ such that the linearized operator DG(λ, 0, 0) given by (49)
has a nontrivial kernel. Note that these eigenvalues correspond exactly to matrices Mn which are not
invertible for some integer n ≥ 1. In other words, λ is an eigenvalue if and only if there exists n ≥ 1 such
that det Mn = 0, that is,

det Mn(λ)= b1b2

[
n2λ2
− n

(
n+ b2n

2 − b2n
1 + n

(
b2

b1

)2)
λ+ (n− 1)

(
1− b2n

1 + n
(

b2

b1

)2)
+

(
b2

b1

)2n

+ nb2n
2

(
b2

b1

)2

− b2n
2

]
= 0.

This is equivalent to

Pn(λ), λ
2
−

[
1+

(
b2

b1

)2

−

(
b2n

1 − b2n
2

n

)]
λ

+

(
b2

b1

)2

−
1− (b2/b1)

2n

n2 +
1− (b2/b1)

2

n
−

b2n
1 − b2n

2 (b2/b1)
2

n
+

b2n
1 − b2n

2

n2

= 0. (51)

The reduced discriminant of this second-degree polynomial in λ is given by

1n =

(
1− (b2/b1)

2

2
−

2− b2n
2 − b2n

1

2n

)2

−

(
b2

b1

)2n(1− b2n
1

n

)2

. (52)

Thereby Pn admits two real roots if and only if 1n ≥ 0, and they are given by

λ±n =
1+ (b2/b1)

2

2
−

(
b2n

1 − b2n
2

2n

)
±

√
1n.

To understand the structure of the eigenvalues and their dependence on the involved parameters, it would
be better to fix the radius b1 and to vary n and b2 ∈ ]0, b1[. We shall distinguish the cases n≥ 2 from n= 1,
which is very special. For given n ≥ 2, we wish to draw the curves b2 7→ λ±n (b2). As we shall see in
Proposition 19, the maximal domains of existence of these curves are a common connected set of the
form [0, b?n] and b?n is defined as the unique b2 ∈ ]0, b1[ such that 1n = 0. We introduce the graphs C±n
of λ±n (b2):

C±n , {(b2, λ
±

n (b2)) : b2 ∈ [0, b?n]}, Cn = C−n ∪C+n , n ≥ 2. (53)

It is not hard to check that C+n intersects C−n at only one point whose abscissa is b?n , that is, when the
discriminant vanishes. Furthermore, and this is not trivial, we shall see that the domain enclosed by the
curve Cn and located in the first quadrant of the plane is a strictly increasing set on n. This will give in
particular the monotonicity of the eigenvalues with respect to n. Nevertheless, the dynamics of the first
eigenvalues corresponding to n = 1 is completely different from the preceding ones. Indeed, according to
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Figure 1. λ±m as a function of b2 ∈ [0, b?m], for m = 2, . . . , 20, together with the case
m = 1 (black), for b1 = 0.75.

Section 4.4.3, we find for n = 1 two eigenvalues given explicitly by

λ−1 = (b2/b1)
2 or λ+1 = 1+ b2

2− b2
1.

It turns out that for the first one the range of the linearized operator has an infinite codimension, and
therefore, there is no hope to bifurcate using only the classical results of bifurcation theory. However, for
the second eigenvalue, the range is “almost everywhere” of codimension 1 and the bifurcation is likely to
happen. As for the structure of this eigenvalue, it is strictly increasing with respect to b2, and by working
more, we prove that the curve C+1 of b2 ∈ ]0, b1[ 7→ λ+1 intersects Cn if and only if n ≥ b−2

1 . We can now
make precise statements of these results, and for the complete ones, we refer the reader to Lemma 18 and
Propositions 19 and 20.

Proposition 15. Let b1 ∈ ]0, 1[; then the following hold true:

(i) The sequence n ≥ 2 7→ b?n is strictly increasing.

(ii) Let 2≤ n < m and b2 ∈ [0, b?n[; then

λ−m < λ
−

n < λ
+

n < λ
+

m .

(iii) The curve C+1 intersects Cn if and only if n ≥ 1/b2
1. In this case, we have a single point (xn, λ

+

1 (xn)),
with xn ∈ ]0, b?n] being the only solution b2 of the equation

Pn(1+ b2
2− b2

1)= 0,

where Pn is defined in (51).
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The properties mentioned in the preceding proposition can be illustrated by Figure 1. Further illustrations
will be given in Figure 7.

For the proof of Proposition 15, it appears to be more convenient to work with a continuous variable
instead of the discrete one n. This is advantageous especially in the study of the variations of the
eigenvalues with respect to n and the radius b2 for b1 fixed. To do so, we extend in a natural way (1n)n≥1

to a smooth function defined on [1,+∞[ as

1x =

(
1− (b2/b1)

2

2
−

2− b2x
2 − b2x

1

2x

)2

−

(
b2

b1

)2x(1− b2x
1

x

)2

, x ∈ [1,+∞[.

It is easy to see that 1x is positive if and only if(
1−

(
b2

b1

)2)
x − (2− b2x

2 − b2x
1 )− 2

(
b2

b1

)x

(1− b2x
1 )≥ 0 (54)

or

Ex ,

(
1−

(
b2

b1

)2)
x − (2− b2x

2 − b2x
1 )+ 2

(
b2

b1

)x

(1− b2x
1 ) < 0.

We shall prove that the last possibility Ex < 0 is excluded for x ≥ 2. Indeed,

Ex = (1− (b2/b1)
2)x − 2(1− (b2/b1)

x)+ (bx
2 − bx

1)
2

= 2(1− (b2/b1)
2)

[
x
2
−

1− ((b2/b1)
2)x/2

1− (b2/b1)2

]
+ (bx

2 − bx
1)

2

≥ (bx
2 − bx

1)
2 > 0,

where we have used the classical inequality,

for all b ∈ (0, 1) and x ≥ 1,
1− bx

1− b
≤ x .

Thus, for x ≥ 2, the condition 1x ≥ 0 is equivalent to the first one of (54) or, in other words,

x ≥
2+ 2(b2/b1)

x
− (bx

1 + bx
2)

2

1− (b2/b1)2
, gx(b1, b2). (55)

In this case, the roots of the polynomial Pn can also be continuously extended as

λ+x =
1+ (b2/b1)

2

2
−

(
b2x

1 − b2x
2

2x

)
+

√
1x ,

λ−x =
1+ (b2/b1)

2

2
−

(
b2x

1 − b2x
2

2x

)
−

√
1x .

4.4.1. Monotonicity for n ≥ 2. To settle the proof of the second point (ii) of Proposition 15, we should
look for the variations of the eigenvalues with respect to x but with fixed radii b1 and b2. For this purpose,
we need to first understand the topological structure of the domain of definition of x 7→ λ±x

Ib1,b2 , {x ≥ 2 :1x > 0}

and see in particular whether this set is connected. We shall establish the following:
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Lemma 16. Let 0< b2 < b1 < 1 be two fixed numbers; then the following hold true:

(i) The set Ib1,b2 is connected and of the form ]µb1,b2,∞[.

(ii) The map x ∈ Ib1,b2 7→1x is strictly increasing.

Remark 17. If the discriminant 1x admits a zero, then it is unique and coincides with the value µb1,b2 .
Otherwise, µb1,b2 will be equal to 2.

Proof. To get this result, it suffices to check the following: for any a ∈ Ib1,b2 ,

[a,+∞[ ⊂ Ib1,b2 .

By the continuity of the discriminant, there exists η > a such that [a, η[ ⊂ Ib1,b2 , and let [a, η?[ be the
maximal interval contained in Ib1,b2 . If η? is finite, then necessarily 1η? = 0. If we could show that the
discriminant is strictly increasing in this interval, then this will contradict the preceding assumption. To
see this, observe that 1x can be rewritten in the form

1x =
1
4

(
f1

(
b2

b1

)
− fx(b1)− fx(b2)

)2

−

(
b2

b1

)2x

f 2
x (b1) (56)

with the notation

fx(t),
1− t2x

x
.

Differentiating 1x with respect to x ,

∂x1x =−
1
2(∂x fx(b1)+ ∂x fx(b2))

(
f1

(
b2

b1

)
− fx(b1)− fx(b2)

)
− 2 fx(b1)

(
b2

b1

)2x(
fx(b1) log

(
b2

b1

)
+ ∂x fx(b1)

)
. (57)

We shall prove that, for all t ∈ ]0, 1[, the mapping x ∈ [2,∞[ 7→ fx(t) is strictly decreasing. It is clear that

∂x fx(t)=
t2x(1− 2x log t)− 1

x2 ,
gx(t)

x2 . (58)

To study the variation of t 7→ gx(t), note that

g′x(t)=−4x2t2x−1 log t > 0 for all t ∈ ]0, 1[

and therefore gx is strictly increasing, which implies that

∂x fx(t) <
gx(1)

x2 = 0.

Using this fact, we deduce that the last term of (57) is positive and consequently

∂x1x ≥−
1
2(∂x fx(b1)+ ∂x fx(b2))

(
f1

(
b2

b1

)
− fx(b1)− fx(b2)

)
.

Hence, to get ∂x1x > 0 it suffices to establish that

f1

(
b2

b1

)
− fx(b1)− fx(b2) > 0, (59)
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which is equivalent to

x >
2− b2x

1 − b2x
2

1− b2 , b =
b2

b1
.

Note that we have already seen that the positivity of 1x for x ≥ 2 is equivalent to the condition (55)
which actually implies the preceding one owing to the strict inequality

bx
− (b1b2)

x > 0.

This shows that (59) is true and consequently,

for all x ∈ [a, η?[, ∂x1x > 0.

This shows that the discriminant, which is positive, is strictly increasing in [a, η?[, and this excludes the
fact that 1η? vanishes. Therefore, η? =∞, and thus, (i) and (ii) are simultaneously proved. �

The next goal is to establish the monotonicity of the eigenvalues.

Lemma 18. Let 0< b2 < b1 < 1. Then:

(i) The mapping x ∈ Ib1,b2 7→ λ+x is strictly increasing.

(ii) The mapping x ∈ Ib1,b2 7→ λ−x is strictly decreasing.

(iii) For any x < y ∈ Ib1,b2 ,

λ−y < λ
−

x < λ
+

x < λ
+

y .

Proof. (i) Note that

λ+x =
1+ b2

2
−

b2x
1

2
fx(b)+

√
1x , b =

b2

b1
.

We have already seen in the proof of Lemma 16 that for any t ∈ ]0, 1[ the mapping x ∈ [2,∞[ 7→ fx(t) is
strictly decreasing, and therefore, x 7→ b2x

1 fx(b2/b1) is also strictly decreasing. To get the strict increasing
of x 7→ λ+x , it suffices to combine this last fact with the increasing property of x 7→1x .

(ii) It is clear that

λ−x =
1+ b2

2
+

fx(b1)− fx(b2)

2
−

√
1x .

The derivative of λ−x with respect to x is given by

∂xλ
−

x =
1
2∂x fx(b1)−

1
2∂x fx(b2)−

∂x1x

2
√
1x
.

By virtue of (57), we can split the preceding function into three parts:

∂xλ
−

x = I+ II+ III,
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where

I, 1
2∂x fx(b1)

(
1+

f1(b)− fx(b1)− fx(b2)

2
√
1x

)
,

II, 1
2∂x fx(b2)

(
−1+

f1(b)− fx(b1)− fx(b2)

2
√
1x

)
,

III,
b2x fx(b1)( fx(b1) log(b)+ ∂x fx(b1))

√
1x

.

Keeping in mind the inequality (59) and ∂x fx(t) < 0 for any t ∈ ]0, 1[, we can see that I is negative. To
prove that the term II is also negative, it suffices to check that

f1(b)− fx(b1)− fx(b2)

2
√
1x

> 1.

From (59), we can deduce by squaring that the last expression is actually equivalent to

1
4

(
f1

(
b2

b1

)
− fx(b1)− fx(b2)

)2

>1x .

From (56), we immediately conclude that the last inequality is always verified.
In regard to the negativity of the third term III, we just use the fact that 0< b < 1 and the decreasing

of the function x 7→ fx(t).

(iii) This follows easily from (i), (ii) and the obvious fact,

for all x ∈ Ib1,b2, λ−x < λ
+

x . �

4.4.2. Lifespan of the eigenvalues with respect to b2. We shall study in this section some properties of
the eigenvalue functions b2 7→ λ±n for n ≥ 2 and b1 fixed. This will be crucial for studying the dynamics
of the first eigenvalue λ+1 and especially in counting the intersections between the curves C+1 and Cn

which has been the subject of the part (iii) of Proposition 15. Note that in this paragraph we shall give up
using the continuous version λ±x of the roots λ±n as it has been done in the preceding section. The results
that we shall state can actually be proved with the continuous parameter; however, this does not matter a
lot for our final purpose. We define the following set: for n ≥ 2 and b1 ∈ ]0, 1[,

Jn,b1 ,

{
b2 ∈ [0, b1[ : n ≥

2+ 2(b2/b1)
n
− (bn

1 + bn
2)

2

1− (b2/b1)2

}
.

We shall prove the following:

Proposition 19. Let b1 ∈ ]0, 1[ fixed and n ≥ 2; then the following hold true:

(i) The set Jn,b1 is an interval of the form [0, b?n], with b?n ∈ ]0, b1[.

(ii) The eigenvalues b2 7→ λ±n are defined together in [0, b?n].

(iii) The sequence n 7→ b?n is strictly increasing, and we have the asymptotics

b?n = b1(1−α/n)+ o(1/n), e−α + 1= α, α ≈ 1.27846.
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(iv) The function b2 ∈ [0, b?n] 7→ λ−n (b2)− b2
2 is strictly increasing.

(v) The function b2 ∈ [0, b?n] 7→ λ+n (b2)− b2
2 is strictly decreasing.

Proof. (i) This follows from studying the function h : [0, b1] → R, defined by

h(x)= n(1− (x/b1)
2)− 2− 2(x/b1)

n
+ (bn

1 + xn)2.

We claim that h is strictly decreasing. Indeed, by differentiating,

h′(x)=
2nx
b2

1
(−1+ b2

1x2n−2)+
2nxn−1

bn
1

(−1+ b2n
1 )

< 0.

As h(0)= n−2+b2n
1 > 0 and h(b1)= 4(−1+b2n

1 ) < 0, we deduce from the intermediate value theorem
that the set Jn,b1 is in fact an interval of the form [0, b?n]. The number b?n ∈ [0, b1[ is defined by the unique
solution of the equation

h(b?n)= 0. (60)

(ii) Observe that the domain of definition of the eigenvalues λ±n coincides with the domain of the
discriminant 1n , which is in turn given by Jn,b1 according to (55). Therefore, (60) implies the vanishing
of 1n at the point b?n , and consequently both eigenvalues coincide.

(iii) Recall from (53) the definitions of the curves C±n and Cn = C−n ∪C+n . Since the eigenvalues λ+n (b
?
n)

and λ−n (b
?
n) coincide, curves C+n and C−n end at the same point which is a turning point for Cn . Furthermore,

we can see that Cn lies on the left side of the vertical axis x = b?n . Now let m > n ≥ 2, and we intend
to check by some elementary geometric considerations that b?m > b?n . From the monotonicity of the
eigenvalues n 7→ λ±n ,

λ−m(0) < λ
−

n (0), λ+m(0) > λ
+

n (0).

If b?m ≤ b?n , then the curve Cm will intersect Cn at some point and this contradicts the strict monotonicity
of the eigenvalues with respect to n. Thus, we deduce that n 7→ b?n is strictly increasing and therefore
should converge to some value b? ≤ b1. Assume that b? < b1; then from (60) and the continuity of h, we
find by letting n→+∞ that

lim
n→+∞

h(b?n)= 0.

On the other hand,
lim

n→+∞
h(b?n)= lim

n→+∞
n(1− (b?n/b1)

2)− 2

=+∞,

which is clearly a contradiction, and thus, b? = b1. For the asymptotic behavior of b?n , which is a marginal
part here, we shall settle for a formal reasoning by taking a first-order Taylor expansion of 1/n. We shall
look for α such that

b?n = b1(1−α/n)+ o(1/n).
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At the first order of h,

h(b?n)= α(2−α/n)− 2− 2(1−α/n)n + o(1).

By taking the limit as n→∞, we find that α must satisfy

e−α + 1= α.

This equation admits a unique solution lying in the interval ]1, 2[ and can be given explicitly by the
Lambert W function:

α =W (e−1)+ 1≈ 1.27846.

(iv) Set x = (b2/b1)
2 and define the functions

f±(x)= λ±n (b2)=
1+ x

2
+

b2n
1

2n
(xn
− 1)±

√
1n(x), x ∈

[
0,

b?n
2

b2
1

]
,

with

1n(x)=
(

1− x
2
−

2− b2n
1 (1+ xn)

2n

)2

− xn
(

1− b2n
1

n

)2

.

Differentiating with respect to x yields

1′n(x)=−
(

1− x
2
−

2− b2n
1 (1+ xn)

2n

)
(1− b2n

1 xn−1)− nxn−1
(

1− b2n
1

n

)2

.

Note from the assumption (55), by switching the parameters n and x , that

1− x
2
−

2− b2n
1 (1+ xn)

2n
> 0,

and therefore,

1′n(x) < 0 for all x ∈
[

0,
b?n

2

b2
1

]
⊂ [0, 1[.

Coming back to the function f± and taking the derivative, we find

f ′
±
(x)=

1
2
+

b2n
1

2
xn−1
±

1′n(x)
2
√
1n(x)

.

Using the definition of 1n and (54), one has(
1− x

2
−

2− b2n
1 (1+ xn)

2n

)
>
√
1n(x)

and consequently

1′n(x)
√
1n(x)

≤−
(1− x)/2− (2− b2n

1 (1+ xn))/2n
√
1n(x)

(1− b2n
1 xn−1)

<−(1− b2n
1 xn−1).
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Therefore, we obtain that for all x ∈ [0, b?n
2/b2

1]

f ′
−
(x) > 1,

f ′
+
(x)≤ b2n

1 xn−1 < b2
1.

This shows that the function g− : x 7→ f−(x)−b2
1x is strictly increasing; however, g+ : x 7→ f+(x)−b2

1x
is strictly decreasing. This finishes the proof of the desired result. �

4.4.3. Dynamics of the first eigenvalue. We shall in this paragraph discuss the behavior of the first
eigenvalues corresponding to n = 1. Note from (51) that these eigenvalues are in fact the solutions of the
polynomial

P1(λ)= λ
2
− (1+ b2

2− b2
1+ (b2/b1)

2)λ+ (b2/b1)
2
+ b2

2(b2/b1)
2
− b2

2,

which vanishes exactly at the points

λ−1 = (b2/b1)
2 or λ+1 = 1+ b2

2− b2
1.

Recall from the preceding sections the definition

C±n , {(b2, λ
±

n (b2)) : b2 ∈ [0, b?n]}, Cn = C−n ∪C+n ,

and the graph of the first eigenvalue λ+1 is given by

C+1 , {(b2, 1+ b2
2− b2

1) : b2 ∈ [0, b1]}.

As we have already mentioned, it is not clear whether the bifurcation occurs with λ−1 because the range
of the linearized operator has an infinite codimension. The main result reads as follows.

Proposition 20. Let b1 ∈ ]0, 1[ and n ≥ 2. Then the following hold true:

(i) For any 0< b2 < b1, we have λ−1 < λ
±
n .

(ii) If n < b−2
1 , then

Cn ∩C+1 =∅.

(iii) If n ≥ b−2
1 , then Cn ∩C+1 is a single point, that is, there exists xn ∈ [0, b?n] such that

Cn ∩C+1 = {(xn, λ
+

1 (xn))}.

(iv) If b2 /∈ {xm : m ≥ b−2
1 }, then for all n ≥ 2, λ+1 6= λ

±
n .

(v) The sequence {xm}m≥b−2
1

is increasing and converges to b1.

Proof. (i) This follows easily from the monotonicity of the eigenvalue n 7→ λ−n and the fact that λ−n ≤ λ
+
n .

Indeed, for all n ≥ 2,

λ−1 = (b2/b1)
2
= lim

n→+∞
λ−n < λ

−

n ≤ λ
+

n .
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(ii) In view of (v) from Proposition 19, the mapping b2 ∈ [0, b?n] 7→ λ+n (b2)−λ
+

1 (b2) is strictly decreasing,
and therefore, for b2 ∈ ]0, b?n],

λ+n (b2)− λ
+

1 (b2) < λ
+

n (0)− λ
+

1 (0)= b2
1−

1
n
.

Therefore, for n < b−2
1 , the last term in the right-hand side is negative and consequently

λ−n (b2)≤ λ
+

n (b2) < λ
+

1 (b2) for all b2 ∈ ]0, b?n].

(iii) When n ≥ b−2
1 , then λ+n (0) − λ

+

1 (0) ≥ 0, and since b2 ∈ [0, b?n] 7→ λ+n (b2) − λ
+

1 (b2) is strictly
decreasing, the equation λ+n (b2)− λ

+

1 (b2)= 0 has at most one solution in [0, b?n]. We shall distinguish
three cases. The first one is when λ+n (b

?
n)− λ

+

1 (b
?
n) < 0, in which case the foregoing equation admits a

unique solution denoted by xn . This implies that C+n ∩C+1 is a single point whose abscissa is xn , and the
next step is to check that C−n ∩C+1 is empty. Thus,

λ+n (b
?
n)− λ

+

1 (b
?
n)≤ λ

+

n (xn)− λ
+

1 (xn)= 0.

Combining the last inequality with the fact that λ+n (b
?
n)= λ

−
n (b

?
n) and the monotonicity of the mapping

b2 ∈ [0, b?n] 7→ λ−n (b2)− λ
+

1 (b2), which follows from (iv) of Proposition 19, we conclude that for all
b2 ∈ ]0, b?n]

λ−n (b2)− λ
+

1 (b2)≤ λ
−

n (b
?
n)− λ

+

1 (b
?
n)

≤ λ+n (b
?
n)− λ

+

1 (b
?
n)

< 0.

Therefore, C−n ∩ C+1 = ∅ and the set Cn ∩ C+1 reduces to a single point. The second case is when
λ+n (b

?
n)−λ

+

1 (b
?
n) > 0; then C+n ∩C+1 is empty, and we shall prove that C−n ∩C+1 is a single point. Observe

first that

λ−n (b
?
n)− λ

+

1 (b
?
n)= λ

+

n (b
?
n)− λ

+

1 (b
?
n) > 0.

Moreover,

λ−n (0)− λ
+

1 (0)=
1− b2n

1

n
− (1− b2

1) < 0 for all n ≥ 2.

Since b2 7→ λ−n (b2)− λ
+

1 (b2) is strictly increasing, by the intermediate value theorem, there exists only
one solution xn ∈ ]0, b?n[ of the equation λ−n (b2)−λ

+

1 (b2)= 0. The third and last case to analyze is when
λ+n (b

?
n)− λ

+

1 (b
?
n)= 0. This means that all the curves C+n , C−n and C+1 meet each other at the single point

of abscissa b?n .

(iv) It follows immediately from (ii) and (iii).

(v) Let n ≥ b−1
1 , and define the set enclosed by Cn and located at the first quadrant of the plane:

Ĉn , {(x, y) ∈ R2
: x ∈ [0, b?n], λ

−

n (x)≤ y ≤ λ+n (x)}.
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From the monotonicity of the eigenvalues n 7→ λ±n seen in Lemma 18, we note that,

for all (x, y) ∈ Ĉn, λ−n+1(x) < λ
−

n (x)≤ y ≤ λ+n (x) < λ
+

n+1(x).

Hence,

Ĉn b Ĉn+1, Cn+1 ∩ Ĉn =∅. (61)

Now, from (iii) and the monotonicity of the mappings b2 7→ λ±n (b2)− λ
+

1 (b2) stated in Proposition 19,
we deduce that,

for all x ∈ [0, xn[, λ−n (x) < λ
+

1 (x) < λ
+

n (x).

Then we have the inclusion

C+1,n , {(x, λ
+

1 (x)) : x ∈ [0, xn]} ⊂ Ĉn.

It follows from (61) that Cn+1 ∩C+1,n =∅ and consequently the abscissa of the single point intersection
Cn+1 ∩C+1 must satisfy xn+1 > xn . This proves that {xn}n≥b−2

1
is strictly increasing, and thereby this

sequence converges to some value x? ≤ b1. Assume that x? < b1, and define the subsequences

{x±n }n≥b−2
1
, {xn : λ

±

n (xn)= λ
+

1 (xn)}.

Clearly one of the two sequences is infinite. Assume first that {x+n } is infinite and up to an extraction this
sequence converges also to x?, and for simplicity, we still denote this sequence by {xn}n≥b−2

1
. Then from

the definition of λ+n , we can easily check that

lim
n→+∞

λ+n (xn)=
1+ (x?/b1)

2

2
+

1− (x?/b1)
2

2
= 1.

On the other hand,

lim
n→+∞

λ+1 (xn)= 1+ x2
? − b2

1.

This is possible only if x? = b1, which is a contradiction, and thus, x? = b1. Now in the case where only
the sequence {x−n } is infinite, then we follow the same reasoning as before. We suppose that x? < b1, and
one can verify that

lim
n→+∞

λ−n (xn)= (x?/b1)
2,

lim
n→+∞

λ+1 (xn)= 1+ x2
? − b2

1.

By equating these numbers, we obtain

(1− b2
1)(x

2
? − b2

1)= 0,

which is impossible since b1 < 1 and consequently x? = b1. Hence, the proof of (v) is finished. �
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4.5. Bifurcation for m≥1. Now we shall see how to implement the preceding results to prove Theorems 6
and 9 by using the Crandall–Rabinowitz theorem. The proofs will be broken into several steps. First,
we introduce the spaces of bifurcation which capture the m-fold symmetry, and they are of Hölderian
type. Second, we rewrite Proposition 13 dealing with the regularity of the nonlinear functional defining
the V -states in the new setting. We end this section with the proofs of the properties of the linearized
operator around the annulus required by the Crandall–Rabinowitz theorem.

4.5.1. Function spaces. We shall make use of the same spaces as [de la Hoz et al. 2016b]. For m ≥ 1,
we introduce the spaces Xm and Ym as follows:

Xm = C1+α
m (T)×C1+α

m (T),

where C1+α
m (T) is the space of the 2π -periodic functions f ∈ C1+α(T) whose Fourier series is given by

f (w)=
∞∑

n=1

anw
nm−1, w ∈ T, an ∈ R.

This space is equipped with the usual strong topology of C1+α(T). We can easily see that Xm is identified
as

Xm =

{
f ∈ (C1+α(T))2 : f (w)=

∞∑
n=1

Anw
nm−1, An ∈ R2

}
. (62)

We define the ball of radius r ∈ (0, 1) by

Bm
r = { f ∈ (C1+α

m (T))2 : ‖ f ‖C1+α(T) < r}.

Take ( f1, f2) ∈ Bm
r ; then the expansions of the associated conformal mappings φ1 and φ2 in the exterior

unit disc {w ∈ C : |w|> 1} are given by

φ1(w)= b1w+ f1(w)= w

(
b1+

∞∑
n=1

a1,n

wnm

)
,

φ2(w)= b2w+ f2(w)= w

(
b2+

∞∑
n=1

a2,n

wnm

)
.

This captures the m-fold symmetry of the associated boundaries φ1(T) and φ2(T) via the relation

φ j (e2iπ/mw)= e2iπ/mφ j (w), j = 1, 2, w ∈ T. (63)

Set

Ym =

{
g ∈ (Cα(T))2 : g =

∑
n≥1

Cnenm, Cn ∈ R2
}
. (64)

With the help of Proposition 13, we deduce that the functional G = (G1,G2) is well defined and smooth
from R× Bm

r to Ym with r small enough. The only thing that one should care about, which has already
been discussed in the simply connected case, is the persistence of the symmetry which comes from the
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rotational invariance of the functional G. As the proofs are very close to the simply connected case
without any substantial difficulties, we prefer to skip them and only state the desired results.

Proposition 21. Let b ∈ ]0, 1[ and 0< r <min(b, 1− b); then the following hold true:

(i) G : R× Bm
r → Ym is C1 (it is in fact C∞).

(ii) The partial derivative ∂λDG : R× Bm
r → L(Xm, Ym) exists and is continuous (it is in fact C∞).

Now using (49) and (50), we deduce that the restriction of DG(λ, 0) to the space Xm leads to a well
defined continuous operator DG(λ, 0) : Xm→ Ym . It takes the form

DG(λ, 0)(h1, h2)=
∑
n≥1

Mnm(λ)

(
a1,n

a2,n

)
enm, (65)

with (h1, h2) ∈ Xm having the expansion

h j (w)=
∑
n≥1

a j,nw
nm−1

and the matrix Mn given for n ≥ 1 by

Mn(λ),

(
b1[nλ− 1+ b2n

1 − n(b2/b1)
2
] b2[(b2/b1)

n
− (b1b2)

n
]

−b1[(b2/b1)
n
− (b1b2)

n
] b2[nλ− n+ 1− b2n

2 ]

)
. (66)

4.5.2. Proof of Theorem 6. The main goal of this paragraph is to prove Theorem 6. This will be an
immediate consequence of the Crandall–Rabinowitz theorem as soon as we check its conditions, which
require a careful study. Concerning the regularity assumptions, they were discussed in Proposition 21. As
to the properties required for the linearized operator, they are the object of following proposition.

Proposition 22. Let 0< b2 < b1 < 1, and set b , b2/b1. Let m ≥ 2 satisfy

m ≥
2+ 2bm

− (bm
1 + bm

2 )
2

1− b2 .

Then the following results hold true:

(i) The kernel of DG(λ±m, 0) is one-dimensional and generated by the vector

vm(w)=

(
b2[mλ±m −m+ 1− b2m

2 ]

b1[bm
− (b1b2)

m
]

)
wm−1.

(ii) The range of DG(λ±m, 0) is closed and of codimension 1.

(iii) The transversality assumption holds: the condition

∂λDG(λ±m, 0)vm /∈ R(DG(λ±m, 0))

is satisfied if and only if

m >
2+ 2bm

− (bm
1 + bm

2 )
2

1− b2 .
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Proof. (i) According to (55), the positivity of the discriminant 1n that guarantees the existence of real
eigenvalues is equivalent for m ≥ 2 to

m ≥
2+ 2bm

− (bm
1 + bm

2 )
2

1− b2 .

To prove that the kernel of DG(λ±m, 0) is one-dimensional, it suffices to check that for n ≥ 2 the matrix
Mnm(λ

±
m) defined in (66) is invertible. This follows from Lemma 18, which asserts that λ±nm 6=λ

±
m for n≥ 2

and therefore

det Mnm(λ
±

m) 6= 0.

To get a generator for the kernel, it suffices to take a vector orthogonal to the second row of Mm(λ
±
m).

(ii) We are going to show that for any m ≥ 2 the range R(DG(λ±m, 0)) coincides with the subspace

Zm ,

{
g ∈ Ym : g(w)=

∑
n≥1

Cnenm, C1 ∈ R(Mm), Cn ∈ R2 for all n ≥ 2
}
. (67)

Assume for now this result; then it is easy to check that R(DG(λ±m, 0)) is closed in Ym and is of
codimension 1. Now to get the description of the range, we first observe that from (65) and (66) the range
is included in the space Zm . Therefore, what is left is to check is the inclusion Zm ⊂ R(DG(λ±m, 0)).
Take g = (g1, g2) ∈ Zm with the form

g j (w)=
∑
n≥1

c j,nenm,

and let us prove that the equation

DG(λ±m, 0)h = g

admits a solution h = (h1, h2) in the space Xm . Note that h j has the structure

h j (w)=
∑
n≥1

a j,nw
nm−1.

According to (65), the preceding equation is equivalent to

Mmn

(
a1,n

a2,n

)
=

(
c1,n

c2,n

)
for all n ≥ 1.

For n= 1, this equation is satisfied because from the definition of Zm we assume that the vector C1 ,
(c1,n

c2,n

)
belongs to the range of the matrix Mm . With regard to n ≥ 2, we use the fact that Mnm is invertible, and
therefore, the sequences (a j,n)n≥2 are uniquely determined by(

a1,n

a2,n

)
= M−1

nm

(
c1,n

c2,n

)
, n ≥ 2. (68)
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By computing the matrix M−1
mn (λ

±
m), we deduce that for all n ≥ 2

a1,n =
b2[nm(λ±m − 1)+ 1− b2nm

2 ]

det(Mnm(λ
±
m))

c1,n −
b2[(b2/b1)

nm
− (b1b2)

nm
]

det(Mnm(λ
±
m))

c2,n,

a2,n =
b1[(b2/b1)

nm
− (b1b2)

nm
]

det(Mnm(λ
±
m))

c1,n +
b1[nm(λ±m − (b2/b1)

2)− 1+ b2nm
1 ]

det(Mnm(λ
±
m))

c2,n.

(69)

Hence, the proof of (h1, h2) ∈ Xm amounts to showing that

w 7→

(
h1(w)− a1,1w

m−1

h2(w)− a2,1w
m−1

)
∈ C1+α(T)×C1+α(T).

We shall develop the computations only for the first component, and the second one can be done in a
similar way. Notice that det(Mnm(λ

±
m)) does not vanish for n ≥ 2 and behaves for large n like

det(Mnm(λ
±

m))= b1b2m2(λ±m − 1)[λ±m − (b2/b1)
2
]n2
+ b1b2m(1− (b2/b1)

2)n− 1+ o(1).

Since λ±m /∈ {1, (b2/b1)
2
}, by Taylor expansion,

a1,n =
1

b1m(λ±m − (b2/b1)2)

c1,n

n
+ γ1,nc1,n + γ2,nc2,n

with

|γ j,n| ≤
C
n2 .

Set h̃1(w)= h1(w)− a1,1w
m−1, and define the functions

K j (w)=
∑
n≥2

nγ j,nw
nm, g̃ j =

∑
n≥2

c j,n

n
enm .

Then one can check that

wh̃1(w)=
1

mb1(λ
±
m − (b2/b1)2)

∑
n≥2

c1,n

n
wnm
+{K1 ? (5g̃1)}(w)+{K2 ? (5g̃2)}(w). (70)

The convolution is understood to be the usual one: for two continuous functions f, g : T→ C, we define,

for all w ∈ T, f ? g(w)=
∫

\

T

f (τ )g(τw)
dτ
τ
.

The notation 5 is used for the Szegő projection defined by

5

(∑
n∈Z

cnw
n
)
=

∑
n∈−N

cnw
n,

which acts continuously on C1+α(T). One can easily see that the first term in the right-hand side of (70)
belongs to C1+α(T). With regard to the last two terms, note that K j ∈ L2(T)⊂ L1(T) and g̃ j ∈C1+α(T);
then using the classical convolution law L1(T)?C1+α(T)→C1+α(T) combined with the continuity of 5,
we deduce that those terms belong to C1+α(T) and the function w 7→ wh̃1(w) belongs to this space too.
This finishes the proof of the range of DG(λ±m, 0).
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(iii) Recall from part (i) that the kernel of DG(λ±m, 0) is one-dimensional and generated by the vector vm

defined by

w ∈ T 7→ vm(w)=

(
b2[mλ±m −m+ 1− b2m

2 ]

b1[(b2/b1)
m
− (b1b2)

m
]

)
wm−1.

We shall prove that
∂λDG(λ±m, 0)vm /∈ R(DG(λ±m, 0))

if and only if λ+m 6= λ
−
m , which is equivalent to

m >
2+ 2bm

− (bm
1 + bm

2 )
2

1− b2 .

Let (h1, h2) ∈ Xm with the expansion

h j (w)=
∑
n≥1

a j,nw
nm−1.

Then differentiating (65) with respect to λ,

∂λDG(λ, 0)(h1, h2)= m
∑
n≥1

n
(

b1a1,n

b2a2,n

)
enm . (71)

Hence,

∂λDG(λ±m, 0)vm = mb1b2

(
mλ±m −m+ 1− b2m

2
(b2/b1)

m
− (b1b2)

m

)
em

, mb1b2Wmem .

This pair of functions is in the range of DG(λ±m, 0) if and only if the vector Wm is a scalar multiple of
the second column of the matrix Mm(λ

±
m) defined by (66). This happens if and only if

(mλ±m −m+ 1− b2m
2 )2−

((
b2

b1

)m

− (b1b2)
m
)2

= 0. (72)

Combining this equation with det Mm = 0, we find

(mλ±m −m+ 1− b2m
2 )2+ (mλ±m −m+ 1− b2m

2 )

(
mλ±m − 1+ b2m

1 −m
(

b2

b1

)2)
= 0,

which is equivalent to

(mλ−m+ 1− b2m
2 )

(
2mλ−m

(
1+

(
b2

b1

)2)
− b2m

2 + b2m
1

)
= 0.

Thus, we find that

mλ±m −m+ 1− b2m
2 = 0 or 2mλ±m −m

(
1+

(
b2

b1

)2)
− b2m

2 + b2m
1 = 0.

The first possibility is excluded by (72), and the second one corresponds to a multiple eigenvalue condition:
λ+m = λ

−
m , that is, 1m = 0. This completes the proof of Proposition 22. �
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4.5.3. Proof of Theorem 9. Our next task is to study the bifurcation of 1-fold rotating patches. Recall
from Section 4.4.3 that for m = 1 there are two different eigenvalues given by

λ−1 = (b2/b1)
2, λ+1 = 1+ b2

2− b2
1.

In that paragraph, we observed significant differences in their behaviors, and we shall see next how this
fact does affect the bifurcation problem. It appears that the bifurcation with λ−1 is very complicate due to
the range of the linearized operator which is of infinite codimension. Nevertheless, with λ+1 , the situation
is actually more tractable and the bifurcation occurs frequently. Before stating the basic results of this
section, we need to define some notation. Let b1 ∈ ]0, 1[ be a fixed real number, and define the set

Eb1 , {b2 ∈ ]0, b1[ : there exists m ≥ 2 such that Pm(λ
+

1 )= 0}.

The polynomial Pm was defined in (51), which is up to a factor the characteristic polynomial of the matrix
Mm(λ). The set Eb1 corresponds to the abscissa of the points of intersection between the collection of
the curves {Cm : m ≥ 2} and C+1 , which were defined in (53). Recall from Proposition 20(ii–iii) that for
each m ≥ 2 there is at most one value xm of b2 such that Pm(λ

+

1 )= 0. Moreover, the sequence (xm)m≥b−2
1

is strictly increasing and converges to b1. Now we will prove the following result.

Proposition 23. The following assertions hold true.

(i) The range of DG(λ−1 , 0) has an infinite codimension.

(ii) If b2 ∈ Eb1 , then the kernel of DG(λ+1 , 0) is two-dimensional and generated by the vectors v1 =
(1

1

)
and vm of Proposition 22, with m ≥ 2 being the only integer such that Pm(λ

+

1 )= 0. In addition, the
range of DG(λ+1 , 0) is closed and has codimension 2.

(iii) If b2 /∈ Eb1 , then the kernel of DG(λ+1 , 0) is one-dimensional and is generated by the vector v1 seen
before. Furthermore, the range of DG(λ+1 , 0) has codimension 1 and the transversality assumption
is satisfied:

∂λDG(λ+1 , 0)v1 /∈ R(DG(λ+1 , 0)).

Proof. (i) According to (66), we obtain

Mn(λ
−

1 ),

(
b1[−1+ b2n

1 ] b2[(b2/b1)
n
− (b1b2)

n
]

−b1[(b2/b1)
n
− (b1b2)

n
] b2[n((b2/b1)

n
− 1)+ 1− b2n

2 ]

)
.

In this case, we get that the determinant of Mn(λ
−

1 ) behaves for large n like b1b2n. Consequently, we
deduce from (69) the existence of α 6= 0 such that

a1,n = αc1,n + o(1),

which means that the preimage of an element of Ym by DG(λ−1 , 0) is not in general better than Cα(T).
This implies that the range of the linearized operator is of infinite codimension. It follows that one
important condition of the Crandall–Rabinowitz theorem is violated, and therefore, the bifurcation in this
special case still unsolved.
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(ii) Let b2 ∈ Eb1 . Then by definition, there exists m ≥ 2 such that Pm(λ
+

1 ) = 0. This means that
λ+1 coincides with one of the two numbers λ±m . Therefore, the kernel of DG(λ+1 , 0) is given by the
two-dimensional vector space

Ker DG(λ+1 , 0)= Ker M1(λ
+

1 )⊕Ker Mm(λ
+

1 )w
m−1.

Easy computations give the expression

M1(λ
+

1 )= b2(1− b2
1)

(
−b2/b1 b2/b1

−1 1

)
.

Obviously the kernel of M1(λ
+

1 ) is spanned by the vector v1 =
(1

1

)
. However, we know that Ker Mm(λ

+

1 )

is spanned by the vector vm already seen in Proposition 22. To prove that the range is of codimension 2,
we follow the same arguments of Proposition 22 bearing in mind that the determinant of Mn(λ

+

1 ) behaves
for large n like cn2 with c 6= 0. We skip the details which are left to the reader.

(iii) Let b2 /∈ Eb1 ; then Pm(λ
+

1 ) does not vanish for any m ≥ 2. This means that the matrix Mm(λ
+

1 ) is
invertible, and therefore, the kernel of DG(λ+1 , 0) is one-dimensional and given by

Ker DG(λ+1 , 0)= Ker M1(λ
+

1 )= 〈v1〉.

Similarly to Proposition 22, we get that the range is of codimension 1. In addition, the transversality
condition is satisfied since the eigenvalue λ+1 is simple (λ+1 6= λ

−

1 ) as has been discussed in the proof of
Proposition 22(iii). The proof of Proposition 23 is now finished, and the result of Theorem 9 follows. �

5. Numerical experiments

In order to obtain the V -states, we follow a similar procedure to that in [de la Hoz et al. 2016a; 2016b];
therefore, we shall omit some details, which can be consulted in those references.

5.1. Simply connected V-states.

5.1.1. Numerical derivation. Given a simply connected domain D with boundary z(θ), where θ ∈ [0, 2π [
is the Lagrangian parameter and z is counterclockwise parametrized, the condition of D being a V -state
rotating with angular velocity � is given by (15), i.e.,

Re
{(

2�z(θ)+
1

2π i

∫ 2π

0

z(θ)− z(φ)
z(θ)− z(φ)

zφ(φ) dφ−
1

2π i

∫ 2π

0

|z(φ)|2

1− z(θ)z(φ)
zφ(φ) dφ

)
zθ (θ)

}
= 0. (73)

As in [de la Hoz et al. 2016a; 2016b], we use a pseudospectral method to find m-fold V -states from (73).
We discretize θ ∈ [0, 2π [ in N equally spaced nodes θi = 2π i/N , i = 0, 1, . . . , N − 1. Observe that the
integrand in the first integral in (73) satisfies

lim
φ→θ

z(θ)− z(φ)
z(θ)− z(φ)

∣∣∣∣
θ=φ

=
zθ (θ)
zθ (θ)

. (74)
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Therefore, bearing in mind (74), we can evaluate numerically with spectral accuracy the integrals in (73)
at a node θ = θi by means of the trapezoidal rule, provided that N is large enough:

1
2π

∫ 2π

0

z(θi )− z(φ j )

z(θi )− z(φ j )
zφ(φ j ) dφ ≈

1
N

(
zθ (θi )+

N−1∑
j=0
j 6=i

z(θi )− z(φ j )

z(θi )− z(φ j )
zφ(φ j )

)
,

1
2π

∫ 2π

0

|z(φ)|2

1− z(θi )z(φ)
zφ(φ) dφ ≈

1
N

N−1∑
j=0

|z(φ j )|
2

1− z(θi )z(φ j )
zφ(φ j ).

(75)

In order to obtain m-fold V -states, we approximate the boundary z as

z(θ)= eiθ
[

b+
M∑

k=1

ak cos(mkθ)
]
, (76)

where the mean radius is b, and we are imposing that z(−θ) = z(θ); i.e., we are looking for V -states
symmetric with respect to the x-axis. For sampling purposes, N has to be chosen such that N ≥ 2mM+1;
additionally, it is convenient to take N a multiple of m, in order to be able to reduce the N -element
discrete Fourier transforms to N/m-element discrete Fourier transforms. If we write N = m2r , then
M = b(m2r

− 1)/(2m)c = 2r−1
− 1.

We introduce (76) into (73) and approximate the error in (73) by an M-term sine expansion:

Re
{(

2�z(θ)+
1

2π i

∫ 2π

0

z(θ)− z(φ)
z(θ)− z(φ)

zφ(φ) dφ−
1

2π i

∫ 2π

0

|z(φ)|2

1− z(θ)z(φ)
zφ(φ) dφ

)
zθ (θ)

}
≈

M∑
k=1

bk sin(mkθ). (77)

This last expression can be represented in a very compact way as

Fb,�(a1, . . . , aM)= (b1, . . . , bM) (78)

for a certain Fb,� : R
M
→ RM . Remark that, for any � and any b ∈ ]0, 1[, we trivially have Fb,�(0)= 0,

i.e., the circumference of radius b is a solution of the problem. Therefore, obtaining a simply connected
V -state is reduced to numerically finding a nontrivial root (a1, . . . , aM) of (78). To do so, we discretize
the (M ×M)-dimensional Jacobian matrix J of Fb,� using first-order approximations. Fixing |h| � 1
(we have chosen h = 10−10), we have that

∂Fb,�(a1, . . . , aM)

∂a1
≈

Fb,�(a1+ h, . . . , aM)−Fb,�(a1, . . . , aM)

h
. (79)

Hence, the first M coefficients of the sine expansion of (79) form the first row of J, and so on. Therefore,
if the n-th iteration is denoted by (a1, . . . , aM)

(n), then the (n+ 1)-th iteration is given by

(a1, . . . , aM)
(n+1)
= (a1, . . . , aM)

(n)
−Fb,�((a1, . . . , aM)

(n)) · [J(n)]−1,
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Figure 2. λm as a function of b, for m = 1, . . . , 20.

where [J(n)]−1 denotes the inverse of the Jacobian matrix at (a1, . . . , aM)
(n). This iteration converges in

a small number of steps to a nontrivial root for a large variety of initial data (a1, . . . , aM)
(0). In particular,

it is usually enough to perturb the unit circumference by assigning a small value to a(0)1 and leave the
other coefficients equal to zero. Our stopping criterion is

max
∣∣∣∣ M∑

k=1

bk sin(mkθ)
∣∣∣∣< tol,

where tol= 10−13. For the sake of coherence, we eventually change the sign of all the coefficients {ak},
in order for, without loss of generality, a1 > 0.

5.1.2. Numerical discussion. Given m and b, Proposition 14 defines the value λm at which we bifurcate
from the circumference of radius b. Let us recall that λm = 1− 2�m . Although working with λ is more
convenient from an analytical point of view, we use �= (1−λ)/2 in the graphical representations of the
V -states that follow because � is a more natural parameter from a physical point of view. Therefore, we
bifurcate at �m = (m− 1+ b2m)/(2m).

In Figure 2, we have plotted λm as a function of b, for m = 1, . . . , 20. Figure 2 suggests that there
are two different situations: b close to 1 and b not so close to 1. Note that, in the latter case, the curves
can be approximated by λm ≈ 1/m, i.e., �m ≈ (m − 1)/(2m), which is in agreement with [Deem and
Zabusky 1978].

In order to illustrate how the shape of the simply connected V -states depends on b, we consider the
cases 1≤m ≤ 4; observe that everything said for m = 3 and m = 4 is valid for all m ≥ 3. In general, fixing
m and b, we bifurcate from the circumference with radius b at �m . During the bifurcation process, there
may be saddle-node bifurcation points [Kielhöfer 2012] appearing; in that case, we use the techniques
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Figure 3. Bifurcation diagrams corresponding to m = 3 and b = 0.8 (left) and to m = 3
and b = 0.9 (right) with N = 384.

described in [de la Hoz et al. 2016a]. For instance, in Figure 3, we have plotted the bifurcation diagrams
of the coefficient a1 in (76) against �, for m = 3 and b = 0.8 (left) and for m = 3 and b = 0.9 (right).
Note that, in the bifurcation diagrams, when starting to bifurcate at �m , we sometimes take �<�m (left)
and other times �>�m (right) although the latter case may appear only when b is large enough. Note
also that we may have several saddle-node bifurcation points in the same bifurcation diagram, and hence
more than two V -states corresponding to the same �, and in the same bifurcation branch. For instance,
the left-hand side of Figure 3 tells us that there are three V -states corresponding to m = 3, b = 0.8 and
�= 0.3765, which we have plotted in Figure 4.

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
m = 3; b = 0.8; Ω = 0.3765

Figure 4. V -states from the same bifurcation branch (left side of Figure 3) corresponding
to m = 3, b = 0.8 and �= 0.3765 with N = 768.
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Figure 5. Approximations to the limiting V -states corresponding to 1 ≤ m ≤ 4, for
different b with N = 256×m. The values of � corresponding to the plots are given in
Table 1.

We have approximated the limiting V -states occurring for 1≤ m ≤ 4, which are depicted in Figure 5.
Figure 5 confirms the observation on the size of b made from Figure 2. Loosely speaking, when b is
far enough from 1, the rigid boundary does not have any remarkable effect on the shape of the V -states.
Take for instance the cases m = 1 with b = 0.4, m = 2 with b = 0.4, m = 3 with b = 0.6 and m = 4
with b = 0.7: the approximations to the respective limiting V -states are clearly far away from the unit
circumference whereas, in all the other cases, the distance to the unit circumference is smaller than 10−2.
In fact, Figure 5 suggests that, from a certain b on, we can obtain V -states arbitrarily close to the unit
circumference and that the limiting V -state is precisely the one whose distance to the unit circumference
is zero in the limit. Moreover, as b grows towards 1, the limiting V -states tend to cover an increasingly
larger part of the unit circumference.
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b ↓ m→ 1 2 3 4
0.9 0.3749 0.4057 0.4199 0.4283
0.8 0.3251 0.3589 0.3755 0.3859
0.7 0.2900 0.3163 0.3321 0.3650
0.6 0.2640 0.2731 0.3144 0.3572
0.5 0.2459 0.2363
0.4 0.1964 0.2018

Table 1. Values of � for the V -states plotted in Figure 5.

Continuing with Figure 5, the cases m = 1 and m = 2 are pretty different from the other cases. Indeed,
when m ≥ 3 and b is small enough, the limiting V -states very closely resemble those in [Deem and
Zabusky 1978] and corner-shaped singularities seem to develop. It is remarkable that the rigid boundary
only affects the shape of the V -states for b pretty close to 1; furthermore, the larger m is, the larger b has
to be, in order for the influence of the rigid boundary to become noticeable. On the other hand, when
m = 2 and b is small enough, the limiting V -states are lemniscate-shaped; whether some self-intersection
actually occurs deserves further study. Finally, when m = 1 and b is small enough, the limiting V -states
seem to resemble an asymmetrical oval.

5.2. Doubly connected V-states.

5.2.1. Numerical derivation. Given a doubly connected domain D with outer boundary z1(θ) and inner
boundary z2(θ), where θ ∈ [0, 2π [ is the Lagrangian parameter and z1 and z2 are parametrized, D is a
V -state if and only if its boundaries satisfy

Re
{(

2�z1(θ)+
1

2π i

∫ 2π

0

z1(θ)− z1(φ)

z1(θ)− z1(φ)
z1,φ(φ) dφ−

1
2π i

∫ 2π

0

z1(θ)− z2(φ)

z1(θ)− z2(φ)
z2,φ(φ) dφ

−
1

2π i

∫ 2π

0

|z1(φ)|
2

1− z1(θ)z1(φ)
z1,φ(φ) dφ

+
1

2π i

∫ 2π

0

|z2(φ)|
2

1− z1(θ)z2(φ)
z2,φ(φ) dφ

)
z1,θ (θ)

}
= 0, (80)

Re
{(

2�z2(θ)+
1

2π i

∫ 2π

0

z2(θ)− z1(φ)

z2(θ)− z1(φ)
z1,φ(φ) dφ−

1
2π i

∫ 2π

0

z2(θ)− z2(φ)

z2(θ)− z2(φ)
z2,φ(φ) dφ

−
1

2π i

∫ 2π

0

|z1(φ)|
2

1− z2(θ)z1(φ)
z1,φ(φ) dφ

+
1

2π i

∫ 2π

0

|z2(φ)|
2

1− z2(θ)z2(φ)
z2,φ(φ) dφ

)
z2,θ (θ)

}
= 0. (81)

As in the simply connected case, we use a pseudospectral method to find V -states. We discretize θ ∈[0, 2π [
in N equally spaced nodes θi = 2π i/N , i = 0, 1, . . . , N −1, where N has to be large enough. Then since
z1 and z2 never intersect, all the integrals in (80) and (81) can be evaluated numerically with spectral
accuracy at a node θ = θi by means of the trapezoidal rule, exactly as in (75).
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In order to obtain doubly connected m-fold V -states, we approximate z1 and z2 as in (76):

z1(θ)= eiθ
[

b1+

M∑
k=1

a1,k cos(mkθ)
]
, z2(θ)= eiθ

[
b2+

M∑
k=1

a2,k cos(mkθ)
]
, (82)

where the mean outer and inner radii are b1 and b2, respectively, and we are imposing that z1(−θ)= z1(θ)

and z2(−θ)= z2(θ), i.e., looking for V -states symmetric with respect to the x-axis. Again, if we choose N
of the form N = m2r , then M = b(m2r

− 1)/(2m)c = 2r−1
− 1.

We introduce (82) into (80) and (81), and as in (77), we approximate the errors in (80) and (81) by
their M-term sine expansions, which are respectively

∑M
k=1 b1,k sin(mkθ) and

∑M
k=1 b2,k sin(mkθ). Then

as in (78), the resulting systems of equations can be represented in a very compact way as

Fb1,b2,�(a1,1, . . . , a1,M , a2,1, . . . , a2,M)= (b1,1, . . . , b1,M , b2,1, . . . , b2,M) (83)

for a certain Fb1,b2,� :R
2M
→R2M . Remark that, for any� and any 0<b2<b1<1, we have Fb1b2,�(0)=0

trivially; i.e., any circular annulus is a solution of the problem. Therefore, obtaining a doubly connected
V -state is reduced to numerically finding {a1,k} and {a2,k} such that (a1,1, . . . , a1,M , a2,1, . . . , a2,M) is a
nontrivial root of (83). To do so, we discretize the (2M×2M)-dimensional Jacobian matrix J of Fb1,b2,�

as in (79), taking h = 10−9:

∂Fb1,b2,�(a1,1, . . . , a1,M , a2,1, . . . , a2,M)

∂a1,1

≈
Fb1,b2,�(a1,1+ h, a1,2, . . . , a1,M , a2,1, . . . , a2,M)−Fb1,b2,�(a1,1, . . . , a1,M , a2,1, . . . , a2,M)

h
. (84)

Then the sine expansion of (84) gives us the first row of J, and so on. Hence, if the n-th iteration is
denoted by (a1,1, . . . , a1,M , a2,1, . . . , a2,M)

(n), then the (n+ 1)-th iteration is given by

(a1,1, . . . , a1,M , a2,1, . . . , a2,M)
(n+1)

= (a1,1, . . . , a1,M , a2,1, . . . , a2,M)
(n)
−Fb1,b2,�((a1,1, . . . , a1,M , a2,1, . . . , a2,M)

(n)) · [J(n)]−1,

where [J(n)]−1 denotes the inverse of the Jacobian matrix at (a1,1, . . . , a1,M , a2,1, . . . , a2,M)
(n). To make

this iteration converge, it is usually enough to perturb the annulus by assigning a small value to a(0)1,1
or a(0)2,1 and leave the other coefficients equal to zero. Our stopping criterion is

(
max

∣∣∣∣ M∑
k=1

b1,k sin(mkθ)
∣∣∣∣< tol

)
∧

(
max

∣∣∣∣ M∑
k=1

b2,k sin(mkθ)
∣∣∣∣< tol

)
,

where tol= 10−13. As in [de la Hoz et al. 2016a; 2016b], a1,1 · a2,1 < 0, so for the sake of coherence, we
eventually change the sign of all the coefficients {a1,k} and {a2,k}, in order for, without loss of generality,
a1,1 > 0 and a2,1 < 0.
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Figure 6. b?m as a function of b1, for m = 2, . . . , 20.

5.2.2. Numerical discussion. Proposition 19 states that, given b1 ∈ ]0, 1[ and m ≥ 2, there is a certain b?m
such that b2 ∈ [0, b?m]. Let us recall that b?m is the only solution of

m =
2+ 2(x/b1)

m
− (bm

1 + xm)2

1− (x/b1)2
.

In Figure 6, we have plotted b?m as a function of b1, for m = 2, . . . , 20.
If we make b2 = b?m , then the discriminant 1m defined in Theorem 6 is equal to zero, and in that case,

�+m =�
−
m or, equivalently, λ+m = λ

−
m . Note that the relation between �± and λ±m is given by

�±m =
1
2(1− λ

∓

m).

In Figure 7, we plotted λ±m as a function of b2 ∈ [0, b?m], for m = 2, . . . , 20 and b1 ∈ {0.25, 0.5, 0.75, 0.99}.
We have also plotted in black the special case m=1, where b2∈[0, b1], λ+1 =1+b2

2−b2
1 and λ−1 = (b2/b1)

2.
Observe that, whereas the curves λ+m and λ−m are disjoint for m ≥ 2, λ+1 may intersect λ+m or λ−m . It is
particularly interesting to see what happens when b1 is close to 1; indeed, when b1 = 0.99, the curves λ−m
become practically indistinguishable.

Although Figure 7 gives a fairly good idea of the structure of λ±m , it may be clarifying to show globally
how the curves in Figure 7 behave as b1 changes, for a fixed m. In Figure 8, we have plotted λ±m as a
function of b2 ∈ [0, b?m], for m = 2, 3, 4 and for all b1 ∈ ]0, 1[, in such a way that, for a given b1, the
intersection between z = b1 and the resulting surfaces yields curves equivalent to those in Figure 8. In
general, the surfaces corresponding to m≥3 are very similar. On the other hand, Figure 8 shows that, when
m = 2 and b1 is not too large, the size of the curves (b2, λ

±

2 ) is very small; indeed, in Figure 7, (b2, λ
±

2 )

is hardly visible when b1 = 0.25. A similar observation can be made with respect to the case m = 2 in
Figure 6, which is markedly different from the others.
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Figure 7. λ±m as a function of b2 ∈ [0, b?m], for m = 2, . . . , 20, together with the case
m = 1 (black), for b1 ∈ {0.25, 0.5, 0.75, 0.99}. We have marked with a small black dots
the intersections happening between the case m = 1 and the other cases.

As in the simply connected case, we use �= (1− λ)/2 as our bifurcation parameter. In order to treat
the saddle-node bifurcation points [Kielhöfer 2012] that may appear during the bifurcation process, we
again use the techniques described in [de la Hoz et al. 2016a].

Before illustrating the shape of the doubly connected V -states, let us mention that the situation is much
more involved than in the simply connected case, where there were roughly two situations for all m:
b close to 1 and b not so close to 1. Indeed, we have to play now with both the proximity of b1 to 1 and
that of b2 to b?m . Furthermore, we can start the bifurcation from the annulus of radii b1 and b2 at two
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Figure 8. λ±m as a function of b2 ∈ [0, b?m], for m = 2, 3, 4 and for all b1 ∈ ]0, 1[.

different values of �, i.e., �+m and �−m . Finally, the case m = 1 needs to be studied individually. All in
all, we have detected the following scenarios.

When m ≥ 3, there are roughly three cases when starting to bifurcate at �+m and two cases when
starting to bifurcate at �−m . More precisely, if we start to bifurcate at �+m , we have to distinguish between
the following:

• b2 is very close to b?m . In that case, it seems possible to obtain V -states for all � ∈ ]�−m, �
+
m[, very

much like in [de la Hoz et al. 2016b], irrespective of the size of b1. For example, in Figure 9, we have
calculated the V -states corresponding to m= 4, b1= 0.8 and b2= 0.53. Observe that b?4= 0.5407. . . ,
i.e., we have chosen b2 close enough to b?4. On the right-hand side, we have plotted the bifurcation
diagram of the coefficients a1,1 and a2,1 in (82) against �, which shows that there is indeed a
continuous bifurcation branch that joins �−m and �+m , where �−4 = 0.1335. . . and �+4 = 0.1671. . . .
On the left-hand side, we have plotted V -states for four different values of � ∈ ]�−m, �

+
m[.
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Figure 9. Left: V -states corresponding to m = 4, b1 = 0.8, b2 = 0.53 and several values
of �. Right: bifurcation diagram. Here N = 256.
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Figure 10. Approximation to the limiting V -states corresponding to m = 4, b1 = 0.8
and b2 = 0.3. Left: we have started to bifurcate at �+4 = 0.3256. . . , taking � < �+4 .
Right: we have started to bifurcate at �−4 = 0.1250. . . , taking �>�−4 . Here N = 1024.

• b1 is close to 1, and b2 is small enough. There are limiting V -states, for which the distance between
the outer boundary z1 and the unit circumference tends to zero, but the inner boundary z2 does not
deviate greatly from the circumference of radius b2. On the left-hand side of Figure 10, we have
approximated the limiting V -state corresponding to m = 4, b1 = 0.8 and b2 = 0.3. The shape of z1

is not very far from the case m = 4 and b = 0.8 of Figure 5.
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Figure 11. Left: approximation to the limiting V -state corresponding to m = 4, b1 = 0.8
and b2= 0.4, starting to bifurcate at �+4 = 0.2706, taking �<�+4 . Right: approximation
to the limiting V -state corresponding to m= 4, b1= 0.6 and b2= 0.3, starting to bifurcate
at �+4 = 0.2516, taking �<�+4 . Here N = 1024.
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Figure 12. Approximation to the limiting V -state corresponding to m = 4, b1 = 0.72
and b2 = 0.32, starting to bifurcate at �+4 = 0.2851, taking � < �+4 . Here N = 2048.
The zoom shows that the boundaries are very close from each other, but there is no
intersection.

• b1 and b2 do not fit in the previous two cases. In that case, there are also limiting V -states,
characterized by the appearance of corner-shaped singularities in z1 or z2. In Figure 11, we have
approximated the limiting V -states corresponding to m = 4, b1 = 0.8 and b2 = 0.4 (left) and to
m = 4, b1 = 0.6 and b2 = 0.3 (right). Observe that the influence of the rigid boundary seems less
perceptible in the second example, which accordingly does not differ too much from those in [de la
Hoz et al. 2016b].

Although the distance between z1 and the unit circumference is always strictly positive, the
distance between z1 and z2 is sometimes very small, and we cannot exclude in advance the existence
of limiting V -states where z1 and z2 actually touch each other. For instance, after playing with the
values of b1 and b2, we have found that the choice of b1 = 0.72 and b2 = 0.32 enables us to find
a V -state such that the distance between z1 and z2 is of about 7× 10−3. This V -state is plotted in
Figure 12, together with a zoom of one apparent intersection of the boundaries that shows that there
is really no intersection and that the nodal resolution is adequate.

On the other hand, if we start to bifurcate at �−m , we have to distinguish between the following:

• b2 is very close to b?m . This case has been explained above. In fact, it is irrelevant whether we start
to bifurcate at �−m or at �+m .

• b2 is not close enough to b?m . In that case, there are limiting V -states, characterized by the appearance
of corner-shaped singularities in z2 whereas the outer boundary z1 does not deviate greatly from the
circumference of radius b1. On the right-hand side of Figure 10, we have approximated the limiting
V -state corresponding to m = 4, b1 = 0.8 and b2 = 0.3. We have not bothered to plot the V -states
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Figure 13. Left: approximation to the limiting V -states corresponding to m= 2, b1= 0.9
and b2 = 0.2, starting to bifurcate at �+2 = 0.3892. . . , taking �<�+2 . Right: we have
started to bifurcate at �−2 = 0.2497. . . , taking �>�−2 . Here N = 512.

corresponding to those in Figures 11 and 12 but starting to bifurcate at �−m because they are virtually
identical, up to a scaling of z2. This case closely matches that in [de la Hoz et al. 2016b], and the
inner boundary resembles the simply connected V -states in [Deem and Zabusky 1978].

Summarizing, if we compare the doubly connected V -states just described with those in [de la Hoz et al.
2016b], we conclude that the truly unique case here is when b1 is close to 1 and b2 is small enough.
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Figure 14. Approximation to the limiting V -states corresponding to m = 1, b1 = 0.9
and b2 = 0.3. Left: we have started to bifurcate at �+1 =

4
9 , taking �<�+1 . Right: we

have started to bifurcate at �−1 = 0.36, taking �>�−1 . Here N = 256.
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Regarding the case m = 2, everything said above is applicable. For example, in Figure 13, we have taken
b1 = 0.9 and b1 = 0.2, i.e., a value of b1 close to 1 and a value of b2 small enough. On the left-hand side,
we show an approximation to the limiting V -state appearing when starting to bifurcate at �+2 ; note the
clear parallelism with the case m = 2 and b = 0.9 of Figure 5 and with the left-hand side of Figure 10.
On the right-hand side, we show an approximation to the limiting V -state appearing when starting to
bifurcate at �−2 ; as in the right-hand side of Figure 10, corner-shaped singularities seem to develop in z2

whereas z1 has barely deviated from a circumference.
The case m = 1 also deserves a comment. In Figure 14, we have approximated the limiting V -states

corresponding to m = 1, taking again a value of b1 close to 1 and a value of b2 small enough, more
precisely, b1 = 0.9 and b2 = 0.3. On the left-hand side, we have started to bifurcate at �+1 , and on the
right-hand side, we have started to bifurcate at �−1 . It is remarkable that, in both cases, the distance of z1

to the unit circumference is smaller than 10−2. Moreover, even if the V -state on the left-hand side is
roughly in agreement with Figure 5 and with the left-hand sides of Figures 10 and 13, the V -state on the
right-hand side exhibits a completely different, unexpected behavior.
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