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RADEMACHER FUNCTIONS IN NAKANO SPACES

SERGEY ASTASHKIN AND MIECZYSŁAW MASTYŁO

The closed span of Rademacher functions is investigated in Nakano spaces Lp. � / on Œ0; 1� equipped with
the Lebesgue measure. The main result of this paper states that under some conditions on distribution of
the exponent function p the Rademacher functions form in Lp. � / a basic sequence equivalent to the unit
vector basis in `2.

1. Introduction

We recall that the Rademacher functions on Œ0; 1� are defined by rk.t/D sign.sin 2k�t/ for every t 2 Œ0; 1�
and each k 2 N. It is well known that .rk/ is an incomplete orthogonal system of independent random
variables. This system plays a prominent role in the modern theory of Banach spaces and operators (see,
e.g., [Diestel et al. 1995; Pisier 1986]). Special emphasis in this connection is placed on the study of local
theory of Banach spaces and especially on using the notions of (Rademacher) type and cotype, which
reflect the interplay between geometry and probability in these spaces. We mention here only a special
case of the famous result due to Maurey and Pisier [1976]; it states that a Banach space has type strictly
bigger than 1 (resp., finite cotype) if and only if it does not contain `n1’s (resp., `n1’s) uniformly. For
more details and a precise quantitative version of this result we refer, for example, to [Diestel et al. 1995,
Chapter 14].

Rademacher functions play a significant role in the study of lattice and rearrangement-invariant
structures in arbitrary Banach spaces. This research was initiated in the memoir [Johnson et al. 1979] by
Johnson, Maurey, Schechtman and Tzafriri. By way of motivation let us also mention a classical result of
Rodin and Semenov [1975], which states that the sequence .rk/ is equivalent in a symmetric space X to
the unit vector basis in `2, that is,



 1X

kD1

akrk






X

�

� 1X
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2

�1=2
; .ak/ 2 `2;

if and only if G �X , where G is the closure of L1Œ0; 1� in the Orlicz space LN Œ0; 1� generated by the
function N.t/D exp.t2/� 1 for all t � 0. When this condition is satisfied, the span Œrk� of Rademacher
functions is complemented in X if and only if X �G0, where the Köthe dual space G0 to G coincides
(with equivalence of norms) with the Orlicz space LN� Œ0; 1� generated by the Young conjugate N� which
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is equivalent at infinity to the function t 7! t log1=2 t . This was proved independently by Rodin and
Semenov [1979] and Lindenstrauss and Tzafriri [1979, pp. 134–138].

It is well known that .rk/ is a symmetric basic sequence in every symmetric space on Œ0; 1�, however
this is not true in the case of nonsymmetric Banach function lattices. In particular, this phenomenon
takes place, for example, in the space of functions of bounded mean oscillation and as well as in Cesàro
function spaces (see [Astashkin et al. 2011; Astashkin and Maligranda 2010]); this motivates searching
for conditions under which Rademacher functions form a symmetric or an unconditional basic sequence
in Banach function lattices.

The main purpose of this paper is to investigate the behaviour of Rademacher functions in the Nakano
function spaces Lp. � / on Œ0; 1�. These spaces (which are also called “variable exponent Lebesgue spaces”
in certain parts of the literature) are generalisations of the classical Lp-spaces, where the exponent p is
allowed to vary measurably over a set of values in Œ1;1/.

Nakano spaces belong to the large family of Musielak–Orlicz spaces, and therefore many their basic
properties follow from general results (see [Musielak 1983]). There are several books related to Nakano
spaces, which cover some joint material, however, from somewhat different viewpoints. Let us mention
[Diening et al. 2011] and [Cruz-Uribe and Fiorenza 2013], in which the authors provide a presentation of
fundamentals of Nakano spaces and study whether certain principal results in modern harmonic analysis
have natural analogues in the Nakano space setting. In the last decades the investigation on this topic has
been also motivated by the modelling the so-called electrorheological fluids and some other applications
(see [Cruz-Uribe and Fiorenza 2013], and also the more recent [Cruz-Uribe et al. 2014], where interesting
connections between theory of Nakano spaces and strongly hyperbolic systems with time-dependent
coefficients were discovered).

It is worth noting that a number of results related to the spaces Lp. � / is proved under some smoothness
conditions on the exponent function p. Let us recall, as an example, a result of Sharapudinov [1986]
which states that the Haar system is a basis in a Nakano space Lp. � / provided the exponent function p
satisfies the piecewise Dini–Lipschitz condition with exponent ˛ � 1 (see also the above-cited [Diening
et al. 2011; Cruz-Uribe and Fiorenza 2013]). In contrast to that in this paper we impose conditions upon
distribution of p and investigate the problem whether they are sufficient or necessary for equivalence of
the Rademacher sequence .rk/ in Lp. � / to the unit vector basis in `2.

2. Preliminaries

If .�;†;�/ is a � -finite measure space, then, as usual, L0 WDL0.�/ denotes the space of all real-valued
�-measurable functions. We say that .X; k � kX / is a Banach function lattice (in short, Banach lattice) on
.�;†;�/ if X is an ideal in L0 and kf kX � kgkX whenever f; g 2X and jf j � jgj. The Köthe dual
space X 0 of X is a collection of all elements g 2 L0 such that

kgkX 0 WD sup
�Z

�

jfgj d�I kf kX � 1

�
<1:

The space .X 0; k �kX 0/ is a Banach function lattice with the Fatou property. Recall that a Banach function
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lattice X is said to have the Fatou property if the conditions supn�1 kxnkX <1 and xn! x a.e. imply
that x 2X and kxkX � lim infn!1 jjxnjjX . It is well known that X has the Fatou property if and only if
the natural embedding of X into its second Köthe dual X 00 is an isometric surjection.

Let f 2 L0.I;m/, where I WD Œ0; 1� is equipped with the Lebesgue measure m. The distribution
function of f is defined by df .�/D �.ft 2 I I jf .t/j > �g/, � � 0, and its decreasing rearrangement
by f �.t/ D inffs > 0I df .s/ � tg, t > 0. One says that functions f and g are equimeasurable if
f �.t/D g�.t/, 0 < t � 1, or equivalently, df .�/D dg.�/, � > 0.

Recall some definitions and auxiliary results from the theory of symmetric spaces (for more details see
[Bennett and Sharpley 1988; Kreı̆n et al. 1982]).

A Banach function lattice X on .I;m/ is called a symmetric space if the conditions f � � g� a.e. on I
and g 2X imply f 2X and kf kX � kgkX . The fundamental function of a symmetric space X is given
by 'X .t/D k�Œ0;t/kX for all t 2 I . In what follows we will use the following obvious inequality for any
symmetric space X on I ,

f �.t/�
1

'X .t/
kf kX ; f 2X; t 2 .0; 1�: (1)

Important examples of symmetric spaces are Orlicz, Marcinkiewicz and Lorentz spaces. Recall that
ˆ W Œ0;1/! Œ0;1/ is called an Orlicz function if ˆ.0/D 0 and ˆ is positive, nondecreasing, convex
and left-continuous on .0;1/. If ˆ is such a function, the Orlicz space Lˆ consists of all f 2 L0.m/
for which there exists � > 0 such that Z

I

ˆ
�
jf j=�

�
dm <1:

It is a symmetric space equipped with the norm

kf kLˆ D inf
�
� > 0I

Z
I

ˆ

�
jf j

�

�
dm� 1

�
:

In what follows by LN (resp., LM ) we will denote the Orlicz space on Œ0; 1� generated by the function
N.t/D exp.t2/� 1 (resp., M.t/D exp.t2 log.t C 1//� 1) for all t � 0.

Let ' W I ! Œ0;1/ be a quasiconcave function, that is '.0/D 0, '.t/ > 0 for t 2 I and both ' and
t 7!e'.t/ WD t='.t/ are nondecreasing functions on .0; 1�. The Marcinkiewicz space M.'/ is defined to
be the space of all f 2 L0.m/ equipped with the norm

kf kM.'/ D sup
0<s2I

1

'.s/

Z s

0

f �.t/ dt:

If ' W I ! Œ0;1/ is an increasing concave function, '.0/D 0, the Lorentz space ƒ.'/ consists of all
f 2 L0 such that

kf kƒ.'/ D

Z 1

0

f �.t/ d'.t/ <1:

It is well known that L1 and L1 are, respectively, the largest and the smallest symmetric spaces on
I ; moreover, if X is a symmetric space on I with the fundamental function ', then ' is quasiconcave
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and the following continuous embeddings hold (see [Kreı̆n et al. 1982, Theorems II.5.5 and II.5.7] or
[Bennett and Sharpley 1988, Theorem II.5.13]):

ƒ.'/ ,!X ,!M.z'/;

where ' is the least concave majorant of '. In what follows we will frequently use the well-known fact
that the Orlicz space LN generated by the function N.t/D exp.t2/�1, t � 0, coincides up to equivalence
of norms with the Marcinkiewicz space M.'/ generated by the function '.t/D t log1=2.e=t/, 0 < t � 1
(see [Lorentz 1951]).

Let .�;†;�/ be a �-finite measure space. Given a measurable function p W�! Œ1;1/, we define
the Nakano space Lp. � /.�/ to be the space of all f 2 L0.�/ such that for some � > 0

��.f /D

Z
�

�
jf .t/j

�

�p.t/
d� <1:

Lp. � /.�/ becomes a Banach function lattice with the Fatou property when equipped with the norm

kf kLp. � / D kf kp. � / WD inff� > 0I ��.f =�/� 1g:

Throughout the paper a Nakano space defined on Œ0; 1� equipped with the Lebesgue measure m is
denoted for short Lp. � /. Notice that Lp. � / is not a symmetric space unless the exponent p is a constant
function, and in this case we write k � kp instead of k � kLp .

Further, we shall frequently use the following lemma which is an immediate consequence of Theorem 3
from [Fiorenza and Rakotoson 2007].

Lemma 2.1. Let f W Œ0; 1�! Œ0;1/ and p W Œ0; 1�! Œ1;1/ be two Lebesgue measurable functions. Then

kf kLp. � / � 4kf
�
kLp�. � / :

3. Main results

In this section we shall prove the main results of the paper. We recall that LN and LM are the Orlicz
spaces on Œ0; 1� generated by the functions N.t/D exp.t2/� 1 and M.t/D exp.t2 log.t C 1//� 1/.

Theorem 3.1. Let p W .0; 1�! Œ1;1/ be a Lebesgue measurable function and let Lp. � / be the Nakano
space generated by p. Each of the following conditions implies the next:

(i) LN � Lp. � /.

(ii) The Rademacher system .rn/ is equivalent in the space Lp. � / to the unit vector basis in `2.

(iii) There is a constant C > 0 such that

m.ft 2 Œ0; 1�I p.t/ > �g/� C����=2; �� 1:

(iv) LM � Lp. � /.

We start with the following distribution estimate, which will be useful for us in the sequel:
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Proposition 3.1. Suppose that for each k 2 N and m 2 N there exists ` > m such that



 `CkX
iD`C1

ri






Lp. � /

� B
p
k;

where B > 0 is independent of k and m. Then

m.ft 2 Œ0; 1�I p.t/ > �g/� 2.4B/����=2; �� 1:

Proof. Let �� 1 be fixed. We put

E� WD ft 2 Œ0; 1�Ip.t/ > �g:

Without loss of generality, we can assume that m.E�/ > 0. By the Sagher–Zhou local version of
Khintchine inequality for L1 (see [Sagher and Zhou 1990, Theorem 1]), it follows that there exists
n.�/ such that for all n� n.�/, every Rademacher sum Rn D

P1
kDn ak rk and arbitrary .ak/ 2 `2 with

k.ak/k`2 D 1, we have Z
E�

jRn.t/j dt � ˛ m.E�/;

where ˛ > 0 is a universal constant. Since �� 1,�
1

m.E�/

Z
E�

jRn.t/j
� dt

�1=�
�

1

m.E�/

Z
E�

jRn.t/j dt;

and so �Z
E�

jRn.t/j
� dt

�1=�
� ˛.m.E�//

1=�: (2)

On the other hand, it is well known (in particular, it is a consequence of the above-cited Rodin–Semenov
theorem) that there exists a constant ˇ > 0 such that



 1X

kD1

akrk






LN

� ˇ k.ak/k`2 ; .ak/ 2 `2; (3)

where, as above, LN is the Orlicz space generated by the function N.t/D exp.t2/� 1, t � 0. Since the
fundamental function of LN is given by '.t/ D 1=N�1.1=t/ D log�1=2.1C 1=t/ for all t 2 .0; 1�, it
follows by (1) and (3) that� 1X

nD1

akrk

��
.t/� ˇ log1=2

�
1C

1

t

�
� ˇ log1=2

�
e

t

�
; t 2 .0; 1�;

for all .ak/ 2 `2 with k.ak/k`2 � 1. Hence, for every ı > 0 and E � Œ0; 1� with m.E/ < ı, we obtain�Z
E

jRn.t/j
� dt

�1=�
�

�Z ı

0

R�n.t/
� dt

�1=�
� ˇ

�Z ı

0

log�=2
�
e

t

�
dt

�1=�
:
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Choose ı D ı.�/ > 0 so that Z ı

0

log�=2
�
e

t

�
dt � ˇ��˛�m.E�/:

Then, from the preceding inequality and (2), it follows that�Z
E

jRn.t/j
� dt

�1=�
� ˛.m.E�//

1=�
�

�Z
E�

jRn.t/j
� dt

�1=�
: (4)

provided m.E/ < ı and k.ak/k`2 D 1.
We denote by I �

k
the dyadic interval Œ.k� 1/2�� ; k2�� � for each � 2 ZC and each 1� k � 2� . Then

we can find a finite union of pairwise disjoint intervals F D
Sm
jD1 I

�j
kj

, 1� kj � 2�j , 1� j �m such
that

m.E�4F /�max
˚
ı; 1
2
m.E�/

	
(here, A4B WD .AnB/[ .B nA/). Hence, m.F /�m.E�/�m.E�4F /� 1

2
m.E�/, and for each sum

Rn D
P1
kDn akrk with k.ak/k`2 D 1, by (4), we obtain�Z

F

jRn.t/j
� dt

�1=�
�

�Z
E�

jRn.t/j
� dt

�1=�
C

�Z
E�4F

jRn.t/j
� dt

�1=�
� 2

�Z
E�

jRn.t/j
� dt

�1=�
:

This implies that�
1

m.E�/

Z
E�

jRn.t/j
� dt

�1=�
�
1

2

�
1

2m.F /

Z
F

jRn.t/j
� dt

�1=�
�
1

4

�
1

m.F /

Z
F

jRn.t/j
� dt

�1=�
:

Now, let a positive integer m � n.�/ be such that all Rademacher functions rk with k � m change
their sign at least once on each dyadic component of the set F . Then for any .ak/ 2 `2,�

1

m.F /

Z
F

ˇ̌̌̌ 1X
kDm

ak rk.t/

ˇ̌̌̌�
dt

�1=�
D





 1X
kDm

ak rk






�

:

Combining this equality with the above estimate, we obtain�
1

m.E�/

Z
E�

jRm.t/j
� dt

�1=�
�
1
4
kRmk� (5)

for every sum Rm D
P1
kDm akrk , k.ak/k`2 D 1 (m depends on �). Our hypothesis implies that for each

�� 1 we can find ` > m such that 



 `CŒ��X
iD`C1

ri






Lp. � /

� B
p
Œ��; (6)

where, as usual, Œx� is the integer part of x. In the opposite direction, we will use the following well-known
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inequality (see, e.g., [Blei 2001, Lemma VII.30, p. 167]):

2





 kX
jD1

rj






k

� k; k 2 N:

If R�;` WD
`CŒ��P
iD`C1

ri , this inequality yields

2 kR�;`k� � 2 kR�;`kŒ�� D 2





 Œ��X
jD1

rj






Œ��

� 2 Œ��:

Let R�;` WDR�;`=
p
Œ��. Then, from the latter inequality it follows that

R�;`

Œ�� � 2pŒ���p�:

Moreover, it is easy to see that R�;` D
1P
kDm

a0
k
rk , with k.a0

k
/k`2 D 1. Combining the preceding estimate

with inequality (5), we obtain �
1

m.E�/

Z
E�

ˇ̌
R�;`.t/

ˇ̌�
dt

�1=�
�
1
4

p
�;

or equivalently,

kR�;` �E�k� �
1
4

p
�m.E�/

1=�: (7)

where �E� is the characteristic function of the set E�. On the other hand, in view of (6) we have
kR�;`kLp. � / � B and so, setting E� D ft 2 E�I jR�;`.t/j � Bg, by the definition of the norm in the
Nakano space Lp. � /, we deduceZ

E�

ˇ̌̌̌
R�;`.t/

B

ˇ̌̌̌�
dt �

Z
E�

ˇ̌̌̌
R�;`.t/

B

ˇ̌̌̌�
dt C

Z
E�nE�

ˇ̌̌̌
R�;`.t/

B

ˇ̌̌̌�
dt �

Z 1

0

ˇ̌̌̌
R�;`.t/

B

ˇ̌̌̌p.t/
dt C 1� 2: (8)

Therefore, from (7) it follows that

2�

Z
E�

ˇ̌̌̌
R�;`.t/

B

ˇ̌̌̌�
dt �

��=2

.4B/�
m.E�/;

whence m.E�/� 2.4B/����=2: This completes the proof. �

Proof of Theorem 3.1. (i)) (ii). First, by [Diening et al. 2011, Theorem 3.3.1], for any exponent p. � /
we have

kf kL1 � 2 kf kLp. � / ; f 2 Lp. � /:

Combining this with the Khintchine inequality in L1 (see [Szarek 1976]), we obtain



 1X
kD1

ak rk






Lp. � /

�
1

2
p
2
k.ak/k`2 ; .ak/ 2 `2:
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Thus our hypothesis and (3) imply that there exists a constant C > 0 such that



 1X
kD1

ak rk






Lp. � /

� Ck.ak/k`2 ; .ak/ 2 `2:

The implication (ii)) (iii) follows from Proposition 3.1.

(iii)) (iv). Note that the Orlicz space LM , where M.t/D exp.t2 log.1C t //�1 for all t � 0, coincides
with the Marcinkiewicz space with the fundamental function ' WD 'LM given by

'.t/ WD

�
log.e=t/

log log.e2=t/

��1=2
; 0 < t � 1

(see, e.g., [Lorentz 1951] or [Astashkin 2009, Lemma 3.2]). Hence, LM can be characterised as the set
of all measurable functions x on Œ0; 1� for which there exists a constant C > 0 such that

x�.t/�
C

'.t/
; 0 < t � 1:

Thus, since Lp. � / is a Banach lattice, the embedding Lp. � / � LM will be proved if we show that the
space Lp. � / contains all functions equimeasurable with the function

f0.t/D
1

'.t/
; 0 < t � 1:

By hypothesis and Lemma 2.1, it follows that we need only to check that for some � > 0Z 1

0

�
f0.t/

�

�g.t/
dt <1; (9)

where g is a decreasing positive function on .0; 1� such that g.t/� 1 and

m.ft 2 .0; 1�I g.t/ > xg/D g�1.x/D C xx�x=2; x � 1;

for some C � 1.
For x0 � 1, which can be chosen later, we haveZ g�1.x0/

0

�
f0.t/

�

�g.t/
dt D�

Z 1
x0

�
f0.C

xx�x=2/

�

�x
d.C xx�x=2/

D

Z 1
x0

�
f0.C

xx�x=2/

�

�x
C xx�x=2 log.C�1e1=2x1=2/ dx:

If x0 is sufficiently large, then for all x � x0 we infer

f0.C
xx�x=2/D

�
log.eC�xxx=2/

log log.e2C�xxx=2/

�1=2
D

1
p
2

�
x log.C�xe2=xx/

log xC log
�
1
2

log.C�2e4=xx/
��1=2 �x1=2:
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Therefore, the preceding inequality impliesZ g�1.x0/

0

�
f0.t/

�

�g.t/
dt �

Z 1
x0

�
C

�

�x
log.C�1e1=2x1=2/ dx <1;

provided that � > C . Clearly, we obtain (9).
Finally, implication (iv)) (i) is an immediate consequence of the obvious embedding LN � LM ,

and the proof is complete. �

We do not know whether the distribution condition from (iii) implies the embedding LN � Lp. � / or
the equivalence of Rademacher system in Lp. � / to the unit vector basis in `2. However, the next result
can be treated as an approach to the solution of these problems. In its first part we prove that some
stronger condition on the distribution function of an exponent p. � / insures the embedding LN � Lp. � /

and in the second one we show that this result is in a sense sharp.

Theorem 3.2. Let p W .0; 1�! Œ1;1/ be a Lebesgue measurable function.

(a) If there exists a constant C > 0 such that

m.ft 2 .0; 1�Ip.t/ > xg/� C x.x log x/�x=2; x � 1;

then LN � Lp. � /.

(b) If there exists an increasing differentiable function � such that limx!1 �.x/ D 1, the function
x 7! �.x/x�1=2 log�1=2 x is decreasing for large enough x, and lim infx!1m.ft 2 .0; 1�I p.t/ >
xg �.x/�xxx=2 logx=2 x > 0;

then LN 6� Lp. � /.

Proof. (a) It can be easily checked that the function x 7! C x.x log x/�x=2 decreases if x � x0, where
x0 > 1 is sufficiently large. Denote by q the function inverse to it on the interval Œ0; t0�, where q.t0/D x0.
Then, from our hypothesis on p, it follows that p�.t/ � q.t/ for all 0 < t � t0. Recall that the space
LN coincides with the Marcinkiewicz space whose fundamental function is given by t 7! log�1=2.e=t/,
t 2 .0; 1/. Therefore, thanks to Lemma 2.1, we need only to check that for some � > 0

I� WD

Z t0

0

�
log1=2.e=t/

�

�q.t/
dt <1:

In fact,

I� D�

Z 1
x0

.��1 log1=2.eC�x.x log x/x=2//x d.C x.x log x/�x=2/

D
1

2

Z 1
x0

��x
�
x

2

�x=2
logx=2.e2=xC�2x log x/ �C x.x log x/�x=2

�
log.C�2x log x/C

log xC 1
log x

�
dx

� C1

Z 1
x0

�
C

�

�x�
log.x log x/C

log xC 1
log x

�
dx <1;

provided � > C , and this completes the proof.
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(b) It is sufficient to show that for every � > 0 there exists a measure-preserving transformation ! of
.0; 1� such that Z 1

0

�
��1 log1=2.e=!.t//

�p.t/
dt D1: (10)

In fact, from (10) it follows that log1=2.e=!/ …Lp. � /. On the other hand, since ! preserves measure, we
have �

log1=2
�

e

!. � /

���
.t/D log1=2

�
e

t

�
; t 2 .0; 1�:

Combining this with the fact that LN D M.'/, where '.t/ D t log1=2.e=t/, 0 < t � 1, we infer
log1=2.e=!/ 2 LN and the desired result follows.

Let us prove (10). Without loss of generality, we can assume that

�.x/� log1=2 x; for large enough x (11)

(otherwise, instead of �.x/ we can take the function minf�.x/; log1=2 xg). Moreover, our hypotheses on
� imply �

�.x/2

x log x

�0
D x�2 log�2 x.2� 0.x/�.x/x log x� �2.x/.1C log x//� 0;

and so
2x� 0.x/

�.x/
�
1C log x

x
; x � x0; (12)

if x0 � 1 is sufficiently large.
By assumption, there exists ˛ 2 .0; 1/ such that for all x � x0 we have

mft 2 .0; 1�I p.t/ > xg � ˛ .x/x :

Hence, if g is the inverse function to the mapping x 7! ˛ .x/x , x � x0, we obtain

p�.t/� g.t/; 0 < t � t0; (13)

for some t0 2 .0; 1�. If it is necessary, diminishing t0 we can assume also, for a given �> 0, the inequality
log1=2.e=t/� � to be valid for all t 2 .0; t0�.

Let ! be a measure-preserving transformation of .0; 1� such that p.t/D p�.!.t// (see [Bennett and
Sharpley 1988, Theorem 2.7.5]). From inequality (13) it follows that

p.t/� g.!.t//; t 2E;

where E D !�1.Œ0; t0�/. As a consequence,

I� WD

Z
E

�
��1 log1=2.e=!.t//

�p.t/
dt �

Z
E

�
��1 log1=2.e=!.t//

�g.!.t//
dt

D

Z t0

0

.��1 log1=2.e=t//g.t/ dt;
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and by letting x D g.t/, we obtain

I� � �˛

Z 1
g.t0/

��x logx=2
�

e

˛ .x/x

�
d. .x/x/:

Together with the elementary calculations

. .x/x/0 D

�
exp

�
�
x

2
log.�.x/�2x log x/

��0
D  .x/x

�
�
1

2
log.�.x/�2x log x/�

x

2

�.x/2

x log x
��4.x/

�
.1Clog x/�2.x/�2�.x/� 0.x/x log x

��
D�

1

2
 .x/x

�
log

x log x
�2.x/

C
1C log x

log x
�
2x� 0.x/

�.x/

�
;

inequality (12) shows that

. .x/x/0 � �
1

2
 .x/x log

x log x
�2.x/

; x � x0:

Combining this with the preceding inequality and (11), we obtain

I� �
˛

2

Z 1
g.t0/

��x
�
x

2

�x=2
logx=2.˛�2=xe2=x�.x/�2x log x/ �.x/xx�x=2 log�x=2 x log

x log x
�2.x/

dx

�
˛

2

Z 1
g.t0/

.�
p
2/�x�.x/x log x dx:

Since limx!1 �.x/D1, from the last estimate it follows that I� D1, which implies (10).
The proof is complete. �

We conclude the paper with the result which can be treated as a complement to Theorem 3.1 showing
that equivalence of the Rademacher system in Lq. � / with arbitrary exponent q, which is equimeasurable
with a given p, to the unit vector basis in `2 implies the embedding LN � Lp. � /.

Given a Lebesgue measurable function p W Œ0; 1�! Œ1;1/ we let �.p/ to be the set of all functions
q 2 L0.m/ which are equimeasurable with p.

Theorem 3.3. Suppose that for every q 2�.p/ the Rademacher system is equivalent in the space Lq. � /

to the standard basis in `2. Then LN � Lq. � / for every q 2�.p/.

Proof. Our hypothesis yields that for any q 2 �.p/ there exits a constant Cq > 0 such that for every
aD .ak/ 2 `2 



 1X

kD1

akrk






Lq. � /

� Cq kak`2 : (14)

We claim that there is a constant C0>0 such that for every measure-preserving mapping ! W Œ0; 1�! Œ0; 1�
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and all aD .ak/ 2 `2 we have 



 1X
kD1

akrk






Lp
�.!. � //

� C0 kak`2 : (15)

To see this we define the linear operator T! W `2! Lp
�. � /:

T!.ak/ WD

1X
kD1

ak rk.!
�1/; .ak/ 2 `2;

generated by an arbitrary measure-preserving mapping ! W Œ0; 1�! Œ0; 1�. Since for any � > 0Z 1

0

ˇ̌̌̌
1

�
T!a.t/

ˇ̌̌̌p�.t/
dt D

Z 1

0

�
1

�

ˇ̌̌̌ 1X
kD1

akrk.t/

ˇ̌̌̌�p�.!.t//
dt (16)

and the function q WD p�.!/ 2�.p/, from (14) it follows that the operator T! is bounded from `2 into
Lp
�. � /.
For a given sequence bD .bk/ 2 `2 we let f D

ˇ̌P1
kD1 bk rk

ˇ̌
. Applying Theorem 2.7.5 from [Bennett

and Sharpley 1988] once more, we can find a measure-preserving mapping v W Œ0; 1�! Œ0; 1� such that
f D f �.v/. Since p�.v/ 2�.p/, by (14), we have

kf kLp�.v/ �K WD Cp�.v/ kbk`2 :

Therefore, Z 1

0

�
f �.t/

K

�p�.t/
dt D

Z 1

0

�
f .v�1.t//

K

�p�.t/
dt D

Z 1

0

�
f .t/

K

�p�.v.t//
dt � 1;

whence, by Lemma 2.1,Z 1

0

�
f .t/

K

�p�.!.t//
dt D

Z 1

0

�
f .!�1.t//

K

�p�.t/
dt � 3:

Combining the last inequality and equality (16), with aD b, we get

kT!bkLp�. � / � 3K D 3Cp�.v/kbk`2 ;

where the constant Cp�.v/ does not depend on !. Thus, the family of operators fT!g!2�.p/ is pointwise
bounded, and thanks to the uniform boundedness principle, we obtain

kT!akLp�. � / � C0kak`2

for some constant C0 independent of !. Clearly, inequality (15) is an immediate consequence of the
latter inequality and (16).

Let us continue the proof of Theorem 3.3. As above, G is the closure L1 in the Orlicz space LN .
By [Astashkin and Semënov 2013, Theorem 4], for arbitrary x 2 G there exists a Rademacher sum
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f1 D
P1
kD1 akrk such that

kak`2 � C1kxkLN and x�.t/� C2.kak`2 Cf
�
1 .t//; t 2 .0; 1�: (17)

Take a measure-preserving mapping ! W Œ0; 1�! Œ0; 1�, for which jf1j D f �1 .!/. Then, from (17) and
(15) it follows

kx�kLp�. � / � C2.kak`2 Ckf1.!
�1/kLp�. � //D C2.kak`2 Ckf1kLp�.!//

� C2.1CC0/ kak`2 � C1C2.1CC0/kxkLN :

Furthermore, letting xn.t/Dmin
˚
n; log1=2

�
e=t/

	
, t 2 .0; 1�, we have xnD x�n 2G and kxnkLN � ˛ WD

klog1=2.e=t/kLN for each n 2 N. Hence, from the previous inequality it follows that

kxnkLp�. � / � C1C2.1CC0/˛; n 2 N:

Since the spaceLp
�. � / has the Fatou property and limt!1 xn.t/D log1=2.e=t/, we infer that the function

t 7! log1=2.e=t/ lies in Lp
�. � /. Recall that LN consists of all x 2L0.m/ such that x�.t/�C log1=2.e=t/

for all t 2 .0; 1� and some constant C >0. Therefore, by Lemma 2.1, we obtain LN �Lp
�. � /. Combining

this with the fact that LN is a symmetric space, we deduce LN �Lq. � / for arbitrary exponent q 2�.p/,
which completes the proof. �

Let us observe that, if a function p satisfies the conditions of Theorem 3.2(b), the Rademacher system
.rn/ in Lq. � / is not equivalent to the unit vector basis in `2 for every q 2 �.p/ (otherwise we would
arrive to contradiction by Theorem 3.3); therefore, we obtain

Corollary 3.1. Suppose that a function p satisfies the conditions of Theorem 3.2(b). Then there exists a
function q 2�.p/ such that the Rademacher system is not equivalent in Lq. � / to the unit vector basis
in `2.
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