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Quasi-Galois theory
in symmetric monoidal categories

Bregje Pauwels

Given a ring object A in a symmetric monoidal category, we investigate what
it means for the extension 1→ A to be (quasi-)Galois. In particular, we define
splitting ring extensions and examine how they occur. Specializing to tensor-
triangulated categories, we study how extension-of-scalars along a quasi-Galois
ring object affects the Balmer spectrum. We define what it means for a separable
ring to have constant degree, which is a necessary and sufficient condition for the
existence of a quasi-Galois closure. Finally, we illustrate the above for separable
rings occurring in modular representation theory.
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Introduction

Classical Galois theory is the study of field extensions l/k through the group of
automorphisms of l that fix k. If f is a polynomial over k, the splitting field of f
over k is the smallest extension over which f decomposes into linear factors. If
f ∈ k[x] is moreover separable, its splitting field is the smallest extension l such that
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l⊗k k[x]/( f )∼= l× deg( f ). The field extension l/k is often called quasi-Galois1 if l
is the splitting field of some polynomial in k[x]. Then, an algebraic field extension
is called Galois whenever it is quasi-Galois and separable.

The generalization of Galois extensions from fields to rings originated with Aus-
lander and Goldman [1960, Appendix]; see also Remark 5.6. Grothendieck [SGA 1
1971] took on an axiomatic viewpoint to Galois theory and revealed its relation with
the fundamental group. Janelidze [2001] adopted a purely categorical approach
which covered the above examples. More recently, Rognes [2008] introduced a
Galois theory up-to-homotopy. For more generalizations in various directions, see
[Chase and Sweedler 1969; Hess 2009; Kreimer 1967].

In this paper, we adapt some of these ideas to the context of ring objects in an
additive symmetric monoidal category (K,⊗,1), with special emphasis on tensor-
triangulated categories. That is, our analogue of a field extension will be a monoid
η : 1→ A in K with associative commutative multiplication µ : A⊗ A→ A. We
call A a ring in K, and moreover assume that A is separable, which means µ has
an (A, A)-bilinear right inverse A→ A⊗ A.

Separable ring objects play an important (though at times invisible) role in
various areas of mathematics. In algebraic geometry, for instance, they appear as
étale extensions of quasicompact and quasiseparated schemes; see [Balmer 2016a;
Neeman 2015]. More precisely, given a separated étale morphism f : V → X ,
the object A := R f∗(OV ) in Dqcoh(X) is a separable ring, and we can understand
Dqcoh(V ) as the category of A-modules in Dqcoh(X). In representation theory, we
can let K(G) be the (derived or stable) module category of a group G over a field k,
and consider a subgroup H < G of finite index. Balmer [2015] showed there
is a separable ring AG

H in K(G) such that the category of AG
H -modules in K(G)

coincides with K(H), and such that the restriction functor

ResG
H : K(G)→ K(H)

is just extension-of-scalars along AG
H . In the same vein, extension-of-scalars along

a separable ring recovers restriction to a subgroup in equivariant stable homotopy
theory, in equivariant KK-theory and in equivariant derived categories; see [Balmer
et al. 2015]. For more examples of separable rings in stable homotopy categories,
we refer to [Baker and Richter 2008; Rognes 2008].

Thus motivated, we study how much Galois theory carries over. Recall that a
ring A in K is indecomposable if it does not decompose as a product of nonzero
rings. Separable ring objects have a well-behaved notion of degree [Balmer 2014]
and our first Galois-flavored result (Theorem 4.5) shows that the number of ring
endomorphisms of a separable indecomposable ring in K is bounded by its degree.

1see [Bourbaki 1981, V.9.3]. In the literature, a quasi-Galois extension is sometimes called normal
or Galois, probably because these notions coincide when l/k is separable and finite.
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Definition. Let A and B be separable rings of finite degree in K. We say B splits A
if B⊗ A ∼= B× deg(A) as (left) B-algebras in K. We call an indecomposable ring B
a splitting ring of A if B splits A and any ring morphism C→ B, where C is an
indecomposable ring splitting A, is an isomorphism.

Definition. If A is a ring in K and 0 is a group of ring automorphisms of A, we
call A quasi-Galois in K with group 0 if the A-algebra homomorphism

λ0 : A⊗ A→
∏
γ∈0

A

defined by prγ λ0 = µ(1⊗ γ ) is an isomorphism.

Under mild conditions on K, Corollary 6.10 shows an indecomposable ring B
is quasi-Galois in K for some group 0 if and only if B is a splitting ring of some
separable ring A in K. By Theorem 5.9, this happens exactly when B has deg(B)
distinct ring endomorphisms in K. Moreover, Proposition 6.9 shows that every
separable ring in K has (possibly multiple) splitting rings. In particular, l is a
splitting field of a separable polynomial f over k if and only if l is a splitting ring
of k[x]/( f ) in the category k-mod; our terminology matches classical field theory.

If, in addition, we assume that K is tensor-triangulated, we can say more about
the way splitting rings arise. Balmer [2005] introduced a topological space Spc(K)
associated to K, in which every object x ∈K has a support supp(x)⊂ Spc(K). The
Balmer spectrum Spc(K) provides an algebro-geometric approach to the study of
triangulated categories, and a complete description of the spectrum is equivalent to
a classification of the thick ⊗-ideals in the category.

For the remainder of the introduction, we assume K is tensor-triangulated and
nice (say, Spc(K) is noetherian or K satisfies Krull–Schmidt). If A is a separable
ring in K, the Eilenberg–Moore category A-ModK of A-modules in K admits a tri-
angulation such that extension-of-scalars K→ A-ModK is exact; see [Balmer 2011,
Corollary 4.3]. We can thus extend scalars along a separable ring without leaving the
tensor-triangulated world or descending to a model category. If A is quasi-Galois
with group 0 in K, then 0 acts on A-ModK and on the spectrum Spc(A-ModK).
By Theorem 9.1, the 0-orbits of Spc(A-ModK) are given by supp(A) ⊂ Spc(K).
In particular, we recover Spc(K) from Spc(A-ModK) if supp(A)= Spc(K), which
happens exactly when A⊗ f =0 implies f is⊗-nilpotent for every morphism f in K.

Recall that for a quasi-Galois field extension l/k, any irreducible polynomial
f ∈ k[x] with a root in l splits in l; see [Bourbaki 1981, V.9.3]. Proposition 9.6
provides us with a tensor triangular analogue:

Proposition. Let A be a separable ring in K such that the spectrum Spc(A-ModK)

is connected, and suppose B is an A-algebra with supp(A) = supp(B). If B is
quasi-Galois in K, then B splits A.
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Finally, Theorem 9.7 reveals which separable rings have a quasi-Galois closure
in K. Given P ∈ Spc(K), we consider the local category KP at P, the idempotent
completion of the Verdier quotient K/P. We say a ring A has constant degree in K

if the degree of A as a ring in KP is the same for every prime P ∈ supp(A).

Theorem. If A has constant degree in K and the spectrum Spc(A-ModK) is con-
nected, then A has a unique splitting ring A∗. Furthermore, supp(A)= supp(A∗)
and A∗ is the quasi-Galois closure of A in K. That is, for any A-algebra B that is
quasi-Galois in K with supp(A)= supp(B), there exists a ring morphism A∗→B.

We conclude this paper by computing degrees and splitting rings for the separable
rings AG

H := k(G/H) mentioned above. Here, H < G are finite groups and k is a
field with characteristic p dividing |G|. The degree of AG

H in Db(kG-mod) is simply
[G : H ] and AG

H is quasi-Galois if and only if H is normal in G. Accordingly, the
quasi-Galois closure of AG

H in Db(kG-mod) is the ring AG
N , where N is the normal

core of H in G (see Corollary 10.11). On the other hand, Proposition 10.13 shows
the degree of AG

H in kG-stab is the greatest 0≤ n ≤ [G : H ] such that there exist
distinct [g1], . . . , [gn] in H\G with p dividing |H g1 ∩ · · · ∩ H gn |. In that case, the
splitting rings of AG

H are exactly the AG
H g1∩···∩H gn with g1, . . . , gn as above.

1. The Eilenberg–Moore category

Definition 1.1. Let K be an additive category. We say K is idempotent-complete
if for all x ∈ K, any morphism e : x → x with e2

= e yields a decomposition
x ∼= x1 ⊕ x2 under which e becomes

(
1 0
0 0

)
. Every additive category K can be

embedded in an idempotent-complete category K\ in such a way that K ↪→ K\ is
fully faithful and every object in K\ is a direct summand of some object in K. We
call K\ the idempotent-completion of K, and [Balmer and Schlichting 2001] shows
that K\ stays triangulated if K was.

Notation 1.2. Throughout, (K,⊗,1) denotes an idempotent-complete symmetric
monoidal category. For objects x1, . . . , xn in K and a permutation τ ∈ Sn , we also
write τ : x1⊗ . . .⊗xn→ xτ(1)⊗ . . .⊗xτ(n) to denote the isomorphism that permutes
the tensor factors.

Definition 1.3. A ring object A ∈ K is a monoid (A, µ : A⊗ A→ A, η : 1→ A)
with associative multiplication µ and two-sided unit η. We call A commutative
if µ(12) = µ. All ring objects in this paper will be commutative and we often
simply call A a ring in K. For rings A and B in K, a ring morphism f : A→ B is
a morphism in K that is compatible with the ring structure.

A (left) A-module is a pair (x ∈ K, % : A ⊗ x → x), where the action % is
compatible with the ring structure in the usual way. Right A-modules as well as
(A, A)-bimodules are defined analogously.
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The Eilenberg–Moore category A-ModK has left A-modules as objects and
A-linear morphisms, which are defined in the usual way. See [Eilenberg and Moore
1965] or [Mac Lane 1998, Chapter VI] for more details. Every object x ∈K gives
rise to a free A-module FA(x)= A⊗ x with action given by

% : A⊗ A⊗ x
µ⊗1
−−→ A⊗ x .

We call the functor FA :K→ A-ModK the extension-of-scalars, and write UA for
its forgetful right adjoint:

K

a

A-ModK

FA UA

A ring A in K is separable if the multiplication map µ has an (A, A)-bilinear
section σ : A→ A⊗ A. That is, µσ = 1A and the diagram

A⊗ A

A⊗ A⊗ A A A⊗ A⊗ A

A⊗ A

σ⊗1 1⊗σ
µ

1⊗µ
σ

µ⊗1

commutes.

Remark 1.4. The module category A-ModK is idempotent-complete whenever K

is idempotent-complete.

Example 1.5. Let R be a commutative ring and consider the category R-mod
of finitely generated R-modules. Let A be a commutative projective R-algebra
and suppose A is separable over R, that is A is projective as an A⊗R A-module.
Then A is finitely generated as an R-module by [DeMeyer and Ingraham 1971,
Proposition 2.2.1], so A defines a separable ring object in R-mod. On the other
hand, we can think of A= A[0] as a separable ring object in Dperf(R), the homotopy
category of bounded complexes of finitely generated projective R-modules. Note
that the category of A-modules in Dperf(R) is equivalent to Dperf(A) by [Balmer
2011, Theorem 6.5].

Notation 1.6. Let A and B be rings in K. The ring structure on A⊗ B is given
by (µA⊗µB)(23) : (A⊗ B)⊗2

→ (A⊗ B). We write Ae for the enveloping ring
A⊗ Aop, so that left Ae-modules are just (A, A)-bimodules. We write A× B for
the ring A⊕ B with componentwise multiplication.
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Remark 1.7. If A and B are separable rings in K, then so are Ae, A⊗B and A×B.
Conversely, A and B are separable whenever A× B is separable.

Remark 1.8. Let A be a ring in K. Note that every (left) A-linear endomorphism
A→ A is in fact Ae-linear, by commutativity of A. What is more, any two A-linear
endomorphisms A→ A commute.

Definition 1.9. We call a nonzero ring A in K indecomposable if the only idem-
potent A-linear endomorphisms A→ A in K are the identity 1A and 0. In other
words, A is indecomposable if it does not decompose as a direct sum of nonzero
Ae-modules. By the following lemma, this is equivalent to saying A does not
decompose as a product of nonzero rings.

Lemma 1.10 [Balmer 2014, Lemma 2.2]. Let A be a ring in K. Suppose there is
an Ae-linear isomorphism h : A −→∼ B⊕C for some Ae-modules B,C in K. Then
B and C admit unique ring structures under which h becomes a ring isomorphism
h : A −→∼ B×C.

Let (A, µ, η) be a separable ring in K with separability morphism σ . In what
follows, we define a tensor structure ⊗A on A-ModK under which extension-of-
scalars becomes monoidal. The following results all appear in [Balmer 2014, §1].
For detailed proofs, see [Pauwels 2015, §1.1]. Let (x, %1) and (y, %2) be A-modules.
Here, we can write %1 to indicate both a left and right action of A on x , as A is
commutative. Seeing how the endomorphism v : x ⊗ y→ x ⊗ y given by

x ⊗ y x ⊗ A⊗ y x ⊗ A⊗ A⊗ y x ⊗ y
1⊗η⊗1 1⊗σ⊗1 %1⊗%2

is idempotent and K is idempotent-complete, we can define x ⊗A y as the direct
summand im(v) of x ⊗ y. Note that x ⊗A y is independent, up to canonical
isomorphism, of the choice of separability section σ . We get a split coequalizer in K,

x ⊗ A⊗ y x ⊗ y x ⊗A y,
%1⊗1

1⊗%2

and A acts on x ⊗A y by

A⊗ x ⊗A y A⊗ x ⊗ y x ⊗ y x ⊗A y.
%1⊗1

Proposition 1.11. The tensor product ⊗A yields a symmetric monoidal structure
on A-ModK under which FA becomes monoidal. We will write 1A = A for the unit
object in A-ModK.

Notation 1.12. If A and B are rings in K and h : A→ B is a ring morphism, we
say that B is an A-algebra. As usual, we equip B with the A-module structure
given by

A⊗ B B⊗ B B,h⊗1 µB
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and we write B for the corresponding object in A-ModK, so that B =UA(B).

Remark 1.13. Let A be a separable ring in K. There is a one-to-one correspondence
between A-algebras B in K and rings B in A-ModK. More precisely, if (B, µ, η)
is a ring in K and h : A→ B is a ring morphism, then (B, µ, η := h) defines a
ring in A-ModK, with µ : B⊗ B � B⊗A B −→µ B. Moreover, B is separable in K

if and only if B is separable in A-ModK.

Remark 1.14. Let A be a separable ring in K and suppose B is an A-algebra via
h : A→B. For every A-module x , we let B act on the left factor of Fh(x) := B⊗A x
as usual. This defines a functor Fh : A-ModK→ B-ModK and the following diagram
commutes up to isomorphism:

K

A-ModK B-ModK

FA FB

Fh

Note also that Fgh ∼= Fg Fh for any ring morphism g : B→ C .

Proposition 1.15. Let A be a separable ring in K and suppose B is a separable
A-algebra, say B ∈ L := A-ModK. There is an equivalence B-ModK ' B-ModL

of symmetric monoidal categories such that

K L

B-ModK B-ModL,

FA

FB
FB

'

commutes up to isomorphism.

2. Separable rings

Proposition 2.1. Let A be a separable ring in K. If A∼= B×C for rings B,C in K,
then any indecomposable ring factor of A is a ring factor of B or C. In particular,
if A can be written as a product of indecomposable A-algebras A ∼= A1× · · ·× An ,
this decomposition is unique up to isomorphism.

Proof. Suppose A1 ∈ K is an indecomposable ring factor of A, say A ∼= A1× A2

for some ring A2 in K. The category A-ModK decomposes as

A-ModK
∼= A1-ModK× A2-ModK,

with 1A corresponding to (1A1,1A2). Accordingly, the A-algebras B and C corre-
spond to (B1, B2) and (C1,C2) respectively, with Bi ,Ci in Ai -ModK for i = 1, 2,
such that B ∼= B1× B2 and C ∼= C1×C2 in A-ModK. Given that 1A ∼= B×C , we
see 1A1

∼= B1×C1, hence A1 ∼= B1 or A1 ∼= C1. �
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Lemma 2.2. Let A be a separable ring in K.

(a) For every ring morphism α : A→ 1, there exists a unique idempotent A-linear
morphism e : A→ A such that αe = α and eηα = e.

(b) Suppose 1 is indecomposable. If αi : A→ 1 are distinct ring morphisms for
1 ≤ i ≤ n, with corresponding idempotent morphisms ei : A→ A as above,
then ei ej = δi, j ei and αi ej = δi, jαi .

Proof. Let σ be a separability morphism for A. To show (a), consider the A-linear
map e := (α⊗1)σ : A→ A. We immediately see that αe= α(α⊗1)σ = αµσ = α.
Idempotence of e follows from the diagram

A A⊗ A A

A⊗ A⊗ A A⊗ A

A A⊗ A A

σ α⊗1

1⊗σ σ

α⊗1⊗1

µ⊗1 α⊗1

σ α⊗1

in which the left square commutes by bilinearity of σ . Seeing how

A 1 A

A⊗ A A⊗ A⊗ A A⊗ A

A A⊗ A 1⊗ A

α

1⊗η

η

σ

1⊗σ

µ

α⊗1⊗1

µ⊗1 α⊗1

σ α⊗1

commutes, we moreover get eηα= e. Suppose e′ is also an A-linear morphism with
αe′ = α and e′ηα = e′. Then, e = eηα = eηαe′ = ee′ = e′e = e′ηαe = e′ηα = e′

by Remark 1.8. For (b), let 1≤ i, j ≤ n. From the commuting diagram

A 1 A

A⊗ A A⊗ A A

A A 1,

αi

1⊗η

η

ej

1⊗ej

µ µ

αi⊗1

αi

ej αi

we see that αi ejηαi = αi ej . Hence, (αi ejη)(αi ejη) = αi ej ejη = αi ejη, so the
morphism αi ejη : 1 → 1 is idempotent and equals 0 or 11. In the first case,
αi ej = αi ejηαj = 0 and ei ej = eiηαi ej = 0, in particular i 6= j . On the other hand,
if αi ejη = 11 we get αi ej = αi ejηαi = αi and αi ej = αi ejηαj = αj , so i = j . �
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Lemma 2.3. Let (A, µA, ηA) and (B, µB, ηB) be separable rings in K.

(a) Suppose f : A→ B and g : B→ A are ring morphisms such that g f = 1A. We
equip A with the structure of Be-module via the morphism g. There exists a
Be-linear morphism f̃ : A→ B such that g f̃ = 1A. In particular, A is a direct
summand of B as a Be-module.

(b) Suppose A is indecomposable. Let gi : B→ A be distinct ring morphisms for
1 ≤ i ≤ n and suppose f : A→ B is a ring morphism with gi f = 1A. Then
A⊕n is a direct summand of B as a Be-module, with projections gi : B→ A
for 1≤ i ≤ n.

Proof. Considering the A-module structure on B given by f , we note that g : B→A
is A-linear:

A⊗ B B⊗ B B

A⊗ A A⊗ A A

f⊗1

1⊗g

µB

g⊗g g

µA

We can thus apply Lemma 2.2 to the ring morphism ḡ : B→ 1A in A-ModK and
find an idempotent Be-linear morphism ē : B→ B such that ḡē = ḡ and ēηB̄ ḡ = ē.
Forgetting the A-action, UA(ē) := e : B → B is idempotent and Be-linear, with
ge = g and e f g = e. Let f̃ := e f . We need to show that f̃ is Be-linear, where Be

acts on A via g. Left B-linearity of f̃ follows from the commuting diagram

B⊗ A A⊗ A A

B⊗ B B

B⊗ B B⊗ B B

B⊗ B B

g⊗1

1⊗ f

µA

f⊗ f f

µB

e⊗1 e

e⊗1

1⊗e

µB

µB

and right B-linearity follows similarly. Finally, g f̃ = ge f = g f = 1A.
For (b), let gi : B→ A be distinct ring morphisms with gi f = 1A for 1≤ i ≤ n.

As in part (a), we find idempotent Be-linear morphisms ei : B→ B and Be-linear
morphisms f̃i := ei f with gi f̃i = 1A and ei = f̃i gi . In fact, Lemma 2.2(b) shows the
ei are orthogonal. Seeing how A = im(ei ), we conclude A⊕n is a direct summand
of B as a Be-module, with projections gi : B→ A for 1≤ i ≤ n. �

Corollary 2.4. Let A and B be separable rings in K and suppose B is an A-algebra.
The corresponding ring B in A-ModK is a ring factor of FA(B).
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Proof. Applying Lemma 2.3 to the ring morphisms f : B
ηA⊗1B
−−−−→A⊗ B and g given

by the action of A on B, we see that B is a direct summand of A⊗ B as (A⊗ B)e-
modules in K. In particular, B is a direct summand of FA(B) as FA(B)e-modules
in A-ModK. By Lemma 1.10, B admits a ring structure under which B becomes a
ring factor of FA(B). This new ring structure on B is the original one, seeing how
the projection g : FA(B)→ B is a ring morphism for both structures. �

3. Degree of a separable ring

We recall Balmer’s definition [2014] of the degree of a separable ring in a tensor-
triangulated category, and show the definition works for any idempotent-complete
symmetric monoidal category K.

Theorem 3.1. Let A and B be separable rings in K. Suppose f : A → B and
g : B→ A are ring morphisms such that g f = 1A. There exists a separable ring C
in K and a ring isomorphism h : B −→∼ A×C such that pr1 h = g. If we equip C
with the A-algebra structure coming from pr2 h f , it is unique up to isomorphism of
A-algebras.

Proof. This proposition is proved in [Balmer 2014, Theorem 2.4] when K is
a tensor-triangulated category. In our case, Lemma 2.3 yields an isomorphism
h : B −→∼ A⊕C of Be-modules with pr1 h = g. By Lemma 1.10, A and C admit
ring structures under which h becomes a ring isomorphism. This new ring structure
on A is the original one, seeing how

1A : A
f
−→ B

pr1 h
−−→ A

is a ring morphism. The rest of the proof is identical to the proof in [loc. cit.]. �

Definition 3.2 [Balmer 2014, Definition 3.1]. Let (A, µ, η) be a separable ring
in K. Applying Theorem 3.1 to the ring morphisms f = 1A⊗ η : A→ A⊗ A and
g = µ : A⊗ A→ A, we find a separable A-algebra A′, unique up to isomorphism,
and a ring isomorphism h : A⊗ A −→∼ A× A′ such that pr1 h = µ.

The splitting tower

1= A[0]
η
−→ A = A[1]→ A[2]→ · · · → A[n]→ A[n+1]

→ · · ·

is defined inductively by A[n+1]
= (A[n])′, where we consider A[n] as a ring in

A[n−1]-ModK. We say the degree of A is d, writing degK(A)= d, if A[d] 6= 0 and
A[d+1]

= 0. We say A has infinite degree if A[d] 6= 0 for all d ≥ 0.

Remark 3.3. By construction, we have (A[n])[m+1]∼= A[n+m] as A[n+m−1]-algebras
for all m ≥ 0 and n ≥ 1, where we regard A[n] as a ring in A[n−1]-ModK. In other
words, degA[n−1]-ModK

(A[n])= degK(A)− n+ 1 for 1≤ n ≤ degK(A)+ 1.
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Example 3.4. Let R be a commutative ring and suppose A is a commutative
projective separable R-algebra. If Spec R is connected, then the degree of A as
a ring in Dperf(R) (see Example 1.5) recovers its rank as an R-module. This will
follow from Proposition 7.9.

Proposition 3.5. Let A and B be separable rings in K.

(a) We have FA[n](A)∼= 1×n
A[n] × A[n+1] as A[n]-algebras.

(b) Let F : K→ L be an additive monoidal functor. For every n ≥ 0, the rings
F(A[n]) and F(A)[n] are isomorphic. In particular, degL(F(A))≤ degK(A).

(c) Suppose A is a B-algebra. Then degB-ModK
(FB(A))= degK(A).

Proof. The proofs for (a) and (b) in [op. cit., Theorems 3.7 and 3.9] still hold in our
(not necessarily triangulated) setting. To prove (c), note that A[n] is a B-algebra
and hence a direct summand of FB(A[n]) ∼= FB(A)[n]. This means FB(A)[n] 6= 0
when A[n] 6= 0 so that degB-ModK

(FB(A))≥ degK(A). �

Lemma 3.6 [Balmer 2014, Lemma 3.11]. Let n ≥ 1 and A := 1×n
∈ K. There is

an isomorphism A[2] ∼= A×(n−1) of A-algebras.

Proof. We prove there is an A-algebra isomorphism λ : A⊗ A −→∼ A× A×(n−1)

with pr1 λ= µA. We write A =
∏n−1

i=0 1i , A⊗ A =
∏

0≤i, j≤n−1 1i ⊗1j and A×n
=∏n−1

k=0
∏n−1

i=0 1ik with 1= 1i = 1ik for all i, k. Define λ : A⊗ A→ A×n by mapping
the factor 1i ⊗1j identically to 1i(i− j), with indices in Zn . Then, λ is an A-algebra
isomorphism and prk=0 λ= µA. �

Corollary 3.7. Let n ≥ 1. Then degK(1
×n)= n and (1×n)[n] ∼= 1×n! in K.

Proof. Let A := 1×n . The result is clear when n = 1, and we proceed by induction
on n. By Lemma 3.6, we know A[2]∼= 1×(n−1)

A in A-ModK. Assuming the induction
hypothesis, degA-ModK

(A[2])= n− 1 and

A[n] ∼= (A[2])[n−1] ∼= 1×(n−1)!
A

∼= (1×n)×(n−1)! ∼= 1×n!. �

Lemma 3.8. Let A and B be separable rings of finite degree in K. Then,

(a) deg(A× B)≤ deg(A)+ deg(B)

(b) deg(A×1×n)= deg(A)+ n

(c) deg(A×t)= deg(A) · t .

Proof. To prove (a), let n := deg(A×B) and C := (A×B)[n]. Writing A′ := FC(A)
and B ′ := FC(B), we know from Proposition 3.5(a) that

A′× B ′ = FC(A× B)∼= 1×n
C .

If we let D := (A′)[deg(A′)] and apply FD to the isomorphism, we get

1× deg(A′)
D × FD(B ′)∼= 1×n

D .
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Similarly, putting E := (FD(B ′))[deg(FD(B ′))] and applying FE gives

1× deg(A′)
E ×1× deg(FD(B ′))

E
∼= 1×n

E .

This shows n = deg(A′)+ deg(FD(B ′))≤ deg(A)+ deg(B) by Proposition 3.5(b).
For (b), let B := A[deg(A)]. Then, FB(A×1×n)∼= 1× deg(A)

B ×1×n
B and we find

deg(A×1×n)≥ deg(FB(A×1×n))= deg(A)+ n.

To prove (c), we write B := A[deg(A)] again and note that FB(A×t)∼= (1× deg(A)
B )×t.

Hence, deg(A×t)≥ deg(FB(A×t))= deg(A) · t . �

4. Counting ring morphisms

Lemma 4.1. Let A be a separable ring in K and suppose 1 is indecomposable. If
there are n distinct ring morphisms A→ 1, then A has 1×n as a ring factor. In
particular, there are at most deg A distinct ring morphisms A→ 1.

Proof. Let αi : A→ 1 be distinct ring morphisms for 1≤ i ≤ n. By Lemma 2.3(b),
we know that 1⊕n is a direct summand of A as an Ae-module, with projections
αi : A→ 1 for 1≤ i ≤ n. Moreover, Lemma 1.10 shows that every such summand 1
admits a ring structure, under which 1×n becomes a ring factor of A and the
projections αi are ring morphisms. In fact, these new ring structures on 1 are the
original one, seeing how αiηA = 11 is a ring morphism for every 1≤ i ≤ n. Finally,
Lemma 3.8(b) shows that deg(A)≥ n. �

Proposition 4.2. Let A and B be separable rings in K and suppose B is indecom-
posable. Let n ≥ 1. The following are equivalent:

(i) There are (at least) n distinct ring morphisms A→ B in K.

(ii) The ring 1×n
B is a ring factor of FB(A) in B-ModK.

(iii) There is a ring morphism A[n]→ B in K.

Proof. Firstly, we claim there is a one-to-one correspondence between ring mor-
phisms α : A→ B in K and ring morphisms β : FB(A)→ 1B in B-ModK. Indeed,
this correspondence sends α : A→ B in K to the B-algebra morphism

B⊗ A
1B⊗α
−−−→ B⊗ B

µ
−→ B,

and conversely, β : FB(A)→ 1B gets mapped to A
ηB⊗1A
−−−−→ B⊗ A

β
−→ B in K.

To show (i)⇒ (ii), note that n distinct ring morphisms A → B in K give n
distinct ring morphisms FB(A)→ 1B in B-ModK. By Lemma 4.1, 1×n

B is a ring
factor of FB(A). For (ii)⇒ (i), suppose 1×n

B is a ring factor of FB(A) in B-ModK

and consider the projections pri : FB(A)→ 1B with 1≤ i ≤ n. By the claim, there
are at least n distinct ring morphisms A→ B in K.
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We show (ii)⇒ (iii) by induction on n. The case n = 1 has already been proven.
Let n≥1 and suppose 1×(n+1)

B is a ring factor of FB(A). By the induction hypothesis,
there exists a ring morphism A[n]→ B. As usual, we write B for the separable ring
in A[n]-ModK corresponding to the A[n]-algebra B in K. The diagram

K A[n]-ModK

B-ModK B-ModA[n]-ModK

FA[n]

FB FB

'

(4.3)

from Proposition 1.15 shows that FB(A) is mapped to FB(FA[n](A)) under the
equivalence B-ModK ' B-ModA[n]-ModK

. It follows that 1×(n+1)
B

is a ring factor
of FB(FA[n](A)). On the other hand, by Proposition 3.5(a) we know that

FB(FA[n](A))∼= FB(1
×n
A[n] × A[n+1])∼= 1×n

B × FB(A
[n+1]). (4.4)

Hence, 1B is a ring factor of FB(A
[n+1]) by Proposition 2.1 and we conclude there

exists a ring morphism A[n+1]
→ B in A[n]-ModK.

To show (iii)⇒ (ii), suppose B is an A[n]-algebra and write B for the corre-
sponding separable ring in A[n]-ModK. Using diagram (4.3) again, it is enough to
show that 1×n

B
is a ring factor of FB(FA[n](A)). This follows from (4.4). �

Theorem 4.5. Let A and B be separable rings in K, where A has finite degree and
B is indecomposable. There are at most deg(A) distinct ring morphisms from A
to B.

Proof. If there are n distinct ring morphisms from A to B, we know 1×n
B is a

ring factor of FB(A) by Proposition 4.2. So, n ≤ degB-ModK
(FB(A))≤ degK(A) by

Proposition 3.5(b) and Lemma 3.8(b). �

Remark 4.6. The assumption B is indecomposable is necessary in Theorem 4.5.
Indeed, deg(1×n)= n but 1×n has at least n! ring endomorphisms.

5. Quasi-Galois theory

Suppose (A, µ, η) is a nonzero ring in K and 0 is a finite set of ring endomorphisms
of A with 1A ∈ 0. Consider the ring

∏
γ∈0 Aγ , where we write Aγ = A for all

γ ∈ 0 to keep track of the different copies of A. We define ring morphisms
ϕ1 : A→

∏
γ∈0 Aγ by prγ ϕ1 = 1A and ϕ2 : A→

∏
γ∈0 Aγ by prγ ϕ2 = γ for all

γ ∈ 0. Thus, ϕ1 renders the (standard) left A-module structure on
∏
γ∈0 Aγ and

we introduce a right A-module structure on
∏
γ∈0 Aγ via ϕ2.

Definition 5.1. We will consider the following ring morphism:

λ0 = λ : A⊗ A −→
∏
γ∈0

Aγ with prγ λ= µ(1⊗ γ ).
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Note that λ(1⊗ η)= ϕ1 and λ(η⊗ 1)= ϕ2,

A

A⊗ A
∏
γ∈0 Aγ

1⊗η

η⊗1

ϕ2

ϕ1
λ

(5.2)

so that λ is an Ae-algebra morphism.

Lemma 5.3. Suppose λ0 : A⊗ A→
∏
γ∈0 Aγ is an isomorphism.

(a) There is an Ae-linear morphism σ : A→ A⊗ A such that µ(1⊗ γ )σ = δ1,γ

for every γ ∈ 0. In particular, A is separable.

(b) Let γ ∈ 0. If there exists a nonzero ring B in K and ring morphism α : A→ B
with αγ = α, then γ = 1.

(c) The separable ring A has degree |0| in K.

Proof. To prove (a), consider the Ae-linear morphism σ := λ−1 incl1 : A→ A⊗ A.
The following diagram shows that µ(1⊗ γ )σ = δ1,γ :

A A⊗ A A⊗ A A

∏
γ∈0 Aγ

∏
γ∈0 Aγ

σ

incl1

1⊗γ

λ

µ

λ−1 prγ

For (b), suppose αγ = α and σ : A→ A⊗ A as in (a). We get

α = αµσ = µ(α⊗α)σ = µ(α⊗α)(1⊗ γ )σ = αµ(1⊗ γ )σ = αδγ,1.

Hence, either α = 0 or γ = 1A. Finally, given that FA(A) ∼= 1×|0|A in A-ModK,
Proposition 3.5(c) shows that deg(A)= |0|. �

Definition 5.4. Suppose that A is a nonzero ring in K and 0 is a finite group of
ring automorphisms of A. We say that A is quasi-Galois in K with group 0 if
λ0 : A⊗ A→

∏
γ∈0 Aγ is an isomorphism. By the above lemma, it follows that A

is separable of degree |0| in K. We also call FA : K−→ A-ModK a quasi-Galois
extension with group 0.

Example 5.5. Let A := 1×n and consider the ring morphism γ := (1 2 · · · n) which
permutes the factors. Then A is quasi-Galois with group 0={γ i

|0≤ i ≤n−1}∼=Zn .
Indeed, the isomorphism λ : A⊗ A→ A×n constructed in the proof of Lemma 3.6
is exactly λ0 . In particular, 0 does not always contain all ring automorphisms of A.

Remark 5.6. The Galois theory of commutative rings was introduced by Auslander
and Goldman [1960, Appendix], and was further developed by Chase, Harrison
and Rosenberg [Chase et al. 1965] and many others. They considered commutative
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rings R ⊂ A such that A is separable and projective as an R-algebra. If 0 is a finite
group of ring automorphisms of A fixing R, then A is Galois over R with group 0
if the maps R ↪→ A0 and

A⊗R A→
∏
γ∈0

A, x ⊗ y 7→ (x · γ (y))γ∈0

are isomorphisms. In particular, A defines a ring object in the categories R−mod
and Dperf(R) (see Example 1.5), which is quasi-Galois with group 0.

Lemma 5.7. Let A be quasi-Galois of degree d in K with group 0 and suppose
F : K→ L is an additive monoidal functor. If F(A) 6= 0, then F(A) is quasi-
Galois of degree d in L with group F(0) = {F(γ ) | γ ∈ 0}. In particular, being
quasi-Galois is stable under extension-of-scalars.

Proof. We immediately see that

F(λ0) : F(A)⊗ F(A)∼= F(A⊗ A)→
∏
γ∈0

F(A)

is an isomorphism in L, so it suffices to show 0 ∼= F(0) and F(λ0)= λF(0). Now,
λ0 is defined by prγ λ0 = µA(1A⊗ γ ), hence prγ F(λ0) = µF(A)(1F(A)⊗ F(γ ))
for every γ ∈ 0. In particular, the morphisms µF(A)(1F(A)⊗ F(γ )) with γ ∈ 0 are
distinct. This shows the morphisms F(γ ) with γ ∈0 are distinct, so that 0∼= F(0)
and F(λ0)= λF(0). �

Proposition 5.8. Suppose A is quasi-Galois in K with group 0.

(a) If B is a separable indecomposable A-algebra, then 0 acts freely and transi-
tively on the set of ring morphisms from A to B. In particular, there are exactly
deg(A) distinct ring morphisms from A to B in K.

(b) If A is indecomposable then 0 contains all ring endomorphisms of A.

Proof. Note that the set S of ring morphisms from A to B is nonempty and 0 acts
on S by precomposition. The action is free by Lemma 5.3(b) and transitive because
|S| ≤ deg A = |0| by Theorem 4.5. In particular, if A is indecomposable, then A
has exactly deg A = |0| ring endomorphisms in K. �

By the above proposition, we can simply say an indecomposable ring A in K

is quasi-Galois, with the understanding that the Galois group 0 contains all ring
endomorphisms of A.

Theorem 5.9. Let A be a separable indecomposable ring of finite degree in K and
write 0 for the set of ring endomorphisms of A. The following are equivalent:

(i) |0| = deg(A).

(ii) FA(A)∼= 1×t
A in A-ModK for some t > 0.
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(iii) λ0 : A⊗ A→
∏
γ∈0 Aγ is an isomorphism.

(iv) 0 is a group and A is quasi-Galois in K with group 0.

Proof. First note that d := deg(A)= deg(FA(A)) by Proposition 3.5(c). To show
(i)⇒ (ii), recall that 1×d

A is a ring factor of FA(A) if |0| = d by Proposition 4.2.
By Lemma 3.8(b), we know FA(A)∼= 1×d

A . For (ii)⇒ (iii), we note that t = d and
consider an A-algebra isomorphism l : A⊗A

'
−→ A×d. We define ring endomorphisms

αi : A A⊗ A A×d A,
η⊗1A l pri i = 1, . . . , d,

such that µ(1A⊗αi )= pri l(µ⊗ 1A)(1A⊗ η⊗ 1A)= pri l for every i . This shows
the αi are all distinct, so that 0 = {αi | 1≤ i ≤ d} by Theorem 4.5 and l = λ0 . For
(iii)⇒ (iv), we show that every γ ∈0 is an automorphism. By Lemma 5.3(a), we can
find an Ae-linear morphism σ : A→A⊗A such thatµ(1⊗γ )σ =δ1,γ for every γ ∈0.
Let γ ∈ 0 and note that γ = µ(γ ⊗ 1)(1⊗ γ )σ so that (1⊗ γ )σ : A→ A⊗ A is
nonzero. Thus there exists γ ′ ∈ 0 such that

prγ ′ λ0(1⊗ γ )σ = µ(1⊗ γ
′)(1⊗ γ )σ = δ1,γ ′γ

is nonzero. This means 1= γ ′γ and γ ′(γ γ ′)= γ ′ so γ γ ′ = 1 by Lemma 5.3(b).
Finally, (iv)⇒ (i) is the last part of Lemma 5.3. �

Corollary 5.10. Let A, B and C be separable rings in K with A ∼= B × C , and
suppose B is indecomposable. If FA(A)∼=1×d

A , then B is quasi-Galois. In particular,
being quasi-Galois is stable under passing to indecomposable ring factors.

Proof. Consider the decomposition A-ModK
∼= B-ModK×C-ModK, under which

FA(A) corresponds to (FB(B×C), FC(B×C)) and 1×d
A corresponds to (1×d

B ,1×d
C ).

Given that 1B is indecomposable and FB(B) is a ring factor of 1×d
B in B-ModK, we

know FB(B)∼= 1×t
B for some 1≤ t ≤ d . The result now follows from Theorem 5.9.

�

6. Splitting rings

Definition 6.1. Let A and B be separable rings of finite degree in K. We say B
splits A if FB(A) ∼= 1× deg(A)

B in B-ModK. We call an indecomposable ring B a
splitting ring of A if B splits A and any ring morphism C → B, where C is an
indecomposable ring splitting A, is an isomorphism.

Remark 6.2. Let A be a separable ring in K with deg(A)= d . The ring A[d] in K

splits A by Proposition 3.5(a). Moreover, if B is a separable indecomposable ring
in K, then B splits A if and only if B is an A[d]-algebra. This follows immediately
from Proposition 4.2.
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Remark 6.3. Let A be a separable ring in K with deg(A)= d . The ring A[d] in K

splits itself by Proposition 3.5(a), (b) and Corollary 3.7:

FA[d](A
[d])∼= (FA[d](A))

[d] ∼= (1×d
A[d])
[d] ∼= 1×d!

A[d] .

Lemma 6.4. Let A be a separable ring in K that splits itself. If A1 and A2

are indecomposable ring factors of A, then any ring morphism A1 → A2 is an
isomorphism.

Proof. Let A1 and A2 be indecomposable ring factors of A and suppose there is a
ring morphism f : A1→ A2. We know FA1(A)∼= 1× deg(A)

A1
because A splits itself.

Meanwhile, FA1(A2) is a ring factor of FA1(A), so that FA1(A2) ∼= 1×d
A1

for some
d ≥ 0. In fact, d = deg(A2)≥ 1 by Proposition 3.5(c). Proposition 4.2 shows there
exists a ring morphism g : A2 → A1. Note that A1 and A2 are quasi-Galois by
Corollary 5.10, so that the ring morphisms g f : A1→ A1 and f g : A2→ A2 are
isomorphisms by Proposition 5.8(b). �

Definition 6.5. We say K is nice if for every separable ring A of finite degree in K,
there are indecomposable rings A1, . . . , An in K such that A ∼= A1× · · ·× An .

Example 6.6. Let G be a group and k a field. The categories kG-mod, Db(kG-mod)
and kG-stab (see Section 10) are nice categories. More generally, K is nice if it
satisfies Krull–Schmidt.

Example 6.7. Let X be a noetherian scheme and let Dperf(X) be the derived category
of perfect complexes over X with left derived tensor product. By Example 7.4 and
Proposition 7.12, Dperf(X) is nice.

Lemma 6.8. Suppose K is nice and let A, B be separable rings of finite degree
in K. If B is indecomposable and there exists a ring morphism A→ B in K, then
there exists a ring morphism C→ B for some indecomposable ring factor C of A.

Proof. Since K is nice, we can write A ∼= A1× · · ·× An with Ai indecomposable
for 1≤ i ≤n. If there exists a ring morphism A→B in K, Proposition 4.2 shows that
1B is a ring factor of FB(A)∼= FB(A1)×· · ·×FB(An). Since 1B is indecomposable,
it is a ring factor of some FB(Ai ) with 1≤ i ≤ n by Proposition 2.1. �

Proposition 6.9. Suppose K is nice and let A be a separable ring of finite degree
in K. An indecomposable ring B in K is a splitting ring of A if and only if B is a
ring factor of A[deg(A)]. In particular, any separable ring in K has a splitting ring
and at most finitely many.

Proof. Let d :=deg(A) and suppose B is a splitting ring of A. By Remark 6.2, B is an
A[d]-algebra. Hence, there exists a ring morphism C→ B for some indecomposable
ring factor C of A[d] by Lemma 6.8. Now, A[d] splits A, so C splits A and the ring
morphism C→ B is an isomorphism. Conversely, suppose B is an indecomposable
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ring factor of A[d], so B splits A. Let C be an indecomposable separable ring
splitting A and suppose there is a ring morphism C→ B. As before, C is an A[d]-
algebra and there exists a ring morphism B ′→ C for some indecomposable ring
factor B ′ of A[d]. The composition B ′→C→ B is an isomorphism by Remark 6.3
and Lemma 6.4. In other words, B is a ring factor of the indecomposable ring C ,
so that C ∼= B. �

Corollary 6.10. Suppose K is nice and B is a separable indecomposable ring of
finite degree in K. Then B is quasi-Galois in K if and only if there exists a nonzero
separable ring A of finite degree in K such that B is a splitting ring of A.

Proof. Suppose B is indecomposable and quasi-Galois of degree t , so B[2]∼=1×(t−1)
B

as B-algebras. Then, B is a splitting ring for B because B is a ring factor of B[t]:

B[t] ∼= (B[2])[t−1] ∼= (1×(t−1)
B )[t−1] ∼= B×(t−1)!.

Now suppose B is a splitting ring for some A in K, say with deg(A) = d > 0.
Seeing how FB(B) is a ring factor of

FB(A[d])∼= FB(A)[d] ∼= (1×d
B )[d] = 1×d!

B ,

we know FB(B)∼= 1×t
B for some t > 0. By Theorem 5.9, B is quasi-Galois. �

7. Tensor triangular geometry

Definition 7.1. A tt-category K is an essentially small, idempotent-complete tensor-
triangulated category. In particular, K comes equipped with a symmetric monoidal
structure (⊗,1) such that x⊗− :K→K is exact for all objects x in K. A tt-functor
K→ L is an exact symmetric monoidal functor.

Throughout the rest of this paper, (K,⊗,1) will denote a tt-category.

Remark 7.2. Balmer [2011] proved in that extension along a separable ring object
A preserves the triangulation: (A-ModK,⊗A,1A) is a tt-category, extension-of-
scalars FA becomes a tt-functor and UA is exact.

Definition 7.3. We briefly recall some tt-geometry and refer the reader to [Balmer
2005] for precise statements and motivation. The spectrum Spc(K) of a tt-category K

is the set of all prime thick ⊗-ideals P ( K. The support of an object x in K is
supp(x) = {P ∈ Spc(K) | x /∈ P} ⊂ Spc(K). The complements of these supports
U(x) := Spc(K)− supp(x) form an open basis for the Zariski topology on Spc(K).

Example 7.4. Let X be a noetherian scheme. Then (Dperf(X),⊗L
OX
) is a tt-category

with spectrum Spc(Dperf(X)) homeomorphic to X ; see [op. cit., Theorem 6.3].



Quasi-Galois theory in symmetric monoidal categories 1909

Remark 7.5. The spectrum is functorial. In particular, every tt-functor F :K→L

induces a continuous map

Spc(F) : Spc(L)→ Spc(K).

Moreover, for all x ∈ K, we have

(Spc F)−1(suppK(x))= suppL(F(x))⊂ Spc L.

Let A be a separable ring in K. We will consider the continuous map

f A := Spc(FA) : Spc(A-ModK)→ Spc(K)

induced by the extension-of-scalars FA : K→ A-ModK.

Theorem 7.6 [Balmer 2016b, Theorem 3.14]. Let A be a separable ring of finite
degree in K. Then

Spc((A⊗ A)-ModK) Spc(A-ModK) suppK(A)
f1

f2

f A (7.7)

is a coequalizer, where f1, f2 are the maps induced by extension-of-scalars along
the morphisms 1⊗ η and η⊗ 1 : A→ A⊗ A respectively. In particular, the image
of f A is suppK(A)⊂ Spc(K).

Definition 7.8. We call a tt-category K local if x ⊗ y = 0 implies that x or y is
⊗-nilpotent for all x, y ∈K. The local category KP at the prime P ∈ Spc(K) is the
idempotent completion of the Verdier quotient K/P. We write qP for the canonical
tt-functor K � K/P ↪→ KP.

Proposition 7.9 [Balmer 2014, Theorem 3.8]. Suppose A is a separable ring in K.
If the ring qP(A) has finite degree in KP for every P ∈ Spc(K), then A has finite
degree and

degK(A)= max
P∈Spc(K)

degKP
(qP(A)).

Proposition 7.10 [Balmer 2014, Corollary 3.12]. Let K be a local tt-category
and suppose A, B are separable rings of finite degree in K. Then deg(A× B) =
deg(A)+ deg(B).

Lemma 7.11 [Balmer 2014, Theorem 3.7]. Let A and B be separable rings in K

and suppose supp(A)⊆ supp(B). Then degB-ModK
(FB(A))= degK(A).

Proposition 7.12. Suppose the spectrum Spc(K) of K is noetherian. Then K is
nice. That is, any separable ring A of finite degree in K has a decomposition
A ∼= A1× . . .× An where A1, . . . , An are indecomposable rings in K.
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Proof. Let A be a separable ring of finite degree in K. We prove that any ring
decomposition of A in K has at most finitely many nonzero ring factors. Suppose
there is a sequence of nontrivial decompositions A = A1× B1, B1 = A2× B2, . . . ,
with Bn = An+1× Bn+1 for n ≥ 1. By Proposition 7.10, we know

deg(qP(Bn))≥ deg(qP(Bn+1))

for every P ∈ Spc(K). We note that deg(qP(Bn))≥ i if and only if P ∈ supp(B[i]n ),
so we get supp(B[i]n ) ⊇ supp(B[i]n+1) for every i ≥ 0. Since Spc(K) is noetherian,
we can find k ≥ 1 with supp(B[i]n ) = supp(B[i]n+1) for every i ≥ 0 and n ≥ k. In
particular, deg(qP(Bk))= deg(qP(Bk+1)) for every P ∈ Spc(K), so qP(Ak+1)= 0
for all P ∈ Spc(K). By Proposition 7.9, we conclude Ak+1 = 0, a contradiction. �

8. Rings of constant degree

Definition 8.1. We say a separable ring A in K has constant degree d ∈ N if the
degree degKP

qP(A) equals d for every P ∈ supp(A)⊂ Spc(K).

Lemma 8.2. Let A be a separable ring of degree d in K. Then A has constant
degree if and only if supp(A[d])= supp(A).

Proof. Note that supp(A[2]) ⊆ supp(A) because A⊗ A ∼= A× A[2] in K. Hence
supp(A[d]) ⊆ supp(A). Now, let P ∈ supp(A). Then qP(A) has degree d if and
only if qP(A[d]) 6= 0, in other words P ∈ supp(A[d]). �

Lemma 8.3. Let A be a separable ring in K and suppose F :K→L is a tt-functor
with F(A) 6= 0. If A has constant degree d, then F(A) has constant degree d.
Conversely, if F(A) has constant degree d and supp(A)⊂ im(Spc(F)), then A has
constant degree d.

Proof. We first note that deg(F(A))≤ deg(A) by Proposition 3.5(b). Now, if A has
constant degree d , then

suppL(F(A)
[d])= suppL(F(A

[d]))= Spc(F)−1(suppK(A
[d]))

= Spc(F)−1(suppK(A))= suppL(F(A)) 6=∅,

which shows F(A) has constant degree d . Conversely, suppose F(A) has constant
degree d and supp(A) ⊂ im(Spc(F)). In particular, supp(A[d+1]) ⊂ im(Spc(F)),
so

∅= supp(F(A[d+1]))= Spc(F)−1(supp(A[d+1]))

implies supp(A[d+1])=∅. Thus A has degree d . Moreover, seeing how

Spc(F)−1(suppK(A
[d]))= suppL(F(A)

[d])

= suppL(F(A))= Spc(F)−1(suppK(A)),

we can conclude suppK(A
[d])= suppK(A). �
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Proposition 8.4. Let A be a separable ring in K. Then A has constant degree d if
and only if there exists a separable ring B in K with supp(A)⊂ supp(B) and such
that FB(A) ∼= 1×d

B . In particular, if A is quasi-Galois in K with group 0, then A
has constant degree |0| in K.

Proof. If A has constant degree d , we can let B := A[d] and use Proposition 3.5(a).
On the other hand, if A and B are separable rings in K with supp(A)⊂ supp(B),
then Theorem 7.6 and Lemma 8.3 show that A has constant degree d whenever
FB(A) has constant degree d . �

Proposition 8.5. Let A be a separable ring of constant degree in K with connected
support supp(A)⊂ Spc(K). If B and C are nonzero rings in K such that A= B×C ,
then B and C have constant degree and supp(A)= supp(B)= supp(C).

Proof. Given that A has constant degree d , we claim that for every 1≤ n ≤ d ,

supp(A)= supp(B[n])t supp(C [d−n+1]).

Fix 1≤ n ≤ d and suppose P ∈ supp(B[n])∩ supp(C [d−n+1]), so deg(qP(B))≥ n
and deg(qP(C))≥ d−n+1. By Proposition 7.10, deg(qP(A))≥ d+1, which is a
contradiction. So far we’ve proven supp(A)⊃ supp(B[n])t supp(C [d−n+1]). Now,
if P ∈ supp(A)− supp(B[n]), we get deg(qP(A))= d and deg(qP(B))≤ n− 1. It
follows that deg(qP(C))≥ d−n+1, so P ∈ supp(C [d−n+1]) and the claim follows.

Assuming A has connected support, we note that for every 1 ≤ n ≤ d, either
supp(B[n]) = supp(A) or supp(B[n]) = ∅. In particular, taking n = deg(B) and
then n = 1 shows that supp(A) = supp(B[deg(B)]) = supp(B). Similarly, we see
supp(A)= supp(C [deg(C)])= supp(C) by letting n= d+1−deg(C) and then n= 1.
In other words, supp(A)= supp(B)= supp(C) and B,C have constant degree. �

9. Quasi-Galois theory and tensor triangular geometry

Let A be a separable ring in K and suppose 0 is a finite group of ring automorphisms
of A. Then, 0 acts on A-ModK (see Remark 1.14) and therefore on the spectrum
Spc(A-ModK).

Theorem 9.1. Suppose A is quasi-Galois in K with group 0. Then,

supp(A)∼= Spc(A-ModK)/0.

Proof. Diagram (5.2) yields a diagram of topological spaces

Spc(A-ModK)

Spc((A⊗ A)-ModK) Spc(
∏
γ∈0 Aγ -ModK),

f1

f2
∼=

l

g2

g1
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where f1, f2, g1, g2 and l are the maps induced by extension-of-scalars along the
morphisms 1⊗η, η⊗1, ϕ1, ϕ2 and λ respectively (in the notation of Definition 5.1).
That is, g1, g2 :

⊔
γ∈0 Spc(Aγ -ModK)→ Spc(A-ModK) are continuous maps such

that g1 inclγ is the identity and g2 inclγ is the action of γ on Spc(A-ModK). Now,
the coequalizer (7.7) turns into⊔

γ∈0

Spc(Aγ -ModK) Spc(A-ModK) supp(A),
g1

g2

f A

which shows supp(A)∼= Spc(A-ModK)/0. �

Remark 9.2. Let A be a ring in K. We call A nil-faithful if FA( f )= 0 implies f
is ⊗-nilpotent for any morphism f in K. By [Balmer 2016b, Proposition 3.15], A
is nil-faithful if and only if supp(A)= Spc(K). If A is nil-faithful and quasi-Galois
in K with group 0, Theorem 9.1 recovers Spc(K) as the 0-orbits of Spc(A-ModK).

The following is a tensor-triangular version of Lemma 6.4.

Lemma 9.3. Let A be a separable ring in K that splits itself. If A1 and A2 are
indecomposable ring factors of A, then supp(A1)∩ supp(A2)=∅ or A1 ∼= A2.

Proof. Let A1 and A2 be indecomposable ring factors of A and suppose A splits
itself. We know FA1(A)∼= 1× deg(A)

A1
and hence FA1(A2)∼= 1×t

A1
for some t ≥ 0. In

fact, t = 0 only if supp(A1⊗ A2) = supp(A1)∩ supp(A2) = ∅. If t > 0, we can
find a ring morphism A2→ A1 by Proposition 4.2. Now Lemma 6.4 shows this is
an isomorphism. �

Proposition 9.4. Suppose K is nice. Let A be a separable ring in K with connected
support supp(A) and constant degree. Then the splitting ring A∗ of A is unique up
to isomorphism and supp(A)= supp(A∗).

Proof. Let d := deg(A). Recall that by Proposition 6.9, the splitting rings of A
are exactly the indecomposable ring factors of A[d]. We now prove that any two
indecomposable ring factors, say A1 and A2, of A[d] are isomorphic. Note that
supp(A)= supp(A[d]) is connected and A[d] has constant degree d! by Remark 6.3,
so that supp(A) = supp(A1) = supp(A2) by Proposition 8.5. Now, Lemma 9.3
shows A1 and A2 are isomorphic. �

Remark 9.5. In what follows, we consider a separable ring A in K and assume
the spectrum Spc(A-ModK) is connected, which implies that A is indecomposable.
Moreover, if the tt-category A-ModK is rigid, Spc(A-ModK) is connected if and
only if A is indecomposable, see [Balmer 2007, Theorem 2.11]. We note that many
tt-categories are rigid, including all examples given in this paper.

Proposition 9.6. Suppose K is nice. Let A be a separable ring in K and suppose
Spc(A-ModK) is connected. Let B be an A-algebra with supp(A)= supp(B). If B
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is quasi-Galois in K with group 0, then B splits A. In particular, the degree of A in
K is constant.

Proof. If B is quasi-Galois in K for some group 0, then all of its indecom-
posable ring factors are also quasi-Galois by Corollary 5.10. What is more,
supp(B) = f A(Spc(A-ModK)) is connected, so the indecomposable ring factors
of B have support equal to supp(B) by Proposition 8.5. It thus suffices to prove
the proposition when B is indecomposable. Now, FA(B) is quasi-Galois by
Lemma 5.7 and supp(FA(B))= f −1

A (supp(B))= Spc(A-ModK) is connected. By
Corollary 2.4, B is an indecomposable ring factor of FA(B), and all ring factors
of FA(B) have equal support by Proposition 8.5. In fact, Lemma 9.3 shows that
FA(B)∼= B×t for some t ≥ 1. Forgetting the A-action, we get A⊗ B ∼= B×t in K

and FB(A⊗ B)∼= FB(B×t)∼= 1×dt
B in B-ModK, where d := deg(B). On the other

hand, FB(A⊗B)∼= FB(A)⊗B 1×d
B
∼= (FB(A))×d . It follows that FB(A)∼= 1×t

B , with
t = deg(A) by Lemma 7.11. �

Theorem 9.7 (Quasi-Galois closure). Suppose K is nice. Let A be a separable ring
of constant degree in K and suppose Spc(A-ModK) is connected. The splitting ring
A∗ is the quasi-Galois closure of A. That is, A∗ is quasi-Galois in K, supp(A)=
supp(A∗) and for any A-algebra B that is quasi-Galois in K with supp(A) =
supp(B), there exists a ring morphism A∗→ B.

Proof. Corollary 6.10 and Proposition 9.4 show that A∗ is quasi-Galois in K and
supp(A)= supp(A∗). Suppose there is an A-algebra B as above. By Proposition 9.6,
B splits A, so there exists a ring morphism A[deg(A)]

→ B. The result now follows
because A[deg(A)] ∼= A∗× · · ·× A∗ by Proposition 9.4. �

Remark 9.8. By Proposition 9.6, the assumption that A has constant degree is
necessary for the existence of a quasi-Galois closure A∗ of A with supp(A) =
supp(A∗).

10. Some modular representation theory

Let G be a finite group and k a field with characteristic p> 0 dividing |G|. We write
kG-mod for the category of finitely generated left kG-modules. This category is
nice, idempotent-complete and symmetric monoidal: the tensor is ⊗k with diagonal
G-action, and the unit is the trivial representation 1= k.

We will also work in the bounded derived category Db(kG-mod) and stable cate-
gory kG-stab, which are nice tt-categories. The spectrum Spc(Db(kG-mod)) of the
derived category is homeomorphic to the homogeneous spectrum Spech(H •(G, k))
of the graded-commutative cohomology ring H •(G, k). Accordingly, the spectrum
Spc(kG-stab) of the stable category is homeomorphic to the projective support
variety VG(k) := Proj(H •(G, k)); see [Benson et al. 1997].



1914 Bregje Pauwels

Notation 10.1. Let H ≤ G be a subgroup. The kG-module AH = AG
H := k(G/H)

is the free k-module with basis G/H and left G-action given by g · [x] = [gx] for
every [x] ∈ G/H . The kG-linear map µ : AH ⊗k AH → AH is given by

γ ⊗ γ ′ 7→

{
γ if γ = γ ′,
0 if γ 6= γ ′,

for all γ, γ ′ ∈ G/H .

We define η : 1→ AH by sending 1 ∈ k to
∑

γ∈G/H γ ∈ k(G/H).
We will write K(G) to denote any of kG-mod, Db(kG-mod) or kG-stab and

consider the object AH in each of these categories.

Proposition 10.2 [Balmer 2015, Proposition 3.16 and Theorem 4.4]. Let H ≤ G
be a subgroup. Then,

(a) The triple (AH , µ, η) is a commutative separable ring object in K(G).

(b) There is an equivalence of categories

9G
H : K(H)−→

' AH -ModK(G)

sending V ∈ K(H) to kG⊗kH V ∈ K(G) with AH -action

% : k(G/H)⊗k (kG⊗kH V )→ kG⊗kH V

given for γ ∈ G/H , g ∈ G and v ∈ V by γ ⊗ g⊗ v→
{

g⊗ v if g ∈ γ ,
0 if g /∈ γ .

(c) The following diagram commutes up to isomorphism:

K(G)

K(H) AH -ModK(G).

FAHResG
H

9G
H

'

So, every subgroup H ≤ G provides an indecomposable separable ring AH

in K(G), along which extension-of-scalars becomes restriction to the subgroup.

Proposition 10.3. The ring AH has degree [G : H ] in kG-mod and Db(kG-mod).

Proof. Seeing how the fiber functor ResG
{1} is conservative, we get

degkG-mod(AH )= degk-mod(ResG
{1}(AH ))= [G : H ].

The degree of AH in Db(kG-mod) is computed in [Balmer 2014, Corollary 4.5]. �

Lemma 10.4. Let K(G) denote Db(kG-mod) or kG-stab and consider subgroups
K ≤ H ≤ G. Then supp(AH ) = supp(AK ) ⊂ Spc(K(G)) if and only if every
elementary abelian p-subgroup of H is conjugate in G to a subgroup of K .
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Proof. This follows from [Evens 1991, Theorem 9.1.3], seeing how supp(AH )=

(ResG
H )
∗(Spc(K(H))) can be written as a union of disjoint pieces coming from

conjugacy classes in G of elementary abelian p-subgroups of H . �

Notation 10.5. For any two subgroups H, K ≤ G, we write H [g]K for the equiv-
alence class of g ∈ G in H −G/K , just [g] if the context is clear. We will write
H g
:= g−1 Hg for the conjugate subgroups of H .

Remark 10.6. Let H, K ≤ G be subgroups and choose a complete set T ⊂ G of
representatives for H\G/K . Consider the Mackey isomorphism of G-sets,∐

g∈T

G/(K ∩ H g)−→
∼= G/K ×G/H,

sending [x]∈G/(K∩H g) to ([x]K , [xg−1
]H ). The corresponding ring isomorphism

τ : AK ⊗ AH −→
∼=
∏
g∈T

AK∩H g

in K(G) [Balmer 2016b, Construction 4.1] is given for g ∈ T and x, y ∈ G by

prgτ([x]K ⊗[y]H )=
{
[xk]K∩H g if H [g]K = H [y−1x]K ,
0 otherwise,

with k ∈ K such that y−1xkg−1
∈ H . This yields an AK -algebra structure on AK∩H t

for every t ∈ T , given by

AK
1⊗η
−−→ AK ⊗ AH ∼=

∏
g∈T

AK∩H g
prt
−→ AK∩H t ,

which sends [x]K ∈ G/K to ∑
[k]∈K/K∩H t

[xk]K∩H t ∈ AK∩H t .

In the notation of Proposition 10.2(b), this just means AK∩H t = 9G
K (A

K
K∩H t ) in

AK -ModK(G). In other words, τ defines an isomorphism

FAK (AH )∼=9
G
K

(∏
g∈T

AK
K∩H g

)
of rings in AK -ModK(G).

Lemma 10.7. Let H < G. Suppose x, g1, g2, . . . , gn ∈ G and 1≤ i ≤ n. Then

H [x]H∩H g1∩···∩H gn = H [gi ]H∩H g1∩···∩H gn

if and only if H [x] = H [gi ].



1916 Bregje Pauwels

Proof. It suffices to prove that for x, y ∈G, we have H [x]H y = H [y]H y if and only if
H [x] = H [y]. This follows because for [x] = [y] in H−G/H y , there are h, h′ ∈ H
with x = hy(y−1h′y)= hh′y. �

Notation 10.8. We fix a subgroup H < G and a complete set S ⊂ G of representa-
tives for H −G/H . Likewise, if g1, g2, . . . , gn ∈ G we will write Sg1,g2,...,gn ⊂ G
to denote some complete set of representatives for H −G/H ∩ H g1 ∩ · · · ∩ H gn .

Recall that K(G) can denote kG-mod, Db(kG-mod) or kG-stab.

Lemma 10.9. Let 1≤ n < [G : H ]. There is an isomorphism of rings

A[n+1]
H
∼=

∏
g1,...,gn

AH∩H g1∩···∩H gn

in K(G), where the product runs over all g1 ∈ S and gi ∈ Sg1,...,gi−1 for 2 ≤ i ≤ n
with H [1], H [g1], . . . , H [gn] distinct in H\G.

Proof. By Remark 10.6, we know that

AH ⊗ AH ∼=
∏
g∈S

AH∩H g = AH ×
∏
g∈S

H [g]6=H [1]

AH∩H g ,

so Proposition 2.1 shows

A[2]H
∼=

∏
g∈S

H [g]6=H [1]

AH∩H g in K(G).

Now suppose
A[n]H
∼=

∏
g1,...,gn−1

AH∩H g1∩···∩H gn−1

for some 1≤ n< [G : H ], where the product runs over all g1 ∈ S and gi ∈ Sg1,...,gi−1

for 2≤ i ≤ n− 1 with H [1], H [g1], . . . , H [gn−1] distinct in H\G. Then

A[n]H ⊗ AH ∼=
∏

g1,...,gn−1

AH∩H g1∩···∩H gn−1 ⊗ AH ∼=
∏

g1,...,gn−1

∏
gn∈Sg1,...,gn−1

AH∩H g1∩···∩H gn ,

again by Remark 10.6. We note that every gn ∈ Sg1,...,gn−1 with either H [gn] = H [1]
or H [gn] = H [gi ] for 1≤ i ≤ n− 1 provides a copy of A[n]H . By Lemma 10.7, this
happens exactly n times. Hence,

A[n]H ⊗ AH ∼=
(
A[n]H

)×n
×

∏
g1,...,gn

AH∩H g1∩···∩H gn ,

where the product runs over all g1 ∈ S and gi ∈ Sg1,...,gi−1 for 2≤ i ≤ n with distinct
H [1], H [g1], . . . , H [gn] in H\G. The lemma follows by Proposition 3.5(a). �

Corollary 10.10. Let d := [G : H ]. There is an isomorphism of rings

A[d]H
∼=
(
AnormG

H

)×k(G,H)
, where k(G, H)= d!

[G : normG
H ]

,
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in kG-mod and Db(kG-mod). Here, normG
H :=

⋂
g∈G

g−1 Hg is the normal core of H
in G.

Proof. From the above lemma, we know

A[d]H
∼=

∏
g1,...,gd−1

AH∩H g1∩···∩H gd−1 ,

where the product runs over some g1, . . . gd−1 ∈ G with

{H [1], H [g1], . . . , H [gd−1]} = H −G.

This shows A[d]H
∼= A×t

normG
H

for some t ≥ 1. Now, deg(AnormG
H
)= [G : normG

H ] and
deg(A[d]H )= d! by Remark 6.3, so t = d!/[G : normG

H ] by Lemma 3.8(c). �

Corollary 10.11. The ring AH in Db(kG-mod) has constant degree [G : H ] if and
only if normG

H contains every elementary abelian p-subgroup of H. In that case, its
quasi-Galois closure is AnormG

H
. Furthermore, AH is quasi-Galois in Db(kG-mod)

if and only if H is normal in G.

Proof. By Lemma 8.2, AH has constant degree [G : H ] in Db(kG-mod) if and
only if supp(A[d]) = supp(A) ⊂ Spc(Db(kG-mod)). Hence, the first statement
follows immediately from Lemma 10.4 and Corollary 10.10. By Proposition 6.9,
the splitting ring of AH is AnormG

H
, so the second statement is Theorem 9.7. Since

AH is an indecomposable ring, it is quasi-Galois if and only if it is its own splitting
ring. Thus AH is quasi-Galois if and only if AnormG

H
∼= AH , which yields normG

H = H
by comparing degrees. �

Remark 10.12. Let H ≤ G be a subgroup. Recall that AH ∼= 0 in kG-stab if and
only if p does not divide |H |. On the other hand, AH ∼= k in kG-stab if and only
if H is strongly p-embedded in G, that is p divides |H | and p does not divide
|H ∩ H g

| if g ∈ G− H .

Proposition 10.13. Let H ≤ G and consider the ring AH in kG-stab. Then,

(a) The degree of AH is the greatest 0≤ n ≤ [G : H ] such that there exist distinct
[g1], . . . , [gn] in H\G with p dividing |H g1 ∩ · · · ∩ H gn |.

(b) The ring AH is quasi-Galois if and only if p divides |H | and p does not divide
|H ∩ H g

∩ H gh
| whenever g ∈ G− H and h ∈ H − H g.

(c) If AH has degree n, the degree is constant if and only if there exist distinct
[g1], . . . , [gn] in H\G such that H g1 ∩ · · · ∩ H gn contains a G-conjugate of
every elementary abelian p-subgroup of H.
In that case, AH has quasi-Galois closure given by AH g1∩···∩H gn .

Proof. For (a), recall that deg(AH ) is the greatest n such that A[n]H 6= 0, thus such that
there exist distinct H [1], H [g1], . . . , H [gn−1] with |H ∩H g1 ∩· · ·∩H gn−1 | divisible
by p.



1918 Bregje Pauwels

To show (b), recall that FAH (AH ) ∼= 9
G
H

(∏
g∈S AH

H∩H g

)
by Remark 10.6. It

follows that FAH (AH )∼= 1× deg(AH )
AH

in AH -ModkG-stab if and only if∏
g∈S

AH
H∩H g

∼= k× deg(AH )

in kH -stab. So, AH is quasi-Galois in kG-stab if and only if AH 6= 0 and for every
g ∈ G, either AH

H∩H g = 0 or AH
H∩H g

∼= k in kH -stab. By Remark 10.12, this means
either p does not divide |H ∩ H g

|, or p divides |H ∩ H g
| but does not divide

|H∩H g
∩H gh

| when h ∈ H−H g. Equivalently, p does not divide |H∩H g
∩H gh

|

whenever g ∈ G− H and h ∈ H − H g.
For (c), suppose AH has constant degree n. By Proposition 9.4, any indecom-

posable ring factor of A[n]H is isomorphic to the splitting ring A∗H , so Lemma 10.9
shows that the quasi-Galois closure is given by A∗H ∼= AH g1∩···∩H gn for any dis-
tinct H [g1], . . . , H [gn] with |H g1 ∩ · · · ∩ H gn | divisible by p. Then, supp(AH ) =

supp(A∗H )= supp(AH g1∩···∩H gn ) so H g1∩· · ·∩H gn contains a G-conjugate of every
elementary abelian p-subgroup of H . On the other hand, if there exist distinct
[g1], . . . , [gn] in H\G such that H g1 ∩ · · · ∩ H gn contains a G-conjugate of every
elementary abelian p-subgroup of H , then supp(A[n]H ) = supp(AH g1∩···∩H gn ) =

supp(AH ), so the degree of AH is constant. �

Example 10.14. Let p = 2 and suppose G = S3 is the symmetric group on 3
elements {1, 2, 3}. Consider the subgroup H := {( ), (1 2)} ∼= S2 of permutations
fixing {3}. Its conjugate subgroups in G are the subgroups of permutations fixing
{1} and {2} respectively, so normG

H = {( )}. Now, AH is a ring of degree 3 in
Db(kG-mod), and we immediately see that supp(AH )=Spc(Db(kG-mod)) because
p does not divide [G : H ]. Seeing how supp(A[3]H )⊂ Spc(Db(kG-mod)) contains
only one point, the ring AH does not have constant degree in Db(kG-mod). On the
other hand, the ring AH considered in kG-stab is quasi-Galois of degree 1, since
H is strongly p-embedded in G.

Example 10.15. Let p = 2 and suppose G = S4 is the symmetric group on 4
elements {1, 2, 3, 4}. If H ∼= S3 is the subgroup of permutations fixing {4}, the
ring AH in kG-stab has constant degree 2. Indeed, the intersections H ∩ H g

with g ∈ G − H each fix two elements of {1, 2, 3, 4} pointwise, so p does not
divide [H : H ∩ H g

]; thus supp(A[2]H )= supp(AH ). Furthermore, the intersections
H∩H g1∩H g2 with [1], [g1], [g2] distinct in H\G are trivial, so A[3]H =0 in kG-stab.
The quasi-Galois closure of AH in kG-stab is AS2 , with S2 embedded in H .

Acknowledgement

I am very thankful to my advisor Paul Balmer for valuable ideas and instructive
comments. I’d also like to thank the referee for detailed and very helpful suggestions.



Quasi-Galois theory in symmetric monoidal categories 1919

References

[Auslander and Goldman 1960] M. Auslander and O. Goldman, “The Brauer group of a commutative
ring”, Trans. Amer. Math. Soc. 97 (1960), 367–409. MR

[Baker and Richter 2008] A. Baker and B. Richter, “Galois extensions of Lubin–Tate spectra”,
Homology Homotopy Appl. 10:3 (2008), 27–43. MR Zbl

[Balmer 2005] P. Balmer, “The spectrum of prime ideals in tensor triangulated categories”, J. Reine
Angew. Math. 588 (2005), 149–168. MR Zbl

[Balmer 2007] P. Balmer, “Supports and filtrations in algebraic geometry and modular representation
theory”, Amer. J. Math. 129:5 (2007), 1227–1250. MR Zbl

[Balmer 2011] P. Balmer, “Separability and triangulated categories”, Adv. Math. 226:5 (2011), 4352–
4372. MR Zbl

[Balmer 2014] P. Balmer, “Splitting tower and degree of tt-rings”, Algebra Number Theory 8:3 (2014),
767–779. MR Zbl

[Balmer 2015] P. Balmer, “Stacks of group representations”, J. Eur. Math. Soc. (JEMS) 17:1 (2015),
189–228. MR Zbl

[Balmer 2016a] P. Balmer, “The derived category of an étale extension and the separable Neeman–
Thomason theorem”, J. Inst. Math. Jussieu 15:3 (2016), 613–623. MR Zbl

[Balmer 2016b] P. Balmer, “Separable extensions in tensor-triangular geometry and generalized
Quillen stratification”, Ann. Sci. Éc. Norm. Supér. (4) 49:4 (2016), 907–925. MR Zbl

[Balmer and Schlichting 2001] P. Balmer and M. Schlichting, “Idempotent completion of triangulated
categories”, J. Algebra 236:2 (2001), 819–834. MR Zbl

[Balmer et al. 2015] P. Balmer, I. Dell’Ambrogio, and B. Sanders, “Restriction to finite-index
subgroups as étale extensions in topology, KK-theory and geometry”, Algebr. Geom. Topol. 15:5
(2015), 3025–3047. MR

[Benson et al. 1997] D. J. Benson, J. F. Carlson, and J. Rickard, “Thick subcategories of the stable
module category”, Fund. Math. 153:1 (1997), 59–80. MR Zbl

[Borceux and Janelidze 2001] F. Borceux and G. Janelidze, Galois theories, Cambridge Studies in
Advanced Mathematics 72, Cambridge University Press, 2001. MR Zbl

[Bourbaki 1981] N. Bourbaki, Éléments de mathématique, Lecture Notes in Mathematics 864,
Masson, Paris, 1981. MR Zbl

[Chase and Sweedler 1969] S. U. Chase and M. E. Sweedler, Hopf algebras and Galois theory,
Lecture Notes in Mathematics 97, Springer, Berlin, 1969. MR Zbl

[Chase et al. 1965] S. U. Chase, D. K. Harrison, and A. Rosenberg, “Galois theory and Galois
cohomology of commutative rings”, pp. 15–33 Mem. Amer. Math. Soc. No. 52, 1965. MR Zbl

[DeMeyer and Ingraham 1971] F. DeMeyer and E. Ingraham, Separable algebras over commutative
rings, Lecture Notes in Mathematics 181, Springer, Berlin, 1971. MR Zbl

[Eilenberg and Moore 1965] S. Eilenberg and J. C. Moore, “Foundations of relative homological
algebra”, pp. 39 Mem. Amer. Math. Soc. No. 55, 1965. MR Zbl

[Evens 1991] L. Evens, The cohomology of groups, Clarendon, New York, 1991. MR Zbl

[Hess 2009] K. Hess, “Homotopic Hopf–Galois extensions: foundations and examples”, pp. 79–132
in New topological contexts for Galois theory and algebraic geometry (BIRS 2008) (Banff, 2008),
edited by A. Baker and B. Richter, Geom. Topol. Monogr. 16, Geom. Topol. Publ., Coventry, 2009.
MR Zbl

http://dx.doi.org/10.2307/1993378
http://dx.doi.org/10.2307/1993378
http://msp.org/idx/mr/0121392
http://dx.doi.org/10.4310/HHA.2008.v10.n3.a3
http://msp.org/idx/mr/2475616
http://msp.org/idx/zbl/1175.55007
http://dx.doi.org/10.1515/crll.2005.2005.588.149
http://msp.org/idx/mr/2196732
http://msp.org/idx/zbl/1080.18007
http://dx.doi.org/10.1353/ajm.2007.0030
http://dx.doi.org/10.1353/ajm.2007.0030
http://msp.org/idx/mr/2354319
http://msp.org/idx/zbl/1130.18005
http://dx.doi.org/10.1016/j.aim.2010.12.003
http://msp.org/idx/mr/2770453
http://msp.org/idx/zbl/1236.18013
http://dx.doi.org/10.2140/ant.2014.8.767
http://msp.org/idx/mr/3218809
http://msp.org/idx/zbl/1305.18047
http://dx.doi.org/10.4171/JEMS/501
http://msp.org/idx/mr/3312406
http://msp.org/idx/zbl/1351.20004
http://dx.doi.org/10.1017/S1474748014000449
http://dx.doi.org/10.1017/S1474748014000449
http://msp.org/idx/mr/3505660
http://msp.org/idx/zbl/1346.14044
http://dx.doi.org/10.24033/asens.2298
http://dx.doi.org/10.24033/asens.2298
http://msp.org/idx/mr/3552016
http://msp.org/idx/zbl/06680008
http://dx.doi.org/10.1006/jabr.2000.8529
http://dx.doi.org/10.1006/jabr.2000.8529
http://msp.org/idx/mr/1813503
http://msp.org/idx/zbl/0977.18009
http://dx.doi.org/10.2140/agt.2015.15.3025
http://dx.doi.org/10.2140/agt.2015.15.3025
http://msp.org/idx/mr/3426702
http://msp.org/idx/mr/1450996
http://msp.org/idx/zbl/0886.20007
http://dx.doi.org/10.1017/CBO9780511619939
http://msp.org/idx/mr/1822890
http://msp.org/idx/zbl/0978.12004
http://msp.org/idx/mr/643362
http://msp.org/idx/zbl/0498.12001
http://msp.org/idx/mr/0260724
http://msp.org/idx/zbl/0197.01403
http://msp.org/idx/mr/0195922
http://msp.org/idx/zbl/0143.05902
http://msp.org/idx/mr/0280479
http://msp.org/idx/zbl/0215.36602
http://msp.org/idx/mr/0178036
http://msp.org/idx/zbl/0129.01101
http://msp.org/idx/mr/1144017
http://msp.org/idx/zbl/0742.20050
http://dx.doi.org/10.2140/gtm.2009.16.79
http://msp.org/idx/mr/2544387
http://msp.org/idx/zbl/1196.55010


1920 Bregje Pauwels

[Kreimer 1967] H. F. Kreimer, “A Galois theory for noncommutative rings”, Trans. Amer. Math. Soc.
127 (1967), 29–41. MR Zbl

[Mac Lane 1998] S. Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts
in Mathematics 5, Springer, New York, 1998. MR Zbl

[Neeman 2015] A. Neeman, “Separable monoids in Dqc(X)”, J. Reine Angew. Math. (2015).

[Pauwels 2015] B. Pauwels, Quasi-Galois theory in triangulated categories, Ph.D. thesis, University
of California, Los Angeles, 2015, Available at https://search.proquest.com/docview/1732406955.

[Rognes 2008] J. Rognes, “Galois extensions of structured ring spectra: Stably dualizable groups”,
pp. viii+137 Mem. Amer. Math. Soc. 192, 2008. MR Zbl

[SGA 1 1971] A. Grothendieck, Revêtements étales et groupe fondamental (Séminaire de Géométrie
Algébrique du Bois Marie 1960–1961), vol. 1960/61, Lecture Notes in Math. 224, Springer, Berlin,
1971. MR

Communicated by Dave Benson
Received 2016-09-01 Revised 2017-05-29 Accepted 2017-07-09

bregje.pauwels@anu.edu.au Mathematical Sciences Institute, The Australian National
University, Acton ACT 2601, Australia

mathematical sciences publishers msp

http://dx.doi.org/10.2307/1994629
http://msp.org/idx/mr/0215883
http://msp.org/idx/zbl/0241.16019
http://msp.org/idx/mr/1712872
http://msp.org/idx/zbl/0906.18001
http://dx.doi.org/10.1515/crll.2005.2005.588.149
https://search.proquest.com/docview/1732406955
http://dx.doi.org/10.1090/memo/0898
http://msp.org/idx/mr/2387923
http://msp.org/idx/zbl/1166.55001
http://msp.org/idx/mr/0217087
mailto:bregje.pauwels@anu.edu.au
http://msp.org


Algebra & Number Theory
msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen
Massachusetts Institute of Technology

Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Richard E. Borcherds University of California, Berkeley, USA

J-L. Colliot-Thélène CNRS, Université Paris-Sud, France

Brian D. Conrad Stanford University, USA

Samit Dasgupta University of California, Santa Cruz, USA

Hélène Esnault Freie Universität Berlin, Germany

Gavril Farkas Humboldt Universität zu Berlin, Germany

Hubert Flenner Ruhr-Universität, Germany

Sergey Fomin University of Michigan, USA

Edward Frenkel University of California, Berkeley, USA

Andrew Granville Université de Montréal, Canada

Joseph Gubeladze San Francisco State University, USA

Roger Heath-Brown Oxford University, UK

Craig Huneke University of Virginia, USA

Kiran S. Kedlaya Univ. of California, San Diego, USA

János Kollár Princeton University, USA

Yuri Manin Northwestern University, USA

Philippe Michel École Polytechnique Fédérale de Lausanne

Susan Montgomery University of Southern California, USA

Shigefumi Mori RIMS, Kyoto University, Japan

Martin Olsson University of California, Berkeley, USA

Raman Parimala Emory University, USA

Jonathan Pila University of Oxford, UK

Anand Pillay University of Notre Dame, USA

Michael Rapoport Universität Bonn, Germany

Victor Reiner University of Minnesota, USA

Peter Sarnak Princeton University, USA

Joseph H. Silverman Brown University, USA

Michael Singer North Carolina State University, USA

Christopher Skinner Princeton University, USA

Vasudevan Srinivas Tata Inst. of Fund. Research, India

J. Toby Stafford University of Michigan, USA

Pham Huu Tiep University of Arizona, USA

Ravi Vakil Stanford University, USA

Michel van den Bergh Hasselt University, Belgium

Marie-France Vignéras Université Paris VII, France

Kei-Ichi Watanabe Nihon University, Japan

Shou-Wu Zhang Princeton University, USA

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2017 is US $325/year for the electronic version, and $520/year (+$55, if shipping outside the US)
for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans
Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage
paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2017 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/ant
mailto:production@msp.org
http://dx.doi.org/10.2140/ant
http://msp.org/
http://msp.org/


Algebra & Number Theory
Volume 11 No. 8 2017

1739On `-torsion in class groups of number fields
JORDAN ELLENBERG, LILLIAN B. PIERCE and MELANIE MATCHETT WOOD

1779Torsion orders of complete intersections
ANDRE CHATZISTAMATIOU and MARC LEVINE

1837Integral canonical models for automorphic vector bundles of abelian type
TOM LOVERING

1891Quasi-Galois theory in symmetric monoidal categories
BREGJE PAUWELS

1921p-rigidity and Iwasawa µ-invariants
ASHAY A. BURUNGALE and HARUZO HIDA

1953A Mordell–Weil theorem for cubic hypersurfaces of high dimension
STEFANOS PAPANIKOLOPOULOS and SAMIR SIKSEK

A
lgebra

&
N

um
ber

Theory
2017

Vol.11,
N

o.8

http://dx.doi.org/10.2140/ant.2017.11.1739
http://dx.doi.org/10.2140/ant.2017.11.1779
http://dx.doi.org/10.2140/ant.2017.11.1837
http://dx.doi.org/10.2140/ant.2017.11.1891
http://dx.doi.org/10.2140/ant.2017.11.1921
http://dx.doi.org/10.2140/ant.2017.11.1953

	Introduction
	1. The Eilenberg–Moore category
	2. Separable rings
	3. Degree of a separable ring
	4. Counting ring morphisms
	5. Quasi-Galois theory
	6. Splitting rings
	7. Tensor triangular geometry
	8. Rings of constant degree
	9. Quasi-Galois theory and tensor triangular geometry
	10. Some modular representation theory
	Acknowledgement
	References
	
	

