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GLOBAL REGULARITY FOR A SLIGHTLY SUPERCRITICAL
HYPERDISSIPATIVE NAVIER–STOKES SYSTEM

DAVID BARBATO, FRANCESCO MORANDIN AND MARCO ROMITO

We prove global existence of smooth solutions for a slightly supercritical hyperdissipative Navier–Stokes
under the optimal condition on the correction to the dissipation. This proves a conjecture formulated
by Tao.

1. Introduction

Let d ≥ 3 and consider the generalized Navier–Stokes system
∂u/∂t + (u · ∇)u+∇ p+ D2

0u = 0,
∇ · u = 0,∫
[0,2π ]d u(t, x) dx = 0,

(1-1)

on [0, 2π ]d with periodic boundary conditions, where D0 is a Fourier multiplier with nonnegative
symbol m. The Navier–Stokes system is recovered when m(k)= |k|. If

m(k)≥ c
|k|(d+2)/4

G(|k|)
, (1-2)

where G : [0,∞)→ [0,∞) is a nondecreasing function such that∫
∞

1

ds
sG(s)4

=∞, (1-3)

and
G(x)
|x |(d+2)/4 is eventually nonincreasing, (1-4)

then in [Tao 2009] it is proved1 that (1-1) has a global smooth solution for every smooth initial condition.
The result has been extended to the two-dimensional case in [Katz and Tapay 2012].

A heuristic argument developed in [Tao 2009] and based on the comparison between the speed of
propagation of a (possible) blow-up and the rate of dissipation suggests that regularity should still hold
under the weaker condition ∫

∞

1

ds
sG(s)2

=∞. (1-5)

D. Barbato acknowledges the financial support of the research project “Stochastic Processes and Applications to Complex
Systems” (CPDA123182) of the University of Padua.
MSC2010: primary 76D03, 76D05; secondary 35Q30, 35Q35.
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1The proof of that result is given in Rd , but it can be easily extended to the periodic setting; see [Tao 2009, Remark 2.1].
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The main result of this paper, contained in the following theorem, is a complete proof of this conjecture.

Theorem 1.1. Let d ≥ 2 and assume conditions (1-2), (1-4) and (1-5) hold for a nondecreasing function
G : [0,∞)→ [0,∞). Then (1-1) has a global smooth solution for every smooth initial condition.

A simple version of this conjecture, when reformulated on a toy model, has been proved for the dyadic
model in [Barbato et al. 2014]. Actually, for that model one could prove regularity in the full supercritical
regime, with m(k)= |k|, as was done in [Barbato et al. 2011], but it was natural to develop there some
of the main ideas on which also this paper is based. In fact, here we prove that the equations for the
velocity can be reduced to a suitable dyadic-like model, but with infinitely many interactions. A more
sophisticated version of the arguments of [Barbato et al. 2014] ensures regularity of this dyadic model
and, in turn, of the solution of problem (1-1).

Our technique for proving Theorem 1.1 is flexible enough to include an additional critical parameter.
Consider the generalized Leray α-model,

∂v/∂t + (u · ∇)v+∇ p+ D1v = 0,
v = D2u,
∇ · v = 0,∫
[0,2π ]d v(t, x) dx =

∫
[0,2π ]d u(t, x) dx = 0,

(1-6)

where D1 and D2 are Fourier multipliers with nonnegative symbols m1 and m2.

Theorem 1.2. Let d ≥ 2 and α, β ≥ 0, and assume

m1(k)≥ c
|k|α

g(|k|)
, m2(k)≥ c|k|β, α+β ≥

d + 2
2

,

where g : [0,∞)→[0,∞) is a nondecreasing function such that x−αg(x) is eventually nonincreasing and∫
∞

1

ds
sg(s)

=∞. (1-7)

Then (1-6) has a global smooth solution for every smooth initial condition.

Under the assumptions of Theorem 1.1, if β = 0, α = (d + 2)/2, g(x) = G(x)2, m2(k) = 1, and
m1(k)=m(k)2, then the assumptions of Theorem 1.2 are met. Therefore Theorem 1.1 follows immediately
from Theorem 1.2, and it is sufficient to prove only the second result.

Our results hold as well when the problems are considered in Rd , since in our method large scales play
no significant role (see Remark 2.9).

The model (1-6) with g ≡ 1 was introduced by Olson and Titi [2007]. They proposed the idea that
a weaker nonlinearity and a stronger viscous dissipation could work together to yield regularity. Their
statement uses the stronger hypothesis α+β/2≥ (d+2)/2 though, and this result was later logarithmically
improved in [Yamazaki 2012] with condition (1-3).

Our results are also relevant in view of the analysis in [Tao 2014, Remark 5.2], since they confirm that
the condition (1-7) is optimal when general nonlinear terms with the same scaling are considered.
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The proof of the above theorem is based on two crucial ideas. The first idea is that smoothness of
(1-6) can be reduced to the smoothness of a suitable shell model, obtained by averaging the energy of a
solution of (1-6) over dyadic shells in Fourier space. We believe that this reduction may be interesting
beyond the scope of this paper. The second idea is that the overall contribution of energy and dissipation
over large shells satisfies a recursive inequality. Under condition (1-7), dissipation significantly dumps
the flow of energy towards small scales and ensures smoothness. This is a more sophisticated version of
the result obtained in [Barbato et al. 2014], due to the larger number of interactions between shells.

The paper is organized as follows. In Section 2 we derive the shell approximation of a solution of
(1-6). The recursive formula is obtained in Section 3. In Section 4 we deduce exponential decays of shell
modes by the recursive formula. The Appendix contains a standard existence and uniqueness result for
the sake of completeness.

2. From the generalized Fourier Navier–Stokes to the dyadic equation

This section contains one of the crucial steps in our approach. We show that the proof of Theorem 1.2
can be reduced to a proof of the decay of solutions of a suitable shell model. For simplicity and without
loss of generality, from now on we assume that

m1(k)=
|k|α

g(|k|)
, m2(k)≥ |k|β .

The shell approximation. The dynamics of our generalized version of the Navier–Stokes equation in
Fourier decomposition are 

v′k =−
|k|α

g(|k|)
vk − i

∑
h∈Zd\{0}

〈vh, k〉
|h|β

Pk(vk−h),

〈vk, k〉 = 0,
v−k = vk,

(2-1)

for k ∈ Zd
\{0}, where Pk(w) :=w− (〈w, k〉/|k|2)k and v0 = 0. A solution is a family (vk)k∈Zd\{0} where

each vk = vk(t) is a differentiable map from [0,∞) to Cd satisfying (2-1) for all times.
As is common in Littlewood–Paley theory, let8 : [0,∞)→[0, 1] be a smooth function such that8≡ 1

on [0, 1], 8≡ 0 on [2,∞), and 8 is strictly decreasing on [1, 2]. For x ≥ 0, let ψ(x) :=8(x)−8(2x),
so that ψ is a smooth bump function supported on

( 1
2 , 2

)
satisfying

∞∑
n=0

ψ

(
x
2n

)
= 1−8(2x)≡ 1, x ≥ 1.

Notice that it is elementary to show that
√
ψ is Lipschitz continuous.

Let N0 denote the set of nonnegative integers. For all n ∈ N0, we introduce the radial maps
ψn : R

d
→ [0, 1] defined by ψn(x)= ψ(2−n

|x |). Notice that∑
n∈N0

ψn(x)≡ 1, x ∈ Zd
\ {0}.
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In Littlewood–Paley theory, one typically defines ψn for all n ∈ Z, introduces objects like

Pn(x) :=
∑
k∈Zd

ψn(k)vkei〈k,x〉,

and then proves that u=
∑

n Pn . Since these Pn are not orthogonal2 this does not give a nice decomposition
of energy, as ∑

n∈Z

‖Pn‖
2
L2 6=

∑
k∈Zd

|vk |
2
= ‖u‖2L2 .

Thus, instead of Pn(x), we introduce a sort of square-averaged Littlewood–Paley decomposition. Let

Xn(t) :=
(∑

k∈Zd

ψn(k)|vk(t)|2
)1

2

, n ∈ N0, t ≥ 0. (2-2)

Then clearly ∑
n∈N0

X2
n =

∑
k∈Zd

|vk |
2
= ‖u‖2L2 .

Remark 2.1. One major difference with respect to the usual Littlewood–Paley theory is that it is impossible
to recover v from these Xn (as it was with the components Pn(x)), since they are averaged both in the
physical space and over one shell of the frequency space.

We will denote by Hγ the Hilbert–Sobolev space of periodic functions with differentiation index γ ,
namely

Hγ
=

{
v = (vk)k∈Zd :

∑
(1+ |k|2)γ |vk |

2 <∞
}
. (2-3)

Definition 2.2. If (2-2) holds, we say that X = (Xn(t))n∈N0,t≥0 is the shell approximation of v.

If v ∈ Hγ and X is its shell approximation, then∑
n

22γ n X2
n =

∑
k

(∑
n

22γ nψn(k)
)
|vk |

2
≈

∑
k

|k|2γ |vk |
2
= ‖v‖2Hγ . (2-4)

Hence, v(t) ∈C∞ if and only if supn 2γ n Xn <∞ for every γ > 0. In view of Theorem A.1, Theorem 1.2
follows if we can prove:

Theorem 2.3. Under the assumptions of Theorem 1.2, let v(0) be smooth and periodic and let m≥2+d/2.
If v is a solution of (1-6) in H m on its maximal interval of existence [0, T?), X is its shell approximation and

sup
[0,T?)

∑
22mn X2

n <∞,

then T? =∞.

2They are in fact almost orthogonal, in the sense that 〈Pn, Pm〉L2 = 0 whenever |m− n| ≥ 2.
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The shell solution. We want to write a system of equations for the shell approximation of a solution of
(1-6). We give a more formal connection between (1-6) and its shell equation because we believe the
notion will turn out to be useful beyond the scopes of the present work.

Define the set I to be those (l,m, n) ∈ N3
0 for which the difference between the two largest integers

among l, m and n is at most 2.
We are now ready to introduce the shell model ODE for the energy of each shell (Equation (2-5)).

Definition 2.4 (shell solution). Let X = (Xn)n∈N0 be a sequence of real-valued maps Xn : [0,∞)→ R.
We say that X is a shell solution if there are two families of real-valued maps χ = (χn)n∈N0 and
φ = (φ(l,m,n))(l,m,n)∈I such that

d
dt

X2
n(t)=−χn(t)X2

n(t)+
∑

l,m∈N0
(l,m,n)∈I

φ(l,m,n)(t)Xl(t)Xm(t)Xn(t) (2-5)

for all n ∈ N0 and t > 0, where the sum above is understood as absolutely convergent, and χ, φ satisfy
the following:

(1) The family φ is antisymmetric, in the sense that

φ(l,m,n)(t)=−φ(l,n,m)(t), (l,m, n) ∈ I, t ≥ 0.

(2) There exist two positive constants c1 and c2 for which

χn(t)≥ c1
2αn

g(2n+1)
and |φ(l,m,n)(t)| ≤ c22(d/2+1−β)min{l,m,n} (2-6)

for all (l,m, n) ∈ I and t ≥ 0.

Remark 2.5. We will prove below that the shell approximation of a solution of (1-6) is a shell solution.
It is easy to check that the dissipation term is local, as expected, due to the way the shell components of
a solution interact in the model’s dynamics. As for the nonlinear term, it turns out that the set I of the
triples of indices (l,m, n) for which there may be interaction between the shell components l, m and n is
quite small. This is basically because, in the Fourier space, three components may interact only if they
are the sides of a triangle, and by the triangle inequality their lengths cannot be in three shells far away
from each other.

Remark 2.6. To ensure that the sum in (2-5) is absolutely convergent, it is sufficient to assume that
the sequence (Xn(t))n∈N0 is square-summable (this will be a consequence of the energy inequality; see
Definition 3.1). Indeed, if n is not the smallest index, then the sum is extended to a finite number of
indices. Otherwise, φ(l,m,n) is constant with respect to l, m.



2014 DAVID BARBATO, FRANCESCO MORANDIN AND MARCO ROMITO

Remark 2.7. The antisymmetric property is what makes the nonlinearity of (2-5) formally conservative.
In fact, using antisymmetry, a change of variable (m′ = n and n′ = m) and the fact that (l,m′, n′) ∈ I if
and only if (l, n′,m′) ∈ I , one could formally write

−

∑
l,m,n∈N0
(l,m,n)∈I

φ(l,m,n)Xl Xm Xn =
∑

l,m,n∈N0
(l,m,n)∈I

φ(l,n,m)Xl Xm Xn =
∑

l,m′,n′∈N0
(l,n′,m′)∈I

φ(l,m′,n′)Xl Xm′Xn′

=

∑
l,m′,n′∈N0
(l,m′,n′)∈I

φ(l,m′,n′)Xl Xm′Xn′ .

If these sums are absolutely convergent, this would prove indeed that the expression itself is equal to zero.
Since these are infinite sums, these computations are not rigorous unless we know, for instance, that∑
n 22γ n X2

n <∞ with γ ≥ 1
3

( 1
2 d + 1−β

)
, as can be verified by an elementary computation.

The shell model as a shell approximation. The bounds on the coefficients given in Definition 2.4 are in
the correct direction to prove regularity results (and hence Theorem 2.3). The following theorem, which
is the main result of this section, shows that they capture the natural scaling of the shell interactions for
the physical solutions.

Theorem 2.8. If v is a solution of (1-6) on [0, T ] and X is its shell approximation, then X is a shell
solution.

Remark 2.9. At this stage it is easy to realize that our main results hold also in Rd with minimal changes.
Indeed when passing to the shell approximation, all large frequencies are considered together in the first
element of the shell model.

The proof of Theorem 2.8 can be found at the end of this section. It is based on Propositions 2.10–2.11
below, which give the actual definitions of χ and φ and prove their properties.

Proposition 2.10. Let X be the shell approximation of a solution v. Define χn(t) for n ∈N0 and t ≥ 0 by

χn(t) :=


2

X2
n(t)

∑
k∈Zd\{0}

ψn(k)
|k|α

g(|k|)
|vk(t)|2 if Xn(t) 6= 0,

2αn−α+1

g(2n+1)
if Xn(t)= 0.

(2-7)

Then

χn(t)≥
2αn−α+1

g(2n+1)
, n ∈ N0, t ≥ 0.

Proof. Fix n ∈ N0 and t ≥ 0. The map ψn is supported on {x ∈ Zd
: 2n−1 < |x | < 2n+1

} and g is
nondecreasing, so∑

k∈Zd\{0}

ψn(k)
|k|α

g(|k|)
|vk(t)|2 ≥

∑
k∈Zd\{0}

ψn(k)
2(n−1)α

g(2n+1)
|vk(t)|2 =

2(n−1)α

g(2n+1)
X2

n(t),

where we used (2-2). By (2-7) we get the result. �
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We finally turn our attention to the antisymmetry property and an upper bound for φ(l,m,n)(t):

Proposition 2.11. Let X be the shell approximation of a solution v. Define φ(l,m,n)(t) for all l, m, n ∈N0

and t ≥ 0 as

φ(l,m,n)(t) :=
2

Xl(t)Xm(t)Xn(t)

∑
h,k∈Zd

h 6=0

ψl(h)ψm(k− h)ψn(k)
Im{〈vh(t), k〉〈vk−h(t), vk(t)〉}

|h|β
(2-8)

(unless Xl(t)Xm(t)Xn(t)= 0, in which case φ(l,m,n)(t) := 0). Then:

(1) φ(l,m,n)(t)= 0 for all (l,m, n) /∈ I and all t ≥ 0.

(2) φ(l,m,n)(t)=−φ(l,n,m)(t) for all l, m, n ∈ N0 and all t ≥ 0.

(3) For any β ≥ 0 there exists a constant c3 > 0 depending only on d, β and ψ such that

|φ(l,m,n)(t)| ≤ c32(d/2+1−β)min{l,m,n}, (l,m, n) ∈ I, t ≥ 0. (2-9)

For the proof we need a couple of lemmas:

Lemma 2.12. Suppose v = (vk)k∈Zd is a complex field over Zd such that, for all k ∈ Zd , 〈k, vk〉 = 0 and
vk = v−k . Then, for all h ∈ Zd ,∑

k∈Zd

ψm(k− h)ψn(k) Im{〈vh, k〉〈vk−h, vk〉} = −
∑
k∈Zd

ψm(k)ψn(k− h) Im{〈vh, k〉〈vk−h, vk〉}.

Proof. Consider the left-hand side. By performing the change of variable k ′ = h− k, we obtain

ψm(k− h)= ψm(−k ′)= ψm(k ′),

ψn(k)= ψn(h− k ′)= ψn(k ′− h),

〈vh, k〉 = 〈vh, h− k ′〉 = −〈vh, k ′〉,

〈vk−h, vk〉 = 〈v−k′, vh−k′〉 = 〈vk′, vk′−h〉 = 〈vk′−h, vk′〉.

The sum for k ∈ Zd is equivalent to the sum for k ′ ∈ Zd , and this concludes the proof. �

Lemma 2.13. Let v be a solution and X its shell approximation. Then, for all a, b, c ∈ N0 and all t ≥ 0,∑
h∈Zd

ψa(h)|vh(t)|
∑
k∈Zd

√
ψb(k)ψc(k− h)|vk(t)||vk−h(t)| ≤ 2d(a+3)/2 Xa(t)Xb(t)Xc(t).

Proof. By the Cauchy–Schwarz inequality and formula (2-2), we have that, for all h ∈ Zd ,∑
k∈Zd

√
ψb(k)ψc(k− h)|vk(t)||vk−h(t)| ≤ Xb(t)Xc(t).

Then, let Sa denote the intersection of Zd and the support of ψa . By inscribing Sa in a cube, we can
bound its cardinality by |Sa| ≤ (2a+2

+ 1)d ≤ 2(a+3)d , so

∑
k∈Zd

ψa(k)|vk(t)| ≤
(
|Sa|

∑
k∈Sa

ψ2
a (k)v

2
k (t)

)1
2

≤ (2(a+3)d)1/2 Xa(t),
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where we used the fact that ψa(k)≤ 1. �

Proof of Proposition 2.11. Consider Equation (2-8), the definition of φ(l,m,n). By applying Lemma 2.12,
for fixed t we immediately conclude that

φ(l,n,m) =−φ(l,m,n), l,m, n ∈ N0,

and in particular that φ(l,m,m) = 0.
Moreover, for all choices of h and k, the arguments of ψl , ψm and ψn are the sides of a triangle in Rd ,

so by the triangle inequality the size of the largest (without loss of generality k) is at most twice the size
of the second largest (without loss of generality h). On the other hand, for all j ∈N0 the support of ψ j is
{x ∈ Rd

: 2 j−1 < |x |< 2 j+1
}. Thus, whenever ψl(h)ψn(k) 6= 0, necessarily n ≤ l + 2, since

2n−1 < |k| ≤ 2|h|< 2l+2.

This proves that φ(l,m,n) = 0 outside the set I defined before Definition 2.4.
Finally, we prove inequality (2-9) for (l,m, n) ∈ I with m < n. We will consider separately the two

cases n−m > 2 and n−m ∈ {1, 2}, starting with the former.

Case 1. Since m < n− 2 and (l,m, n) ∈ I , we have m = min{l,m, n} and |l − n| ≤ 2. This means in
particular that typically |k− h|< |k| for all the nonzero terms of the sum in (2-8), so it is convenient to
substitute 〈vh, k〉 = 〈vh, k− h〉 in the equation to obtain the bound

|φ(l,m,n)| ≤
2

Xl Xm Xn

∑
h,k∈Zd

h 6=0

ψl(h)ψm(k− h)ψn(k)
|vh||k− h||vk−h||vk |

|h|β
.

By the definition of ψl , either ψl(h)= 0 or |h| ≥ 2l−1
≥ 2m . Applying this and the change of variable

k ′ = k− h, one gets

|φ(l,m,n)| ≤
21−βm

Xl Xm Xn

∑
k′∈Zd

ψm(k ′)|k ′||vk′ |
∑
h∈Zd

ψl(h)ψn(k ′+ h)|vh||vk′+h|.

In the same way, we can substitute |k ′|≤2m+1 and apply Lemma 2.13 (recall thatψ ≤1, soψ ≤
√
ψ) to get

|φ(l,m,n)| ≤ 21−βm+m+1+d(m+3)/2.

Since in the present case min{l,m, n} = m, this proves inequality (2-9) with c3 = 22+3d/2.

Case 2. Suppose now that n−m ∈ {1, 2} and (l,m, n) ∈ I ; then l ≤ n+ 2 and min{l,m, n} ≥ l − 4. In
this case it is l that can be small with respect to m and n, so we take the terms in l and h outside the
internal sum:

|φ(l,m,n)| ≤
2

Xl Xm Xn

∑
h∈Zd\{0}

ψl(h)
|h|β

∣∣∣∣∑
k∈Zd

ψm(k− h)ψn(k) Im{〈vh, k〉〈vk−h, vk〉}

∣∣∣∣.
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The idea is to exploit the cancellations in the sum over k that happen when k− h and k are switched. By
Lemma 2.12 and the bound |k| ≤ 2n+1 for k in the support of ψm or ψn ,

|φ(l,m,n)| ≤
2

Xl Xm Xn

∑
h∈Zd\{0}

ψl(h)
|h|β

1
2

∣∣∣∣∑
k∈Zd

(
ψm(k− h)ψn(k)−ψm(k)ψn(k− h)

)
Im{〈vh, k〉〈vk−h, vk〉}

∣∣∣∣
≤

2n+1

Xl Xm Xn

∑
h∈Zd\{0}

ψl(h)|vh|

|h|β
∑
k∈Zd

∣∣ψm(k− h)ψn(k)−ψm(k)ψn(k− h)
∣∣|vk−h||vk |.

We turn our attention to the term ψm(k − h)ψn(k)− ψm(k)ψn(k − h) and show that it is small. Let
L denote the Lipschitz constant of the function ψ1/2. Then, for all h, k ∈ Zd and all m, n ∈ N0 such
that m ≥ n− 2,∣∣√ψm(k− h)ψn(k)−

√
ψm(k)ψn(k− h)

∣∣
=
∣∣√ψm(k− h)ψn(k)−

√
ψm(k)ψn(k)+

√
ψm(k)ψn(k)−

√
ψm(k)ψn(k− h)

∣∣
≤ L
|h|
2m

√
ψn(k)+ L

|h|
2n

√
ψm(k)≤ L

|h|
2n−3 .

Moreover, by symmetry with respect to m and n,∑
k∈Zd

(√
ψm(k− h)ψn(k)+

√
ψm(k)ψn(k− h)

)
|vk−h||vk | = 2

∑
k∈Zd

√
ψm(k− h)ψn(k)|vk−h||vk |,

so that

|φ(l,m,n)| ≤
25L

Xl Xm Xn

∑
h∈Zd\{0}

|h|1−βψl(h)|vh|
∑
k∈Zd

√
ψm(k− h)ψn(k)|vk−h||vk |.

By the usual bound 2l−1
≤|h|≤2l+1 and since β≥0, we see that |h|1−β ≤2l(1−β)+1+β so, by Lemma 2.13,

|φ(l,m,n)| ≤ 252(1−β)l+1+β2(l+3)d/2L ≤ 2(d/2+1−β)(l−4)+9−3β+11d/2L .

Since in the present case min{l,m, n} ≥ l − 4, this proves inequality (2-9) with c3 = 29+11d/2−3βL . �

Finally we have all the ingredients to prove the main theorem of this section:

Proof of Theorem 2.8. A direct computation using (2-2) and (2-1) shows that

1
2

d
dt

X2
n = Re

∑
k∈Zd

ψn(k)〈v′k, vk〉

= −

∑
k∈Zd\{0}

ψn(k)
|k|α

g(|k|)
|vk |

2
+ Im

∑
k∈Zd

∑
h∈Zd\{0}

ψn(k)
〈vh, k〉
|h|β

〈Pk(vk−h), vk〉

= −

∑
k∈Zd\{0}

ψn(k)
|k|α

g(|k|)
|vk |

2
+

∑
h,k∈Zd

h 6=0

ψn(k)
Im{〈vh, k〉〈vk−h, vk〉}

|h|β
.
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To deal with the first sum, define χ as in Proposition 2.10. By applying (2-7) for Xn(t) 6= 0 and (2-2) for
Xn(t)= 0, we see that in both cases

2
∑

k∈Zd\{0}

ψn(k)
|k|α

g(|k|)
|vk |

2
= χn(t)X2

n(t).

Now consider the second sum. Since the terms with h = k give no contribution, we can apply∑
l∈N0

ψl(h)=
∑

m∈N0

ψm(k− h)= 1, h, k ∈ Zd , 0 6= h 6= k,

to get∑
h,k∈Zd

h 6=0

ψn(k)
Im{〈vh, k〉〈vk−h, vk〉}

|h|β
=

∑
h,k∈Zd

h 6=0

∑
l,m∈N0

ψl(h)ψm(k− h)ψn(k)
Im{〈vh, k〉〈vk−h, vk〉}

|h|β

=

∑
l,m∈N0

∑
h,k∈Zd

h 6=0

ψl(h)ψm(k− h)ψn(k)
Im{〈vh, k〉〈vk−h, vk〉}

|h|β
,

where it was possible to exchange the order of summation because the middle expression is clearly
absolutely convergent.

Now define φ as in Proposition 2.11. By applying (2-8) or (2-2), depending on Xl(t)Xm(t)Xn(t) being
positive or zero, we see that, for all l, m, n ∈ N0 and t ≥ 0,

2
∑

h,k∈Zd

h 6=0

ψl(h)ψm(k− h)ψn(k)
Im{〈vh, k〉〈vk−h, vk〉}

|h|β
= φ(l,m,n)(t)Xl(t)Xm(t)Xn(t).

Putting it all together we get

d
dt

X2
n(t)=−χn(t)X2

n(t)+
∑

l,m∈N0

φ(l,m,n)(t)Xl(t)Xm(t)Xn(t), n ∈ N0, t ≥ 0.

Finally, recalling by Proposition 2.11 that φ≡ 0 outside I , we may restrict the scope of the sum and obtain
(2-5). The required properties of the coefficients χ and ψ follow again from Propositions 2.10–2.11. �

3. From the dyadic equation to the recursive inequality

In view of the results of the previous section, we can now concentrate on shell solutions and forget (1-6).
In this section we proceed as in [Barbato et al. 2014] and deduce a recursive inequality between the tails
of energy and dissipation. Clearly here, due to the more complex nonlinear interaction, the relation is less
trivial than in [Barbato et al. 2014].

Definition 3.1. A shell solution X satisfies the energy inequality on [0, T ] if
∑

n X2
n(0) is finite and∑

n∈N0

X2
n(t)+

∫ t

0

∑
n∈N0

χn(s)X2
n(s) ds ≤

∑
n∈N0

X2
n(0), t ∈ [0, T ]. (3-1)
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Definition 3.2. Let X be a shell solution and define the sequences of real-valued maps (Fn)n∈N0 and
(dn)n∈N0 for t ≥ 0 by

Fn(t) :=
∑
k≥n

X2
k (t), dn(t) :=

(
Fn(t)+

∑
h≥n

∫ t

0
χh(s)X2

h(s) ds
)1

2

.

We will call (Fn)n∈N0 the tail of X and (dn)n∈N0 the energy bound of X .

The recursive inequality between the tails and the energy bound is given in the next result.

Proposition 3.3. Let X be a shell solution that satisfies the energy inequality on a time interval [0, t], let
(dn)n∈N0 be its sequence of energy bounds, and set λ= 2α.

Then there is a positive constant c4 > 0, not depending on t , such that, for all n ∈ N0,

d2
n (t)≤ Fn(0)+ c4

n−1∑
l=0

d̄l

λn−l

∑
m≥n−2

g(2m+1)

λm−n (d2
m(t)− d2

m+1(t)), (3-2)

where d̄l :=maxs∈[0,t] dl(s).

Proof. Fix n ∈ N0. Differentiate
∑n−1

h=0 X2
h using (2-5):

d
dt

n−1∑
h=0

X2
h =−

n−1∑
h=0

χh X2
h +

∑
l,m,h∈N0
(l,m,h)∈I

h≤n−1

φ(l,m,h)Xl Xm Xh .

Apply Lemma 3.4 below to the second sum and integrate on [0, t] to obtain

n−1∑
h=0

X2
h(t)−

n−1∑
h=0

X2
h(0)=−

∫ t

0

n−1∑
h=0

χh X2
h ds−

∫ t

0

∑
(l,m,h)∈I
m<n≤h

φ(l,m,h)Xl Xm Xh ds

so that, by the energy inequality (3-1),

Fn(t)+
∫ t

0

∑
h≥n

χh(s)X2
h(s) ds ≤ Fn(0)+

∫ t

0

∑
(l,m,h)∈I
m<n≤h

φ(l,m,h)Xl(s)Xm(s)Xh(s) ds,

where the Fn are the tails of X and Fn(0)<∞ by hypothesis. Thus, by the definition of dn (Definition 3.2),

d2
n (t)≤ Fn(0)+

∫ t

0

∑
(l,m,h)∈I
m<n≤h

φ(l,m,h)Xl(s)Xm(s)Xh(s) ds.

Recall that α+β ≥ 1
2 d + 1, hence the bound (2-6) for φ yields φ(l,m,h) ≤ c2λ

min{l,m,h}. Therefore

d2
n (t)≤ Fn(0)+

∫ t

0

∑
(l,m,h)∈I
m<n≤h

c2λ
min{l,m}

|Xl(s)Xm(s)Xh(s)| ds.
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It is convenient to split the set over which the sum is taken into the sets {l < m} and {m ≤ l}:∑
(l,m,h)∈I
m<n≤h

λmin{l,m}
|Xl Xm Xh| ≤

∑
(l,m,h)∈I
l<m<n≤h

λl
|Xl Xm Xh| +

∑
(l,m,h)∈I
m<n≤h

m≤l

λm
|Xl Xm Xh|

≤

∑
(l,m,h)∈I
l<m<n≤h

λl
|Xl Xm Xh| +

∑
(l,m,h)∈I

l<n≤h
l≤m

λl
|Xl Xm Xh|

≤ 2
∑

(l,m,h)∈I
l<n≤h

l≤m

λl
|Xl Xm Xh| ≤ 2

n−1∑
l=0

λl d̄l

∑
h≥n

h+2∑
m=h−2

|Xm Xh|.

Apply the Cauchy–Schwarz inequality to get

2
∑
h≥n

h+2∑
m=h−2

|Xh Xm | ≤
∑
h≥n

h+2∑
m=h−2

(X2
h + X2

m)≤ 10
∑

m≥n−2

X2
m .

Then by the bound on χ in (2-6), on all [0, t],∑
m≥n−2

X2
m ≤ c−1

1

∑
m≥n−2

g(2m+1)

λm χm X2
m .

Finally the integral of χm X2
m can be bounded as follows, since Fm(t) is nonincreasing with respect to m:

d2
m(t)− d2

m+1(t)= Fm(t)− Fm+1(t)+
∫ t

0
χm(s)X2

m(s) ds ≥
∫ t

0
χm(s)X2

m(s) ds.

Putting it all together we obtain

d2
n (t)≤ Fn(0)+ 10

c2

c1

n−1∑
l=0

d̄l

λ−l

∑
m≥n−2

g(2m+1)

λm (d2
m(t)− d2

m+1(t)),

thus proving (3-2) with c4 = 10c2/c1. �

Lemma 3.4. Let X be a shell solution; then, for all n ∈ N0 \ {0} and s ∈ [0, t],∑
(l,m,h)∈I

h≤n−1

φ(l,m,h)Xl Xm Xh =−
∑

(l,m,h)∈I
m≤n−1<h

φ(l,m,h)Xl Xm Xh . (3-3)

Proof. By using (2-6) and noticing that min(l,m, h) ≤ n − 1, we see that by the definition of shell
solutions (Definition 2.4) the left-hand side of (3-3) is an absolutely convergent sum. Therefore we can
exploit the cancellations due to the antisymmetry of φ, as in Remark 2.7. Indeed∑

(l,m,h)∈I
h≤n−1

φ(l,m,h)Xl Xm Xh =
∑

(l,m,h)∈I
m<h≤n−1

φ(l,m,h)Xl Xm Xh +
∑

(l,m,h)∈I
h≤n−1

m>h

φ(l,m,h)Xl Xm Xh (3-4)
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and ∑
(l,m,h)∈I

h≤n−1
m>h

φ(l,m,h)Xl Xm Xh =−
∑

(l,m,h)∈I
h≤n−1

m>h

φ(l,h,m)Xl Xm Xh =−
∑

(l,h′,m′)∈I
m′≤n−1
h′>m′

φ(l,m′,h′)Xl Xm′Xh′

=−

∑
(l,m′,h′)∈I

m′≤n−1
m′<h′

φ(l,m′,h′)Xl Xm′Xh′ . (3-5)

By substituting (3-5) into (3-4) the conclusion follows. �

4. Solving the recursion

In this section we complete the proof of our main result. In the previous section we have shown a
recursive inequality involving the energy bounds of a shell solution. The following theorem shows that
shell solutions are smooth. By Theorem 2.8, the shell approximation of a solution of (1-6) is a shell
solution; hence Theorem 2.3 holds, and in turn Theorem 1.2 holds as well.

Theorem 4.1. Let X be a shell solution satisfying the energy inequality on [0, t). If supn 2mn
|Xn(0)|<∞

for every m ≥ 1, then
sup

s∈[0,t]
sup

n
2mn
|Xn(s)|<∞ for every m ≥ 1.

Let bn = g(2n+1)−1, n ≥ 0; then the assumptions of Theorem 1.2 for g, in terms of the sequence b, are

• (bn)n∈N0 is nonincreasing,

• (λnbn)n∈N0 is nondecreasing, and

•
∑

n bn =∞.

Let X be a shell solution as in the statement of Theorem 4.1, denote by (dn)n∈N0 and (Fn)n∈N0 the energy
bound and the tail of X (see Definition 3.2), and set d̄n = sup[0,t] dn(t) for every n. Set

Qn =

n−1∑
j=0

d̄ j

λn− j and Rn(t)=
∑
j≥n

d j (t)2− d j+1(t)2

λ j−nb j
,

where λ= 2α as in the previous section. We recall that, by Proposition 3.3,

dn(t)2 ≤ Fn(0)+ c4 Qn Rn−2(t). (4-1)

We now collect some properties of the quantities Rn , Qn , d̄n that will be crucial in the proof of Theorem 4.1.

Lemma 4.2. (1) For every 1≤ m1 ≤ m2 and t > 0,

min{Rm1(t), Rm1+1(t), . . . , Rm2(t)} ≤
λ

λ− 1
dm1(t)

2∑m2
n=m1

bn
. (4-2)

(2) For every t > 0, lim infn Rn(t)= 0.
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(3) d̄n ↓ 0 as n→∞.

(4) Qn→ 0 as n→∞.

(5) (Qn)n≥1 is eventually nonincreasing.

Proof. Since λnbn is nondecreasing, we know that bn − λ
−1bn−1 ≥ 0. Hence, by exchanging the sums,

∞∑
n=m1

(bn − λ
−1bn−1)Rn(t)=

∞∑
k=m1

dk(t)2− dk+1(t)2

λkbk

k∑
n=m1

(
λnbn − λ

n−1bn−1
)
≤

∞∑
k=m1

(dk(t)2− dk+1(t)2)

≤ dm1(t)
2.

If m2 ≥ m1, since (bn)n≥1 is nonincreasing,

m2∑
n=m1

(bn − λ
−1bn−1)Rn(t)≥min{Rm1(t), . . . , Rm2(t)}

m2∑
n=m1

(bn − λ
−1bn−1)

≥
λ− 1
λ

( m2∑
n=m1

bn

)
min{Rm1(t), . . . , Rm2(t)}.

The claim lim infn Rn(t) = 0 follows from (4-2), since dn(t) ≤ d1(t) for every n, and since, by the
assumptions on (bn)n≥1, we can find a sequence (mk)k≥1 such that

∑mk+1−1
n=mk

bn ↑∞.
To prove that d̄n ↓ 0, we notice that the sequence (mk)k≥1 mentioned above does not depend on t ; hence,

using the monotonicity of (dn(t))n≥1 and formula (4-2), we can prove that lim infn d̄n = 0, and hence
d̄n ↓ 0 by monotonicity. Once we know that d̄n ↓ 0, an easy and standard argument proves that Qn→ 0.

To prove that (Qn)n≥1 is eventually nonincreasing, we notice that, since (d̄n)n≥1 is nonincreasing,

(Qn+1− Qn)=
1
λ
(Qn − Qn−1)+

1
λ
(d̄n − d̄n−1)≤

1
λ
(Qn − Qn−1).

In view of the above inequality, it is sufficient to show that for some m the difference Qm − Qm−1 is
nonpositive. This is true because otherwise the sequence (Qn)n≥1 would be nondecreasing, in contradiction
with Qn→ 0 and Qn ≥ 0. �

Given θ > 0 and n0 ≥ 1, define by recursion the sequence

nk+1 = 2+min
{

n ≥ nk − 1 :
n∑

j=nk−1

b j ≥ θλ
−k/4

}
. (4-3)

The definition of Qn and the fact that the sequence (d̄n)n≥1 is nonincreasing yield the following recursive
formula for Qnk :

Qnk+1 =
1

λnk+1−nk
Qnk +

nk+1−1∑
j=nk

d̄ j

λnk+1− j ≤
1
λ

Qnk + cd̄nk , (4-4)
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for a constant c > 0 depending only on λ. Moreover, if we choose n0 large enough that (Qn)n≥0 is
nonincreasing,

dnk+1(t)
2
≤ dn(t)2 ≤ Fn(0)+ c4 Qn Rn−2(t)≤ Fnk (0)+ c4 Qnk Rn−2(t)

for each n ∈ {nk + 1, . . . , nk+1}; hence, by formula (4-2) and the definition of the sequence (nk)k≥1,

dnk+1(t)
2
≤ Fnk (0)+ c4 Qnk min{Rnk−1, . . . , Rnk+1−2}

≤ Fnk (0)+ cQnk

dnk−1(t)2∑nk+1−2
nk−1 b j

≤ Fnk (0)+ c
λk/4

θ
Qnk dnk−1(t)2

and, in conclusion,

d̄2
nk+1
≤ Fnk (0)+ c

λk/4

θ
Qnk d̄2

nk−1. (4-5)

Lemma 4.3 (initial step of the cascade). Given M > 0, there are n0 ≥ 1 and θ > 0 such that

Qnk ≤ λ
−k/2 and d̄2

nk
≤ λ−Mk,

for all k ≥ 0.

Proof. Without loss of generality we can choose M large (depending only on the value of λ; see the end
of the proof). Choose n0 large enough that (Qn)n≥n0 is nonincreasing and

Qn0−i ≤ ε, d̄n0−i ≤ ε, i = 0, 1, and λMn Fn(0)≤ ε, n ≥ n0,

for a number ε ∈ (0, 1) suitably chosen below. We will prove by induction that

Qnk−i ≤ λ
−(k−i)/2, d̄2

nk−i
≤ λ−M(k−i), i = 0, 1, k ≥ 1. (4-6)

For the initial step of the induction (k = 1), we notice that, by (4-4) and (4-5),

Qn1 ≤
1
λ

Qn0 + cd̄n0 ≤
ε

λ
+ cε ≤

1
λ1/2 ,

d̄2
n1
≤ Fn0(0)+

c
θ

Qn0 d̄2
n0−1 ≤ ε+

c
θ
ε3
≤ λ−M ,

if we choose ε small enough, depending on the values of λ, M and θ .
Assume now that (4-6) holds for some k ≥ 1, and let us prove that the same holds for k+1. To this end

it is sufficient to give the estimate for Qnk+1 and d̄2
nk+1

. Again by (4-4), (4-5) and the induction hypothesis,
and since (nk)k≥0 is increasing by definition,

Qnk+1 ≤
1
λ

Qnk + cd̄nk ≤ λ
−k/2−1

+ cλ−Mk/2
≤ λ−(k+1)/2,

d̄2
nk+1
≤ Fnk (0)+ c

λk/4

θ
Qnk d̄2

nk−1 ≤ ελ
−Mk
+

c
θ
λ−k/4λ−M(k−1)

≤ λ−M(k+1),

if M is large (depending on λ), and ε is small and θ is large (depending only on M , λ). �

Before giving the last step of the proof of Theorem 4.1, we show a property of the sequence (nk)k≥0.
The proof is the same as [Barbato et al. 2014, Lemma 11]; we give the details for completeness.
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Lemma 4.4. Given n0 ≥ 1 and θ > 0, consider the sequence defined in (4-3). For infinitely many k,
nk+1 = nk + 1. In particular, bnk−1 ≥ θλ

−k/4 for all such k.

Proof. Assume by contradiction that there is r such that nk+1 ≥ nk + 2 for k ≥ r . On the one hand

nk+1−3∑
j=nk−1

b j ≤ θλ
−k/4,

and summing up over k ≥ r yields

∑
k≥r

nk+1−3∑
j=nk−1

b j <∞ =⇒

∑
k

bnk−2 =∞.

On the other hand, bnk−2 ≤ bnk−3 ≤ θλ
−(k−1)/4 and the series

∑
k bnk−2 converges. �

Lemma 4.5 (cascade recursion). For every M > 0 there is cM > 0 such that

d̄2
n ≤ cMλ

−Mn, Qn ≤ cMλ
−n.

Proof. There is no loss of generality if we assume M is large. Let n0, θ be the values provided by
Lemma 4.3. By Lemma 4.3 and Lemma 4.4 there are infinitely many k ≥ 1 such that

bnk−1 ≥ θλ
−k/4, Qnk ≤ λ

−k/2, d̄2
nk
≤ λ−Mk . (4-7)

Let k0 be one such index, taken sufficiently large (the size of k0 will be chosen at the end of the proof).
We will prove by induction that

d̄2
nk0+m ≤ cλ−Mm, Qnk0+m ≤ c′λ−m, bnk0−1+m ≥ θλ

−k0/4−m, (4-8)

for a suitable choice of the constants c> 0, c′> 0. We first notice that there is nothing to prove concerning
bnk0−1+m , since this is a straightforward consequence of the choice of k0 and the monotonicity of (λnbn)n≥1.

The initial step m = 0 holds, since the inequalities in (4-7) hold for the index k0. For m = 1,

d̄2
nk0+1 ≤ d̄2

nk0
≤ cλ−M ,

Qnk0+1 =
1
λ

Qnk0
+

1
λ

d̄nk0
≤

1
λ
(λ−k0/2+ λ−Mk0/2)≤

c′

λ
,

if c = λ−M(k0−1) and c′ ≥ λ−k0/2+ λ−Mk0/2.
Assume that (4-8) holds for 1, . . . ,m, for some m ≥ 1. By definition,

Qnk0+m+1 = Qnk0
λ−(m+1)

+

nk0+m∑
j=nk0

d̄ j

λnk0+m+1− j ≤ λ
−k0/2−(m+1)

+
√

cλ−(m+1)
m∑

j=0

λ−(M/2−1) j

≤

(
λ−k0/2+

λ

λ− 1
√

c
)
λ−(m+1)

≤ c′λ−(m+1)

if c′ = λ−k0/2+ λ(λ− 1)−1√c (the previous constraint on c′ is satisfied by this choice).
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By (4-1) and (4-2) we have that, for every n ≥ 2,

dn+1(t)2 ≤ Fn+1(0)+ c4 Qn+1 Rn−1(t)≤ Fn+1(0)+ c4 Qn+1
d̄2

n−1

bn−1
;

hence, using the inequality for Qnk0+m+1 already proved and the induction hypothesis,

d̄2
nk0+m+1 ≤ Fnk0+m+1(0)+ c4 Qnk0+m+1

d̄2
nk0+m−1

bnk0+m−1

≤ cλ−M(m+1)
(
λM(nk0+m+1)Fnk0+m+1(0)+

c4

θ
c′λ2M+k0/4

)
≤ c2−M(m+1),

where the last inequality follows if k0 is large enough since λn Fn(0)→ 0 by assumption, and by our
choice of c, c′ we have that λk0/4c′→ 0 as k0→∞. �

Appendix A: Local existence and uniqueness

Consider the generalized system (1-6), under the same assumptions of Theorem 1.2. Assume3 for
simplicity that m1(k) = |k|α/g(|k|). Denote by Vm the subspace of H m (see (2-3)) of divergence-free
vector fields with mean zero. Our main theorem on local existence and uniqueness for (1-6) is as follows:

Theorem A.1. Let m ≥ 2+ 1
2 d and v0 ∈ Vm . Then there are T > 0 and a unique solution v of (1-6) on

[0, T ] with initial condition v0 such that

v ∈ L∞([0, T ]; Vm)∩Lip([0, T ]; Vm−α)∩C([0, T ]; V weak
m ),

∫ T

0
‖D1/2

1 v‖2m dt <∞, (A-1)

where V weak
m is the space Vm with the weak topology. Moreover, v is right-continuous with values in Vm

for the strong topology.
If T? is the maximal time of existence of the solution starting from v0, then either T? =∞ or

lim sup
t↑T?

‖v(t)‖m =∞.

The proof of the theorem is based on a proof of existence of a local unique solution for the Euler
equation taken from [Majda and Bertozzi 2002, Section 3.2]. The idea is that we cannot use the D1

operator as a replacement for the Laplacian, since in general D1 may not have smoothing properties
(indeed, it is easy to adapt the counterexample in [Barbato et al. 2014, Remark 15] to D1 on Rd or on the
d-dimensional torus). Likewise we do not use any smoothing properties of D2, so that our proof includes
the case β = 0. The result is by no means optimal, but fits the needs of our paper.

3Existence and uniqueness can be proved also in the general case m1(k)≥ |k|αg(|k|)−1. A simple assumption that keeps our
proof almost unchanged is a control from above, say m(k)≤ |k|β for some β ≥ α.
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We work on the torus [0, 2π ]d , although the proof, essentially unchanged, works in Rd . Denote by H
the projection of L2([0, 2π ]d) onto divergence-free vector fields, and, for every s>0, denote by Vs the pro-
jection of the Sobolev space H s([0, 2π ]d) onto divergence-free vector fields. We will denote by ‖ · ‖H and
〈 · , · 〉H the norm and the scalar product in H , and by ‖ · ‖s and 〈 · , · 〉s the norm and the scalar product in Vs .

We denote by B̂(v1, v2) the (Leray) projection of the nonlinearity, namely

B̂(v1, v2)=5Leray[(D−1
2 v1 · ∇)v2].

Since β ≥ 0, ‖D−1
2 v‖s ≤ ‖v‖s for every s ∈ R. Hence (see for instance [Kato 1972] or [Constantin and

Foiaş 1988]), for every m ≥ 1+ [d/2], there exists cm > 0 such that

‖B̂(v1, v2)‖m ≤ cm‖v1‖m‖v2‖m+1,

〈B̂(v1, v2), v2〉m ≤ cm‖v1‖m‖v2‖
2
m .

In the rest of the section we briefly outline the proof of Theorem A.1, following [Majda and Bertozzi
2002, Section 3.2]. The proof of the following result is a slight modification of the arguments to prove
[Majda and Bertozzi 2002, Theorem 3.4].

Proposition A.2. Given an integer m ≥ 2+d/2, there exists a number c? > 0 such that for every v0 ∈ Vm ,
if T < c?/‖v0‖m , there is a unique solution of (1-6) with initial condition v0. Moreover, vε → v in
C([0, T ]; Vm′) for m′<m and in C([0, T ]; V weak

m ), the inequalities in (A-1) hold for v, and for any ε > 0,

sup
[0,T ]
‖vε‖m ≤

‖v0‖m

1− c?T ‖v0‖m
. (A-2)

Unfortunately, at this stage, we cannot prove the analog of [Majda and Bertozzi 2002, Theorem 3.5]
for our v, namely that v is continuous in time for the strong topology of Vm . The reason is that their proof
uses either the reversibility of the Euler equation (which we do not have due to the presence of D1), or
the smoothing of the Laplace operator, which we do not have here either (as already mentioned). On the
other hand, we can prove right-continuity:

Lemma A.3. The solution v from Proposition A.2 is right-continuous with values in Vm for the strong
topology, and dv/dt is right-continuous with values in Vm−α.

Proof. Given t ∈ [0, T ], the same computations leading to (A-2) yield

sup
[0,t]
‖v(s)‖m ≤ ‖v0‖m +

c?t‖v0‖
2
m

1− c?t‖v0‖m
;

therefore lim supt↓0 ‖v(t)‖m ≤‖v0‖m . On the other hand, by weak continuity, ‖v0‖m ≤ lim inft↓0 ‖v(t)‖m
and v is right-continuous at 0. Uniqueness for (1-6) and the same argument applied to t ∈ (0, T ] yield
right-continuity in t . �

Nevertheless, we can still define a maximal solution and a maximal time of existence. Given v0 ∈ Vm ,
let T? be the maximal time of existence of the solution starting from v0, that is the supremum over all
T > 0 such that there exists a solution v of (1-6) on [0, T ] with v(0)= u0, v right-continuous with values
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in Vm , continuous with values in V weak
m and with dv/dt right-continuous with values in Vm−α. Due to

uniqueness, any two such solutions coincide on the common interval of definition.

Proposition A.4. Given v0 ∈ Vm , if T? is the maximal time of existence of the solution starting from v0,
then either T? =∞ or

lim sup
t↑T?

‖v(t)‖m =∞.

Proof. Assume by contradiction that T?<∞ and that M := supt<T? ‖v(t)‖m <∞. Let T0= T?−c?/(4M),
and start a solution with initial condition v(T0) at time T0. By Proposition A.2 there is a solution of (1-6)
on a time span of length at least c?/(2‖v(T0)‖m)≥ c?/(2M), hence at least up to time T0+c?/(2M) > T?.
By uniqueness, this solution is equal to v up to time T?. �
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