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Frobenius–Perron theory of endofunctors
Jianmin Chen, Zhibin Gao, Elizabeth Wicks, James J. Zhang, Xiaohong Zhang and Hong Zhu

We introduce the Frobenius–Perron dimension of an endofunctor of a k-linear category and provide some
applications.

0. Introduction

The spectral radius (also called the Frobenius–Perron dimension) of a matrix is an elementary and extremely
useful invariant in linear algebra, combinatorics, topology, probability and statistics. The Frobenius–
Perron dimension has become a crucial concept in the study of fusion categories and representations of
semisimple weak Hopf algebras since it was introduced by Etingof, Nikshych and Ostrik [Etingof et al.
2005] (also see [Etingof et al. 2004; 2015; Nikshych 2004]). In this paper several Frobenius–Perron type
invariants are proposed to study derived categories, representations of finite dimensional algebras, and
complexity of algebras and categories.

Throughout let k be an algebraically closed field, and let everything be over k.

Definitions. The first goal is to introduce the Frobenius–Perron dimension of an endofunctor of a category.
Here we only sketch the definition of fpd(σ ) for an endofunctor σ of an abelian category C and the precise
definition is given in Definition 2.3(2). Let φ := {X1, . . . , Xn} be a finite subset of nonzero objects in C
such that

HomC(X i , X j )=

{
k i = j,
0 i 6= j.

Let ρ(A(φ, σ )) denote the spectral radius of the n×n-matrix [dim HomC(X i , σ (X j ))]n×n . The Frobenius–
Perron dimension of σ is defined to be

fpd(σ )= sup
φ

{ρ(A(φ, σ ))}

where φ ranges over all finite subsets of C satisfying the condition mentioned above. If an object V in a
fusion category C is considered as the associated tensor endofunctor V ⊗C −, then our definition of the
Frobenius–Perron dimension agrees with the definition given in [Etingof et al. 2005], see Example 2.11
for details. Our definition applies to the derived category of projective schemes and finite dimensional
algebras, as well as other abelian and additive categories (Definitions 2.3 and 2.4). We also refer the
reader to Section 2 for the following invariants of an endofunctor:
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Frobenius–Perron growth (denoted by fpg).

Frobenius–Perron curvature (denoted by fpv).

Frobenius–Perron series (denoted by FP).

One can further define the above invariants for an abelian or a triangulated category. Note that the
Frobenius–Perron dimension/growth/curvature of a category can be a noninteger, see Proposition 5.12(1),
Example 8.7, and Remarks 5.13(5) for nonintegral values of fpd, fpg, and fpv respectively.

If A is an abelian category, let Db(A) denote the bounded derived category of A. On the one hand it is
reasonable to call fpd a dimension function since

fpd(Db(Mod−k[x1, . . . , xn]))= n

(Proposition 4.3(1)), but on the other hand, one might argue that fpd should not be called a dimension
function since

fpd(Db(coh(Pn)))=

{
1 n = 1,
∞ n ≥ 2,

(Propositions 6.5 and 6.7). In the latter case, fpd is an indicator of representation type of the category of
coh(Pn), namely, coh(Pn) is tame if n = 1, and is of wild representation type for all n ≥ 2. A similar
statement holds for projective curves in terms of genus (Proposition 6.5).

We can define the Frobenius–Perron (“fp”) version of several other classical invariants:

fp global dimension (denoted by fpgldim, Definition 2.7(1)).

fp Kodaira dimension (denoted by fp κ) [Chen et al. 2019].

The first one is defined for all triangulated categories and the second one is defined for triangulated
categories with Serre functor. In general, the fpgldim A does not agree with the classical global dimension
of A (Theorem 7.8). The fp version of the Kodaira dimension agrees with the classical definition for
smooth projective schemes [Chen et al. 2019].

Our second goal is to provide several applications.

Embeddings. In addition to the fact that the Frobenius–Perron dimension is an effective and sensible
invariant of many categories, this invariant increases when the “size” of the endofunctors and categories
increase.

Theorem 0.1. Suppose C and D are k-linear categories. Let F : C→ D be a fully faithful functor. Let σC
and σD be endofunctors of C and D respectively. Suppose that F ◦ σC is naturally isomorphic to σD ◦ F.
Then FP(u, t, σC)≤ FP(u, t, σD).

See Theorem 3.2 for the proof. By taking σ to be the suspension functor of a pretriangulated category
[Neeman 2001, Definition 1.1.2], we have the following immediate consequence. (Note that the fp-
dimension of a triangulated category T is defined to be fpd(6), where 6 is the suspension of T .)
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Corollary 0.2. Let T2 be a pretriangulated category and T1 a full pretriangulated subcategory of T2. Then
the following hold:

(1) fpd T1 ≤ fpd T2.

(2) fpg T1 ≤ fpg T2.

(3) fpv T1 ≤ fpv T2.

(4) If T2 has fp-subexponential growth, so does T1.

Fully faithful embeddings of derived categories of projective schemes have been investigated in the study
of Fourier–Mukai transforms, birational geometry, and noncommutative crepant resolutions (NCCRs) by
Bondal and Orlov [2001; 2002], Van den Bergh [2004], Bridgeland [2002], Bridgeland, King and Reid
[Bridgeland et al. 2001] and more.

Note that if fpgldim(T ) < ∞, then fpg(T ) = 0. If fpg(T ) < ∞, then fpv(T ) ≤ 1. Hence, fpd,
fpgldim, fpg and fpv measure the “size”, “representation type”, or “complexity” of a triangulated category
T at different levels. Corollary 0.2 has many consequences concerning nonexistence of fully faithful
embeddings provided that we compute the invariants fpd, fpg and fpv of various categories efficiently.

Tame vs wild. Here we mention a couple of more applications. First we extend the classical trichotomy
on the representation types of quivers to the fpd. A proof of the following theorem is given in Section 7.

Theorem 0.3. Let Q be a finite quiver and let Q be the bounded derived category of finite dimensional
left kQ-modules:

(1) kQ is of finite representation type if and only if fpdQ= 0.

(2) kQ is of tame representation type if and only if fpdQ= 1.

(3) kQ is of wild representation type if and only if fpdQ=∞.

By the classical theorems of Gabriel [1972] and Nazarova [1973], the quivers of finite and tame
representation types correspond to the ADE and ÃD̃ Ẽ diagrams respectively.

The above theorem fails for quiver algebras with relations (Proposition 5.12). As we have already seen,
fpd is related to the “size” of a triangulated category, as well as, the representation types. We will see
soon that fpg is also closely connected with the complexity of representations. When we focus on the
representation types, we make some tentative definitions.

Let T be a triangulated category (such as Db(Mod f.d.−A)):

(i) We call T fp-trivial, if fpd T = 0.

(ii) We call T fp-tame, if fpd T = 1.

(iii) We call T fp-potentially wild, if fpd T > 1. Further:

(a) T is fp-finitely wild, if 1< fpd T <∞.
(b) T is fp-locally-finitely wild, if fpd T =∞ and fpdn(T ) <∞ for all n.
(c) T is fp-wild, if fpd1 T =∞.
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There are other notions of tame/wildness in representation theory, see for example, [Geiss and Krause
2002; Drozd 2004]. Following the above definition, fpd provides a quantification of the tame-wild
dichotomy. By Theorem 0.3, finite/tame/wild representation types of the path algebra kQ are equivalent
to the fp-version of these properties of Q. Let A be a quiver algebra with relations and let A be the
derived category Db(Mod f.d.−A). Then, in general, finite/tame/wild representation types of A are NOT
equivalent to the fp-version of these properties of A (Example 5.5). It is natural to ask

Question 0.4. For which classes of algebras A, is the fp-wildness of A equivalent to the classical and
other wildness of A in representation theory literature?

Complexity. The complexity of a module or of an algebra is an important invariant in studying represen-
tations of finite dimensional algebras [Alperin and Evens 1981; Carlson 1996; Carlson et al. 1994; Guo
et al. 2009]. Let A be the quiver algebra kQ/(R) with relations R. The complexity of A is defined to be
the complexity of the A-module T := A/ Jac(A), namely,

cx(A)= cx(T ) := lim sup
n→∞

logn(dim ExtnA(T, T ))+ 1.

Let GKdim denote the Gelfand–Kirillov dimension of an algebra (see [Krause and Lenagan 1985] and
[McConnell and Robson 1987, Chapter 8]). Under some reasonable hypotheses, one can show

cx(A)= GKdim
( ∞⊕

n=0

ExtnA(T, T )
)
.

It is easy to see that cx(A) is an derived invariant. We extend the definition of the complexity to any
triangulated category (Definition 8.2(4)).

Theorem 0.5. Let A be a finite dimensional quiver algebra kQ/(R) with relations R and let A be the
bounded derived category of finite dimensional left A-modules. Then

fpg(A)≤ cx(A)− 1.

This theorem is a consequence of Theorems 8.3 and 8.4(1). The equality fpg(A)= cx(A)− 1 holds
under some hypotheses (Theorem 8.4(2)).

Frobenius–Perron function. If T is a triangulated category with Serre functor S, we have an fp-function

fp : Z2
→ R∪ {±∞}

which is defined by

fp(a, b) := fpd(6a
◦ Sb) ∈ R∪ {±∞}.

Then fpd(T ) is the value of the fp-function at (1, 0).
The fp-function for the projective line P1 and the quiver A2 are given in the Examples 5.1 and 5.4

respectively.
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The statements in Theorem 0.3, Questions 0.4 and 7.11 indicate that fp(1, 0) predicts the representation
type of T for certain triangulated categories. It is expected that values of the fp-function at other points
in Z2 are sensitive to other properties of T .

Properties. The paper contains some basic properties of fpd. Let us mention one of them, whose proof
can be found in Proposition 3.6.

Proposition 0.6 (Serre duality). Let C be a Hom-finite category with Serre functor S. Let σ be an
endofunctor of C:

(1) If σ has a right adjoint σ !, then

fpd(σ )= fpd(σ ! ◦ S).

(2) If σ is an equivalence with quasiinverse σ−1, then

fpd(σ )= fpd(σ−1
◦ S).

(3) If C is n-Calabi–Yau, then we have a duality, for all i ,

fpd(6i )= fpd(6n−i ).

Computations. Our third goal is to develop methods for computation. To use fp-invariants, we need to
compute as many examples as possible. In general it is extremely difficult to calculate useful invariants
for derived categories, as the definitions of these invariants are quite sophisticated. We develop some
techniques for computing fp-invariants. In Sections 4–5, we compute the fp-dimension for some nontrivial
examples.

Other significant applications. In addition to the results above, various Frobenius–Perron invariants of
endofunctors have applications in study of other important objects/structures such as tensor triangulated
categories in the sense of [Balmer 2005, Definition 1.1]. Let Q be a finite acyclic quiver and kQ be
its path algebra. Let TQ denote the bounded derived category Db(Mod f.d.− kQ) of finite dimensional
representations of Q. Note that every path algebra kQ of a finite quiver Q is naturally equipped with a weak
bialgebra structure (where the coalgebra structure is similar to the one given in [Nikshych and Vainerman
2002, Example 2.5]), which implies that TQ is a tensor triangulated category. One significant application
of fpv(σ ) Definition 2.3(4) (for various endofunctors σ ) is to prove that two nonisomorphic acyclic finite
quivers are not tensor triangulated equivalent. For example, let Q1 and Q2 be two nonisomorphic quivers
of the same underlying ADE Dynkin graph. It is well-known that TQ1 and TQ2 are triangulated equivalent
via Bernstein, Gelfand and Ponomarev reflection functors [Bernstein et al. 1973] (also see [Happel 1987]).
Now using fpv(σ ) it can be shown that TQ1 and TQ2 are not tensor triangulated equivalent. Details are
given in [Zhang and Zhou ≥ 2019]. By using other known invariants such as the Balmer spectrum
[2005], it is difficult for us to distinguish the tensor triangulated structures of TQ1 and TQ2 where these
are triangulated equivalent.
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Conventions.

(1) Usually Q means a quiver.

(2) T is a (pre-)triangulated category with suspension functor 6 = [1].

(3) If A is an algebra over the base field k, then Mod f.d.−A denotes the category of finite dimensional
left A-modules.

(4) If A is an algebra, then we use A for the abelian category Mod f.d.−A.

(5) When A is an abelian category, we use A for the bounded derived category Db(A).

This paper is organized as follows. We provide background material in Section 1. The basic definitions
are introduced in Section 2. Some basic properties are given in Section 3. We prove Theorem 0.1 and
Proposition 0.6 in Section 3, see Theorem 3.2 and Proposition 3.6 respectively. Corollary 0.2 is an
immediate consequence of Theorem 0.1. Section 4 deals with some derived categories of modules over
commutative rings. In Section 5, we work out the fp-theories of the projective line and quiver A2, as well
as an example of nonintegral fpd. In Section 6, we develop some techniques to handle the fpd of projective
curves and prove the tame-wild dichotomy of projective curves in terms of fpd. Theorem 0.3 is proved
in Section 7 where representation types are discussed. Section 8 focuses on the complexity of algebras
and categories and Theorem 0.5 is proved there. We continue to develop the fp-theory in our companion
paper [Chen et al. 2019]. Some examples can be found in [Wicks 2019; Zhang and Zhou ≥ 2019].

1. Preliminaries

Classical definitions. Let A be an n× n-matrix over complex numbers C. The spectral radius of A is
defined to be

ρ(A) :=max{|r1|, |r2|, . . . , |rn|} ∈ R

where {r1, r2, . . . , rn} is the complete set of eigenvalues of A. When each entry of A is a positive real
number, ρ(A) is also called the Perron root or the Perron–Frobenius eigenvalue of A. When applying ρ
to the adjacency matrix of a graph (or a quiver), the spectral radius of the adjacency matrix is sometimes
called the Frobenius–Perron dimension of the graph (or the quiver).

Let us mention a classical result concerning the spectral radius of simple graphs. A finite graph G is
called simple if it has no loops and no multiple edges. Smith [1970] formulated the following result:

Theorem 1.1 [Dokuchaev et al. 2013, Theorem 1.3]. Let G be a finite, simple, and connected graph with
adjacency matrix A:

(1) ρ(A)= 2 if and only if G is one of the extended Dynkin diagrams of type ÃD̃ Ẽ .

(2) ρ(A) < 2 if and only if G is one of the Dynkin diagrams of type ADE.

To save space we refer to [Dokuchaev et al. 2013] and [Happel et al. 1980] for the diagrams of the
ADE and ÃD̃ Ẽ quivers/graphs.
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In order to include some infinite-dimensional cases, we extend the definition of the spectral radius in
the following way.

Let A := (ai j )n×n be an n× n-matrix with entries ai j in R := R∪ {±∞}. Define A′ = (a′i j )n×n where

a′i j =


ai j ai j 6= ±∞,

xi j ai j =∞,

−xi j ai j =−∞.

In other words, we are replacing∞ in the (i, j)-entry by a finite real number, called xi j , in the (i, j)-entry.
And every xi j is considered as a variable or a function mapping R→ R.

Definition 1.2. Let A be an n× n-matrix with entries in R. The spectral radius of A is defined to be

ρ(A) := lim inf
all xi j→∞

ρ(A′) ∈ R. (E1.2.1)

Remark 1.3. It also makes sense to use lim sup instead of lim inf in (E1.2.1). We choose to take lim inf
in this paper.

Here is an easy example.

Example 1.4. Let A =
( 1

0
−∞

2

)
. Then A′ =

( 1
0
−x12

2

)
. It is obvious that

ρ(A)= lim
x12→∞

ρ(A′)= lim
x12→∞

2= 2.

k-linear categories. If C is a k-linear category, then HomC(M, N ) is a k-module for all objects M, N
in C. If C is also abelian, then ExtiC(M, N ) are k-modules for all i ≥ 0. Let dim be the k-vector space
dimension.

Remark 1.5. One can generalize the notion of fpd to categories that are not k-linear. Even when a
category C is not k-linear, it might still make sense to define a set map on the Hom-sets of the category C,
say

∂ : {HomC(M, N ) | M, N ∈ C} → Z≥0 ∪ {∞}.

We call such a map a dimension function. The definition of Frobenius–Perron dimension given in the
next section can be modified using ∂ instead of dim to fit this very weak version of a dimension function.

Frobenius–Perron dimension of a quiver. In this subsection we recall some known elementary defini-
tions and facts.

Definition 1.6. Let Q be a quiver:

(1) If Q has finitely many vertices, then the Frobenius–Perron dimension of Q is defined to be

fpd Q := ρ(A(Q))

where A(Q) is the adjacency matrix of Q.
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(2) Let Q be any quiver. The Frobenius–Perron dimension of Q is defined to be

fpd Q := sup{fpd Q′}

where Q′ runs over all finite subquivers of Q.

See [Erdmann and Solberg 2011, Propositions 2.1 and 3.2] for connections between fpd of a quiver
and its representation types, as well as its complexity. We need the following well-known facts in linear
algebra.

Lemma 1.7. (1) Let B be a square matrix with nonnegative entries and let A be a principal minor of B.
Then ρ(A)≤ ρ(B).

(2) Let A := (ai j )n×n and B := (bi j )n×n be two square matrices such that 0≤ ai j ≤ bi j for all i, j . Then
ρ(A)≤ ρ(B).

Let Q be a quiver with vertices {v1, . . . , vn}. An oriented cycle based at a vertex vi is called indecom-
posable if it is not a product of two oriented cycles based at vi . For each vertex vi let θi be the number of
indecomposable oriented cycles based at vi . Define the cycle number of a quiver Q to be

2(Q) :=max{θi | ∀i}.

The following result should be well known.

Theorem 1.8. Let Q be a quiver and let 2(Q) be the cycle number of Q:

(1) fpd(Q)= 0 if and only if 2(Q)= 0, namely, Q is acyclic.

(2) fpd(Q)= 1 if and only if 2(Q)= 1.

(3) fpd(Q) > 1 if and only if 2(Q)≥ 2.

The proof is not hard, and to save space, it is omitted.

2. Definitions

Throughout the rest of the paper, let C denote a k-linear category. A functor between two k-linear categories
is assumed to preserve the k-linear structure. For simplicity, dim(A, B) stands for dim HomC(A, B) for
any objects A and B in C.

The set of finite subsets of nonzero objects in C is denoted by 8 and the set of subsets of n nonzero
objects in C is denoted by 8n for each n ≥ 1. It is clear that 8=

⋃
n≥18n . We do not consider the empty

set as an element of 8.

Definition 2.1. Let φ := {X1, X2, . . . , Xn} be a finite subset of nonzero objects in C, namely, φ ∈ 8n .
Let σ be an endofunctor of C:

(1) The adjacency matrix of (φ, σ ) is defined to be

A(φ, σ ) := (ai j )n×n where ai j := dim(X i , σ (X j )) ∀i, j.
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(2) An object M in C is called a brick [Assem et al. 2006, Definition 2.4, Chapter VII] if

HomC(M,M)= k.

[Neeman 2001, Definition 1.1.2], an object M in C is called an atomic object if it is a brick and
satisfies

HomC(M, 6−i (M))= 0 ∀i > 0. (E2.1.1)

(3) φ ∈8 is called a brick set (respectively, an atomic set) if each X i is a brick (respectively, atomic)
and

dim(X i , X j )= δi j

for all 1 ≤ i, j ≤ n. The set of brick (respectively, atomic) n-object subsets is denoted by 8n,b

(respectively, 8n,a). We write 8b =
⋃

n≥18n,b (respectively, 8a =
⋃

n≥18n,a). Define the b-height
of C to be

hb(C)= sup{n |8n,b is nonempty}

and the a-height of C (when C is pretriangulated) to be

ha(C)= sup{n |8n,a is nonempty}.

Remarks 2.2. (1) A brick may not be atomic. Let A be the algebra

k〈x, y〉/(x2, y2
− 1, xy+ yx).

This is a 4-dimensional Frobenius algebra (of injective dimension zero). There are two simple left
A-modules

S0 := A/(x, y− 1), and S1 := A/(x, y+ 1).

Let Mi be the injective hull of Si for i = 0, 1. (Since A is Frobenius, Mi is projective.) There are two
short exact sequences

0→ S0→ M0
f
−→ S1→ 0 and 0→ S1

g
−→M1→ S0→ 0.

It is easy to check that HomA(Mi ,M j ) = k for all 0 ≤ i, j ≤ 1. Let A be the derived category
Db(Mod f.d.−A) and let X be the complex

· · · → 0→ M0
g◦ f
−→M1→ 0→ · · ·

An easy computation shows that HomA(X, X)= k=HomA(X, X [−1]). So X is a brick, but not atomic.

(2) A brick object is called a Schur object by several authors, see [Carroll and Chindris 2015; Chindris
et al. 2015]. It is also called endosimple by others, see [van Roosmalen 2008; 2016].

(3) The definition of an atomic object in a triangulated category is similar to (and slightly weaker than)
the definition of a point-object given by Bondal and Orlov [2001, Definition 2.1]. In particular, an atomic
object only satisfies (ii) and (iii) of that definition with k(P)= k. Note that a point-object is defined on a
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triangulated category with Serre functor. In this paper we do not automatically assume the existence of a
Serre functor in general.

Definition 2.3. Retain the notation as in Definition 2.1, and we use 8b as the testing objects. When C is
a pretriangulated category, 8b is automatically replaced by 8a unless otherwise stated:

(1) The n-th Frobenius–Perron dimension of σ is defined to be

fpdn(σ ) := sup
φ∈8n,b

{ρ(A(φ, σ ))}.

If 8n,b is empty, then by convention, fpdn(σ )=−∞.

(2) The Frobenius–Perron dimension of σ is defined to be

fpd(σ ) := sup
n
{fpdn(σ )} = sup

φ∈8b

{ρ(A(φ, σ ))}.

(3) The Frobenius–Perron growth of σ is defined to be

fpg(σ ) := sup
φ∈8b

{lim sup
n→∞

logn(ρ(A(φ, σ
n)))}.

By convention, logn 0=−∞.

(4) The Frobenius–Perron curvature of σ is defined to be

fpv(σ ) := sup
φ∈8b

{lim sup
n→∞

(ρ(A(φ, σ n)))1/n
}.

This is motivated by the concept of the curvature of a module over an algebra due to Avramov
[1998].

(5) We say σ has fp-exponential growth (respectively, fp-subexponential growth) if fpv(σ ) > 1 (respec-
tively, fpv(σ )≤ 1).

In this above definition, we implicitly assume that

the isom-classes of brick objects (respectively, atomic objects) form a set,

otherwise, supφ∈8b
(respectively, supφ∈8a

) is not defined. This assumption is automatic if the category C
is essentially small. But, even when C is not essentially small, one can check the above assumption in
many cases.

Sometimes we prefer to have all information from the Frobenius–Perron dimension. We make the
following definition.

Definition 2.4. Let C be a category and σ be an endofunctor of C:

(1) The Frobenius–Perron theory (or fp-theory) of σ is defined to be the set

{fpdn(σm)}n≥1,m≥0.
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(2) The Frobenius–Perron series (or fp-series) of σ is defined to be

FP(u, t, σ ) :=
∞∑

m=0

∞∑
n=1

fpdn(σm)tmun.

Remark 2.5. To define Frobenius–Perron dimension, one only needs have an assignment τ : 8n →

Mn×n(Mod−k), for every n ≥ 1, satisfying the property

if φ1 is a subset of φ2, then τ(φ1) is a principal submatrix of τ(φ2).

Then we define the adjacency matrix of φ ∈8n to be

A(φ, τ )= (ai j )n×n where ai j = dim(τ (φ))i j ∀i, j.

Then the Frobenius–Perron dimension of τ is defined in the same way as in Definition 2.3. If there is a
sequence of τm , the Frobenius–Perron series of {τm} is defined in the same way as in Definition 2.4 by
replacing σm by τm . See Example 2.6 next.

Example 2.6. (1) Let A be a k-linear abelian category. For each m ≥ 1 and φ = {X1, . . . , Xn}, define

Em
: φ→ (ExtmA(X i , X j ))n×n.

By convention, let Ext0A(X i , X j ) denote HomA(X i , X j ). Then, for each m ≥ 0, one can define the
Frobenius–Perron dimension of Em as mentioned in Remark 2.5.

(2) Let A be the k-linear abelian category Mod f.d.−A where A is a finite dimensional commutative
algebra over a base field k. For each m ≥ 1 and φ = {X1, . . . , Xn}, define

Tm : φ→ (TorA
m(X i , X j ))n×n.

By convention, let TorA
0 (X i , X j ) denote X i ⊗A X j . Then, for each m ≥ 0, one can define the Frobenius–

Perron dimension of Tm as mentioned in Remark 2.5.

Definition 2.7. (1) Let A be an abelian category. The Frobenius–Perron dimension of A is defined to be

fpdA := fpd(E1)

where E1
:= Ext1A(− ,− ) is defined as in Example 2.6(1). The Frobenius–Perron theory of A is the

collection

{fpdm(En)}m≥1,n≥0

where En
:= ExtnA(− ,− ) is defined as in Example 2.6(1).

(2) Let T be a pretriangulated category with suspension 6. The Frobenius–Perron dimension of T is
defined to be

fpd T := fpd(6).
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The Frobenius–Perron theory of T is the collection

{fpdm(6n)}m≥1,n∈Z.

The fp-global dimension of T is defined to be

fpgldim T := sup{n | fpd(6n) 6= 0}.

If T possesses a Serre functor S, the Frobenius–Perron S-theory of T is the collection

{fpdm(6n
◦ Sw)}m≥1,n,w∈Z.

Remarks 2.8. (1) The Frobenius–Perron dimension (respectively, Frobenius–Perron theory, fp-global
dimension) can be defined for suspended categories [Keller and Vossieck 1987] and pre-n-angulated
categories [Geiss et al. 2013] in the same way as Definition 2.7(2) since there is a suspension functor 6.

(2) When A is an abelian category, another way of defining the Frobenius–Perron dimension fpdA is as
follows. We first embed A into the derived category Db(A). The suspension functor 6 of Db(A) maps A
to A[1] (so it is not a functor of A). The adjacency matrix A(φ,6) is still defined as in Definition 2.1(1)
for brick sets φ in A. Then we can define

fpd(6|A) := sup
φ∈8b,φ⊂A

{ρ(A(φ,6))}

as in Definition 2.3(2) by considering only the brick sets in A. Now fpd(A) agrees with fpd(6|A).

The following lemma is clear.

Lemma 2.9. Let A be an abelian category and n ≥ 1. Then fpdn(Db(A))≥ fpdn(A). A similar statement
holds for fpd, fpg and fpv.

Proof. This follows from the fact that there is a fully faithful embedding A→ Db(A) and that E1 on A

agrees with 6 on Db(A). �

For any category C with an endofunctor σ , we define the σ -quiver of C, denoted by Qσ
C , as follows:

(1) the vertex set of Qσ
C consists of bricks in 81,b in C (respectively, atomic objects in 81,a when C is

pretriangulated), and

(2) the arrow set of Qσ
C consists of nX,Y -arrows from X to Y , for all X, Y ∈81,b (respectively, in 81,a),

where nX,Y = dim(X, σ (Y )).

If σ is E1, this quiver is denoted by QE1

C , which will be used in later sections.
The following lemma follows from the definition.

Lemma 2.10. Retain the above notation. Then fpd σ ≤ fpd Qσ
C .

The fp-theory was motivated by the Frobenius–Perron dimension of objects in tensor or fusion categories
[Etingof et al. 2015], see the following example.
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Example 2.11. First we recall the definition of the Frobenius–Perron dimension given in [Etingof et al.
2015, Definitions 3.3.3 and 6.1.6]. Let C be a finite semisimple k-linear tensor category. Suppose that
{X1, . . . , Xn} is the complete list of nonisomorphic simple objects in C. Since C is semisimple, every
object X in C is a direct sum

X =
n⊕

i=1

X⊕ai
i

for some integers ai ≥ 0. The tensor product on C makes its Grothendieck ring Gr(C) a Z+-ring [loc. cit.,
Definition 3.1.1]. For every object V in C and every j , write

V ⊗C X j ∼=

n⊕
i=1

X⊕ai j
i (E2.11.1)

for some integers ai j ≥ 0. In the Grothendieck ring Gr(C), the left multiplication by V sends X j to∑n
i=1 ai j X i . Then, by [loc. cit., Definition 3.3.3], the Frobenius–Perron dimension of V is defined to be

FPdim(V ) := ρ((ai j )n×n). (E2.11.2)

In fact the Frobenius–Perron dimension is defined for any object in a Z+-ring.
Next we use Definition 2.3(2) to calculate the Frobenius–Perron dimension. Let σ be the tensor

functor V ⊗C − that is a k-linear endofunctor of C. If φ is a brick subset of C, then φ is a subset of
φn := {X1, . . . , Xn}. For simplicity, assume that φ is {X1, . . . , Xs} for some s ≤ n. It follows from
(E2.11.1) that

HomC(X i , σ (X j ))= k⊕ai j ∀i, j.

Hence the adjacency matrix of (φn, σ ) is

A(φn, σ )= (ai j )n×n

and the adjacency matrix of (φ, σ ) is a principal minor of A(φn, σ ). By Lemma 1.7(1), ρ(A(φ, σ ))≤
ρ(A(φn, σ )). By Definition 2.3(2), the Frobenius–Perron dimension of the functor σ = V ⊗C − is

fpd(V ⊗C −)= sup
φ∈8b

{ρ(A(φ, σ ))} = ρ(A(φn, σ ))= ρ((ai j )n×n),

which agrees with (E2.11.2). This justifies calling fpd(V ⊗C −) the Frobenius–Perron dimension of V .

3. Basic properties

For simplicity, “Frobenius–Perron” is abbreviated to “fp”.

Embeddings. It is clear that the fp-series and the fp-dimensions are invariant under equivalences of
categories. We record this fact below. Recall that the Frobenius–Perron series FP(u, t, σ ) of an endofunctor
σ is defined in Definition 2.4(2).
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Lemma 3.1. Let F : C→ D be an equivalence of categories. Let σC and σD be endofunctors of C and D
respectively. Suppose that F ◦ σC is naturally isomorphic to σD ◦ F. Then FP(u, t, σC)= FP(u, t, σD).

Let R+ denote the set of nonnegative real numbers union with {±∞}. Let

f (u, t) :=
∞∑

m,n=0

fm,ntmun and g(u, t) :=
∞∑

m,n=0

gm,ntmun

be two elements in R+[[u, t]]. We write f ≤ g if fm,n ≤ gm,n for all m, n.

Theorem 3.2. Let F : C→ D be a faithful functor that preserves brick subsets:

(1) Let σC and σD be endofunctors of C and D respectively. Suppose that F ◦ σC is naturally isomorphic
to σD ◦ F. Then FP(u, t, σC)≤ FP(u, t, σD).

(2) Let τC and τD be assignments of C and D respectively satisfying the property in Remark 2.5. Suppose
that ρ(A(φ, τC))≤ ρ(A(F(φ), τD)) for all φ ∈8n,b(C) and all n. Then FP(u, t, τC)≤ FP(u, t, τD).

Proof. (1) For every φ = {X1, . . . , Xn} ∈ 8n(C), let F(φ) be {F(X1), . . . , F(Xn)} in 8n(D). By
hypothesis, if φ ∈ 8n,b(C), then F(φ) is in 8n,b(D). Let A = (ai j ) (respectively, B = (bi j )) be the
adjacency matrix of (φ, σC) (respectively, of (F(φ), σD)). Then, by the faithfulness of F ,

ai j = dim(X i , σC(X j ))≤ dim(F(X i ), F(σC(X j )))= dim(F(X i ), σD(F(X j )))= bi j .

By Lemma 1.7(2),
ρ(A(φ, σC))=: ρ(A)≤ ρ(B) := ρ(A(F(φ), σD)). (E3.2.1)

By definition,
fpdn(σC)≤ fpdn(σD). (E3.2.2)

Similarly, for all n,m, fpdn(σm
C )≤ fpdn(σm

D ). The assertion follows.

(2) The proof of part (2) is similar. �

Theorem 0.1 follows from Theorem 3.2.

(a-)Hereditary algebras and categories. Recall that the global dimension of an abelian category A is
defined to be

gldimA := sup{n | ExtnA(X, Y ) 6= 0, for some X, Y ∈ A}.

The global dimension of an algebra A is defined to be the global dimension of the category of left
A-modules. An algebra (or an abelian category) is called hereditary if it has global dimension at most
one.

There is a nice property concerning the indecomposable objects in the derived category of a hereditary
abelian category (see [loc. cit., Section 2.5]).

Lemma 3.3. Let A be a hereditary abelian category. Then every indecomposable object in the derived
category D(A) is isomorphic to a shift of an object in A.



Frobenius–Perron theory of endofunctors 2019

Note that every brick (or atomic) object in an additive category is indecomposable. Based on the
property in the above lemma, we make a definition.

Definition 3.4. An abelian category A is called a-hereditary (respectively, b-hereditary) if every atomic
(respectively, brick) object X in the bounded derived category Db(A) is of the form M[i] for some object
M in A and i ∈ Z. The object M is automatically a brick object in A.

By Lemma 3.11(2), if A is a finite dimensional local algebra, then the category Mod f.d.−A of finite
dimensional A-modules is a-hereditary. If A is not k, then Mod f.d.−A is not hereditary. Another such
example is given in Lemma 4.1.

If α is an autoequivalence of an abelian category A, then it extends naturally to an autoequivalence,
denoted by α, of the derived category A := Db(A). The main result in this subsection is the following.
Recall that the b-height of A, denoted by hb(A), is defined in Definition 2.1(3) and that the Frobenius–
Perron global dimension of A, denoted by fpgldimA, is defined in Definition 2.7(2).

Theorem 3.5. Let A be an a-hereditary abelian category with an auto-equivalence α. For each n, define
n′ =min{n, hb(A)}. Let A be Db(A):

(1) If m < 0 or m > gldimA, then

fpd(6m
◦α)= 0.

As a consequence, fpgldimA≤ gldimA.

(2) For each n,

fpdn(α)≤ fpdn(α)≤ max
1≤i≤n′

{fpdi (α)}. (E3.5.1)

If gldimA<∞, then

fpdn(α)= max
1≤i≤n′

{fpdi (α)}. (E3.5.2)

(3) Let g := gldimA<∞. Let β be the assignment (X, Y )→ (Extg
A(X, α(Y ))). Then

fpdn(6g
◦α)= max

1≤i≤n′
{fpdi (β)}. (E3.5.3)

(4) For every hereditary abelian category A, we have fpd(A)= fpd(A).

Proof. (1) Since A is a-hereditary, every atomic object in A is of the form M[i].

Case 1: m < 0. Write φ as {M1[d1], . . . ,Mn[dn]} where di is decreasing and Mi is in A. Then, for i ≤ j ,

ai j = HomA(Mi [di ], (6
m
◦α)M j [d j ])= HomA(Mi , α(M j )[d j − di +m])= 0

since d j − di + m < 0. Thus the adjacency matrix A := (ai j )n×n is strictly lower triangular. As a
consequence, ρ(A)= 0. By definition, fpd(6m

◦α)= 0.
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Case 2: m > gldimA. Write φ as {M1[d1], . . . ,Mn[dn]} where di is increasing and Mi is in A. Then,
for i ≥ j ,

ai j = HomA(Mi [di ], (6
m
◦α)M j [d j ])= HomA(Mi , α(M j )[d j − di +m])= 0

since d j − di +m > gldimA. Thus the adjacency matrix A := (ai j )n×n is strictly upper triangular. As a
consequence, ρ(A)= 0. By definition, fpd(6m

◦α)= 0.

(2) Let F be the canonical fully faithful embedding A→A. By Theorem 3.2 and (E3.2.2),

fpdn(α)≤ fpdn(α).

For the other assertion, write φ as a disjoint union φd1 ∪ · · · ∪φds where di is strictly decreasing and the
subset φdi consists of objects of the form M[di ] for M ∈ A. For any objects X ∈ φdi and Y ∈ φd j for
i < j , HomA(X, Y )= 0. Thus the adjacency matrix of (φ, α) is of the form

A(φ, α)=


A11 0 0 · · · 0
∗ A22 0 · · · 0
∗ ∗ A33 · · · 0
. . . . . . . . . . . . 0
∗ ∗ ∗ · · · Ass

 (E3.5.4)

where each Ai i is the adjacency matrix A(φdi , α). For each φdi , we have

A(φdi , α)= A(φdi [−di ], α)= A(φdi [−di ], α)

which implies that

ρ(Ai i )≤ fpdsi (α)≤ max
1≤ j≤n′

fpd j (α)

where si is the size of Ai i and n′ =min{n, hb(A)}. By using the matrix (E3.5.4),

ρ(A(φ, α))=max
i
{ρ(Ai i )} ≤ max

1≤ j≤n′
fpd j (α).

Then (E3.5.1) follows.
Suppose now that g := gldimA <∞. Let φ ∈ 8n,a(A). Pick any M ∈ 81,b(A). Then, for g′ � g,

φ′ := φ ∪ {M[g′]} ∈ 8n+1,a(A). By Lemma 1.7(1), ρ(A(φ′, α)) ≥ ρ(A(φ, α)). Hence fpdn(α) is
increasing as n increases. Therefore (E3.5.2) follows from (E3.5.1).

(3) The proof is similar to the proof of part (2). Let F be the canonical fully faithful embedding A→A.
By Theorem 3.2(2) and (E3.2.2),

fpdn(β)≤ fpdn(6g
◦α).

By the argument at the end of proof of part (2), fpdn(6g
◦α) increases when n increases. Then

max
1≤ j≤n′

fpd j (β)≤ fpdn(6g
◦α).
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For the other direction, write φ as a disjoint union φd1 ∪ · · · ∪ φds where di is strictly increasing
and φdi consists of objects of the form M[di ] for M ∈ A. For objects X ∈ φdi and Y ∈ φd j for i < j ,
HomA(X, 6g(α(Y )))= 0. Let γ =6g

◦α. Then the adjacency matrix of (φ, γ ) is of the form (E3.5.4),
namely,

A(φ, γ )=


A11 0 0 · · · 0
∗ A22 0 · · · 0
∗ ∗ A33 · · · 0
. . . . . . . . . . . . 0
∗ ∗ ∗ · · · Ass


where each Ai i is the adjacency matrix A(φdi , γ ). For each φdi , we have

A(φdi , γ )= A(φdi [−di ], γ )= A(φdi [−di ], β)

which implies that

ρ(Ai i )≤ fpdsi (β)≤ max
1≤ j≤n′

fpd j (β)

where si is the size of Ai i . By using matrix (E3.5.4),

ρ(A(φ, γ ))=max
i
{ρ(Ai i )} ≤ max

1≤ j≤n′
fpd j (β).

The assertion follows.

(4) Take α to be the identity functor of A and g = 1 (since A is hereditary). By (E3.5.3), we have

fpdn(6)= max
1≤i≤n′

{fpdi (E1)}.

By taking supn , we obtain that fpd(E1)= fpd(6). The assertion follows. �

Categories with Serre functor. Recall from [Keller 2008, Section 2.6] that if a Hom-finite category C
has a Serre functor S, then there is a natural isomorphism

HomC(X, Y )∗ ∼= HomC(Y, S(X))

for all X, Y ∈ C. A (pre-)triangulated Hom-finite category C with Serre functor S is called n-Calabi–Yau
if there is a natural isomorphism

S ∼=6n.

(In [Keller 2008, Section 2.6] it is called weakly n-Calabi–Yau.) We now prove Proposition 0.6.

Proposition 3.6 (Serre duality). Let C be a Hom-finite category with Serre functor S. Let σ be an
endofunctor of C:

(1) If σ has a right adjoint σ !, then

fpd(σ )= fpd(σ ! ◦ S).
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(2) If σ is an equivalence with quasiinverse σ−1, then

fpd(σ )= fpd(σ−1
◦ S).

(3) If C is (pre-)triangulated and n-Calabi–Yau, then we have a duality

fpd(6i )= fpd(6n−i )

for all i .

Proof. (1) Let φ = {X1, . . . , Xn} ∈ 8n,b and let A(φ, σ ) be the adjacency matrix with (i, j)-entry
ai j = dim(X i , σ (X j )). By Serre duality,

ai j = dim(X i , σ (X j ))= dim(σ (X j ), S(X i ))= dim(X j , (σ
!
◦ S)(X i )),

which is the ( j, i)-entry of the adjacency matrix A(φ, σ ! ◦ S). Then ρ(A(φ, σ )) = ρ(A(φ, σ ! ◦ S)). It
follows from the definition that fpdn(σ ) = fpdn(σ ! ◦ S) for all n ≥ 1. The assertion follows from the
definition.

(2) and (3) These are consequences of part (1). �

Opposite categories.

Lemma 3.7. Let σ be an endofunctor of C and suppose that σ has a left adjoint σ ∗. Consider σ ∗ as an
endofunctor of the opposite category Cop of C. Then

fpdn(σ |C)= fpdn(σ ∗|Cop)

for all n.

Proof. Let φ := {X1, . . . , Xn} be a brick subset of C (which is also a brick subset of Cop). Then

dimC(X i , σ (X j ))= dimC(σ
∗(X i ), X j )= dimCop(X j , σ

∗(X i )),

which implies that the adjacency matrix of σ ∗ as an endofunctor of Cop is the transpose of the adjacency
matrix of σ . The assertion follows. �

Definition 3.8. (1) Two pretriangulated categories (Ti , 6i ), for i = 1, 2, are called fp-equivalent if

fpdn(6m
1 )= fpdn(6m

2 )

for all n ≥ 1,m ∈ Z:

(2) Two algebras are fp-equivalent if their bounded derived categories of finitely generated modules are
fp-equivalent.

(3) Two pretriangulated categories with Serre functors (Ti , 6i , Si ), for i =1, 2, are called fp-S-equivalent
if

fpdn(6m
1 ◦ Sk

1)= fpdn(6m
2 ◦ Sk

2)

for all n ≥ 1,m, k ∈ Z.
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Proposition 3.9. Let T be a pretriangulated category:

(1) T and T op are fp-equivalent.

(2) Suppose S is a Serre functor of T . Then (T , S) and (T op, Sop) are fp-S-equivalent.

Proof. (1) Let 6 be the suspension of T . Then T op is also pretriangulated with suspension functor being
6−1
=6∗ (restricted to T op). The assertion follows from Lemma 3.7.

(2) Note that the Serre functor of T op is equal to S−1
= S∗ (restricted to T op). The assertion follows by

Lemma 3.7. �

Corollary 3.10. Let A be a finite dimensional algebra:

(1) A and Aop are fp-equivalent.

(2) Suppose A has finite global dimension. In this case, the bounded derived category of finite dimen-
sional A-modules has a Serre functor. Then A and Aop are fp-S-equivalent.

Proof. (1) Since A is finite dimensional, the k-linear dual induces an equivalence of triangulated categories
between Db(Mod f.d.−A)op and Db(Mod f.d.−Aop). The assertion follows from Proposition 3.9(1).

(2) The proof is similar, using Proposition 3.9(2) instead. �

There are examples where T and T op are not triangulated equivalent, see Example 3.12. In this paper,
a k-algebra A is called local if A has a unique maximal ideal m and A/m∼= k. The following lemma is
easy and well known.

Lemma 3.11. Let A be a finite dimensional local algebra over k. Let A be the category Mod f.d.−A and
A be Db(A):

(1) Let X be an object in A such that HomA(X, X [−i])= 0 for all i > 0. Then X is of the form M[n]
where M is an object in A and n ∈ Z.

(2) Every atomic object in A is of the form M[n] where M is a brick object in A and n ∈ Z. Namely, A
is a-hereditary.

Proof. (2) is an immediate consequence of part (1). We only prove part (1).
On the contrary we suppose that H m(X) 6= 0 and H n(X) 6= 0 for some m < n. Since X is a bounded

complex, we can take m to be minimum of such integers and n to be the maximum of such integers.
Since A is local, there is a nonzero map from H n(X)→ H m(X), which induces a nonzero morphism in
HomA(X, X [m− n]). This contradicts the hypothesis. �

Example 3.12. Let m, n be integers ≥ 2. Define Am,n to be the algebra

k〈x1, x2〉/(xm
1 , xn

2 , x1x2).

It is easy to see that Am,n is a finite dimensional local connected graded algebra generated in degree 1 (with
deg x1 = deg x2 = 1). If Am,n is isomorphic to Am′,n′ as algebras, by [Bell and Zhang 2017, Theorem 1],
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these are isomorphic as graded algebras. Suppose f : Am,n→ Am′,n′ is an isomorphism of graded algebras
and write

f (x1)= ax1+ bx2, f (x2)= cx1+ dx2.

Then the relation f (x1) f (x2)= 0 forces b = c = 0. As a consequence, m = m′ and n = n′. So we have
proven that

(1) Am,n is isomorphic to Am′,n′ if and only if m = m′ and n = n′.

Next we claim that

(2) the derived category Db(Mod f.d.−Am,n) is not triangulated equivalent to Db(Mod f.d.−Aop
m,n),

if m 6= n.

Let m, n,m′, n′ be integers ≥ 2. Suppose that Db(Mod f.d.−Am,n) is triangulated equivalent to
Db(Mod f.d.−Am′,n′). Since Am,n is local, by [Yekutieli 1999, Theorem 2.3], every tilting complex over
Am,n is of the form P[n]where P is a progenerator over Am,n . As a consequence, Am,n is Morita equivalent
to Am′,n′ . Since both Am,n and Am′,n′ are local, Morita equivalence implies that Am,n is isomorphic to
Am′,n′ . By part (1), m=m′ and n=n′. In other words, if (m, n) 6= (m′, n′), then Db(Mod f.d.−Am,n) is not
triangulated equivalent to Db(Mod f.d.−Am′,n′). As a consequence, if m 6= n, then Db(Mod f.d.−Am,n)

is not triangulated equivalent to Db(Mod f.d.−An,m). By definition, Aop
m,n ∼= An,m . Therefore claim (2)

follows.
We can show that Db(Mod f.d.−A) is dual to Db(Mod f.d.−Aop) by using the k-linear dual. In other

words, Db(Mod f.d.−A)op is triangulated equivalent to Db(Mod f.d.−Aop). Therefore the following is a
consequence of part (2).

(3) Suppose m 6= n and let A be Db(Mod f.d.−Am,n). Then A is not triangulated equivalent to Aop. But
by Proposition 3.9(1), A and Aop are fp-equivalent.

4. Derived category over a commutative ring

Throughout this section A is a commutative algebra and A= Db(Mod−A). (In other sections A usually
denotes Db(Mod f.d.−A).)

Lemma 4.1. Let A be a commutative algebra. Let X be an atomic object in A. Then X is of the form
M[i] for some simple A-module M and some i ∈ Z. As a consequence, Mod−A is a-hereditary.

Proof. Consider X as a bounded above complex of projective A-modules. Since A is commutative, every
f ∈ A induces naturally a morphism of X by multiplication. For each i , H i (X) is an A-module. We have
natural morphisms of A-algebras

A→ HomA(X, X)→ EndA(H i (X)).
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By definition, HomA(X, X)=k. Thus HomA(X, X)= A/m for some ideal m of A that has codimension 1.
Hence the A-action on H i (X) factors through the map A→ A/m. This means that H i (X) is a direct
sum of A/m.

Let n = sup X and m = inf X . Then H m(X)= (A/m)⊕s and H n(X)= (A/m)⊕t for some s, t > 0. If
m < n, then

HomA(X, X [m− n])∼= HomA(X [n], X [m])∼= HomA(H n(X), H m(X)) 6= 0

which contradicts (E2.1.1). Therefore m = n and X = M[n] for M := H n(X). Since X is atomic, M has
only one copy of A/m. �

Lemma 4.2. Let A be a noetherian commutative algebra. Let X and Y be two atomic objects in A. Then
HomA(X, Y ) 6= 0 if and only if there is an ideal m of A of codimension 1 such that X ∼= A/m[m] and
Y ∼= A/m[n] for some 0≤ n−m ≤ projdim A/m.

Proof. By Lemma 4.1, X ∼= A/m[m] for some ideal m of codimension 1 and some integer m. Similarly,
Y ∼= A/n[n] for ideal n of codimension 1 and integer n.

Suppose HomA(X, Y ) 6= 0. If m 6= n, then clearly HomA(X, Y ) = 0. Hence m = n. Further,
Extn−m

A (A/m, A/m)∼= HomA(X, Y ) 6= 0 implies that 0 ≤ n−m ≤ projdim A/m. The converse can be
proved in a similar way by passing to a localization. �

If A is an affine commutative ring over k, then every simple A-module is 1-dimensional. Hence
(A/m)[i] is a brick (and atomic) object in A for every i ∈ Z and every maximal ideal m of A. The
fp-global dimension fpgldim(A) is defined in Definition 2.7(2).

Proposition 4.3. Let A be an affine commutative domain of global dimension g <∞:

(1) fpd(A)= g.

(2) fpd(6i )=
(g

i

)
for all i .

(3) fpgldim(A)= g.

Proof. (1) By Lemma 4.1, every atomic object is of the form M[i] for some M ∼= A/m where m is an
ideal of codimension 1, and i ∈ Z. It is well-known that

dim ExtiA(A/m, A/m)=
(

g
i

)
∀i. (E4.3.1)

If m1 and m2 are two different maximal ideals, then

ExtiA(A/m1, A/m2)= 0 (E4.3.2)

for all i . Let φ be an atomic n-object subset. We can decompose φ into a disjoint union φA/m1∪· · ·∪φA/ms

where φA/m consists of objects of the form A/m[i] for i ∈ Z. It follows from (E4.3.2) that the adjacency
matrix is a block-diagonal matrix. Hence, we only need to consider the case when φ=φA/m after we use the
reduction similar to the one used in the proof of Theorem 3.5. Let φ = φA/m = {A/m[d1], . . . , A/m[dm]}
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where di is increasing. By Lemma 4.2, we have di+1− di > g, or di + g < di+1, for all i = 1, . . . ,m− 1.
Under these conditions, the adjacency matrix is lower triangular with each diagonal being g. Thus
fpd(6)= g.

The proof of (2) is similar and (3) is a consequence of (2). �

Suggested by Theorem 3.5, we could introduce some secondary invariants as follows. The stabilization
index of a triangulated category T is defined to be

SI(T )=min{n | fpdn′ T = fpd T ∀n′ ≥ n}.

The global stabilization index of T is defined to be

GSI(T )=max{SI(T ′) | for all thick triangulated full subcategories T ′ ⊆ T }.

It is clear that both stabilization index and global stabilization index can be defined for an abelian category.
Similar to Proposition 4.3, one can show the following. Suppose that A is affine. For every i , let

di := sup{dim ExtiA(A/m, A/m) |maximal ideals m⊆ A}.

Proposition 4.4. Let A be an affine commutative algebra. Then, for each i , fpd(6i ) = di < ∞ and
ρ(A(φ,6i ))≤ di for all φ ∈8n,a . As a consequence, for each integer i , the following hold:

(1) fpd(6i )= fpd1(6i ). Hence the stabilization index of A is 1.

(2) fpd(6i ) is a finite integer.

Theorem 4.5. Let A be an affine commutative algebra and A be Db(Mod A). Let T be a triangulated
full subcategory of A with suspension 6T . Let i be an integer:

(1) fpd(6i
T )= fpd1(6i

T ). As a consequence, the global stabilization index of A is 1.

(2) fpd(6i
T ) is a finite integer.

(3) If T is isomorphic to Db(Mod f.d.−B) for some finite dimensional algebra B, then B is Morita
equivalent to a commutative algebra.

Proof. (1) and (2) are similar to Proposition 4.4.

(3) Since B is finite dimensional, it is Morita equivalent to a basic algebra. So we can assume B is basic
and show that B is commutative. Write B as a kQ/(R) where Q is a finite quiver with admissible ideal
R ⊆ (kQ)≥2. We will show that B is commutative.

First we claim that each connected component of Q consists of only one vertex. Suppose not. Then
Q contains distinct vertices v1 and v2 with an arrow α : v1→ v2. Let S1 and S2 be the simple modules
corresponding to v1 and v2 respectively. Then {S1, S2} is an atomic set in T . The arrow represents a
nonzero element in Ext1B(S1, S2). Hence

HomT (S1, S2[1])∼= Ext1B(S1, S2) 6= 0.

By Lemma 4.2, S1 is isomorphic to a complex shift of S2. But this is impossible. Therefore, the claim holds.
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It follows from the claim in the last paragraph that B = B1 ⊕ · · · ⊕ Bn where each Bi is a finite
dimensional local ring corresponding to a vertex, say vi . Next we claim that each Bi is commutative.
Without loss of generality, we can assume Bi = B.

Now let ι be the fully faithful embedding from

ι : T := Db(Mod f.d.−B)→A := Db(Mod−A).

Let S be the unique simple left B-module. Then, by Lemma 4.1, there is a maximal ideal m of A such
that ι(S)= A/m[w] for some w ∈ Z. After a shift, we might assume that ι(S)= A/m. The left B-module
B has a composition series such that each simple subquotient is isomorphic to S, which implies that,
as a left A-module, ι(B) is generated by A/m in A. By induction on the length of B, one sees that, for
every n ∈ Z, H n(ι(B)) is a left A/md-module for some d � 0 (we can take d = length(B B)). Since
HomA(ι(B), ι(B)[−i]) = HomT (B, B[−i]) = 0 for all i > 0, the proof of Lemma 3.11(2) shows that
ι(B)∼= M[m] for some left A/md -module M and m ∈ Z. Since there are nonzero maps from S to B and
from B to S, we have nonzero maps from A/m to ι(B) and from ι(B) to A/m. This implies that m = 0.
Since B is local (and then B/mB is 1-dimensional for the maximal ideal mB), this forces that M = A/I
where I is an ideal of A containing md . Finally,

Bop
= EndB(B)∼= EndA(A/I, A/I )= EndA(A/I, A/I )∼= A/I

which is commutative. Hence B is commutative. �

5. Examples

In this section we give three examples.

Frobenius–Perron theory of projective line P1 := Proj k[t0, t1].

Example 5.1. Let coh(P1)=: A denote the category of coherent sheaves on P1. We will calculate the fp
dimension of various functors.

Proposition 5.1.1. Every brick object X in A (namely, satisfying HomP1(X, X)= k) is either O(m) for
some m ∈ Z or Op for some p ∈ P1.

The above fact is well known and follows easily from Grothendieck theorem (see also [Brüning and
Burban 2007, Example 3.18]).

Let φ be in 8n,b(coh(P1)). If n = 1 or φ is a singleton, then there are two cases: either φ =
{O(m)} or φ = {Op}. Let E1 be the functor Ext1

P1(− ,− ). In the first case, ρ(A(φ, E1)) = 0 because
Ext1

P1(O(m),O(m))= 0, and in the second case, ρ(A(φ, E1))= 1 because Ext1
P1(Op,Op)= 1.

If |φ|> 1, then O(m) can not appear in φ as HomP1(O(m),O(m′)) 6= 0 and HomP1(O(m),Op) 6= 0
for all m ≤ m′ and p ∈ P1. Hence, φ is a collection of Op for finitely many distinct points p’s. In this
case, the adjacency matrix is the identity n× n-matrix and ρ(A(φ, E1))= 1. Therefore

fpdn(coh(P1))= fpd(coh(P1))= 1 (E5.1.1)
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for all n ≥ 1. Since coh(P1) is hereditary, by Theorem 3.5(3,4), we obtain that

fpdn(Db(coh(P1)))= fpd(Db(coh(P1)))= 1 (E5.1.2)

for all n ≥ 1.
Let K2 be the Kronecker quiver

•
%%
99 • (E5.1.3)

By a result of Beilinson [1978], the derived category Db(Mod f.d.−kK2) is triangulated equivalent to
Db(coh(P1)). As a consequence,

fpd(Db(Mod f.d.−kK2))= fpd(Db(coh(P1)))= 1. (E5.1.4)

It is easy to see, or by Theorem 1.8(1),

fpd K2 = 0

where fpd of a quiver is defined in Definition 1.6.
This implies that

fpd(Db(Mod f.d.−kK2)) > fpd K2. (E5.1.5)

Next we consider some general auto-equivalences of Db(coh(P1)). Let

(m) : coh(P1)→ coh(P1)

be the auto-equivalence induced by the shift of degree m of the graded modules over k[t0, t1] and let 6
be the suspension functor of Db(coh(P1)). Then the Serre functor S of Db(coh(P1)) is 6 ◦ (−2). Let σ
be the functor 6a

◦ (b) for some a, b ∈ Z. By Theorem 3.5(1),

fpdn(6a
◦ (b))= 0 ∀a 6= 0, 1.

For the rest we consider a = 0 or 1. By Theorem 3.5(2,3), we only need to consider fpd on coh(P1).
If φ is a singleton {O(n)}, then the adjacency matrix is

A(φ, σ )= dim(O, 6aO(b))=


0 a = 0, b < 0,
b+ 1 a = 0, b ≥ 0,
0 a = 1, b ≥−1,
−b− 1 a = 1, b <−1.

This follows from the well-known computation of H i
P1(O(m)) for i = 0, 1 and m ∈ Z. (It also follows

from a more general computation [Artin and Zhang 1994, Theorem 8.1].) If φ = {Op} for some p ∈ P1,
then the adjacency matrix is

A(φ, σ )= dim(Op, 6
a(Op))= 1 for a = 0, 1.
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It is easy to see from the above computation that

fpd1(6a
◦ (b))=


1 a = 0, b < 0,
b+ 1 a = 0, b ≥ 0,
1 a = 1, b ≥−1,
−b− 1 a = 1, b <−1.

(E5.1.6)

Now we consider the case when n > 1. If φ ∈8n,b(coh(P1)), φ is a collection of Op for finitely many
distinct p’s. In this case, the adjacency matrix A(φ,6a

◦ (b)) is the identity n× n-matrix for a = 0, 1,
and ρ(A(φ, σ ))= 1. Therefore

fpdn(6a
◦ (b))= 1 (E5.1.7)

for all n > 1, when restricted to the category coh(P1).
It follows from Theorem 3.5(2,3) that:

Claim 5.1.2. Consider 6a
◦ (b) as an endofunctor of Db(coh(P1)). For a, b ∈ Z and n ≥ 1, we have

fpdn(6a
◦ (b))=



0 a 6= 0, 1,
1 a = 0, b < 0,
b+ 1 a = 0, b ≥ 0,
1 a = 1, b ≥−1,
−b− 1 a = 1, b <−1.

(E5.1.8)

Since S =6 ◦ (−2), we have the following

fpdn(6a
◦ Sb)= fpdn(6a+b

◦ (−2b))=



0 a+ b 6= 0, 1,
1 a+ b = 0, b > 0,
−(2b− 1) a+ b = 0, b ≤ 0,
1 a+ b = 1, b ≤ 0,
2b− 1 a+ b = 1, b > 0.

(E5.1.9)

Claim 5.1.3. Since Db(coh(P1)) and Db(Mod f.d.−kK2) are equivalent, (E5.1.9) agrees with the fp-
theory of Db(Mod f.d.−kK2).

Frobenius–Perron theory of the quiver A2. We start with the following example.

Example 5.2. Let A be the Z-graded algebra k[x]/(x2) with deg x = 1. Let C := gr−A be the category
of finitely generated graded left A-modules. Let σ := (−) be the degree shift functor of C. It is clear that
σ is an autoequivalence of C. Let A be the additive subcategory of C generated by σ n(A) = A(n) for
all n ∈ Z. Note that A is not abelian and that every object in A is of the form

⊕
n∈Z A(n)⊕pn for some

integers pn ≥ 0. Since the Hom-set in the graded module category consists of homomorphisms of degree
zero, we have

HomA(A, A(n))=
{

k n = 0, 1,
0 otherwise.
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In the following diagram each arrow represents a 1-dimensional Hom for all possible Hom-set for different
objects A(n)

· · · → A(−2)→ A(−1)→ A(0)→ A(1)→ A(2)→ · · · (E5.2.1)

where the number of arrows from A(m) to A(n) agrees with dim Hom(A(m), A(n)). It is easy to see that
the set of indecomposable objects is {A(n)}n∈Z, which is also the set of bricks in A.

Lemma 5.3. Retain the notation as in Example 5.2. When restricting σ onto the category A, we have, for
every m ≥ 1,

fpdm(σ n)=

{
1 n = 0, 1,
0 otherwise.

(E5.3.1)

Proof. When n = 0, (E5.3.1) is trivial. Let n = 1. For each set φ ∈ 8m,b, we can assume that
φ = {A(d1), A(d2, ), . . . , A(dm)} for a strictly increasing sequence {di | i = 1, 2, . . . ,m}. For any i < j ,
the (i, j)-entry of the adjacency matrix is

ai j = dim(A(di ), A(d j + 1))= 0.

Thus A(φ, σ ) is a lower triangular matrix with

ai i = dim(A(di ), A(di + 1))= 1.

Hence ρ(A(φ, σ ))= 1. So fpdm(σ )= 1.
Similarly, fpdm(σ n)= 0 when n > 1 as dim(A(di ), A(di + 2))= 0 for all i .
Let n < 0. Let φ = {A(d1), A(d2, ), . . . , A(dm)} ∈ 8m,b where di are strictly decreasing. Then

ai j = dim(A(di ), A(d j+n))= 0 for all i ≤ j . Thus ρ(A(φ, σ n))= 0 and (E5.3.1) follows in this case. �

Example 5.4. Consider the quiver A2

•2→ •1. (E5.4.1)

Let Pi (respectively, Ii ) be the projective (respectively, injective) left kA2-modules corresponding to
vertices i , for i = 1, 2, It is well-known that there are only three indecomposable left modules over A2,
with Auslander–Reiten quiver (or AR-quiver, for short)

P2→ P1(= I2)→ I1 (E5.4.2)

where each arrow represents a nonzero homomorphism (up to a scalar) [Schiffler 2014, Example 1.13,
pages 24–25]. The AR-translation (or translation, for short) τ is determined by τ(I1) = P2. Let T be
Db(Mod f.d.−kA2). The Auslander–Reiten theory can be extended from the module category to the
derived category. It is direct that, in T , we have the AR-quiver of all indecomposable objects

· · ·

P2[−1]

""

I1[−1]

��

P1 = I2

��

P2[1]

  

I1[1]

P1[−1]

<<

P2

??

I1

AA

P1[1]

??

· · · (E5.4.3)
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The above represents all possible nonzero morphisms (up to a scalar) between nonisomorphic indecom-
posable objects in T . Note that T has a Serre functor S and that the AR-translation τ can be extended to a
functor of T such that S =6 ◦ τ [Reiten and Van den Bergh 2002, Proposition I.2.3] or [Crawley-Boevey
1992, Remarks(2), page 23]. After identifying

P2[i] ↔ A(3i), P1[i] ↔ A(3i + 1), I1[i] ↔ A(3i + 2),

(E5.4.3) agrees with (E5.2.1). Using the above identification, at least when restricted to objects, we have

6(A(i))∼= A(i + 3), (E5.4.4)

τ(A(i))∼= A(i − 2), (E5.4.5)

S(A(i))∼= A(i + 1). (E5.4.6)

It follows from the definition of the AR-quiver [Auslander et al. 1995, VII] that the degree of τ is −2, see
also [Assem et al. 2006, Picture on page 131]. Equation (E5.4.5) just means that the degree of τ is −2.

By (E5.4.6), the Serre functor S satisfies the property of σ defined in Example 5.2. By Lemma 5.3 or
(E5.3.1), we have

fpdn(6a
◦ Sb)= fpdn(σ 3a+b)=

{
1 3a+ b = 0, 1,
0 otherwise.

Therefore the fp-S-theory of T is given as above.
In particular, we have proven

fpgldim(Db(Mod f.d.−kA2))= fpd(Db(Mod f.d.−kA2))= fpd(6)= 0,

which is less than gldim kA2 = 1.

An example of nonintegral Frobenius–Perron dimension. In the next example, we “glue” K2 in (E5.1.3)
and A2 in (E5.4.1) together.

Example 5.5. Let G2 be the quiver

•

1
γ &&

β

�� •

2

α

cc (E5.5.1)

consisting of two vertices 1 and 2, with arrow α : 2→ 1 and β, γ : 1→ 2 satisfying relations

R : βα = γα = 0, αβ = αγ = 0. (E5.5.2)

Note that (G2, R) is a quiver with relations. The corresponding quiver algebra with relations is a
5-dimensional algebra

A = ke1+ ke2+ kα+ kβ + kγ.
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We can use the following matrix form to represent the algebra A

A =
(

ke1 kα
kβ + kγ ke2

)
.

For each i = 1, 2, let Si be the left simple A-module corresponding to the vertex i and Pi be the
projective cover of Si . Then P1 ∼= Ae1 is isomorphic to the first column of A, namely

( ke1
kβ+kγ

)
, and

P2 ∼= Ae2 is isomorphic to the second column of A, namely
( kα

ke2

)
.

We will show that the Frobenius–Perron dimension of the category of finite dimensional representations
of (G2, R) is

√
2, by using several lemmas below that contain some detailed computations.

Lemma 5.6. Let V = (V1, V2) be a representation of (G2, R). Let W = imα and K = kerα. Take
a k-space decomposition V2 = W ⊕ K where W ∼= W . Then there is a decomposition of (G2, R)-
representations V ∼= (W ⊕ T,W ⊕ K )∼= (W ,W )⊕ (T, K ) where α is the identity when restricted to W
(and identifying W with W ) and is zero when restricted to K , where β and γ are zero when restricted
to W .

Proof. Since W = imα, V2 ∼= W ⊕ K where K = kerα and W ∼= W . Write V1 = W ⊕ T for some
k-subspace T ⊆ V1. The assertion follows by using the relations in (E5.5.2). �

Recall that A2 is the quiver given in (E5.4.1) and K2 is the Kronecker quiver given in (E5.1.3). By the
above lemma, the subrepresentation (W,W ) (where we identify W with W ) is in fact a representation of(ke1

0
kα
ke2

)
(∼= kA2) and the subrepresentation (T, K ) is a representation of

( ke1
kβ+kγ

0
ke2

)
(∼= kK2).

Let In be the n× n-identity matrix. Let Bl(λ) denote the block matrix
λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 · · · λ 1
0 0 0 · · · 0 λ

 .
Lemma 5.7. Suppose k is of characteristic zero. The following is a complete list of indecomposable
representations of (G2, R).

(1) P2 ∼= (k, k), where α = I1 and β = γ = 0.

(2) Xn(λ)= (K , K ) with dim K = n, where α = 0, β = In and γ = Bl(λ) for some λ ∈ k.

(3) Yn = (K , K ) with dim K = n, where α = 0, β = Bl(0) and γ = In .

(4) S2,n = (T, K ) with dim T = n and dim K = n+ 1, where α = 0, β = (In, 0) and γ = (0, In).

(5) S1,n = (T, K ) with dim T = n+ 1 and dim K = n, where α = 0, β = (In, 0)τ and γ = (0, In)
τ .

As a consequence, kG2/(R) is of tame representation type (Definition 7.1).

Proof. (1) By Lemma 5.6, this is the only case that could happen when α 6= 0. Now we assume α = 0.
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(2), (3), (4) and (5) If α = 0, then we are working with representations of Kronecker quiver K2 (E5.1.3).
The classification follows from a classical result of Kronecker [Benson 1991, Theorem 4.3.2].

By (1)–(5), for each integer n, there are only finitely many 1-parameter families of indecomposable
representations of dimension n. Therefore A is of tame representation type. �

The following is a consequence of Lemma 5.7 and a direct computation.

Lemma 5.8. Retain the hypotheses of Lemma 5.7. The following is a complete list of brick representations
of (G2, R):

(1) P2 ∼= (k, k), where α = I1 and β = γ = 0.

(2) X1(λ)= (k, k), where α = 0, β = I1 and γ = λI1 for some λ ∈ k.

(3) Y1 = (k, k), where α = 0, β = 0 and γ = I1.

(4) S2,n for n ≥ 0.

(5) S1,n for n ≥ 0.

The set 81,b consists of the above objects.

Let X1(∞) denote Y1. We have the following short exact sequences of (G2, R)-representations

0 // S1 // P2 // S2 // 0,

0 // S2 // X1(λ) // S1 // 0,

0 // Sn+1
2

// S2,n // Sn
1

// 0,

0 // Sn
2

// S1,n // Sn+1
1

// 0,

0 // S2
2

// S2,n // S1,n−1 // 0,

where n ≥ 1 for the last exact sequence, and have the following nonzero Homs, where A = kG2/(R):

HomA(X1(λ), S1,n) 6= 0 ∀n ≥ 1,

HomA(S2,n, X1(λ)) 6= 0 ∀n ≥ 1,

HomA(S2,m, S2,n) 6= 0 ∀m ≤ n,

HomA(S1,n, S1,m) 6= 0 ∀m ≤ n,

HomA(S2,n, S1,m) 6= 0 ∀m+ n ≥ 1.
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Lemma 5.9. Retain the hypotheses of Lemma 5.7. The following is the complete list of zero hom-sets
between brick representations of G2 in both directions:

(1) HomA(X1(λ), X1(λ
′))= HomA(X1(λ

′), X1(λ))= 0 if λ 6= λ′ in k∪ {∞}.

(2) HomA(S1, S2)= HomA(S2, S1)= 0.

As a consequence, if φ ∈8n,b for some n≥2, then φ={S1, S2} or φ={X1(λi )}
n
i=1 for different parameters

{λ1, . . . , λn}.

We also need to compute the Ext1A-groups.

Lemma 5.10. Retain the hypotheses of Lemma 5.7. Let λ 6= λ′ be in k∪ {∞}:

(1) Ext1A(X1(λ), X1(λ))= HomA(X1(λ), X1(λ))= k.

(2) Ext1A(X1(λ), X1(λ
′))= HomA(X1(λ), X1(λ

′))= 0.

(3)
(

Ext1A(S1, S1) Ext1A(S1, S2)

Ext1A(S2, S1) Ext1A(S2, S2)

)
=

(
0 k⊕2

k 0

)
.

(4) Ext1A(P2, P2)= 0.

(5) dim Ext1A(S2,n, S2,n)≤ 1 for all n.

(6) dim Ext1A(S1,n, S1,n)≤ 1 for all n.

Remarks 5.11. In fact, one can show the following stronger version of Lemma 5.10(5) and (6):

(5′) Ext1A(S2,n, S2,n)= 0 for all n.

(6′) Ext1A(S1,n, S1,n)= 0 for all n.

Proof of Lemma 5.10. (1) and (2) Consider a minimal projective resolution of X1(λ)

P1→ P2
fλ−→ P1→ X1(λ)→ 0

where fλ sends e2 ∈ P2 to γ − λβ ∈ P1. More precisely, we have(
ke1

kβ + kγ

)
e1→α−−−→

(
kα
ke2

)
e2→γ−λβ−−−−−→

(
ke1

kβ + kγ

)
→ P1/(k(γ − λβ))→ 0.

Applying HomA(−, X1(λ
′)) to the truncated projective resolution of the above, we obtain the following

complex
k 0
←− k g

←− k→ 0.

If g is zero, this is case (1). If g 6= 0, this is case (2).

(3) The proof is similar to the above by considering minimal projective resolutions of S1 and S2.
(4) This is clear since P2 is a projective module.
(5) and (6) Let S be either S2,n or S1,n . By Example 5.1, fpd(Mod f.d −kK2)= 1. This implies that

dim Ext1kK2
(S, S)≤ 1

where S is considered as an indecomposable K2-module.
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Let us make a comment before we continue the proof. Following a more careful analysis, one can
actually show that

Ext1kK2
(S, S)= 0.

Using this fact, the rest of the proof would show the assertions (5’,6’) in Remarks 5.11.
Now we continue the proof. There is a projective cover Pb

1
f
−→ S so that ker f is a direct sum of

finitely many copies of S2. Since P2 is the projective cover of S2, we have a minimal projective resolution

→ Pa
2 → Pb

1 → S→ 0

for some a, b. In the category Mod f.d −kK2, we have a minimal projective resolution of S

0→ Sa
2 → Pb

1 → S→ 0

where S2 is a projective kK2-module. Hence we have a morphism of complexes

−−−→ Pa
2 −−−→ Pb

1 −−−→ S −−−→ 0y y= y=
0 −−−→ Sa

2 −−−→ Pb
1 −−−→ S −−−→ 0

Applying HomA(−, S) to above, we obtain that

· · · ←−−−− HomA(Pa
2 , S)

h
←−−−− HomA(Pb

1 , S) ←−−−− HomA(S, S) ←−−−− 0

g
x x= x=

· · · ←−−−− HomA(Sa
2 , S)

f
←−−−− HomA(Pb

1 , S) ←−−−− HomA(S, S) ←−−−− 0

Note that g is an isomorphism. Since dim Ext1kK2
(S, S)≤ 1, the cokernel of f has dimension at most 1.

Since g is an isomorphism, the cokernel of h has dimension at most 1. This implies that Ext1A(S, S) has
dimension at most 1. �

Proposition 5.12. Let A be the category Mod f.d.−A where A is as in Example 5.5:

(1) fpdn A=

{√
2 n = 2,

1 n 6= 2.
As a consequence, fpdA=

√
2.

(2) SI(A)= 2.

(3) fpdA≥
√

2.

Proof. (1) This is a consequence of Lemmas 5.9 and 5.10. Parts (2) and (3) follow from part (1). �

Remarks 5.13. Let A be the algebra given in Example 5.5. We list some facts, comments and questions:
(1) The algebra A is nonconnected N-graded Koszul.
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(2) The minimal projective resolutions of S1 and S2 are

· · · → P⊕4
1 → P⊕4

2 → P⊕2
1 → P⊕2

2 → P1→ S1→ 0,

and

· · · → P⊕4
2 → P⊕2

1 → P⊕2
2 → P1→ P2→ S2→ 0.

(3) For i ≥ 0, we have:

ExtiA(S1, S1)=

{
k⊕2i/2

i is even,

0 i is odd.
ExtiA(S1, S2)=

{
0 i is even,
k⊕2(i+1)/2

i is odd.

ExtiA(S2, S2)=

{
k⊕2i/2

i is even,
0 i is odd.

ExtiA(S2, S1)=

{
0 i is even,
k⊕2(i−1)/2

i is odd.

(4) One can check that every algebra of dimension 4 or less has either infinite or integral fpd. Hence, A
is an algebra of smallest k-dimension that has finite nonintegral (or irrational) fpd. It is unknown if there
is a finite dimensional algebra A such that fpd(Mod f.d.−A) is transcendental.

(5) Several authors have studied the connection between tame-wildness and complexity [Bergh and Solberg
2010; Erdmann and Solberg 2011; Farnsteiner 2007; Feldvoss and Witherspoon 2011; Külshammer
2013; Rickard 1990]. The algebra A is probably the first explicit example of a tame algebra with infinite
complexity.

(6) It follows from part (3) that the fp-curvature of A := Db(Mod f.d.−A) is
√

2 (some details are omitted).
As a consequence, fpg(A)=∞. By Theorem 8.3, the complexity of A is∞. We don’t know what fpdA
is.

6. σ -decompositions

We fix a category C and an endofunctor σ . For a set of bricks B in C (or a set of atomic objects when C is
triangulated), we define

fpdn
|B(σ )= sup{ρ(A(φ, σ )) | φ := {X1, . . . , Xn} ∈8n,b and X i ∈ B ∀i}.

Let 3 := {λ} be a totally ordered set. We say a set of bricks B in C has a σ -decomposition {Bλ}λ∈3
(based on 3) if the following hold:

(1) B is a disjoint union
⋃
λ∈3 Bλ.

(2) If X ∈ Bλ and Y ∈ Bδ with λ < δ, HomC(X, σ (Y ))= 0.

The following lemma is easy.

Lemma 6.1. Let n be a positive integer. Suppose that B has a σ -decomposition {Bλ}λ∈3. Then

fpdn
|B(σ )≤ sup

λ∈3,m≤n
{fpdm

|Bλ(σ )}.
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Proof. Let φ be a brick set that is used in the computation of fpdn
|B(σ ). Write

φ = φλ1 ∪ · · · ∪φλs (E6.1.1)

where λi is strictly increasing and φλi = φ ∩ Bλi . For any objects X ∈ φλi and Y ∈ φλ j , where λi < λ j ,
by definition, HomC(X, σ (Y ))= 0. Listing the objects in φ in the order that suggested by (E6.1.1), then
the adjacency matrix of (φ, σ ) is of the form

A(φ, σ )=


A11 0 0 · · · 0
∗ A22 0 · · · 0
∗ ∗ A33 · · · 0
. . . . . . . . . . . . 0
∗ ∗ ∗ · · · Ass


where each Ai i is the adjacency matrix A(φλi , σ ). By definition,

ρ(Ai i )≤ fpdsi |Bλi (σ )

where si is the size of Ai i , which is no more than n. Therefore

ρ(A(φ, σ ))=max
i
{ρ(Ai i )} ≤ sup

λ∈3,m≤n
{fpdm

|Bλ(σ )}.

The assertion follows. �

We give some examples of σ -decompositions.

Example 6.2. Let A be an abelian category and A be the derived category Db(A). Let [n] be the n-fold
suspension 6n:

(1) Suppose that α is an endofunctor of A and α is the induced endofunctor of A. For each n ∈ Z, let
Bn
:= {M[−n] | M is a brick in A} and B :=

⋃
n∈Z Bn . If Mi [−ni ] ∈ Bni , for i = 1, 2, such that n1 < n2,

then

HomA(M1[−n1], α(M2[−n2]))= Extn1−n2
A (M1, α(M2))= 0.

Then B has a α-decomposition {Bn
}n∈Z based on Z.

(2) Suppose g := gldimA < ∞. Let σ be the functor 6g
◦ α. For each n ∈ Z, let Bn

:= {M[n] |
M is a brick in A} and B :=

⋃
n∈Z Bn . If Mi [ni ] ∈ Bni , for i = 1, 2, such that n1 < n2, then

HomA(M1[n1], σ (M2[n2]))= Extn2−n1+g
A (M1, α(M2))= 0.

Then B has a σ -decomposition {Bn
}n∈Z based on Z.

Example 6.3. Let C be a smooth projective curve and let A be the category of coherent sheaves over C .
Every coherent sheaf over C is a direct sum of a torsion subsheaf and a locally free subsheaf. Define

B0
={T is a torsion brick object in A}, B−1

={F is a locally free brick object in A}, B= B−1
∪B0.
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Let σ be the functor E1
:= Ext1A(−,−). If F ∈ B−1 and T ∈ B0, then

Ext1A(F, T )= 0.

Hence, B has an E1-decomposition based on the totally ordered set 3 := {−1, 0}.

The next example is given in [Brüning and Burban 2007].

Example 6.4. Let C be an elliptic curve. Let A be the category of coherent sheaves over C and A be the
derived category Db(A).

First we consider coherent sheaves. Let3 be the totally ordered set Q∪{+∞}. The slope of a coherent
sheaf X 6= 0 [loc. cit., Definition 4.6] is defined to be

µ(X) :=
χ(X)
rk(X)

∈3

where χ(X) is the Euler characteristic of X and rk(X) is the rank of X . If X and Y are bricks such
that µ(X) < µ(Y ), by [loc. cit., Corollary 4.11], X and Y are semistable, and thus by [loc. cit., Proposi-
tion 4.9(1)], HomA(Y, X)= 0. By Serre duality (namely, Calabi–Yau property),

HomA(X, Y [1])= Ext1A(X, Y )= HomA(Y, X)∗ = 0. (E6.4.1)

Write B = 81,b(A) and Bλ be the set of (semistable) bricks with slope λ. Then B =
⋃
λ∈3 Bλ. By

(E6.4.1), Ext1A(X, Y )= 0 when X ∈ Bλ and Y ∈ Bν with λ < ν. Hence B has an E1-decomposition. By
Lemma 6.1, for every n ≥ 1,

fpdn(E1)= fpdn
|B(E1)≤ sup

λ∈3,m≤n
{fpdm

|Bλ(E
1)}.

Next we compute fpdn
|Bλ(E1). Let SSλ be the full subcategory of A consisting of semistable coherent

sheaves of slope λ. By [loc. cit., Summary], SSλ is an abelian category that is equivalent to SS∞. Therefore
one only needs to compute fpdn

|B∞(E1) in the category SS∞. Note that SS∞ is the abelian category of
torsion sheaves and every brick object in SS∞ is of the form Op for some p ∈ C . In this case, A(φ, E1)

is the identity matrix. Consequently, ρ(A(φ, E1))= 1. This shows that fpdn
|Bλ(E1)= fpdn

|B∞(E1)= 1
for all n ≥ 1. It is clear that fpdn(E1)≥ fpdn

|B∞(E1)= 1. Combining with Lemma 6.1, we obtain that
fpdn(E1)= 1 for all n. (The above approach works for functors other than E1.)

Finally we consider the fp-dimension for the derived category A. It follows from Theorem 3.5(3) that

fpdn(6)= fpdn(E1)= 1

for all n ≥ 1. By definition,

fpd(A)= fpd(A)= 1.

As we explained before fpd is an indicator of the representation types of categories.
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Drozd and Greuel [2001] studied a tame-wild dichotomy for vector bundles on projective curves and
introduced the notion of VB-finite, VB-tame and VB-wild similar to the corresponding notion in the
representation theory of finite dimensional algebras.

Let C be a connected smooth projective curve, Drozd and Greuel [2001] showed the following:

(a) C is VB-finite if and only if C is P1.

(b) C is VB-tame if and only if C is elliptic (that is, of genus 1).

(c) C is VB-wild if and only if C has genus g ≥ 2.

We now prove an fp-version of [Drozd and Greuel 2001, Theorem 1.6]. We thank Max Lieblich for
providing ideas in the proof of Proposition 6.5(3).

Proposition 6.5. Suppose k= C. Let X be a connected smooth projective curve and let g be the genus
of X:

(1) If g = 0 or X = P1, then fpd Db(coh(X))= 1.

(2) If g = 1 or X is an elliptic curve, then fpd Db(coh(X))= 1.

(3) If g ≥ 2, then fpd Db(coh(X))=∞.

Proof. (1) The assertion follows from (E5.1.4).

(2) The assertion follows from Example 6.4.

(3) By Theorem 3.5(4), fpd(Db(coh(X)))= fpd(coh(X)). Hence it suffices to show that fpd(coh(X))=∞.
For each n, let {xi }

n
i=1 be a set of n distinct points on X. By [Drozd and Greuel 2001, Lemma 1.7],

we might further assume that 2xi 6∼ x j + xk for all i 6= j , as divisors on X. Write Ei := O(xi ) for all i .
By [loc. cit., page 11], HomOX

(Ei , E j )= 0 for all i 6= j , which is also a consequence of a more general
result [Huybrechts and Lehn 1997, Proposition 1.2.7]. It is clear that HomOX

(Ei , Ei )= k for all i . Let φn

be the set {E1, . . . , En}. Then it is a brick set of nonisomorphic vector bundles on X (which are stable
with rank(Ei )= deg(Ei )= 1 for all i).

Define the sheaf Hi j =Hom(Ei , E j ) for all i, j . Then deg(Hi j )= 0. By the Riemann–Roch theorem,
we have

0= deg(Hi j )

= χ(Hi j )− rank(Hi j )χ(OX)

= dim HomOX
(Ei , E j )− dim Ext1OX

(Ei , E j )− (1− g)

= δi j − dim Ext1OX
(Ei , E j )+ (g− 1),

which implies that dim Ext1OX
(Ei , E j )= g− 1+ δi j . This formula was also given in [Drozd and Greuel

2001, page 11 before Lemma 1.7] when i 6= j .
Define the matrix An with entries ai j := dim Ext1OX

(Ei , E j )= g−1+δi j , which is the adjacency matrix
of (φn, E1). This matrix has entries g along the diagonal and entries g−1 everywhere else. Therefore the
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vector (1, . . . , 1) is an eigenvector for this matrix with eigenvalue n(g−1)+1. So ρ(An)≥ n(g−1)+1≥
n+ 1. Since we can define φn for arbitrarily large n, we must have fpd(coh(X))=∞. �

Question 6.6. Let X be a smooth irreducible projective curve of genus g≥ 2. Is fpdn(X) finite for each n?
If yes, do these invariants recover g?

Proposition 6.7. Suppose k= C. Let Y be a smooth projective scheme of dimension at least 2. Then

fpd1(coh(Y))= fpd(coh(Y))= fpd1(Db(coh(Y)))= fpd(Db(coh(Y)))=∞.

Proof. It is clear that fpd1(coh(Y)) is smallest among these four invariants. It suffices to show that
fpd1(coh(Y))=∞.

It is well-known that Y contains an irreducible projective curve X of arbitrarily large (either geometric
or arithmetic) genus, see, for example, [Ciliberto et al. 2016, Theorem 0.1] or [Chen 1997, Theorems 1
and 2]. Let OX be the coherent sheaf corresponding to the curve X and let g be the arithmetic genus of X.
In the abelian category coh(X), we have

dim Ext1OX
(OX,OX)= dim H 1(X,OX)= g.

Since coh(X) is a full subcategory of coh(Y), we have

dim Ext1OY
(OX,OX)≥ dim Ext1OX

(OX,OX)= g.

By taking φ = {OX}, one sees that fpd1(coh(Y)) ≥ fpd1(coh(X)) ≥ g for all such X. Since g can be
arbitrarily large, the assertion follows. �

7. Representation types

Representation types. We first recall some known definitions and results.

Definition 7.1. Let A be a finite dimensional algebra:

(1) We say A is of finite representation type if there are only finitely many isomorphism classes of finite
dimensional indecomposable left A-modules.

(2) We say A is tame or of tame representation type if it is not of finite representation type, and for every
n ∈N, all but finitely many isomorphism classes of n-dimensional indecomposables occur in a finite
number of one-parameter families.

(3) We say A is wild or of wild representation type if, for every finite dimensional k-algebra B, the
representation theory of B can be embedded into that of A.

The following is the famous trichotomy result due to Drozd [1980].

Theorem 7.2 (Drozd’s trichotomy theorem). Every finite dimensional algebra is either of finite, tame, or
wild representation type.
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Remarks 7.3. (1) An equivalent and more precise definition of a wild algebra is the following. An
algebra A is called wild if there is a faithful exact embedding of abelian categories

Emb :Mod f.d.−k〈x, y〉 →Mod f.d.−A (E7.3.1)

that preserves indecomposables and respects isomorphism classes (namely, Emb(X)∼= Emb(Y ) implies
that X ∼= Y ).

(2) A stronger notion of wildness is the following. An algebra A is called strictly wild, also called fully
wild, if Emb in part (1) is a fully faithful embedding.

(3) It is clear that strictly wild is wild. The converse is not true.

We collect some celebrated results in terms of representation types of path algebras.

Theorem 7.4. Let Q be a finite connected quiver:

(1) [Gabriel 1972] The path algebra kQ is of finite representation type if and only if the underlying
graph of Q is a Dynkin diagram of type ADE.

(2) [Nazarova 1973; Donovan and Freislich 1973] The path algebra kQ is of tame representation type if
and only if the underlying graph of Q is an extended Dynkin diagram of type ÃD̃ Ẽ .

Our main goal in this section is to prove Theorem 0.3. We thank Klaus Bongartz for suggesting the
following lemma (personal communication).

Lemma 7.5. Let A be a finite dimensional algebra that is strictly wild. Then, for each integer a > 0, there
is a finite dimensional brick left A-module N such that dim Ext1A(N , N )≥ a.

Proof. Let V be the vector space
⊕a

i=1 kxi and let B be the finite dimensional algebra k〈V 〉/(V⊗2). By
[Bongartz 2016, Theorem 2(i)], there is a fully faithful exact embedding

Mod f.d.−B→Mod f.d.−k〈x, y〉.

Since A is strictly wild, there is a fully faithful exact embedding

Mod f.d.−k〈x, y〉 →Mod f.d.−A.

Hence we have a fully faithful exact embedding

F :Mod f.d.−B→Mod f.d.−A. (E7.5.1)

Let S be the trivial B-module B/B≥1. It follows from an easy calculation that dim Ext1B(S, S) =
dim(V )∗ = a. Since F is fully faithful exact, F induces an injection

F : Ext1B(S, S)→ Ext1A(F(S), F(S)).

Thus dim Ext1A(F(S), F(S))≥ a. Since S is simple, it is a brick. Hence, F(S) is a brick. The assertion
follows by taking N = F(S). �



2042 Jianmin Chen, Zhibin Gao, Elizabeth Wicks, James J. Zhang, Xiaohong Zhang and Hong Zhu

Proposition 7.6. (1) Let A be a finite dimensional algebra that is strictly wild, then

fpd1(E1)= fpd(A)= fpd(A)=∞.

(2) If A := kQ is wild, then
fpd1(E1)= fpd(A)= fpd(A)=∞.

Proof. (1) For each integer a, by Lemma 7.5, there is a brick N in A such that Ext1A(N , N ) ≥ a.
Hence fpd1(E1)≥ a. Since a is arbitrary, fpd1(E1)=∞. Consequently, fpd(A)=∞. By Lemma 2.9,
fpd(A)=∞.

(2) It is well-known that a wild path algebra is strictly wild, see a comment of Gabriel [1975, page 149]
or [Ariki 2005, Proposition 7]. The assertion follows from part (1). �

The following lemma is based on a well-understood AR-quiver theory for acyclic quivers of finite
representation type and the hammock theory introduced by Brenner [1986]. We refer to [Ringel and
Vossieck 1987] if the reader is interested in a more abstract version of the hammock theory.

For a class of quivers including all ADE quivers, there is a convenient (though not essential) way of
positioning the vertices as in [Assem et al. 2006, Example IV.2.6]. A quiver Q is called well-positioned if
the vertices of Q are located so that all arrows are strictly from the right to the left of the same horizontal
distance. For example, the following quiver Dn is well positioned:

n− 1

1 2 · · · n− 2

n

Lemma 7.7. Let Q be a quiver such that

(i) the underlying graph of Q is a Dynkin diagram of type A, or D, or E , and that

(ii) Q is well-positioned.

Let A = kQ and let M, N be two indecomposable left A-modules in the AR-quiver of A. Then the
following hold:

(1) There is a standard way of defining the order or degree for indecomposable left A-modules M ,
denoted by deg M , such that all arrows in the AR-quiver have degree 1, or equivalently, all arrows
are from the left to the right of the same horizontal distance. As in (E5.4.2), when Q= A2, deg P2= 0,
deg P1 = 1 and deg I1 = 2.

(2) If HomA(M, N ) 6= 0, then deg M ≤ deg N.

(3) The degree of the AR-translation τ is −2.
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(4) If Ext1A(M, N ) 6= 0, then deg M ≥ deg N + 2.

(5) There is no oriented cycle in the E1-quiver of A :=Mod f.d.−kQ, denoted by QE1

A , defined before
Lemma 2.10.

(6) fpd(A)= 0.

Proof. (1) This is a well-known fact in AR-quiver theory. For each given quiver Q as described in
(i) and (ii), one can build the AR-quiver by using the Auslander–Reiten translation τ and the knitting
algorithm, see [Schiffler 2014, Chapter 3]. Some explicit examples are given in [Gabriel 1980, Chapter 6]
and [Schiffler 2014, Chapter 3].

(2) This follows from (1). Note that the precise dimension of HomA(M, N ) can be computed by using
hammock theory [Brenner 1986; Ringel and Vossieck 1987]. Some examples are given in [Schiffler 2014,
Chapter 3].

(3) This follows from the definition of the translation τ in the AR-quiver theory [Auslander et al. 1995,
VII]. See also, [Crawley-Boevey 1992, Remarks (2), page 23].

(4) By Serre duality, Ext1R(M, N )=HomA(N , τM)∗ [Reiten and Van den Bergh 2002, Proposition I.2.3]
or [Crawley-Boevey 1992, Lemma 1, page 22]. If Ext1R(M, N ) 6= 0, then, by Serre duality and part (2),
deg N ≤ deg τM = deg M − 2. Hence deg M ≥ deg N + 2.

(5) In this case, every indecomposable module is a brick. Hence the E1-quiver QE1

A has the same vertices
as the AR-quiver. By part (4), if there is an arrow from M to N in the quiver QE1

A , then deg M ≥ deg N+2.
This means that all arrows in QE1

A are from the right to the left. Therefore there is no oriented cycle in QE1

A .

(6) This follows from part (5), Theorem 1.8(1) and Lemma 2.10. �

Theorem 7.8. Let Q be a finite quiver whose underlying graph is a Dynkin diagram of type ADE and let
A = kQ. Then fpd(A)= fpd(A)= fpgldim(A)= 0.

Proof. Since the path algebra A is hereditary, A is a-hereditary of global dimension 1. By Theorem 3.5(3),
fpd(A) = fpd(A). If Q1 and Q2 are two quivers whose underlying graphs are the same, then, by
Bernstein–Gelfand–Ponomarev (BGP) reflection functors [Bernstein et al. 1973], Db(Mod f.d.−kQ1)

and Db(Mod f.d.−kQ2) are triangulated equivalent. Hence we only need prove the statement for one
representative. Now we can assume that Q satisfies the hypotheses (i) and (ii) of Lemma 7.7. By
Lemma 7.7(6), fpd(A) = 0. Therefore fpd(A) = 0, or equivalently, fpd(6) = 0. By Theorem 3.5(1),
fpd(6i )= 0 for all i 6= 0, 1. Therefore fpgldim(A)= 0. �

Weighted projective lines. To prove Theorem 0.3, it remains to show part (2) of the theorem. Our proof
uses a result of [Chen et al. 2019] about weighted projective lines, which we now review. Details can be
found in [Geigle and Lenzing 1987, Section 1].

For t ≥ 1, let p := (p0, p1, . . . , pt) be a (t+1)-tuple of positive integers, called the weight sequence.
Let D := (λ0, λ1, . . . , λt) be a sequence of distinct points of the projective line P1 over k. We normalize
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D so that λ0 =∞, λ1 = 0 and λ2 = 1 (if t ≥ 2). Let

S := k[X0, X1, . . . , X t ]/(X
pi
i − X p1

1 + λi X p0
0 , i = 2, . . . , t).

The image of X i in S is denoted by xi for all i . Let L be the abelian group of rank 1 generated by −→xi for
i = 0, 1, . . . , t and subject to the relations

p0
−→x0 = · · · = pi

−→xi = · · · = pt
−→xt =:

−→c .

The algebra S is L-graded by setting deg xi =
−→xi . The corresponding weighted projective line, denoted by

X( p, D) or simply X, is a noncommutative space whose category of coherent sheaves is given by the
quotient category

coh(X) :=
grL
−S

grL
f.d.−S

where grL
−S is the category of noetherian L-graded left S-modules and grL

f.d.−S is the full subcategory
of grL

−S consisting of finite dimensional modules.
The weighted projective lines are classified into the following three classes:

X is


domestic if p is (p, q), (2, 2, n), (2, 3, 3), (2, 3, 4), (2, 3, 5);
tubular if p is (2, 3, 6), (3, 3, 3), (2, 4, 4), (2, 2, 2, 2);
wild otherwise.

Let X be a weighted projective curve. Let Vect(X) be the full subcategory of coh(X) consisting of all
vector bundles. Similar to the elliptic curve case, Example 6.4, one can define the concepts of degree,
rank and slope of a vector bundle on a weighted projective curve X, see [Lenzing and Meltzer 1993,
Section 2] for details. For each µ ∈Q∪ {∞}, let Vectµ(X) be the full subcategory of Vect(X) consisting
of all vector bundles of slope µ.

Lemma 7.9. Let X = X( p, D) be a weighted projective line:

(1) coh(X) is noetherian and hereditary.

(2) Db(coh(X))∼=



Db(Mod f.d.−k Ãp,q) if p= (p, q),
Db(Mod f.d.−kD̃n) if p= (2, 2, n),
Db(Mod f.d.−kẼ6) if p= (2, 3, 3),
Db(Mod f.d.−kẼ7) if p= (2, 3, 4),
Db(Mod f.d.−kẼ8) if p= (2, 3, 5).

(3) Let M be a generic simple object in coh(X). Then Ext1X(M,M)= 1.

(4) fpd1(coh(X))≥ 1.

(5) If X is tubular or domestic, then Ext1X(X, Y ) = 0 for all X ∈ Vectµ′(X) and Y ∈ Vectµ(X) with
µ′ < µ.

(6) If X is domestic, then Ext1X(X, Y ) = 0 for all X ∈ Vectµ′(X) and Y ∈ Vectµ(X) with µ′ ≤ µ. As a
consequence, fpd(6|Vectµ′ (X))= 0 for all µ <∞.
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(7) Suppose X is tubular. Then every indecomposable vector bundle on X is semistable.

(8) Suppose X is tubular and let µ ∈ Q. Then each Vectµ(X) is a uniserial category. Accordingly
indecomposables in Vectµ(X) decomposes into Auslander–Reiten components, which all are tubes of
finite rank.

Proof. (1) This is well known.

(2) [Geigle and Lenzing 1987, 5.4.1].

(3) Let M be a generic simple object. Then M is a brick and Ext1(M,M)= 1.

(4) Follows from (3) by taking φ := {M}.

(5) This is [Schiffmann 2012, Corollary 4.34(i)] since tubular is also called elliptic in that work.

(6) This is [Schiffmann 2012, Comments after Corollary 4.34] since domestic is also called parabolic in
that work. The consequence is clear.

(7) [Geigle and Lenzing 1987, Theorem 5.6(i)].

(8) [Geigle and Lenzing 1987, Theorem 5.6(iii)]. �

We will use the following result which is proved in [Chen et al. 2019].

Theorem 7.10. Let X be a weighted projective line:

(1) If X is domestic, then fpd Db(coh(X))= 1.

(2) If X is tubular, then fpd Db(coh(X))= 1.

(3) If X is wild, then fpd Db(coh(X)) ≥ dim HomX(OX,OX(
−→ω )) where −→ω is the dualizing element

[Geigle and Lenzing 1987, Section 1.2].

There is a similar statement for smooth complex projective curves (Proposition 6.5). The authors are
interested in answering the following question.

Question 7.11. Let X be a wild weighted projective line. What is the exact value of fpdn Db(coh(X))?

Tubes. The following example is studied in [Chen et al. 2019], which is dependent on direct linear
algebra calculations.

Example 7.12. Let ξ be a primitive n-th root of unity. Let Tn be the algebra

Tn :=
k〈g, x〉

(gn − 1, xg− ξgx)
.

This algebra can be expressed by using a group action. Let G be the group

{g | gn
= 1} ∼= Z/(n)

acting on the polynomial ring k[x] by g · x = ξ x . Then Tn is naturally isomorphic to the skew group ring
k[x] ∗G. Let

−−→
An−1 denote the cycle quiver with n vertices, namely, the quiver with one oriented cycle



2046 Jianmin Chen, Zhibin Gao, Elizabeth Wicks, James J. Zhang, Xiaohong Zhang and Hong Zhu

connecting n vertices. It is also known that Tn is isomorphic to the path algebra of the quiver
−−→
An−1. Then

fpd(Mod f.d.−Tn)= 1 by [Chen et al. 2019].

Proof of Theorem 0.3. Part (1) follows from Theorems 7.4(1) and 7.8 and part (3) follows from
Proposition 7.6(2). It remains to deal with part (2).

By Theorem 7.4(2), Q must be of type either
−−→
An−1, or Ãp,q , or D̃n , or Ẽ6,7,8. If Q is of type

−−→
An−1,

the assertion follows from Example 7.12. If Q is of type Ãp,q , D̃n , or Ẽ6,7,8, the assertion follows from
Lemma 7.9(2) and Theorem 7.10(1). �

8. Complexity

The concept of complexity was first introduced by Alperin and Evens [1981] in the study of group
cohomology. Since then the study of complexity has been extended to finite dimensional algebras,
Frobenius algebras, Hopf algebras and commutative algebras. First we recall the classical definition of the
complexity for finite dimensional algebras and then give a definition of the complexity for triangulated
categories. We give the following modified (but equivalent) version, which can be generalized.

Definition 8.1. Let A be a finite dimensional algebra and T = A/J (A) where J (A) is the Jacobson
radical of A. Let M be a finite dimensional left A-module:

(1) The complexity of M is defined to be

cx(M) := lim sup
n→∞

logn(dim ExtnA(M, T ))+ 1.

(2) The complexity of the algebra A is defined to be

cx(A) := cx(T ).

In the original definition of complexity by Alperin and Evens [1981] and in most other papers, the
dimension of n-syzygies is used instead of the dimension of the Extn-groups, but it is easy to see that the
asymptotic behavior of these two series are the same, therefore these give rise to the same complexity. It
is well-known that cx(M)≤ cx(A) for all finite dimensional left A-modules M . Next we introduce the
notion of a complexity for a triangulated category which is partially motivated by the work in [Bao et al.
2019, Section 4].

Definition 8.2. Let T be a pretriangulated category. Let d be a real number:

(1) The left subcategory of complexity less than d is defined to be

dT :=
{

X ∈ T | lim
n→∞

1
nd−1 dim HomT (X, 6n(Y ))= 0,∀Y ∈ T

}
.

(2) The right subcategory of complexity less than d is defined to be

Td :=
{

X ∈ T | lim
n→∞

1
nd−1 dim HomT (Y, 6n(X))= 0,∀Y ∈ T

}
.
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(3) The complexity of T is defined to be

cx(T ) := inf{d | dT = T }.

(4) The Frobenius–Perron complexity of T is defined to be

fpcx(T ) := fpg(6)+ 1.

Note that it is not hard to show that cx(T )= inf{d | Td = T }.

Theorem 8.3. Let T be a pretriangulated category. Then fpcx(T )≤ cx(T ).

Proof. Let d be any number strictly larger than cx(T ). We need to show that fpcx(T )≤ d.
Let φ ∈8m,a be an atomic set and let X :=

⊕
X i∈φ

X i . Then, by definition,

lim
n→∞

dim HomT (X, 6n(X))
nd−1 = 0.

Then there is a constant C such that dim HomT (X, 6n(X)) < Cnd−1 for all n > 0. Since each X i is a
direct summand of X , we have

ai j (n) := dim HomT (X i , 6
n(X j )) < Cnd−1

for all i, j . This means that each entry ai j (n) in the adjacency matrix of A(φ,6n) is less than Cnd−1.
Therefore ρ(A(φ,6n)) <mCnd−1. By Definition 2.3(3), fpg(6)≤ d− 1. Thus fpcx(T )≤ d as desired.

�

We will prove that the equality fpcx(T )= cx(T ) holds under some extra hypotheses. Let A be a finite
dimensional algebra with a complete list of simple left A-modules {S1, . . . , Sw}. We use n for any integer
and i, j for integers between 1 and w. Define, for i ≤ j ,

pi j (n) :=min{dim ExtnA(Si , S j ), dim ExtnA(S j , Si )}

and

Pn :=max{pi j (n) | i ≤ j}.

We say A satisfies averaging growth condition if there are positive integers C and d , independent of the
choices of n and (i, j), such that

dim ExtnA(Si , S j )≤ C max{Pn−d , Pn−d+1, . . . , Pn+d} (E8.3.1)

for all n and all 1≤ i, j ≤ w.

Theorem 8.4. Let A be a finite dimensional algebra and A= Db(Mod f.d.−A):

(1) cx(A)= cx(A). As a consequence, cx(A) is a derived invariant.

(2) If A satisfies the averaging growth condition, then fpcx(A)= cx(A)= cx(A). As a consequence, if
A is local or commutative, then fpcx(A)= cx(A)= cx(A).
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We will prove Theorem 8.4 after the next lemma.
Let T be a pretriangulated category with suspension 6. We use X, Y, Z for objects in T . Fix a family

φ of objects in T and a positive number d . Define:

d(φ)=
{

X ∈ T | lim
n→∞

1
nd−1 dim HomT (X, 6n(Y ))= 0,∀Y ∈ φ

}
. (E8.4.1)

(φ)d =
{

X ∈ T | lim
n→∞

1
nd−1 dim HomT (Y, 6n(X))= 0,∀Y ∈ φ

}
. (E8.4.2)

d(φ)=
{

X ∈ T | lim
n→∞

1
nd

∑
i≤n

dim HomT (X, 6i (Y ))= 0,∀Y ∈ φ
}
. (E8.4.3)

(φ)d =
{

X ∈ T | lim
n→∞

1
nd

∑
i≤n

dim HomT (Y, 6i (X))= 0,∀Y ∈ φ
}
. (E8.4.4)

Lemma 8.5. The following are full thick pretriangulated subcategories of T closed under direct sum-
mands:

(1) d(φ).

(2) (φ)d .

(3) d(φ).

(4) (φ)d .

Proof. We only prove (1). The proofs of other parts are similar. Suppose X ∈ d(φ). Using the fact
limn→∞ nd−1/(n+ 1)d−1

= 1, we see that X [1] = 6(X) is in d(φ). Similarly, X [−1] is in d(φ). If
f : X1→ X2 be a morphism of objects in d(φ), and let X3 be the mapping cone of f , then, for each
Y ∈ φ, we have an exact sequence

→ HomT (X1, 6
n−1(Y ))→ HomT (X3, 6

n(Y ))→ HomT (X2, 6
n(Y ))→

which implies that X3 ∈ d(φ). Therefore d(φ) is a thick pretriangulated subcategory of T . If X ∈ d(φ)

and X = Y ⊕ Z , it is clear that Y, Z ∈ d(φ). Therefore d(φ) is closed under taking direct summands. �

Proof of Theorem 8.4. (1) Let c = cx(A). For every d < c, we have that

lim sup
n→∞

dim ExtnA(T, T )
nd−1 =∞

which implies that T 6∈ dA. Therefore d ≤ cx(A).
Conversely, let d > c. It follows from the definition that

lim sup
n→∞

dim ExtnA(T, T )
nd−1 = 0.

This means that T ∈ ({T })d . Since T generates A, we have A= ({T })d . Again, since T generates A, we
have A=Ad = dA. By definition, d ≥ cx(A) as desired.
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(2) Assume that A satisfies the averaging growth condition. Let

c1 = fpcx(A),

c2 = lim sup
n→∞

logn(C max{Pn−d , Pn−d+1, . . . , Pn+d})+ 1,

c3 = lim sup
n→∞

logn(Pn)+ 1,

c4 = cx(A)= cx(A).

By calculus, we have c2=c3. Let φ be the atomic set of simple objects {Si }
w
i=1. Then ρ(φ,6n)≥ pi j (n),

for all i, j , by Lemma 1.7(2). So ρ(φ,6n)≥ Pn . As a consequence, c1 ≥ c3. Let T = A/J =
⊕w

i=1 Sdi
i

for some finite numbers {di }
w
i=1. Let D be maxi {di }. By the averaging growth condition, namely, (E8.3.1),

dim ExtnA(T, T )=
∑
i, j

di d j dim ExtnA(Si , S j )

≤ w2 DC max{Pn−d , Pn−d+1, . . . , Pn+d}

which implies that c4 = cx(A)= cx(T )≤ c2. Combining with Theorem 8.3, we have c1 = c2 = c3 = c4

as desired.
If A is local, then there is only one simple module S1. Then (E8.3.1) is automatic. If A is commutative,

then ExtiA(Si , S j )= 0 for all n and all i 6= j . Again, in this case, (E8.3.1) is obvious. The consequence
follows from the main assertion. �

For all well-studied finite dimensional algebras A, (E8.3.1) holds. For example, the algebra A in
Example 5.5 satisfies the averaging growth condition. This can be shown by using the computation given
in Remarks 5.13(3). It is natural to ask if every finite dimensional algebra satisfies the averaging growth
condition.

Theorem 0.5 follows easily from Theorems 8.3 and 8.4.

Proof of Theorem 0.5. By Definition 8.2(4), Theorems 8.3 and 8.4(1), we have

fpg(A)= fpcx(A)− 1≤ cx(A)− 1= cx(A)− 1.

The assertion follows. �

Lemma 8.6. (1) Let A be an abelian category and A= Db(A). If gldimA<∞, then fpcx(A)= 0.

(2) Let T be a pretriangulated category. If fpgldim T <∞, then fpcx(T )= 0.

Proof. Both are easy and proofs are omitted. �

We conclude with examples of nonintegral fpg of a triangulated category.

Example 8.7. (1) Let α be any real number in {0} ∪ {1} ∪ [2,∞). By [Krause and Lenagan 1985,
Theorem 1.8, or page 14], there is a finitely generated algebra R with GKdim R = α. More precisely,
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[Krause and Lenagan 1985, Theorem 1.8] implies that there is a 2-dimensional vector space V ⊂ R that
generates R such that, there are positive integers a < b, for every n > 0,

anα < dim(k1+ V )n < bnα.

Define a filtration F on R by

Fi R = (k1+ V )i ∀i.

Let A be the associated graded algebra gr R with respect to this grading. Then A is connected graded and
generated by two elements in degree 1 and satisfying, for every n > 0,

anα <
n∑

i=0

dim Ai < bnα. (E8.7.1)

To match up with the definition of complexity, we further assume that there are c < d such that, for every
n > 0,

cnα−1 < dim An < dnα−1. (E8.7.2)

This can be achieved, for example, by replacing A by its polynomial extension A[t] (with deg t = 1) and
replacing α by α+ 1.

Next we make A a differential graded (dg) algebra by setting elements in Ai to have cohomological
degree i and dA = 0. For this dg algebra, we denote the derived category of left dg A-modules by A. Let
O be the object A A in A. By the definition of the cohomological degree of A, we have

HomA(O, 6iO)= Ai ∀i. (E8.7.3)

Let T be the full triangulated subcategory of A generated by O. (E8.7.3) implies that O is an atomic
object. Now using (E8.7.3) together with (E8.7.2), we obtain that

fpcx(T )≥ α. (E8.7.4)

By (E8.7.2)-(E8.7.3), we have that, for every d > α, O ∈ d({O}). Since O generates T , we have

d({O}) = T . The last equation means that O ∈ (T )d . Since O generates T , we have (T )d = T . By
definition, d > cx(T ). Combining these with Theorem 8.3 and (E8.7.4), we have, for every d > α,

α ≤ fpcx(T )≤ cx(T ) < d

which implies that fpcx(T )= cx(T )= α. This construction implies that

GKdim
( ∞⊕

i=0

HomT (O, 6i (O))
)
= GKdim A = α. (E8.7.5)

(2) We now consider an extreme case. Let a := {ai }
∞

i=0 be any sequence of nonnegative integers with
a0 = 1. Define B to be the dg algebra

⊕
Bi such that:
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(i) dim Bi = ai for all i . In particular, B0 = k. Elements in Bi have cohomological degree i .

(ii)
(⊕

i>0 Bi
)2
= 0.

(iii) Differential dB = 0.

In this case, GKdim B = 0. Similar to part (1), the derived category of left dg B-modules is denoted by B.
Let O be the object B B in B. Then

HomB(O, 6iO)= Bi ∀i,

and O is an atomic object. Let T be the full triangulated subcategory of B generated by O. The argument
in part (1) shows that

fpcx(T )= lim sup
n→∞

logn(an)+ 1.

Now let r be any real number ≥ 1 and let

ai =

{
1 i = 0,
bir−1
c i ≥ 1.

Then we have fpcx(T )= r . Let r be any real number ≥ 1 and ai = br i
c for all i ≥ 0. Then

fpcx(T )=
{

1 r = 1,
∞ r > 1.

Using a similar method (with details omitted), fpv(T )= r .
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