
ANALYSIS & PDE

msp

Volume 6 No. 5 2013

YVES COLIN DE VERDIÈRE

MAGNETIC INTERPRETATION OF THE NODAL DEFECT ON
GRAPHS



ANALYSIS AND PDE
Vol. 6, No. 5, 2013

dx.doi.org/10.2140/apde.2013.6.1235 msp

MAGNETIC INTERPRETATION OF THE NODAL DEFECT ON GRAPHS

YVES COLIN DE VERDIÈRE

We present a natural proof of a recent and surprising result of Gregory Berkolaiko interpreting the Courant
nodal defect as a Morse index. This proof is inspired by a nice paper of Miroslav Fiedler published in
1975.

1. Introduction

The “nodal defect” of an eigenfunction of a Schrödinger operator is closely related to the difference
between the upper bound on the number of nodal domains given by Courant’s theorem and the number of
nodal domains. Berkolaiko [2013] has proved a nice formula for the nodal defect of an eigenfunction of a
Schrödinger operator on a finite graph in terms of the Morse index of the corresponding eigenvalue as a
function of a magnetic deformation of the operator. His proof remains mysterious and rather indirect.
In order to get a better understanding in view of possible generalizations, it is desirable to have a more
direct approach. This is what we do here, with a proof inspired by [Fiedler 1975].

After reviewing our notations, we state the main result, as well as a reinterpretation in terms of
Hessians of a determinant, and give an informal description of the proof in Section 3. The proof itself
is implemented in Sections 4 and 5 with an alternative view provided in Appendix A. The continuous
Schrödinger operator on a circle was considered in the preprint version of this paper [Colin de Verdière
2012]. The case of quantum graphs, i.e., graphs as 1-dimensional simplicial complexes, is worked out in
[Berkolaiko and Weyand 2012].

2. Notation

Let G = (X, E) be a finite connected graph, where X is the set of vertices and E the set of unoriented
edges. We denote by {x, y} the edge linking the vertices x and y. We denote by EE the set of oriented
edges and by [x, y] the edge from x to y; the set EE is a 2-fold cover of E . A 1-form α on G is a map
EE → R such that α([y, x]) = −α([x, y]) for all {x, y} ∈ E . We denote by �1(G) the vector space of

dimension #E of 1-forms on G. The operator d : RX
→�1(G) is defined by d f ([x, y])= f (y)− f (x).

If Q is a nondegenerate, not necessarily positive, quadratic form on �1(G), we denote by d? the adjoint
of d, where RX carries the canonical Euclidean structure and �1(G) is equipped with the symmetric
inner product Q̂ associated to Q. We have dim ker d? = β, where β = 1+ #E − #X is the dimension
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of the space of cycles of G. We will show later that, in our context, we have the Hodge decomposition
�1(G)= dRX

⊕ ker d?, where both spaces are Q̂-orthogonal.
Following [Colin de Verdière 1998], we denote by OG the set of X × X real symmetric matrices H

which satisfy hx,y < 0 if {x, y} ∈ E and hx,y = 0 if {x, y} /∈ E and x 6= y. Note that the diagonal entries
of H are arbitrary. An element H of OG is called a Schrödinger operator on the graph G. It will be useful
to write the quadratic form associated to H as

q1( f )=−
∑
{x,y}∈E

hx,y( f (x)− f (y))2+
∑
x∈X

Vx f (x)2,

with Vx = hx,x+
∑

y∼x hx,y . A magnetic field on G is a map B : EE→U (1) defined by B([x, y])= eiαx,y ,

where [x, y] 7→ αx,y is a 1-form on G. We denote by BG = ei�1(G) the manifold of magnetic fields on G.
The magnetic Schrödinger operator HB associated to H ∈ OG and B = eiα is defined by the quadratic
form

qB( f )=−1
2

∑
[x,y]∈ EE

hx,y| f (x)− eiαx,y f (y)|2+
∑
x∈X

Vx | f (x)|2

associated to a Hermitian form on CX . More explicitly, if f ∈ CX ,

H f (x)= hx,x f (x)+
∑
y∼x

hx,yeiαx,y f (y). (1)

We fix H and we denote by

λ1(B)≤ λ2(B)≤ · · · ≤ λn(B)≤ · · · ≤ λ#X (B)

the eigenvalues of HB . It will be important to notice that λn(B̄)= λn(B). Moreover, we have a gauge
invariance: the operators HB and HB ′ with α′ = α+ d f for some f ∈ RX are unitarily equivalent. Hence
they have the same eigenvalues. This implies that, if �1(G) = dRX

⊕ ker d? (this is not always the
case because Q is not positive), it is enough to consider 1-forms in the subspace ker d? of �1(G) when
studying the map 3n : B→ λn(B). This holds in particular for investigations concerning the Hessian and
the Morse index.

3. Statement of Berkolaiko’s magnetic theorem

Before stating the main result, we recall:

Definition 1. The Morse index j (q)∈N∪{+∞} of a quadratic form q on a real vector space E is defined
by j (q)= supF dim F , where F is a subspace of E such that q|F\0 is less than 0. The nullity of q is the
dimension of the kernel of q .

The Morse index of a smooth real-valued function f defined on a smooth manifold M at a critical
point x0 ∈ M (i.e., a point satisfying d f (x0) = 0) is the Morse index of the Hessian of f , which is a
canonically defined quadratic form on the tangent space Tx0 M . The critical point x0 is called nondegenerate
if the previous Hessian is nondegenerate. The nullity of the critical point x0 of f is the nullity of the
Hessian of f at the point x0.
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The aim of this note is to prove the following nice results due to Berkolaiko [2008; 2013]:

Theorem 1. Let G = (X, E) be a finite connected graph and β the dimension of the space of cycles of G.
We suppose that the n-th eigenvalue λn of H ∈ OG is simple. We assume moreover that an associated
nonzero eigenfunction φn satisfies φn(x) 6= 0 for all x ∈ X. Then, the number ν of edges along which φn

changes sign satisfies n− 1≤ ν ≤ n− 1+β.
Moreover 3n : B→ λn(B) is smooth at B ≡ 1 which is a critical point of 3n and the nodal defect,

δn = ν− (n− 1), is the Morse index of 3n at that point. If M is the manifold of dimension β of magnetic
fields on G modulo the gauge transforms, the function [B] → 3n(B) has [B = 1] as a nondegenerate
critical point.

Remark 1. The previous results can be extended by replacing the critical point B ≡ 1 by Bx,y =±1 for
all edges {x, y} ∈ E . The number ν is then the number of edges {x, y} ∈ E satisfying Bx,yφn(x)φn(y) < 0
where φn is the corresponding eigenfunction.

Remark 2. The assumptions on H are satisfied for H in an open dense subset of OG .

The upper bound of ν in the first part of Theorem 1 is related to the Courant nodal theorem (see
[Courant and Hilbert 1953, Section VI.6]) as follows: a nodal domain on a graph for the eigenfunction φn

is a connected component of the subgraph G ′ of G obtained by removing the edges along which φn

changes sign. Denoting by µ the number of nodal domains of φn , the Courant theorem for graphs (see
[Colin de Verdière 1998, Theorem 2.4]) asserts that µ≤ n; using the Euler formula for the graph G ′ and
because µ= b0(G ′), the number of connected components of the graph G ′, we get also a lower bound
(see [Berkolaiko 2008]):

Corollary 1. Under the assumptions of Theorem 1, we have n−β ≤ µ≤ n.

Example 3.1 (bipartite graphs). Let G = (V, E) be a bipartite graph: V = Y ∪ Z and all edges have
one vertex in Y and the other in Z . Let U be the involution on RV given by U f (x)=− f (x) if x ∈ Y
and U f (x)= f (x) if x ∈ Z and let B be a magnetic field. Then U HBU =−H ′B with H ′ ∈ OG , so that
λ|V |(HB) = −λ1(H ′B). And hence it follows from the diamagnetic inequality that B→ λ|V |(HB) has
a maximum at B ≡ 1. And hence the Morse index of the Hessian of B → λ|V |(HB) at B ≡ 1 is the
dimension of the manifold of magnetic fields, namely β. On the other hand the first eigenfunction φ1

of H ′ is everywhere greater than 0 and the number of sign changes of Uφ1 is |E |. So Berkolaiko’s
formula for λ|V | gives (|V | − 1)+β = |E |. This is the Euler formula.

Theorem 1 can be reinterpreted as follows:

Theorem 2. Under the assumptions as in Theorem 1, consider the functional Dn : B 7→ det(HB −λn(1)).
Then B ≡ 1 is a nondegenerate critical point of Dn whose Morse index is δn if n is odd and β − δn if n is
even.

Proof. Under the assumptions of the theorem we have

det(HB − λn(1))= (λn(B)− λn(1)) det′(HB − λn(1))
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where det′(HB)= F(B) is the product of the eigenvalues λ j − λn(1) for j 6= n. The following lemma is
easy to check by direct computations of the second derivatives:

Lemma 1. Let F = f G where F , f , G are smooth real valued functions defined near a point x0 on a
smooth manifold. Let us assume that f (x0)= 0 and f ′(x0)= 0; then the Hessian of F at the point x0 is
G(x0) times the Hessian of f at x0.

From the lemma, we get that the Hessian of Dn at B ≡ 1 is F(1) times the Hessian of 3n . We have
(−1)n−1 F(1) > 0. The conclusion follows. �

There is a formula for the characteristic polynomial of a magnetic Laplacian on graphs due to Robin
Forman [1993] and reproved by Richard Kenyon [2012] and Yurii Burman [2012]. Using the gauge
change f → f φn as in [Colin de Verdière 1998] gives a Laplace type operator whose entries can be of
any sign. Forman’s formula extends to that case and it would be nice to relate Berkolaiko’s formula to
Forman’s formula.

Important warning: Without loss of generality, we can and will assume in the rest of this note that
λn =3n(1)= 0. This implies that the Morse index of q1 is n− 1.

In the course of the proof we will use a special choice of gauge in which we can compute the Hessian
explicitly. More precisely, according to the classical perturbation formulae,

λ̈= (φ, Ḧφ)+ 2(Ḣφ, φ̇),

where we assumed that λ is at a critical point: λ̇= 0. The first term is easy to calculate explicitly; for
perturbation in the direction of the 1-form ω it is

Q(ω)= 1
2

∑
EE

ax,yω([x, y])2 with ax,y =−hx,yφn(x)φn(y)= ay,x . (2)

Considered as a quadratic form in ω, Q is already in the diagonal form. Its index is clearly the number of
negative values among {−hx,yφn(x)φn(y)}, or, in other words, the number ν of edges where φn changes
sign!

We will present an explicit choice of gauge in which the second term vanishes. The condition for this
is Ḣφ = 0 which, after explicit calculation, can be interpreted as ω ∈ ker d?, where d? is the conjugate
of d with respect to the inner product induced by (2).

Finally, we observe that the index of Q(ω) has been computed to be ν in the whole of �1(G), whereas
we should be restricting ourselves to our chosen gauge, ω ∈ ker d?. We will show that this restriction
reduces the index precisely by n − 1. Indeed, the splitting �1(G) = dRX

⊕ ker d? is orthogonal with
respect to the form Q; therefore

ind(Q)= ind(Q|dRX )+ ind(Q|ker d?).

We establish that ind(Q|dRX )= n−1 by relating the form Q on dRX to the quadratic form q1 around the
point φn .



MAGNETIC INTERPRETATION OF THE NODAL DEFECT ON GRAPHS 1239

4. The quadratic form Q

Lemma 2. The set of forms f → ( f (x)− f (y))2 where {x, y} ∈ P2(X), the set of subsets with two
elements of X , and f → f (x)2 with x ∈ X is a basis of the set of quadratic forms on RX .

Definition 2. A quadratic form q on RX is said of Laplace type if for all f ∈RX , q̂(1, f )≡ 0 where q̂ is
the symmetric bilinear form associated to q.

Lemma 3. The set of forms f → ( f (x)− f (y))2, {x, y} ∈ P2(X) is a basis of the space of quadratic
forms of Laplace type.

The form q̃1 : f → q1(φn f ), where φn f is the pointwise product of φn and f , is of Laplace type
because ̂̃q1(1, g)= 〈Hφn|φng〉 = 〈0|φng〉.

Hence ̂̃q1(1, g)= 0.
Moreover, q̃1( f ) = Q(d f ). Indeed, because of Lemma 3, it is enough to compare the coefficients

of the basis forms f → ( f (x)− f (y))2. The form f → Q(d f ) is already expanded in this basis. To
find the coefficient for the form f → q̃1( f ), we observe that (because we know it is of Laplace type)
the coefficient in question is minus the coefficient in front of the term f (x) f (y), divided by two. This
evaluates to ax,y (see (2)).

In fact, we will need to use Q̂(d f, dg)= 〈H(φn f )|φng〉.

Lemma 4. The Morse index of Q|dRX is equal to n− 1.

It is a general fact that the Morse index of the quadratic form f → Q(A f ) is the same as the Morse
index of the restriction of Q to the image of A. Hence, the Morse index of Q|dRX is the Morse index
of q̃1 on RX . Because f → φn f is a linear isomorphism, this index is equal to the index of q1 by the
Sylvester theorem. Since λn = 0, the index of q1 is n− 1 by elementary spectral theory.

Lemma 5. Let us denote by d? the adjoint of d where RX is equipped with the canonical Euclidean
structure and �1(G) with the inner product associated to Q. The space �1(G) splits as

�1(G)= dRX
⊕ ker d?

(Hodge type splitting), and this decomposition is Q-orthogonal.

More explicitly d? is given by

d?ω(x)=
∑
y∼x

ax,yω([y, x]).

If ω= d f satisfies d?ω= 0, we have d?d f = 0. Hence Q̂(d f, dg)= 0 for all g and 〈H(φn f )|φng)〉= 0.
Because λn is of multiplicity 1, this implies that f is constant and hence d f = 0. So dRX

∩ ker d? = {0}
and the conclusions follow.

At this point, we know that the nodal defect is the Morse index of the restriction of Q to the space
ker d? of dimension β. The first part of Theorem 1 follows.
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5. The magnetic Hessian

We need one more fact to complete the proof: to identify the Hessian of 3n on eiker d? at B ≡ 1 with the
restriction of Q to ker d?.

Let us denote by S ⊂ CX the set of unit vectors f normalized so that f (x0) is real and f (x0) > 0
where x0 is chosen in X .

Lemma 6. The point B≡1 is a critical point of3n . If φn(B)∈ S is the eigenfunction of HB corresponding
to the eigenvalue λn(B), the differential of B→ φn(B) vanishes at B ≡ 1 on ker d?.

The first property comes from the fact that 3n(B̄)=3n(B). We can compute, for any variation ei tα,
t close to 0, of B ≡ 1, that ḢBφn + H φ̇n = 0. The condition d?α = 0 can be written as∑

y∼x

hx,yφn(y)αx,y = 0 for all x ∈ X.

From (1), this is equivalent to ḢBφn = 0. Hence H(φ̇n)= 0 and φ̇n = cφn since λn is simple. From the
normalization ‖φn(B)‖ = 1, we get c ∈ iR and, since φ̇n(x0) ∈ R, the number c is real. We deduce that
φ̇n = 0.

Lemma 7. The function F : S×eiker d?
→R defined by F( f, eiα)=〈Heiα f | f 〉 admits (φn, 0) as a critical

point and the Hessian of (3n)|eiker d? at the point B ≡ 1 is the form Q.

The differential of F with respect to f vanishes because f is an eigenfunction of H . The differential
with respect to ker d? vanishes, because F( f, eiα)= F( f, e−iα). The Hessian of F at (φn, 0) is well defined.
Because the differential at B=1 of B→φn(B) vanishes on eiker d? , the Hessians of3n : B→ F(φn(B), B)
and Mn : B→ F(φn(1), B) agree. A simple calculation of the Hessian of Mn gives the result:

Mn(eiα)=−
1
2

∑
[x,y]∈ EE

hx,y|φn(x)− eiαx,yφn(y)|2+
∑
x∈X

Vx |φn(x)|2

=−

∑
[x,y]∈E

hx,y
(
φn(x)2+φn(y)2− 2 cosαx,yφn(x)φn(y)

)
+

∑
x∈X

Vx |φn(x)|2.

Computing the second derivative with respect to α at α = 0 gives Hessian(Mn)= Q(α).

Appendix A: A pedestrian approach to the calculus of the Hessian of 3n in Section 5

We will derive a direct approach to the calculus of the second derivative of an eigenvalue which could
be used directly in the proof of Lemma 7. Let t→ A(t) be a C2 curve defined near t = 0 in the space
of Hermitian matrices on a finite-dimensional Hilbert space (H, 〈·|·〉). Let us assume that λ(0) is an
eigenvalue of A(0) of multiplicity one with a normalized eigenvector φ(0). Then, for t close to 0, A(t)
has a simple eigenvalue λ(t) of multiplicity one which is a C2 function of t . We can choose an associated
eigenfunction φ(t) which is C2 with respect to t . The following assertions give the values of the first and
second derivatives of λ(t) at t = 0:
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Proposition 1. Under the previous assumptions, we have

λ′(0)= 〈A′(0)φ(0)|φ(0)〉.

If λ′(0)= 0, we have
λ′′(0)= 〈A′′(0)φ(0)|φ(0)〉+ 2〈φ′(0)|A′(0)φ(0)〉,

where φ′(0) is any solution of (A(0)− λ(0))φ′(0)=−A′(0)φ(0).
In particular, if A′(0)φ(0)= 0,

λ′′(0)= 〈A′′(0)φ(0)|φ(0)〉.

Proof. We start with (A(t)− λ(t))φ(t) = 0 where φ(t) is an eigenfunction of A(t) which depends in
a C2 way on t . Taking the first derivative, we get

(A′(t)− λ′(t))φ(t)+ (A(t)− λ(t))φ′(t)= 0. (3)

Putting t = 0 and taking the scalar product with φ(0), we get the formula for λ′(0). Similarly, the
t-derivative of (3) is

(A′′(t)− λ′′(t))φ(t)+ 2(A′(t)− λ′(t))φ′(t)+ (A(t)− λ(t))φ′′(t)= 0. (4)

Putting t = 0, taking the scalar product with φ(0) and using λ′(0)= 0, we get the result. �

We can apply this to A(t) := Hei tα with α ∈ ker d? in order to get the Hessian of 3n in Section 5. The
condition A′(0)φ(0)= 0 is exactly d?α = 0!

Appendix B: The case where the eigenfunction vanishes at some vertex

In this appendix, we take H ∈ OG and assume that λn = 0 is nondegenerate eigenvalue of H with a
normalized eigenfunction φ. We have:

Proposition 2. Let us assume that, for all vertices x satisfying φ(x)= 0, there exists a vertex y ∼ x so
that φ(y) 6= 0. Then, for any ψ ∈ RX orthogonal to φ, there exists a smooth deformation Ht ∈ OG of H
so that φ̇ = ψ .

It is enough to check that the space of Ḣφ is RX and to use the first variation formulae given in
Appendix A.

Theorem 3. Let us assume that the function φ vanishes at the unique vertex x0. Then, the nullity of the
Hessian of the “magnetic variation” of H is at least |n+− n−| where n± is the number of vertices x ∼ x0

so that ±φ(x) > 0.

Proof. Choose a smooth variation Ht of H so that φ̇(x0)= 1. Let ν be the number of sign changes of φ
away from x0. Then, for t > 0 small enough, the number of sign changes of φt is ν+ n− while, for t < 0
small enough, it is ν+ n+. We see from Theorem 1 that the magnetic Morse index is ν+ n−− (n− 1)
for t > 0 and ν+ n+− (n− 1). The discontinuity of the Morse index at t = 0 is |n+− n−|. This gives
the lower bound on the nullity. �

Corollary 2. If |n+− n−|> β, the eigenvalue 0 is degenerate.
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Let us remark that this lower bound is not always sharp. In the following example, we have n+ = n−,
β = 2 and the nullity of the Hessian is 2.

Example B.1. The graph G is made of 2 cycles of length 3 with a common vertex. The matrix of H is
chosen as follows:

[H ] = −


1 1 1 0 0
1 1 2 0 0
1 2 1 1 2
0 0 1 1 1
0 0 2 1 1

 .
Using the fact that the graph has a symmetry of order 2 exchanging the 2 cycles, one can split RX and the
matrix H into the even and odd parts. This allows us to check that λ4 = 0 is nondegenerate. In order to
compute the magnetic Hessian, we check that it is possible to build a decomposition �1(G)= dRX

⊕ K
which is Q-orthogonal and with K ⊂ ker d?. It is then easy to check that the magnetic Hessian evaluated
on K vanishes.
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