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heuristics, and roots of unity

Derek Garton

The Cohen–Lenstra–Martinet heuristics predict the frequency with which a fixed
finite abelian group appears as an ideal class group of an extension of number
fields, for certain sets of extensions of a base field. Recently, Malle found
numerical evidence suggesting that their proposed frequency is incorrect when
there are unexpected roots of unity in the base field of these extensions. Moreover,
Malle proposed a new frequency, which is a much better match for his data. We
present a random matrix heuristic (coming from function fields) that leads to a
function field version of Malle’s conjecture (as well as generalizations of it).

1. Introduction

1.1. Cohen–Lenstra–Martinet and Malle. We start with Cohen and Lenstra’s fa-
mous heuristic principle concerning the distribution of ideal class groups of quadratic
number fields. We fix an odd prime `, to be used throughout the paper.

Heuristic 1.1.1 [Cohen and Lenstra 1984]. A finite abelian `-group should appear
as the `-Sylow subgroup of the ideal class group of an imaginary quadratic extension
of Q with frequency inversely proportional to the order of its automorphism group.

With a bit more notation, we can reframe this heuristic. Let G be the poset of
isomorphism classes of finite abelian `-groups and for any number field K , let
cl(K ) denote the ideal class group of K . For any group G, let G[`∞] denote its
`-Sylow subgroup. Now, since

∑
A∈G 1/|Aut A| =

∏
∞

i=1 (1− `
−i )−1 (a fact first

proved by Hall [1938]), the map G→ R given by A 7→ |Aut A|−1∏∞
i=1 (1− `

−i )

defines a discrete probability distribution on G. Heuristic 1.1.1 is the claim that the
statistics of this distribution match the statistics of `-Sylow subgroups of imaginary
quadratic extensions (when ordered by fundamental discriminant). In other words,
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Heuristic 1.1.1 is equivalent to the following assertion: for any A ∈ G,

lim
X→∞

∣∣{0≤ D ≤ X | −D a fundamental discriminant, cl(Q(
√
−D))[`∞] ' A}

∣∣∣∣{0≤ D ≤ X | −D a fundamental discriminant}
∣∣

=
1

|Aut A|

∞∏
i=1

(1− `−i ).

(This assertion remains unproven; in fact, this limit is not even known to exist.)
This heuristic explains many previously observed tendencies of class groups of
imaginary quadratic fields; for example that their orders seem to be divisible by
three with probability

1−
∞∏

i=1

(1− 3−i )= 1
3 +

1
9 + · · · ≈ .44.

Cohen and Martinet [1990] extended their heuristics to include relative class
groups of finite extensions of arbitrary number fields, placing different distributions
on G depending on properties of the family of extensions they study. Once again,
they proved that these distributions imply many numerical observations, thereby
obtaining a new family of conjectures. (Recall that relative ideal class groups are
defined as follows: if K/K0 is an extension of number fields, the relative class
group cl(K/K0) is the kernel of the norm map NK/K0 : cl(K )→ cl(K0).)

However, Malle [2008] presented new computational data that called into question
some of the Cohen–Lenstra–Martinet conjectures. For example, he studied the
3-parts of the relative class groups of quadratic extensions of Q(

√
−3), which has

third roots of unity. Cohen, Lenstra and Martinet predicted that the class numbers
of such extensions should be coprime to 3 with probability

∞∏
i=2

(1− 3−i )≈ .840.

On the other hand, when Malle computed the class numbers of the first million of
these extensions with discriminant at least 1020, he discovered that the proportion
of them with class number coprime to 3 was about .852. He conjectured that the
proportion of all such class groups that have class number coprime to 3 should be
exactly

4
3

∞∏
i=1

(1+ 3−i )−1
≈ .852,

which is in much better agreement with his data. In a subsequent paper, Malle
[2010] presented more computational evidence calling into question more of the
Cohen–Lenstra–Martinet conjectures, once again when there are `th roots of unity
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in the base field. In that paper, he also presented a new family of distributions on G

to describe relative class groups when the base field of the extension has `th roots of
unity but not `2th roots of unity (see Conjecture 2.1 in [ibid.]). These distributions
on G imply rank statistics that seem to be a much better fit for his new data. A
special case of his conjecture is the following:

Conjecture 1.1.2 [Malle 2010]. Suppose that A∈G and that A has `-rank r . Let K0

be a number field with `th but not `2th roots of unity. Let S be the set of quadratic
extensions K/K0 with a fixed signature (with fixed relative unit rank u). Then

lim
X→∞

|{K ∈ S | |Disc K | ≤ X, cl(K/K0)[`
∞
] ' A}|

|{K ∈ S | |Disc K | ≤ X}|

=

∏u+r
i=u+1 (`

i
− 1)

`r(u+1)|A|u|Aut A|
·

∞∏
i=u+1

(1+ `−i )−1.

In this paper, we study a random matrix model of ideal class groups of function
fields when the base field has `th roots of unity (i.e., the function field analog
of the situation Malle studies in Conjecture 1.1.2). We compute the distributions
on G given by this matrix model in two cases (see Theorem 5.1.4): in the case
when the base field has `th roots of unity but not `2th roots of unity, and in the
case when the base field has `2th roots of unity but not `3th roots of unity. In the
former case, our distribution matches the distribution proposed by Malle. Moreover,
we compute all the moments of the distribution given by this matrix model in the
general case when the base case has `ξ th but not `ξ+1th roots of unity for any
ξ ∈ Z>0 (see Corollary 3.2.7).

The work in this paper is based on my Ph.D. dissertation [Garton 2012]. The
matrix distributions were computed independently in the Ph.D. dissertation of
M. Adam [2014b] as well as in [Adam 2014a]. They are also used in [Adam and
Malle 2015].

1.2. The function field case. Complementing the work described in Section 1.1,
investigators have been studying analogous phenomena in function fields defined
over finite fields. Friedman and Washington [1989] addressed the case of quadratic
extensions of the field Fpn (t) for a prime p 6= 2 and n ∈ Z>0. More precisely, if
f (t)∈Fpn [t] is monic of degree 2g+1 with distinct roots, let C f be the hyperelliptic
curve (defined over Fpn ) of genus g given by y2

= f (t). Note that the curve C f

has exactly one point at infinity, just as imaginary quadratic extensions of Q have
exactly one place at infinity. Thus, Pic0

Fpn (C f ) is isomorphic to the ideal class
group of the field extension

Fpn (t)
[√

f (t)
]
/Fpn (t).



152 Derek Garton

To study these groups, Friedman and Washington introduced a new heuristic
principle, one that comes from the geometry of hyperelliptic curves over finite

fields. Specifically, for f (t) ∈ Fpn [t] monic of degree 2g+ 1 with distinct roots,
let T`(C f ) be the `-adic Tate module of C f , which is a free 2g-dimensional Z`-
module. In addition, let Frobpn be the pn-power Frobenius map acting on T`(C f ).
Thinking of Frobpn as a matrix over Z`, it is well known that coker(Id−Frobpn ) is
isomorphic to the `-Sylow subgroup of Pic0

Fpn (C f ) (see the appendix of [Friedman
and Washington 1989] for a proof of this fact). The same authors conjectured that
the statistics of `-Sylow subgroups of ideal class groups of quadratic extensions of
Fpn (t) match the statistics of `-adic matrices. Specifically, if we let

F(g, pn, `, A) :=∣∣{ f ∈ Fpn [t] | f monic with distinct roots, deg f=2g+1,Pic0
Fpn (C f )[`

∞
] ' A}

∣∣∣∣{ f ∈ Fpn [t] | f monic with distinct roots, deg f = 2g+ 1}
∣∣ ,

then they proposed the following:

Heuristic 1.2.1 [Friedman and Washington 1989]. If A ∈ G, then

lim
g→∞

F(g, pn, `, A)= lim
g→∞

α2g({φ ∈Mat2g (Z`) | coker (Id−φ)' A}),

where α2g is the normalized Haar measure on Mat2g (Z`).

(See Sections 2.1 and 2.2 for more details on Haar measures.) Katz and Sarnak
[1999] vastly extended the philosophy of considering the action of Frobenius as a
random matrix, especially when the size of the base field is large. Friedman and
Washington show that the limit on the right-hand side of Heuristic 1.2.1 exists,
and that it defines exactly the same distribution on G as Cohen and Lenstra’s
original heuristic for imaginary quadratic extensions of Q. However, just as the
work of Malle calls into question the appropriateness of certain Cohen–Lenstra–
Martinet distributions, it also calls into question the appropriateness of Friedman and
Washington’s proposed distribution. Indeed, the Friedman–Washington heuristic
does not depend at all on the presence of `th roots of unity in the base field Fpn (t),
while Malle’s work suggests that distributions modeling `-Sylow subgroups of class
groups ought to change in the presence of `th roots of unity. Thus, the new data
of Malle suggests that Heuristic 1.2.1 might be flawed when Fpn (t) has `th roots
of unity.

A possible explanation for this flaw is that Frobpn is a symplectic similitude
with respect to the Weil pairing on T`(C f ). Indeed, it scales the Weil pairing
by pn , so when considered as a matrix, Frobpn ∈ GSp(p

n)

2g (Z`). (See Section 2.1
for more details on this notation.) Since the presence of `th roots of unity in
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Fpn (t) depends on the congruence class of pn (mod `), the set of symplectic simil-
itudes that scale the Weil pairing by pn does indeed change when Fpn (t) has `th
roots of unity. These facts led Friedman and Washington (and Achter [2008]) to
suggest:

Heuristic 1.2.2. If A ∈ G, then

lim
g→∞

F(g, pn, `, A)= lim
g→∞

µ
(pn)

2g ({φ ∈ GSp(p
n)

2g (Z`) | coker(Id−φ)' A}),

where µ(p
n)

2g is the unique normalized multiplicative Haar measure on Sp2g(Z`)

translated to GSp(p
n)

2g (Z`).

(Again, see Sections 2.1 and 2.2 for more details on Haar measures.) Friedman
and Washington hoped that this new heuristic would turn out to describe the same
distribution as Heuristic 1.2.1, but Achter [2006] proved that

lim
g→∞

µ
(pn)

2g

(
{φ ∈ GSp(1)2g (Z`) | coker(Id−φ)' {0}}

)
6= lim

g→∞
α2g

(
{φ ∈Mat2g(Z`) | coker(Id−φ)' {0}}

)
,

revealing that this was not the case, providing an early indication of the importance
of the presence of `th roots of unity in the base field. Achter used work of Katz
and Sarnak [1999] to prove a revised version of Heuristic 1.2.1:

Theorem 1.2.3 [Achter 2008]. If A ∈ G, then

lim
pn→∞

∣∣F(g, pn, `, A)−µ(p
n)

2g

(
{φ ∈ GSp(p

n)

2g (Z`) | coker(Id−φ)' A}
)∣∣= 0.

We remark that this limit in Theorem 1.2.3 leaves g fixed while letting pn increase,
whereas the limit in Heuristic 1.2.2 does the opposite.

The work of Ellenberg, Venkatesh and Westerland [Ellenberg et al. 2009] uses
the topology of Hurwitz spaces to study Heuristic 1.2.2. One consequence of their
work is that

lim
g→∞

lim
pn
→∞

pn
6≡1 (mod `)

F(g, pn, `, A)=
1

|Aut A|

∞∏
i=1

(1− `−i ).

Since pn
≡ 1 (mod `) exactly when Fpn (t) has `th roots of unity, this result only

addresses the case when the base field does not have `th roots of unity (and only
when pn

→∞). The remaining case is when pn
≡ 1 (mod `); that is, the case

where there are `th roots of unity in the base field. Conjecture 1.1.2 suggests that a
different distribution is needed to describe this case. In fact, Corollary 5.2.2 gives
such a distribution. Using Achter’s result (Theorem 1.2.3), Corollary 5.2.2 implies
the following theorem:
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Theorem 1.2.4. If A is a finite abelian `-group with `-rank r and `2-rank s, then

lim
g→∞

lim
pn
→∞

pn
≡1 (mod `ξ ),

pn
6≡1 (mod `ξ+1)

F(g, pn, `, A)

=


`

r(r−1)
2
· (`−1

; `−1)r ·

∏
∞

i=1 (1+ `
−i )−1

|Aut A|−1 if ξ = 1,

`
r(r−1)

2 +
s(s−1)

2 · (`−1
; `−1)s · (`

−1
; `−2)d r−s

2 e
·

∏
∞

i=1 (1+ `
−i )−1

|Aut A|−1 if ξ = 2,

where (`−1
; `− j )k is the `− j -Pochhammer symbol, defined for any j ∈ Z>0 and

k ∈ Z≥0 (see Notation 5.1.1).

Theorem 1.2.4 extends Conjecture 1.1.2 by including the case where Fpn (t) has
`2th roots of unity but not `3th roots of unity. Since imaginary hyperelliptic curves
have only one place at infinity, the function field version of Conjecture 1.1.2 should
set u = 0; making this substitution in Conjecture 1.1.2 yields the ξ = 1 case of
Theorem 1.2.4.

2. Preliminaries

2.1. Notation and definitions. As above, let ` be an odd prime and let G be the
poset of isomorphism classes of finite abelian `-groups, with the relation [A] ≤ [B]
if and only if there exists an injection A ↪→ B. (For notational simplicity, we will
conflate finite abelian `-groups and the equivalence classes containing them.) For
any A ∈ G, we denote the exponent of A by exp A. If i ∈ Z>0, let

rank`i A := dimF`(`
i−1 A/`i A).

We will abbreviate rank` A by rank A. If r1, . . . , ri−1 ∈ Z>0 and ri ∈ Z≥0, let
G(r1, . . . , ri ) be the following subposet of G:

G(r1, . . . , ri ) := {A ∈ G | rank` j A = r j for all j ∈ {1, . . . , i}}.

Next, for any ρ ∈ Z>0, set Rρ = Z`/`
ρZ` ' Z/`ρZ. For any g, ρ ∈ Z>0, let

〈 · , · 〉2g,ρ be the symplectic form on (Rρ)2g given by

�g :=

(
0 Idg

− Idg 0

)
with respect to the standard basis; note that 〈 · , · 〉2g,a : (Rρ)2g

× (Rρ)2g
→ (Rρ)

is Rρ-bilinear, alternating and nondegenerate. (See Theorem III.2 of [McDonald
1976] for more details on symplectic spaces.) Let 〈 · , · 〉2g be the analogous choice
of symplectic form on (Z`)2g. For any ring R and any g ∈ Z>0, if R2g has a
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symplectic form 〈 · , · 〉, then the symplectic group of R is

Sp2g(R)' Sp(R2g, 〈 · , · 〉)

= {φ ∈ GL(R2g) | 〈φ(x), φ( y)〉 = 〈x, y〉 for all x, y ∈ R2g
}.

Note that a different choice of symplectic form on R2g yields an isometric space,
so the choice is immaterial (see p. 188 of [McDonald 1976] for more details).
Similarly, the group of symplectic similitudes of R is

GSp2g(R)' GSp(R2g, 〈 · , · 〉)=
{
φ ∈ GL(R2g) | there exists m(φ) ∈ R×

such that 〈φ(x), φ( y)〉 = m(φ) · 〈x, y〉 for all x, y ∈ R2g}.
For concreteness, we will always assume that the rings (Rρ)2g and (Z`)2g are
equipped with the forms 〈 · , · 〉2g,ρ and 〈 · , · 〉2g fixed above. The map

m : GSp2g (R)→ R× : φ 7→ m(φ)

described above is a homomorphism called the multiplier map, and the element
m(φ) ∈ R× is called the multiplier of φ. For any g ∈ Z>0, let µ2g be the unique
Haar measure on Sp2g(Z`) satisfying µ2g(Sp2g(Z`))= 1. (We say a Haar measure
satisfying this last condition is normalized.) Note that µ2g is invariant under both
left and right multiplication since Sp2g(Z`) is a unimodular group. Finally, for any
g ∈ Z>0 and any unit x in a ring R, let GSp(x)2g (R)= m−1(x).

For any x ∈ (Z`)× and φ ∈GSp(x)2g (Z`) we define a measure µ(x)2g on GSp(x)2g (Z`)

as follows: for any µ2g-measurable subset S ⊆ Sp2g(Z`), define

µ
(x)
2g (Sφ) := µ2g(S).

This measure is independent of the choice φ ∈ GSp(x)2g (Z`). Indeed, given some
other ψ ∈GSp(x)2g (Z`), there exists a unique φψ ∈ Sp2g(Z`) such that φψφ =ψ ; i.e.,
Sψ = Sφψφ. Since µ2g is translation-invariant, we know that

µ2g(S)= µ2g(Sφψ),

as desired. Moreover, since µ2g is translation-invariant (by Sp2g(Z`)) and normal-
ized, so is µ(x)2g . Similarly, for any ρ ∈ Z>0, let ν2g,ρ be the unique normalized Haar
measure on Sp2g(Rρ), and for any x ∈ R×ρ , define ν(x)2g,ρ on GSp(x)2g (Rρ) as above. For
any ρ ∈ Z>0, x ∈ R×ρ and S ⊆GSp(x)2g (Rρ), we know ν

(x)
2g,ρ(S)= |S| · |Sp2g(Rρ)|

−1,
since Sp2g(Rρ) is a finite group. To ease notation, for any A ∈ G, g ∈ Z>0 and
x ∈ (Z`)×, we set

µ
(x)
2g (A) := µ

(x)
2g ({φ ∈ GSp(x)2g (Z`) | coker(Id−φ)' A}).
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Furthermore, if ρ ∈ Z>0 and x ∈ R×ρ , set

ν
(x)
2g,ρ(A) := ν

(x)
2g,ρ({γ ∈ GSp(x)2g (Rρ) | coker(Id−γ )' A}).

2.2. The Haar measures. The measures defined in Section 2.1 have an important
relationship, given in the following lemma.

Lemma 2.2.1. Suppose A ∈ G, g ∈ Z>0, x ∈ (Z`)× and ρ ∈ Z>0. Let · : Z`→ Rρ
denote reduction mod `ρ . If `ρ > exp A, then

µ
(x)
2g (A)= ν

(x)
2g,ρ(A).

Proof. Choose any φ ∈ GSp(x)2g (Z`). Then for any measurable S ⊆ GSp(x)2g (Z`), we
know that

µ
(x)
2g (S)= µ

(x)
2g (Sφ

−1φ)= µ2g(Sφ−1)

by the definition of µ(x)2g . Since µ2g is invariant under translation, every coset of
the kernel of the reduction map · : Sp2g (Z`)→ Rρ has the same measure; namely,

[Sp2g(Z`) : ker( ·)]−1
= |Sp2g(Rρ)|

−1.

Moreover, note that if ψ ∈GSp(x)2g (Z`), then m(ψ)=m(ψ) and coker (Id−ψ)' A
if and only if coker (Id−ψ)' A, since `ρ > exp A. The result follows. �

Notation 2.2.2. Suppose that g ∈ Z>0 and ξ ∈ Z≥0. For ρ ∈ Z>0 satisfying ρ ≥ ξ ,
we define an important subgroup of GSp2g(Rρ):

GSp〈ξ〉2g (Rρ) := {γ ∈ GSp2g(Rρ) | m(γ ) ∈ `
ξ Rρ + 1}.

Note that GSp〈ρ〉2g (Rρ)= Sp2g(Rρ) and GSp〈0〉2g (Rρ)= GSp2g(Rρ). For any A ∈ G,
we adopt the suggestive notation

N 〈ξ〉2g,ρ(A) := |{γ ∈ GSp〈ξ〉2g (Rρ) | coker(Id−γ )' A}|

and, if ρ > ξ ,

ν
〈ξ〉

2g,ρ(A) :=
N 〈ξ〉2g,ρ(A)− N 〈ξ+1〉

2g,ρ (A)

|GSp〈ξ〉2g (Rρ)| − |GSp〈ξ+1〉
2g (Rρ)|

.

Goal 2.2.3. We can now state the matrix-theoretic analog of the situation about
which Malle made his Conjecture 2.1. Following Heuristic 1.2.2, for A ∈ G,
x ∈ (Z`)× and ξ ∈ Z>0, with x ≡ 1 (mod `ξ ) but x 6≡ 1 (mod `ξ+1), we must
evaluate

µx(A) := lim
g→∞

µ
(x)
2g (A).
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If we let · : Z`→ Rρ denote reduction mod `ρ , then we know by Lemma 2.2.1 that
this amounts to calculating

lim
g→∞

ν
(x)
2g,ρ(A)

for any ρ ∈ Z>0 satisfying both `ρ > exp A and ρ > ξ . In Note 3.1.5 we will see
that, for all such ρ,

ν
(x)
2g,ρ(A)= ν

〈ξ〉

2g,ρ(A),

so we will turn our attention to computing

lim
g→∞

ν
〈ξ〉

2g,ρ(A),

which we compute explicitly for ξ = 1, 2 in Corollary 5.2.2. Using Achter’s result,
Theorem 1.2.3, we then obtain Theorem 1.2.4 as a corollary.

Remark 2.2.4. Suppose that x ∈ Z`. In addition to explicitly computing the
distribution µx : G→ R if x ≡ 1 (mod `ξ ) but x 6≡ 1 (mod `ξ+1) for ξ = 1, 2, we
also compute the moments of this distribution for any ξ ∈ Z>0. Specifically, in
Corollary 3.2.7 we find that if A ∈ G then∑

B∈G

|Surj(B, A)|µx(B)= |3(A/`ξ )|.

(See Notation 3.2.1 for the definition of 3.) For any A ∈ G, we call the quantity∑
B∈G|Surj(B, A)|µx(B) the “Ath moment” of the distribution µx by analogy. Just

as the kth moment of a real-valued random variable X is the expected value of
X k , the Ath moment of µx is the expected value of |Surj(B, A)|, where B is a
G-valued random variable. Moreover, under certain favorable conditions, the set of
Ath moments of a distribution on G determines the distribution, making the analogy
even stronger. The term “Ath moment” is becoming standard in the literature related
to the Cohen–Lenstra heuristics (see, for example, [Ellenberg et al. 2009; Matchett
Wood 2014]).

3. The symplectic action

3.1. Basic properties.

Notation 3.1.1. For any A, B ∈ G, let Inj(A, B) and Surj(A, B) be the sets of
injective homomorphisms and surjective homomorphisms from A to B.

In what follows, we will consider either injections or surjections (as well as
either kernels or cokernels) depending on which is more convenient at the time.
The next two lemmas justify this shifting point of view.
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Lemma 3.1.2. Suppose that A ∈ G, g, ρ ∈ Z>0 and ξ ∈ Z≥0. If ρ ≥ ξ , then
GSp〈ξ〉2g (Rρ) acts on Inj(A, (Rρ)2g) and Surj((Rρ)2g, A) by postcomposition and
precomposition, respectively. These actions have the same number of orbits.

Proof. If `ρ < exp A, the result is trivial, so suppose `ρ ≥ exp A. In this case,
we can think of A as an Rρ-module. Moreover, we know that Rρ is an injective
Rρ-module by Baer’s criterion, so the functor

( · )∨ := Hom( · , Rρ) : Rρ−mod→ Rρ−mod

is exact. Thus, for any γ ∈ GSp〈ξ〉2g (Rρ),

f, h ∈ Inj(A, (Rρ)2g) with γ ◦ f = h

if and only if

f ∨, h∨ ∈ Surj(((Rρ)2g)∨, A∨) with f ∨ ◦ γ ∨ = h∨.

After choosing Rρ-bases for (Rρ)2g and A, it is easy to see that ((Rρ)2g)∨' (Rρ)2g,
A∨ ' A and γ ∨ = γ>∈ GSp〈ξ〉2g (Rρ), giving the result. �

The number orbits of the action described above turn out to be very important,
so we bestow a name upon them:

Definition 3.1.3. Suppose that A ∈ G, g, ρ ∈ Z>0 and ξ ∈ Z≥0. If ρ ≥ ξ , let oA,〈ξ〉
2g,ρ

be the number of orbits of GSp〈ξ〉2g (Rρ) acting on Inj(A, (Rρ)2g) or Surj((Rρ)2g, A).

Lemma 3.1.4. For A, g, ρ, ξ as above,

N 〈ξ〉2g,ρ(A)=
∣∣{γ ∈ GSp〈ξ〉2g (Rρ) | ker(Id−γ )' A}

∣∣.
Proof. As in Lemma 3.1.2, this follows from the exactness of ( · )∨. Note that, for
any γ ∈ GSp〈ξ〉2g (Rρ),

(coker(Id−γ ))∨ = ker((Id−γ )∨)= ker(Id−γ>),

giving the result. �

In Goal 2.2.3, we turned our attention from the measures of cosets of the sym-
plectic group to subgroups of the group of symplectic similitudes. The following
note justifies this turn.

Note 3.1.5. Suppose that A ∈G, g ∈Z>0, x ∈Z` and ξ ∈Z>0, with x ≡ 1 (mod `ξ )
but x 6≡ 1 (mod `ξ+1). If ρ ∈ Z>0 satisfies ρ > ξ , then

ν
(x)
2g,ρ(A)= ν

〈ξ〉

2g,ρ(A).
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Proof. This amounts to showing that if x, y ∈ Rρ such that x ≡ y ≡ 1 (mod `ξ ) but
neither x nor y is equivalent to 1 (mod `ξ+1), then

ν
(x)
2g,ρ(A)= ν

(y)
2g,ρ(A).

By our assumptions on x and y, there exists some m0 such that ` -m0 and x m0 = y.
Choose some m in the arithmetic progression {m0+ `

ρ−ξ j}∞j=0 such that

gcd(m, |GSp2g(Rρ)|)= 1,

and choose k such that mk ≡ 1 (mod |GSp2g(Rρ)|). Now, the map

( · )m : GSp(x)2g (Rρ)→ GSp(y)2g (Rρ)

γ 7→ γ m

is bijective with inverse ( · )k . Moreover, for any z ∈ (Rρ)2g and any γ ∈GSp(x)2g (Rρ),
it is clear that γ z = z if and only if γ mz = z. Thus, we obtain∣∣{γ ∈ GSp(x)2g (Rρ) | ker(Id−γ )' A}

∣∣= ∣∣{γ ∈ GSp(y)2g (Rρ) | ker(Id−γ )' A}
∣∣,

and we conclude by Lemma 3.1.4. �

3.2. Orbit counting.

Notation 3.2.1. For any A ∈ G, let 3(A) be the set of alternating bilinear forms
on A thought of as a (Z/ exp A)-module.

Note 3.2.2. Suppose that A = Z/`α1 ⊕ · · ·⊕Z/`αr with α1 ≥ · · · ≥ αr > 0. Then

|3(A)| = `
∑r

i=2 (i−1)αi

Proof. Let {ei }
r
i=1 be a (Z/ exp A)-basis for A such that ei has order `αi for

all i ∈ {1, . . . , r}. Every alternating bilinear form 〈 · , · 〉 on A corresponds to
an antisymmetric matrix (〈ei , e j 〉) ∈Matr×r (Z/ exp A). Moreover, `α j 〈ei , e j 〉 =

〈ei , `
α j e j 〉 = 0 for all i < j since ei has order `αi for all i ∈ {1, . . . , r}. Conversely,

any antisymmetric matrix (ai j ) ∈Matr×r (Z/ exp A) corresponds to an alternating
bilinear form on A, as long it has 0s along its main diagonal and `α j ai j =0 whenever
i < j (this requirement encodes the fact that any bilinear form 〈 · , · 〉 on A must
satisfy `α j 〈ei , e j 〉 = 0 for all i < j). There are `α j such elements of Z/ exp A, so
the result follows. �

Lemma 3.2.3. Suppose that r ∈ Z≥0, A ∈ G(r), g, ρ ∈ Z>0 and ξ ∈ Z≥0. If
`ρ ≥ exp A, ρ ≥ ξ and 2g ≥ r , then

oA,〈ξ〉
2g,ρ ≤ `

−(ρ−ξ)
|3(A)| + (`− 1)

ρ−ξ−1∑
i=0

`−(i+1)
|3(A/`ξ+i )|.
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Furthermore, when g ≥ r , the upper bound above is an equality. (In particular,
oA,〈ξ〉

2g,ρ is independent of g for large enough g.)

As pointed out in Goal 2.2.3, we need only calculate

lim
g→∞

ν
〈ξ〉

2g,ρ(A).

Despite this fact, the inequality for small g in Lemma 3.2.3 does indeed turn out to
be useful. This is due to the fact that ν〈ξ〉2g,ρ(A) can be expressed as a sum of orbit
data for finite abelian groups of rank up to 2g. (See Corollary 4.2.4.)

Proof of the lemma. The result is obviously true when r = 0, so suppose that
r > 0. Theorem 2.14 of [Michael 2006] shows that the set of orbit representatives
of GSp〈ρ〉2g (Rρ)= Sp2g(Rρ) acting on Surj((Rρ)2g, A) injects into 3(A); there, this
injection is denoted s ′, and when g ≥ r , the map s ′ is a bijection.

We can define an action of (Rρ)× =GSp2g (Rρ)/Sp2g (Rρ) on Surj((Rρ)2g, A)
as follows. For any x ∈ (Rρ)× and f ∈ Surj((Rρ)2g, A), note that(

0 x · Idg

− Idg 0

)
∈ GSp2g (Rρ), and define x · f = f ◦

(
0 x · Idg

− Idg 0

)
.

We can also define an action of (Rρ)× on 3(A) by x · 〈 · , · 〉 = x〈 · , · 〉 for any
x ∈ (Rρ)× and 〈 · , · 〉 ∈3(A). Again referring to the notation of [ibid.], the map s ′

is equivariant with respect to these two actions. (This follows from the definition
of the map s ′ and the comment immediately preceding Lemma 2.2 from [ibid.].)

Thus, computing the number of orbits of GSp〈ξ〉2g (Rρ) acting on Surj((Rρ)2g, A)
is a straightforward application of Burnside’s counting theorem. Indeed, suppose
that A=Z/`α1⊕· · ·⊕Z/`αr with α1≥ · · · ≥ αr > 0, then use Note 3.2.2 to see that

oA,〈ξ〉
2g,ρ ≤

1
|`ξ Rρ + 1|

·

∑
υ∈`ξ Rρ+1

|Fix (υ)|

=
1

|`ξ Rρ + 1|

((ρ−ξ−1∑
i=0

∑
υ∈(`ξ+i Rρ+1)\(`ξ+i+1 Rρ+1)

|Fix(υ)|
)
+

∑
υ∈`ρ Rρ+1={1}

|Fix(υ)|
)

=
1

`ρ−ξ

(ρ−ξ−1∑
i=0

(`ρ−ξ−i
− `ρ−ξ−i−1)`

∑r
j=2( j−1)min {ξ+i,α j }+ `α2+2α3+···+(r−1)αr

)

=
1

`ρ−ξ
|3(A)| + (`− 1)

ρ−ξ−1∑
i=0

`−(i+1)
|3(A/`ξ+i )|,

with equality when g ≥ r . �

Notation 3.2.4. Suppose that A∈G, ρ ∈Z>0 and ξ ∈Z≥0. If `ρ ≥ exp A and ρ≥ ξ ,
use Lemma 3.2.3 to define oA,〈ξ〉

ρ := oA,〈ξ〉
2g,ρ for any g ∈ Z>0 such that g ≥ rank A.
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We now mention an identity which will be useful later. (See Corollary 3.2.7 and
Note 4.2.5.)

Note 3.2.5. Suppose A ∈ G and ρ, ξ ∈ Z>0. If `ρ ≥ exp A and ρ > ξ , then by
Lemma 3.2.3 and Note 3.2.2, we see that

`oA,〈ξ〉
ρ − oA,〈ξ+1〉

ρ = (`− 1)|3(A/`ξ )|.

Below is a simple observation, which has Corollary 3.2.7 as an important conse-
quence. This corollary gives the moments of the probability distributions µx :G→R

for any x ∈ Z`, as promised in Section 2.2.

Lemma 3.2.6. Suppose that A ∈G, g, ρ ∈Z>0 and ξ ∈Z≥0. Furthermore, suppose
ρ≥ξ , let γ ∈GSp〈ξ〉2g (Rρ), and consider Inj(A, ker(Id−γ ))⊆ Inj(A, (Rρ)2g). There
is a one-to-one correspondence between Inj(A, ker(Id−γ )) and Fix(γ ). Dually,
there is a one-to-one correspondence between Surj(coker(Id−γ ), A) and Fix(γ ).

Proof. Suppose that f ∈ Inj(A, (Rρ)2g). Note that f ∈ Inj(A, ker(Id−γ )) if and
only if (Id−γ ) f = 0 if and only if f = γ f . The dual proof is similar. �

Corollary 3.2.7. Let x ∈Z` and suppose that x ≡ 1 (mod `ξ ) but x 6≡ 1 (mod `ξ+1)

for some ξ ∈ Z>0. If A ∈ G, then∑
B∈G

|Surj(B, A)|µx(B)= |3(A/`ξ )|.

Proof. Choose any g, ρ ∈ Z>0 such that g ≥ rank A, `ρ ≥ exp A, and ρ > ξ . To
begin with, note that∑

B∈G

|Surj(B, A)|ν(x)2g,ρ(B)

= |GSp(x)2g (Rρ)|
−1
·

∑
B∈G

|Surj(B, A)| ·
∣∣{γ ∈ GSp(x)2g (Rρ) | coker(Id−γ )' B}

∣∣
= |GSp(x)2g (Rρ)|

−1
·

∑
γ∈GSp(x)2g (Rρ)

|Surj(coker(Id−γ ), A)|.

Now, thanks to Note 3.1.5, we can turn our attention to the quantity

|GSp〈ξ〉2g (Rρ) \GSp〈ξ+1〉
2g (Rρ)|−1

·

∑
γ∈GSp〈ξ〉2g (Rρ)\GSp〈ξ+1〉

2g (Rρ)

|Surj(coker(Id−γ ), A)|.

Using the fact that |GSp〈ξ〉2g (Rρ)| = `|GSp〈ξ+1〉
2g (Rρ)| and applying Lemma 3.2.6

to GSp〈ξ〉2g (Rρ) acting on Surj((Rρ)2g, A), then using Burnside’s counting theorem
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and Notation 3.2.4, we see that

|GSp〈ξ〉2g (Rρ) \GSp〈ξ+1〉
2g (Rρ)|−1

·

∑
γ∈GSp〈ξ〉2g (Rρ)\GSp〈ξ+1〉

2g (Rρ)

|Surj(coker(Id−γ ), A)|

=
`

(`− 1)|GSp〈ξ〉2g (Rρ)|

( ∑
γ∈GSp〈ξ〉2g (Rρ)

|Fix γ | −
∑

γ∈GSp〈ξ+1〉
2g (Rρ)

|Fix γ |
)

=
`

`− 1

( ∑
γ∈GSp〈ξ〉2g (Rρ)

|Fix γ |

|GSp〈ξ〉2g (Rρ)|
−

∑
γ∈GSp〈ξ+1〉

2g (Rρ)

|Fix γ |

`|GSp〈ξ+1〉
2g (Rρ)|

)

=
`

`− 1

(
oA,〈ξ〉

2g,ρ −
1
`

oA,〈ξ+1〉
2g,ρ

)
=

1
`− 1

(
`oA,〈ξ〉
ρ − oA,〈ξ+1〉

ρ

)
,

so we can conclude by applying Note 3.2.5 and Lemma 2.2.1. �

4. A weighted Möbius function

4.1. First observations. Let P be a locally finite poset. The Möbius function on P,
denoted by µP, is defined by the following criteria: for any x, z ∈ P,

µP(x, z)= 0 if x � z,

µP(x, z)= 1 if x = z,∑
x≤y≤z µP(x, y)= 0 if x < z.

A classic reference for Möbius functions is [Rota 1964]. In this section, we need to
study a variant of the Möbius function on the poset of subgroups of a finite group
(ordered by inclusion). For a history of the work on the Möbius function on this
poset, see [Hawkes et al. 1989]. Now, for any finite group G, let PG be the poset
of subgroups of G ordered by inclusion. For A ∈ G, we study an amalgam of the
Möbius functions on PA and G, which we define below.

Notation 4.1.1. For any A, B ∈ G, let sub(A, B) be the number of subgroups of B
that are isomorphic to A. If A ∈ G, an A-chain is a finite (possibly empty) linearly
ordered subset of {B ∈ G | B > A}. Now, given an A-chain C = {A j }

i
j=1, with

A j < A j+1 for all j ∈ {1, . . . , i − 1}, define

sub(C) := (−1)i sub(A, A1)

i−1∏
j=1

sub(A j , A j+1).



Random matrices, the Cohen–Lenstra heuristics, and roots of unity 163

(We set sub(C)= 1 if C is empty.) Finally, for any A, B ∈ G, let

S(A, B)=


0 if A � B,

1 if A = B,∑
A-chains C,
maxC=B

sub(C) if A < B.

Remark 4.1.2. Though S is defined on the poset G, it is closely related to the
classical work on the Möbius function on the subgroup lattice of a fixed group.
Indeed, by applying Lemma 2.2 of [Hawkes et al. 1989], we see that if A, B∈G, then

S(A, B)=
∑
C≤B
C'A

µB(C, B).

Given x ∈ (Z`)×, we can use the function S defined in Notation 4.1.1 to begin
our analysis of the measure µx , following the outline in Goal 2.2.3.

Lemma 4.1.3. Suppose A ∈G, g, ρ ∈Z>0 and ξ ∈Z≥0, with ρ ≥ ξ and `ρ ≥ exp A.
Then

oA,〈ξ〉
2g,ρ |GSp〈ξ〉2g (Rρ)| =

∑
B∈G

B≤(Rρ)2g

N 〈ξ〉2g,ρ(B)|Inj(A, B)|.

Proof. Applying Lemma 3.2.6 and Burnside’s counting theorem, we see that

oA,〈ξ〉
2g,ρ |GSp〈ξ〉2g (Rρ)| =

∑
γ∈GSp〈ξ〉2g (Rρ)

|Fix(γ )| =
∑

γ∈GSp〈ξ〉2g (Rρ)

|Inj(A, ker(Id−γ ))|

=

∑
B∈G

B≤(Rρ)2g

N 〈ξ〉2g,ρ(B)|Inj(A, B)|,

where the last step follows from Lemma 3.1.4. �

For A, g, ρ, ξ as above, Lemma 4.1.3 gives us an “upper triangular” system of
equations, which we will solve for N 〈ξ〉2g,ρ(A). (The quotes indicate that the system
is indexed by the poset P(Rρ)2g .) Proposition 4.1.4 is the first step along this path.

Proposition 4.1.4. Suppose A, g, ρ, ξ are as above. Then

N 〈ξ〉2g,ρ(A)

|GSp〈ξ〉2g (Rρ)|
=

∑
B∈G

B≤(Rρ)2g

oB,〈ξ〉
2g,ρ ·

S(A, B)
|Aut B|

.

Proof. We use strong induction on |(Rρ)2g
|/|A|. In light of Lemma 4.1.3, the

base case A = (Rρ)2g is trivial. Now suppose the result is true for all B ∈ G with
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B ≤ (Rρ)2g and |(Rρ)2g
|/|B|< |(Rρ)2g

|/|A|. Using Lemma 4.1.3, we see that

N 〈ξ〉2g,ρ(A)

|GSp〈ξ〉2g (Rρ)|
=

1
|Aut A|

·

(
oA,〈ξ〉

2g,ρ −
1

|GSp〈ξ〉2g (Rρ)|
·

∑
B∈G

B≤(Rρ)2g

B 6=A

N 〈ξ〉2g,ρ(B)|Inj(A, B)|
)

=
oA,〈ξ〉

2g,ρ

|Aut A|
−

∑
B∈G

B≤(Rρ)2g

B 6=A

N 〈ξ〉2g,ρ(B)

|GSp〈ξ〉2g (Rρ)|
· sub(A, B),

so the result follows by the induction hypothesis. �

4.2. Vanishing of the Möbius function. Before proceeding, we need a bit more
notation, and two results from [Garton 2014b].

Notation 4.2.1. For any A ∈ G and any i ∈ Z≥0, let

A⊕i := A⊕

i times︷ ︸︸ ︷
(Z/`)⊕ · · ·⊕ (Z/`) .

Hall [1934] proved that if G is an `-group of order `n , then µG(1,G) = 0
unless G is elementary abelian, in which case µG(1,G)= (−1)n`(

n
2). There is an

analogous result for the function S:

Theorem 4.2.2 [Garton 2014b]. If A, B ∈ G, then S(A, B)= 0 unless there exists
an injection ι : A ↪→ B with coker(ι) elementary abelian.

Additionally, this property of S will prove helpful:

Theorem 4.2.3 [ibid.]. If A, B ∈ G and B = C⊕i for some C ∈ G with rank C =
rank A and i ∈ Z≥0, then S(A, B)= S(A,C) · S(C, B).

Theorem 4.2.2 and Theorem 4.2.3 have the following corollary:

Corollary 4.2.4. Suppose A, g, ρ, ξ are as above, and let r = rank A. If in addition
we know ξ ∈ Z>0 and ρ satisfies ρ > ξ and `ρ > exp A, then

ν
〈ξ〉

2g,ρ(A)=
∑

B∈G(r)

S(A, B) ·
2g−r∑
i=0

`oB⊕i ,〈ξ〉

2g,ρ − oB⊕i ,〈ξ+1〉
2g,ρ

`− 1
·

S(B, B⊕i )

|Aut B⊕i |
.

Proof. Using the fact that |GSp〈ξ〉2g (Rρ)| = `|GSp〈ξ+1〉
2g (Rρ)|, note that

ν
〈ξ〉

2g,ρ(A)=
N 〈ξ〉2g,ρ(A)− N 〈ξ+1〉

2g,ρ (A)

|GSp〈ξ〉2g (Rρ)| − |GSp〈ξ+1〉
2g (Rρ)|

=
`N 〈ξ〉2g,ρ(A)

(`− 1)|GSp〈ξ〉2g (Rρ)|
−

N 〈ξ+1〉
2g,ρ (A)

(`− 1)|GSp〈ξ+1〉
2g (Rρ)|

.
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Applying Proposition 4.1.4, we obtain

ν
〈ξ〉

2g,ρ(A)=
∑
B∈G

B≤(Rρ)2g

`oB,〈ξ〉
2g,ρ − oB,〈ξ+1〉

2g,ρ

`− 1
·

S(A, B)
|Aut B|

.

Now, by Theorem 4.2.2 we know that if B ∈ G is not of the form B =C⊕i for some
C ∈ G(r) and some i ∈ Z≥0, then S(A, B) vanishes. Thus, by Theorem 4.2.3, we
conclude that

ν
〈ξ〉

2g,ρ(A)=
∑

B∈G(r)

S(A, B) ·
2g−r∑
i=0

`oB⊕i ,〈ξ〉

2g,ρ − oB⊕i ,〈ξ+1〉
2g,ρ

`− 1
·

S(B, B⊕i )

|Aut B⊕i |
,

as desired. �

Note 4.2.5. Suppose A, g, ρ, ξ, r are as in Corollary 4.2.4, and suppose that g ≥ r .
Then for any B ∈G(r) and i ∈ {0 . . . , g−r}, we know by Note 3.2.5 and Note 3.2.2
that

`oB⊕i ,〈ξ〉

2g,ρ − oB⊕i ,〈ξ+1〉
2g,ρ

`− 1
= |3(B⊕i/`

ξ )| = `ir+ i(i−1)
2 |3(B/`ξ B)|,

and for any i ∈ {g− r + 1, . . . , 2g− r}, we can use the proof of Lemma 3.2.3 to
note that

`oB⊕i ,〈ξ〉

2g,ρ − oB⊕i ,〈ξ+1〉
2g,ρ

`− 1
≤ `oB⊕i ,〈ξ〉

2g,ρ ≤ `|3(B⊕i )| = `
ir+ i(i−1)

2 +1
|3(B)|.

Thus, if
∞∑

i=0

`ir+ i(i−1)
2

S(B, B⊕i )

|Aut B⊕i |

converges absolutely (and it does; see Lemmas 5.1.2 and 5.1.3 and Theorem 5.1.4),
then so does

∞∑
i=0

`oB⊕i ,〈ξ〉

2g,ρ − oB⊕i ,〈ξ+1〉
2g,ρ

`− 1
·

S(B, B⊕i )

|Aut B⊕i |
,

and

lim
g→∞

ν
〈ξ〉

2g,ρ(A)=
∑

B∈G(r)

S(A, B)|3(B/`ξ B)| ·
∞∑

i=0

`ir+ i(i−1)
2

S(B, B⊕i )

|Aut B⊕i |
.

Analyzing the inner series is the subject of the next section. (Note that this limit
does not depend on ρ, once ρ is large enough; this is consistent with Lemma 2.2.1.)
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5. q-series and convergence

5.1. q-series. Before continuing, we make a small foray into some q-series notation
and calculations.

Notation 5.1.1. For z, q ∈ C with |q|< 1 and i ∈ Z≥0, let

(z; q)i :=
i−1∏
j=0

(1− q j z).

To ease notation, set (q)i := (q; q)i . Recall the definition of the q-binomial coeffi-
cients: for any k,m ∈ Z≥0, let( k

m

)
q
:=

(q)k
(q)m(q)k−m

,

with
( k

m

)
q := 0 if k < m.

For i ∈ Z≥0, let ri = −1/(`
i(i+1)

2 (`−1)i ). We define the next object in terms of
any finite set of nonnegative integers S and any i ∈ Z satisfying i > max S. If
S∪{0}= {s0, . . . , s j }, where 0= s0< s1< · · ·< s j+1 := i , define r i

S =
∏ j

i=0 rsi+1−si .
Finally, let t0 = 1, let t1 = r1

∅, and for i > 1, let

ti =
∑

S⊆{1,...i−1}

r i
S.

Lemma 5.1.2.
∞∑

i=0

ti =
∞∏

i=1

(1+ `−i )−1.

Proof. Let R = r1 + r2 + · · · and, to get into the spirit of a q-series calculation,
let q = `−1. Using a product formula of Euler (see [Andrews 1976, p. 19]), we
note that

R =−
∞∑

i=1

q
i(i+1)

2

(1− q i ) · · · (1− q)
=−

∞∑
i=1

q i q
i(i−1)

2

(1− q i ) · · · (1− q)
= 1−

∞∏
i=1

(1+ q i ).

Now, by the definition of ti (and by using Lemma 5.1.3 to rearrange the terms of
the sum), we know

∞∑
i=0

ti = 1+ R+ R2
+ R3

+ · · · =
1

1− R
=

∞∏
i=1

(1+ `−i )−1,

as desired. �

Next, we justify the reordering of the summands in Lemma 5.1.2:
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Lemma 5.1.3. For any finite set of nonnegative integers S and i ∈ Z satisfying
i >max S, let ρi

S := |r
i
S|. Next, let τ0 = 1, let τ1 = ρ

1
∅, and for any i > 1, let

τi :=
∑

S⊆{1,...i−1}

ρi
S.

Then
∑
∞

i=0 τi converges.

Proof. For fun, we will give two proofs: a simple proof that holds for any ` > 3,
and a more complicated one that holds for `≥ 3. Note that the sum clearly diverges
for `= 2 since it includes infinitely many 1s.

For the simple proof, note that for any finite set S of nonnegative integers and
any i >max S, we know ρi

S ≤ (`− 1)−i . It follows that for any i ∈ Z≥0, we have
that τi ≤ 2i−1(`− 1)−i , so

∑
∞

i=0 τi converges for ` > 3.
Of course, this argument fails for ` = 3. In this case, for a finite set S of

nonnegative integers and an i >max S, we must use a (slightly) better bound than
ρi

S ≤ (`−1)−i . Let λ= (`−1)−1. Since (`m
−1)−1

≤ (`−1)−m for any m ∈ Z≥0,
if we let S ∪ {0} = {s0, . . . , s j }, where 0= s0 < s1 < · · ·< s j+1 := i , then

ρi
S =

j∏
k=0

|rsk+1−sk | ≤

j∏
k=0

λ
1
2 (sk+1−sk)(sk+1−sk+1). (1)

Let Ti be the number of compositions of i by triangular numbers. By rearranging
the terms of

∑
∞

i=0 τi to order them by the exponent of λ appearing in the bound (1),
we see that if

∑
∞

i=1 Tiλ
i converges, then so does

∑
∞

i=0 τi . Since the generating
function for the number of compositions of positive triangular numbers is

∞∑
i=0

Ti x i
=

1

1−
∑
∞

j=1 x
1
2 j ( j+1)

, (2)

we need only show that the radius of convergence of (2) is at least λ. Since `≥ 3,
we know that λ≤ 1

2 , and

1> 1
2 + (

1
2)

3
+ ( 1

2)
6
+ (1

2)
10
+ · · · ,

so the lemma is true. �

We can now finish proving the result mentioned in Note 4.2.5.

Theorem 5.1.4. Suppose A ∈ G, ρ, ξ ∈ Z>0, and let r = rank A. If ρ > ξ and
`ρ > exp A, then

lim
g→∞

ν
〈ξ〉

2g,ρ(A)=
∞∏

i=1

(1+ `−i )−1
·

∑
B∈G(r)

|3(B/`ξ B)| ·
S(A, B)
|Aut B|

.
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Proof. Let B ∈ G(r, s), let S be a finite set of nonnegative integers, and let i
be a positive integer with i > max S. Suppose S ∪ {0} = {s0, . . . , s j }, where
0= s0 < · · ·< s j+1 := i . Now, we know by [Garton 2014a] that, for any k,m ∈Z≥0

with k ≤ m,

sub(B⊕k, B⊕m)=
`(r+k)(m−k)(`−1)r−s+m

(`−1)r−s+i (`−1)m−k

and

|Aut B⊕i | =
`2ir+i2

(`−1)r−s+i

(`−1)r−s
|Aut B|,

so

(−1) j+1
·
`ir+ i(i−1)

2

|Aut B⊕i |
·

j∏
k=0

sub(B⊕sk , B⊕sk+1)

= (−1) j+1
·
`−ir− i(i+1)

2

|Aut B|
·
(`−1)r−s

(`−1)r−s+i
·

j∏
k=0

`(r+sk)(sk+1−sk)(`−1)r−s+sk+1

(`−1)r−s+sk (`
−1)sk+1−sk

= (−1) j+1
·
`−ir− i(i+1)

2

|Aut B|
·

j∏
k=0

`(r+sk)(sk+1−sk)

(`−1)sk+1−sk

= (−1) j+1
·

1
|Aut B|

·

j∏
k=0

`−
1
2 (sk+1−sk)(sk+1−sk+1)

(`−1)sk+1−sk

.

But by Lemma 5.1.2, this means that

∞∑
i=0

`ir+ i(i−1)
2

S(B, B⊕i )

|Aut B⊕i |
=

1
|Aut B|

·

∞∑
i=0

ti =
1

|Aut B|
·

∞∏
i=1

(1+ `−i )−1,

so we conclude by Note 4.2.5. �

5.2. The main results. To conclude we mention two corollaries of Theorem 5.1.4,
one trivial and one nontrivial.

Corollary 5.2.1. If x ∈ (Z`)× satisfies x ≡ 1 (mod `), then

lim
g→∞

µ
(x)
2g ({0})=

∞∏
i=1

(1+ `−i )−1.

Friedman and Washington [1989] proved the analog of Corollary 5.2.1 for the
groups GLn (Z`); namely, they proved that

lim
g→∞

µGLn(Z`)({φ ∈ GLn(Z`) | coker(Id−φ)' {0}})=
∞∏

i=1

(1− `−i ),
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where µGLn(Z`) is the normalized Haar measure on GLn(Z`). Friedman and Wash-
ington expressed the hope that the statistics of GLn(Z`) (as n→∞) would match
those of GSp2g(Z`) (as 2g→∞). Achter [2006] proved that this was not the case.
Corollary 5.2.1 calculates a particular statistic for GSp2g(Z`) (as 2g→∞). It is note-
worthy that the quantity in Corollary 5.2.1 matches Malle’s conjectured probability
that the class numbers of relative class groups are coprime to ` (when the base field
of the extension has `th roots of unity but not `2th roots of unity; see Conjecture 2.1
in [Malle 2010]). Furthermore, Corollary 5.2.2 shows that the distribution on G

proposed by Malle matches the distribution on G given by µ(x)2g for any x ∈ (Z`)×

with x ≡ 1 (mod `) but x 6≡ 1 (mod `2). Moreover, Corollary 5.2.2 also computes
the distribution on G given by µ(x)2g when x ≡ 2 (mod `) but x 6≡ 1 (mod `3); this is
analogous to the number field case when the base field has `2th roots of unity but
not `3th roots of unity. The proof of Corollary 5.2.2 relies heavily on calculations
from [Garton 2014a].

Corollary 5.2.2. Suppose r, s ∈ Z≥0 with r ≥ s. Furthermore, suppose that x ∈ Z`

and ξ ∈ Z>0 with x ≡ 1 (mod `ξ ) but x 6≡ 1 (mod `ξ+1). If A ∈ G(r, s), then

lim
g→∞

µ
(x)
2g (A)

=


`

r(r−1)
2
· (`−1)r ·

∏
∞

i=1 (1+ `
−i )−1

|Aut A|
if ξ = 1,

`
r(r−1)

2 +
s(s−1)

2
· (`−1)s(`

−1
; `−2)d r−s

2 e
·

∏
∞

i=1 (1+ `
−i )−1

|Aut A|
if ξ = 2.

Proof. Choose any ρ ∈ Z>0 with ρ > ξ and `ρ > exp A. Then by Lemma 2.2.1
we know

µ
(x)
2g (A)= ν

〈ξ〉

2g,ρ(A).

Now, we know from [Garton 2014a] that

∑
B∈G(r)

S(A, B)
|Aut B|

=
(`−1)r

|Aut A|
,

and, for any i ∈ {s, . . . , r},

∑
B∈G(r,i)

S(A, B)
|Aut B|

= (−1)i−s
· `

s(s+1)
2 −

i(i+1)
2
·

(r−s
r−i

)̀
−1
·
(`−1)s

|Aut A|
.

The ξ = 1 case follows from Note 3.2.2. For ξ = 2, use Note 3.2.2 again to see that



170 Derek Garton

∑
B∈G(r)

|3(B/`2 B)| ·
S(A, B)
|Aut B|

=

r∑
i=s

∑
B∈G(r,i)

|3(B/`2 B)| ·
S(A, B)
|Aut B|

=

r∑
i=s

(−1)i−s
· `

r(r−1)
2 +

s(s+1)
2 −i
·

(r−s
r−i

)̀
−1
·
(`−1)s

|Aut A|

=
`

r(r−1)
2 +

s(s+1)
2 (`−1)s

|Aut A|
·

r∑
i=s

(−1)i−s
·

(r−s
r−i

)̀
−1
· `−i .

Letting k = r − s and q = 1/`, we apply formula (1.10) from [Kupershmidt 2000],
which is a corollary of formula (1.12), to obtain

∑
B∈G(r)

|3(B/`2 B)| ·
S(A, B)
|Aut B|

=
`

r(r−1)
2 +

s(s−1)
2 (`−1)s

|Aut A|
·

k∑
i=0

(−1)i
(k

i

)
q
q i

=
`

r(r−1)
2 +

s(s−1)
2 (`−1)s

|Aut A|
· (q; q2)

d
k
2 e
,

as desired. �
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